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Abstract

We show that mass transportation methods provide an elementary and powerful approach
to the study of certain functional inequalities with a geometric content, like sharp Sobolev or
Gagliardo—Nirenberg inequalities. The Euclidean structure of R" plays no role in our
approach: we establish these inequalities, together with cases of equality, for an arbitrary
norm.
© 2003 Elsevier Inc. All rights reserved.

1. Introduction

The goal of the present paper is to discuss a new approach for the study of certain
geometric functional inequalities, namely Sobolev and Gagliardo—Nirenberg
inequalities with sharp constants. More precisely, we wish to

(a) give a unified and elementary treatment of sharp Sobolev and Gagliardo—
Nirenberg inequalities (within a certain range of exponents);

(b) illustrate the efficiency of mass transportation techniques for the study of such
inequalities, and by this method reveal in a more explicit manner their
geometrical nature;
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(c) show that the treatment of these sharp Sobolev-type inequalities does not even
require the Euclidean structure of R”, but can be performed for arbitrary norms
on R";

(d) exhibit a new duality for these problems;

(e) as a by-product of our method, determine all cases of equality in the sharp
Sobolev inequalities.

Before we go further and explain these various points, a little bit of notation and
background should be introduced. Whenever n>1 is an integer and p>1 is a real
number, define the Sobolev space

WP (R") = {fe’(R"); Vfel’(R")}.

Here L7(R") is the usual Lebesgue space of order p, and V stands for the gradient
operator, acting on the distribution space Z'(R"). When pe[l,n), define

* np
= 1
n—p (1)

Then the (critical) Sobolev embedding W'”(R") = L*(R") asserts the existence of a
positive constant S,(p) such that for every f e W!'*(R")

Hﬂm*<&@<@nmﬁw, @

where |- | denotes the standard Euclidean norm on R". For the great majority of
applications, it is not necessary to know more about the Sobolev embedding, apart
maybe from explicit bounds on S,(p). However, in some circumstances one is
interested in the exact value of the smallest admissible constant S, (p) in (2). There
are usually two possible motivations for this: either because it provides some
geometrical insights (as we recall below, a sharp version of (2) when p=1 is
equivalent to the Euclidean isoperimetric inequality), or for the computation of the
ground-state energy in a physical model. Most often, the determination of S,(p) is in
fact not as important as the identification of extremal functions in (2).

Similar problems have been studied at length in the literature for very many
variants of (2): one example discussed by Del Pino and Dolbeault, which we also
consider here, is the Gagliardo—Nirenberg inequality:

11 < Galp.ru )|V /11 (3)

where n>2, pe(1,n), s<r<p*, and 0 = 0(n,p,r,s)e(0,1) is determined by scaling
invariance. Note that inequality (3) can be deduced from (2) with the help of
Holder’s inequality.

The identification of the best constant S, (p) in (2) for p> 1 goes back to Aubin [2]
and Talenti [30]. The proofs by Aubin and Talenti rely on rather standard techniques
(symmetrization, solution of a particular one-dimensional problem). For p =1, it

0
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has been known for a very long time that (2) is equivalent to the classical Euclidean
isoperimetric inequality which asserts that, among Borel sets in R” with given
volume, Euclidean balls have minimal surface area (see [28,29] for references about
this problem). Also the case p = 2 is particular, due to its conformal invariance, as
exploited in Beckner [5]. In Lieb [21], this case was derived by (rather technical)
rearrangement arguments. Carlen and Loss have pointed out the crucial role of
“competing symmetries’ in this problem and used it to give a simpler proof [11],
reproduced in [22]. Recently, Lutwak et al. [23] and Zhang [32] combined the co-area
formula and a generalized version of the Petty projection inequality (related to the
new concept of affine 17 surface area) to obtain an affine version of the Sobolev
inequalities, which implies the Euclidean version (2).

Considerable effort has been spent recently on the problem of optimal Sobolev
inequalities on Riemannian manifolds, see the survey [17] and references therein. In
the present work however, we shall concentrate on the situation where the problem is
set on R". We do not know whether our methods would still be as efficient in a
Riemannian setting. Note however that nonsharp Sobolev Riemannian inequalities
can easily be derived by mass transportation techniques, as shown in [12].

For inequality (3), the computation of sharp constants G,(p,r,s) is still an open
problem in general. Very recently, Del Pino and Dolbeault [15,16] made the
following breakthrough: they obtained sharp forms of (3) in the case of the one-
parameter family of exponents:

(4)

pis—=1)=r(p—1) when r,s>p,
p(r—1)=s(p—1) when r,s<p.

Inequality (2) is actually a limit case of (3) when r = p* (in which case 0 = 1). Note
that an L version of the usual logarithmic Sobolev inequality also arises as a limit
case of (3) when r = s = p (see [16]; the usual inequality would be p = 2).

The proofs by Del Pino and Dolbeault for (3) rely on quite sophisticated results
from calculus of variations, including uniqueness results for nonnegative radially
symmetric solutions of certain nonlinear elliptic or p-Laplace equations. This work
by Del Pino and Dolbeault has been the starting point of our investigation. We shall
show in the present work how their results can be recovered (also in sharp form) by
completely different methods.

Unlike the above-mentioned approaches, our arguments do not rely on conformal
invariance or symmetrization, nor on Euler—Lagrange partial differential equations
for related wvariational problems. Instead, we shall use the tools of mass
transportation, which combine analysis and geometry in a very elegant way. Let
us briefly recall some relevant facts from the theory of mass transportation. If y and
v are two nonnegative Borel measures on R” with same total mass (say 1), then a
Borel map 7' : R" —» R”" is said to push-forward (or transport) p onto v if, whenever B is
a Borel subset of R”, one has

v[B] = u[T~(B)], (5)
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or equivalently, for every nonnegative Borel function b: R" >R,

/ b(y) dv(y) = / B(T(x)) dpu(x). (6)

The central ingredient in our proofs is the following result of Brenier [6], refined by
McCann [25]:

Theorem 1. If p and v are two probability measures on R" and p is absolutely
continuous with respect to Lebesque measure, then there exists a convex function ¢
such that NV ¢ transports u onto v. Furthermore, V¢ is uniquely determined dy almost
everywhere.

Observe that ¢ is differentiable almost everywhere on its domain since it is convex;
in particular, it is differentiable du almost everywhere. The (monotone) map 7 =
V¢ will be referred to as the Brenier map. By construction, it is known to solve the
Monge—Kantorovich minimization problem with quadratic cost between u and v,
but here we shall not need this optimality property explicitly. See [31] for a review,
and discussion of existing proofs.

From now on, we assume that x4 and v are absolutely continuous, with respective
densities F' and G. Then (6) takes the form

/ b(y)G(y) dy = / b(Vp(x))F(x) dx. (7)

for every nonnegative Borel function b: R"—R_. If ¢ is of class C?, the change of
variables y = V(x) in (7) shows that ¢ solves the Monge—Ampere equation

F(x) = G(Vo(x)) det D*¢(x). (8)

Here D’¢(x) stands for the Hessian matrix of ¢ at point x. Caffarelli’s deep
regularity theory [8—10] asserts the validity of (8) in classical sense when F and G are
Holder-continuous and strictly positive on their respective supports and G has
convex support. In the present paper, we shall use a much simpler measure-
theoretical observation, due to McCann [26, Remark 4.5] which asserts the validity
of (8) in the F(x) dx almost everywhere sense, without further assumptions on F and
G beyond integrability. In Eq. (8), D*¢ should then be interpreted in Aleksandrov
sense, i.e. as the absolutely continuous part of the distributional Hessian of the
convex function ¢. Of course, D*¢ is only defined almost everywhere. An alternative,
equivalent way of defining D?¢ is to note (see [18]) that a convex function ¢ admits
almost everywhere a second-order Taylor expansion

o(x +h) = @(x) + Vo(x)-h+1D*p(x)(h) - h+ o(|*).

Where defined, the matrix D?¢ is symmetric and nonnegative, since ¢ is convex.
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Mass transportation (or parameterization) techniques have been used in geometric
analysis for quite a time. They somehow appear in all known proofs of the Brunn—
Minkowski inequality,

|4+ B]'"" = |4+ |B'", 9)

where 4, BcR" and |-| denotes the Lebesgue measure on R” (see [19,29]). The
isoperimetric inequality easily follows from (9). An important source of inspiration
for us has been the direct mass transportation proof by Gromov [27, Appendix] of
the (functional) isoperimetric inequality, namely inequality (2) in the case p = 1; we
shall recall his argument below. Closely related to our work is also the mass
transportation proof by McCann [26] of functional versions of (9) known as
Prékopa—Leindler and Borell-Brascamp-Lieb inequalities (see [19]). More recently,
Barthe has exploited all the power of Brenier’s theorem to prove deep Gaussian
inequalities (see [4] or the reviews [19,31, Chapter 6]). Our proof has many common
points with Barthe’s work, which is surprising since the inequalities under study here
and there look quite different. As far as tools and methods are concerned, the present
paper can be seen as the continuation of the very recent works [13,14]. Until recently,
it was believed that those techniques could not be adapted to general Sobolev-type
inequalities besides the p = 1 case. Here we shall demonstrate that this guess was
wrong.

Among the main advantages of our proof, we note that it is extremely simple
(apart from nonessential technical subtleties linked to the lack of smoothness of the
Brenier map). In addition to the existence of the Brenier map, our proof makes use
of just two ingredients: the arithmetic—geometric inequality on one hand (domination
of the geometric mean by the arithmetic mean), and on the other hand the standard
Young inequality for convex conjugate functions, in the very particular case of
Eq. (10) below, or equivalently Holder’s inequality (11).

Our proof avoids any compactness argument, and has the great merit to allow
room for quantitative versions, which are often important in problems coming from
physics: for instance, if a function is far enough from the optimizers in (2), how to
give a lower bound on how far the ratio ||Vf]|,,/|| f]|;,~ departs from the optimal
value S,(p)? Here we will not investigate such questions (to do so, it would be
desirable to have a more precise formulation of the problem), but it will be clear
from our arguments that their constructive nature makes them a plausible starting
point for such an investigation, at least when f is strictly positive on R".

Finally, our proof will cover non-Euclidean norms. It clearly shows that the
treatment of optimal Sobolev inequalities, and the resulting extremal functions, do
not depend on the Euclidean structure of R". As far as Sobolev inequalities are
concerned, such versions for arbitrary norms are not new. The p =1 case was
contained in Gromov’s treatment. For p>1, the inequalities can be obtained by
using a symmetrization procedure and Aubin and Talenti’s argument; this was done
recently by Alvino et al. [1]. As mentioned, our approach is completely different since
we will not solve any variational problem and since our proof will be carried on R"
till the end.
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As we just discussed, the only two ingredients which lie behind our proof of
Sobolev inequalities are the arithmetic—geometric inequality, and Holder’s inequal-
ity. By tracing carefully cases of equality in these two inequalities, we shall manage to
identify all cases of equality in the Sobolev inequalities. Though this problem has
been solved in the case of the Euclidean norm, the result seems to be new in the case
of arbitrary norms; in [1] this problem was left open. And even in the Euclidean case,
we believe that our approach is simpler than the classical one based on sharp
rearrangement inequalities.

The plan of the paper is as follows. First, in the next section, we give a proof of
optimal Sobolev inequalities. Then, in Section 3, we shall give the adaptations which
enable to turn this proof into a proof of optimal Gagliardo—Nirenberg inequalities.
Even though we could have treated directly the general case of Gagliardo—Nirenberg
inequalities with general norms, we have chosen to present Sobolev inequalities
separately because they are popular and of independent interest. Finally, Section 4
contains some comments, and the identification of all minimizers in the Sobolev
inequalities.

2. Sharp Sobolev inequalities

Stating and proving our main results for general norms will be hardly any longer
than for Euclidean norms, so let us consider general norms from the beginning. Let
(E,|| - ||) be an n-dimensional normed space, with dual space (E*, || -||,). Let A be an
invariant Haar measure on E (unique up to a multiplicative constant). We shall
prove a sharp version of the Sobolev inequality

N 1/p* 1/p
(Lirmaz) ™ <sea( [lanraz)
E E

Here df : E— E* denotes the differential map of /: E— R.

For convenience and without loss of generality we assume that E = (R",||-||)
where || -|| is an arbitrary norm on R". Then the dual space is E* = (R",||-]],)
where, for X e E*,

X, = sup X-¥
[1Y[<1

and X - Y = > X;Y,;. The duality can also be expressed through Young’s inequality

ViR 2
XY < —|IX[[+— Y| (10)
P q

for 2>0. Here and throughout the paper ¢ = p/(p — 1) denotes the dual exponent of
p>1 (we hope this notation will avoid confusions with p* defined in (1)). For
X:R">E*in I/ and Y :R"—>E in L4, integration of (10) and optimization in A
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gives Holder’s inequality in the form

[xr< (/|X||i)l/p(/|Y||q)l/q. (1)

This inequality expresses the well-known fact that the dual space of L7(R", E)
coincides with LI(R", E*).

The norm ||-]|| is Lipschitz and therefore differentiable almost everywhere.
Whenever xe R"\{0} is a point of differentiability, the gradient of the norm at x is
the unique vector x* = V(|| - ||)(x) such that

X[l =1, x-X*:IIXHZHS‘l‘lplx-y- (12)
V|l =

Of course, in the usual case of the Euclidean norm | - |, x* = x/|x|.
For 1<p<n, we define the function 7, as follows:

1
hp(x) =y (p>1),
P
oy IR "
X
h](x) = Bu,
B[
where ¢,>0 is determined by the condition
1l =1, (14)

and B stands for the unit ball of (R" || ||),
B = {xeR"; ||x||<1}.

These functions will turn out to be extremal in the Sobolev inequalities. Of course,
this property is well-known in the Euclidean case (|| - || = -|): for p>1 it is due to
Aubin and Talenti and for p =1 it is the classical isoperimetric inequality. As
mentioned, the case of arbitrary norms was considered in [1].

The natural space to look for extremal functions in the Sobolev inequality is the
homogeneous Sobolev space

W2 (R = { fe P (R"); VfeLl’(R")}.

This space coincides with the space of functions f whose distributional gradient lies
in L7 and verifying that |{|f|>a}| is finite for every a>0. It is homogeneous in the
same sense inequality (2) is homogeneous under the rescaling f'+f; = f(-/4). This
space is better adapted to the study of inequality (2) than W'?; indeed, for p>1,
extremal functions will always exist in W!#(R") but will not belong to W'?(R")
when p>=/n.
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If f'e W'»(R"), it is natural to consider the dual norm of the Vf. Thus, we define

o= (fiwe)” a3

For notational reasons, we will separate the case p = 1 from the rest. Let us start
with p>1.

Theorem 2. Let pe(1,n) and g = p/(p — 1). Whenever fe W'*(R") and ge L7 (R")
o = llgll*, then

p* (1-1/n) 1
f|qg| P* Ve SZEZ— ; (16)
(SIy*g)I”™ dy) p
with equality if f = g = h,.
As immediate consequences we have
(1) The duality principle
Slgf™ " p(n—1)
LIS — v, a7
lall, =t ([ [[y]|*lg)P™ dp)'/e n(n—p) 11, o
with hy, extremal in both variational problems;
(i) The sharp Sobolev inequality: if f #0 lies in W' (R"), then
||f||U*

The variant for p =1 of (18), for general norms, can be found in Gromov [27,
Appendix]. Below we shall shortly reproduce his argument, with minor modifications
which will make it look just like the proof of Theorem 2 above. Extremal functions
for p = 1 do not exist in W!(R"), and should rather be searched for in the space of
functions with bounded variation.

Theorem 3 (Isoperimetry). If f#0 is a smooth compactly supported function, then

VAl
I/

This inequality extends to functions with bounded variation, with equality if f = h;.

= n|B|n.

L/ (n=1)

Remark. (1) Inequality (16) is interesting only when f\|y||"|g(y)|”* dy< 400, in
which case (16) forces g to belong to L2*(1=1/n(R"),
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(2) The crucial property of /4, here is that, for almost every x, there is equality in
Young’s inequality (10) when X = —Vh,(x), ¥ = hﬁ*/q(x)x and

_ N\l
zx,,:@_’f) . (19)

Indeed, after a few computations and using (12), we are led to the straightforward
equality

(Z—p> [ :Lc—py [ +i_1(5 R3]
= 1) (op +IIXI1)" pig\p =1/ (op +IXII)" g (op + [Ix]|)"

As a consequence (or by a direct computation), the same choice of X and Y gives an
equality in Holder’s inequality (11):

—/WNW%WMﬂM—WmM<ﬂM%{mwyg 0)

Let us now give the proof of Theorem 2.

Proof of Theorem 2. First of all, it is well-known that whenever f'e W'#(R"), then
V|f| = £Vf almost everywhere, so f and |f| have equal Sobolev norms. Thus,
without loss of generality, we may assume that f and g are nonnegative and, by
homogeneity, satisfy || f||,,» = |lg]|,,« = 1. Moreover, we shall prove (16) only in
the special case when f and g are smooth functions with compact support; the
general case will follow by density.

Introduce the two probability densities

F(x)=/""(x), G)=g¢"(»)

on R"; let V¢ the Brenier map which transports F(x) dx onto G(y) dy. In a first step,

we shall establish that
Lo
/G n<—/F nA@, (21)
n

where Ag@(x) = tr D>p(x) appears as the absolutely continuous part of the
distributional Laplacian.
As explained in the introduction (8), we have, for F(x) dx almost every xeR",

F(x) = G(Vo(x)) det D*¢(x). (22)
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Therefore, for F(x) dx almost every Xx,
G "(Vo(x)) = F~ /" (x)(det Do (x)) "

A
< Fn(x) —‘pn(x), (23)
where we used the arithmetic—geometric inequality. By integrating inequality (23)
with respect to F(x) dx, we find

/ G 1"V o() F)dx < / F() 7 (x)Ap(x) d.

n

The proof of (21) is completed by using the definition of mass transport (7).

Here we shall go a little bit into nonessential technical subtleties. In the inequality
(21), Ap = tr D*¢ is to be understood in the almost everywhere sense. It is well-
known that Ap can be bounded above by 4,4 ¢, which denotes the distributional
Laplacian of ¢, viewed as a nonnegative measure on the set where ¢ is finite (see for
instance [18, pp. 236-242] or [13]). On the other hand, since f and g are compactly
supported, we know that V¢ is bounded on supp(f ), the support of f, since
Vo(supp(f)) =supp(g) (see [31, Theorem 2.12]). Extending ¢ if necessary outside of
the support of £, we can assume that the support of f lies within an open set where ¢
is finite, and then we can apply the integration by parts formula

1 17l 1 lfl l lfl

Back to our original notations F = f? *and G = gp*7 we have just shown, combining
(21) and (24), that

o o =) [N o p =) g
Jomns Sy [ Vo= = e )

We now apply our second crucial tool: Holder’s inequality (11) with the choice
X =—Vf and Y = f?"/4V¢. This gives

N . 1/q
[ /qw-w<||Vf|U( [r |V<p||4) | (26)

But, by definition of mass transport (7), [f2*||Vel||? = [||y]|?9"* (v) dy. Therefore,
the combination of (25) and (26) concludes the proof of inequality (16).

Let us now choose f = g = h,, and check that equality holds at all the steps of the
proof, and therefore in (16). Of course this function is not compactly supported, but
in this particular case the Brenier map reduces to the identity map V¢(x) = x, and
all the steps can be checked explicitly. Indeed V(x) = x leads to an equality in (21)
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and in (24) (via integration by parts). Then Eq. (20) ensures the equality in (26). This
ends the proof of Theorem 2. [

Remark. Following the terminology of McCann [26], inequality (21) can be
rephrased by saying that the functional

1
pro = [ o) rar

is displacement convex. This fact is well-known to specialists, and rests on the

concavity of the map M+ (det M )1/ " defined on the set of nonnegative symmetric
matrices; see in particular [31, Section 5.2].

Proof of Theorem 3. Gromov’s original proof [27] relied on the Knothe map [20], but
the proof also works with the Brenier map as it was pointed out to us some time ago
by Michael Schmuckenschliger.

Without loss of generality, we prove the theorem only when f is a nonnegative
function, such that || f||;,w-n = 1. We introduce the Brenier map V¢ which pushes

forward F(x) dx = f"@=D(x) dx onto G(y) dy = 1"~ (y) dy. Reasoning as in the
proof of Theorem 2, we write, after (21),

.1 1
18| <Z/qu>< —Z/Vf-V(p.

The justification of the integration by parts goes as in (24). By definition of 4, for
almost every x in the support of f, Vo(x) € B. In particular —Vf - Vo <||Vf]|,, and
thus

1
n|Bpr < / V71l = 197110 (27)

By a standard approximation argument, one can express this inequality in terms of
an isoperimetric inequality: whenever A4 is some closed (say) subset of R", we have

1 n=1
m*(0A4) = n|Blr|A| », (28)
where m* stands for the surface measure with respect to the metric || || (not
necessarily Euclidean),

A+¢B|— |4
pit(04) — lim inf 1481 =141
e—0 &
Note that 4 + ¢B is the e-neighborhood of A with respect to the metric || - ||. Now,

there is equality in (28) when A4 is an affine image of B. So this inequality has to be
sharp, and so has to be (27). O

We conclude this section with a few remarks about the way we have proven and
stated our results.
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Remark. (1) A classical way to attack the problem of optimal constants for Sobolev
inequalities is to look at the Euler-Lagrange equation and to identify its solutions.
Here, on the contrary, we have established that /s, is an optimizer without
establishing any Euler—Lagrange equation. Neither did we use the co-area formula
or a rearrangement procedure.

(2) The best constant S,(p) = HVthL} in the sharp Sobolev inequality (18) can
easily be expressed as a function of |B| since 4, is radially symmetric with respect to
the norm || - ||. In particular, we have

$u(p) = ('ﬁj')l/nsm,

where Bj is the standard Euclidean ball and S,(p) is the best constant in the
Euclidean Sobolev inequality (2). We stress however that the extremal function 7,
depends on || - || and not just on |B|.

(3) If we exploit the left-hand side maximization in (17), we immediately obtain,
after setting h = gl’*, the following sharp inequality: there exists a constant C,(p) >0
such that for every he L',

i< o [immona)”( / |h|>”"*

with equality if A(y) = h{j*(y) = (g, + |[¥]|!)™". It would be interesting to understand
why this inequality appears as a dual of the Sobolev inequality.

(4) The right-hand side of (16) is invariant under dilations and translations (for
fixed 17 norm), whereas the left-hand side is only invariant under dilations. If we
define Var,(G) = inf,, [ ||y — »||?G(y) dy, then inequality (16) can obviously be
replaced by the following dilation—translation invariant version: for || f|[,,« =

||g||Lu* =1,

IV/]

p* (1-1/1) 1
Jlgl pn - 9711 (20)

Var,(|g”™ )" = n(n—p)

with equality if f =g = h,.

(5) What happens if in the proof of Theorem 2, in Eq. (26), we use, instead of
Holder’s inequality (11), the simpler Young inequality (10) ? In view of the remark
before (19), we obtain the following (equivalent) form of the theorem: whenever
fe W' (R") and ge LP (R") are two functions with || f||,,« = ||g|l,,« = 1, then, for all
A>0,

”(”_P)/ p*(1-1/n) /lq/ p o* 1 / .
Y dy < —5 [ |IVfIE 30
=1 lg] p I[*lg)I" dy I Al (30)
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with equality if f =g =h, and /.= 1, (19). As a consequence we have the duality
principle

n(n—p *(1-1/n Ay * 1 :
sup |8 [lgp 0 2 [pipgop” ] =t [t
gl « =1 LP(n = 1) q P11, %=1

with h, extremal in both variational problems.

This formulation was our original one. Clearly, the duality seems to be expressed
in a much more satisfactory way in (16) than in (30). Furthermore, the extremal
function 4, appears more naturally via (16), and one need not choose 1 =4, in a
seemingly arbitrary manner. On the other hand, (30) has the advantage to separate
the integrals in an additive way, and this form will appear more convenient to deal
with more sophisticated integral expressions, as we shall see in the next section.

3. Gagliardo—Nirenberg inequalities

In this section, we give a treatment of some Gagliardo—Nirenberg inequalities in
sharp form. As we explained in the introduction, the results in the Euclidean case
were recently obtained, with a different method, by Del Pino and Dolbeault (the case
p = 2 is treated in [15] and the general case in [16]). Here again, we shall consider an
arbitrary norm || - || on R".

Let us introduce a new family of functions, which will turn out to be optimal in a

more general family of inequalities: for a>0, we define
i

hap(x) = (0up + (o = D)||x[|*) .
As before we write ¢ = p/(p — 1), and 0, >0 is chosen in such a way as to turn A3},
into a probability density. Note that for o<1, h,, has compact support, while for
o> 1 it is positive everywhere, decaying polynomially at infinity. The L” norm of the
gradient is again considered in the sense of (15). We stress that the statement will
include L’ (R")-spaces with re(0, 1), for which || - ||;, is no longer a norm. We shall
prove

Theorem 4. Letn=2,pe(l,n) andoce(O,#],oc;él.Letfandg be such that || f||» =
19|l = 1. Then, for all u>0,

4 a(p-1)+1 _ M q ap
(oc—l)(ocp—(oc—l))/g| Y l—;/Ilyll g™ dy

L op —n(oe—1) wp_1)41
épup/||Vf||‘j+(a_1)(ap_(a_1))/\f| . (31)

Moreover, when
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then

(i) equality holds in (31) when f = g = hy, p; in particular, one has the duality principle

op / a(p—1)+1 ”g/ q op :l
su g - g d
o [(a_ o= [ 2 [bigwr @

_ L ap —n(e—1) a(p—1)+1
_f‘l?ag—l[PM§/||vf||i+(°f—1)(0517—(06—1))/|f| } (33)

and h,p, is extremal in both variational problems;
(i) as a corollary, whenever f#0 lies in W'"*(R"), then

Sfor a>1,
Il P 0 0
ﬁ”f e = ||Vha,p‘|U||ha,p||lm<pfl>+lv (34)
L
where
) n(o—1) -
Calmp—(p+1—o)(n—p))  ap(p* —ap+oa—1)
for a<1,
0 -0 0
||Vf| L’ f lLaﬁ > ||vh0(-,17||U’ (35)
||f||L1(,,71>+1 ||hoc,p||La(p—1>+1’
where

n(l — o) p*(1 —a)

(p+1—0)(n—aln—p))  (P* —ap)(ap+1-a)

Remark. (1) Note that when a<1, the terms in (31) not containing u are
nonpositive; while they are all nonnegative when o>1. This change of sign
corresponds to a change of the sign of 1 — y in (36) below.

(2) Theorem 4 includes Theorem 2 (in the form (30)) as a particular case, namely
when o = n/(n — p), in which case 0 = 1. In the interesting limit «— 1, the function
hy,, would look like e~ /MI", and the Gagliardo—Nirenberg inequality would reduce to
an 1”7 analogue of the logarithmic Sobolev inequality (see [16] for the Euclidean
case). It was pointed out to us by Michel Ledoux that when o« — 0, inequality (35)
reduces to the following Faber—Krahn-type sharp inequality: for every compactly
supported f'e W'?(R"), and every pe(1,n),

111 < Clsupp(/ )]~ || V1]

for some numerical constant C>0, where supp(f ) stands for the support of f;
moreover, equality holds when f is of the form

(@ —[1xl).,-

Ly
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(3) Theorem 4 yields exactly the same one-parameter family (4) of Gagliardo—
Nirenberg inequalities as the one obtained in [15,16] (for the Euclidean norm). This
may seem surprising, since the methods here and there are completely different. This
one-parameter family may however have a particular geometrical meaning, as
suggested by a tensorization argument due to Bakry [3]. Combining sharp Sobolev
inequalities in R"” x R* = R"** with a clever tensorization argument, he was able to
recover again the same family of sharp Gagliardo—Nirenberg inequalities in R".

Proof of Theorem 4. The proof will follow the same scheme as in the previous
section. The basic inequality replacing (21) will be the following: whenever y>1 —

I/n, y#1,
1 1 —n(
7 < F'+ [ F'A
R e LR R 3

Inequality (21) corresponds to the case y = 1 — 1/n. Here and as in the proof of
Theorem 2, F and G denote two probability densities, and V¢ is the Brenier map
pushing F(x)dx forward to G(y) dy. In [31, Chapter 5], inequality (36) is shown to be
an immediate consequence of the displacement convexity (in the terminology of
McCann [26]) of the functional

1 :
p»—»l—_y/p} (x)dx. (37)

Again, for the sake of completeness we shall give a short proof which does not rely
explicitly on this concept. It proceeds exactly in the same way that we followed to
prove (21). From the Monge-Ampére equation (8) we deduce that for F(x)dx
almost every xeR"” we have

G (Vo(x)) = F'~!(x)(det D*¢(x))" . (38)

The function M+ (det M )k is concave (resp. convex) on the set of nonnegative
symmetric # x n matrices when k€ [0, 1 /n] (resp. k <0). In other words, the function

1
M'—>1—7'y (det M)l_y

is concave on the set of nonnegative symmetric #n X n matrices whenever y=>1 — 1/n.
(The case y = 1, not needed here, is defined in the limit as the log-concavity of the
determinant and can be used for proving logarithmic Sobolev inequalities [13]).
Thus, for a nonnegative symmetric matrix M, we have

(1—9)"'(det M)"7 =(1 =) (det (I + (M —1)))"~
<=y '+u(M-1)

= (1 =)' (1 = n(1 =) + (M),
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We then deduce from (38) that

l—n(l—y

G 1 (Vo(x)) < - )FV*l(x) + F7 1 (x)Ap(x).

1—7

Integrating this inequality with respect to F(x)dx and using the definition of mass
transport (7), we conclude to (36).
Now let us go on with the proof of (31). Define

a(p71)+1:1_a71
op op

y =

and note that y>1—1/n precisely when oe(0,n/(n—p)]. Reasoning exactly
as in Theorem 2, we deduce from (36) that whenever F and G are two smooth,
compactly supported probability densities and V¢ is the corresponding Brenier

map, then
, -1
ﬂ/Gf <=1 /F» /VF' Vo. (39)
oa—1 o—1

Choosing F = f* and G = ¢ in this inequality, we obtain

“p /ga@fw P no - ])/f“(P*IHI—((x(p—l)qu)/f“(P*l) Vf - Vo.

o—1 o—1

Next we apply Young’s inequality (10) with X =-Vf(x) and Y =
F2P=1(x) Vo(x), to find

op a(p—1)+1 oap —n(e—1) a(p—1)+1
<a71><apf<oc71>>/g <<oc—1 <a71>>/f

1+5 [ ool

To conclude the proof of (31), it suffices to apply the identity (7) to the last
integral.

We now turn to the proof of part (i) of Theorem 4. Just as in Theorem 2, it is a
direct consequence of the observation that if we set f = g = h,,, and thus Vo(x) = x,
in the previous proof, then all the steps can be computed explicitly and lead to
equalities. The crucial point here, which ensures a pointwise equality in Young’s
inequality (10) is that, for almost all xe R",

~Vhyp(x) - 1557V (x)x] Zpiﬁglww( X+ u”Hh"(” D).
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Indeed, after a little bit of computation, this identity reduces to the straightforward
equality

1]l _ 4 111

ap_ p ap_
(00 + (o0 = DIIX[)x=T - PHP (g, + (o = 1)||x]|)5=1

'u‘I Xq
N ]

_wp_
T (0up + (o= 1)[|x]|7)>T

Finally, let us prove part (ii) of Theorem 4. To show that part (i) of the theorem
implies part (ii), we use a scaling argument, more or less standard in problems of this
kind. Assume for instance o> 1, and let us see how to establish (34). From part (i) we
have the inequality, when || f]|,., = 1,

- (Xp x(p
o v s
>C:[W_MJ{W_W/WWW““—%/WWWAM”@,(%>

with equality when f = h,,. Thus, for every f'e W'"(R"),

(p—1)+1 X
132 b+ G Nl ¢, (41)
1A% [

where C; and C; are positive constants. Here we do not write down the precise values
of C; and C,; anyway this is not necessary, to carry on the argument till the end it will
be sufficient to know that 4, is optimal in this inequality.

Next, we apply (41) with f replaced by f; = f(-/4) (A>0). We find

sc(pl

stop)on ||V _
TR *1‘“ 710
11D o

>0, (42)

and we can now optimize with respect to 4>0, to recover

11l < CINAIL A -0,

with equality when f = (h,,),, with the optimal choice of /. As expected, 0 is
determined by scaling invariance. The same scaling invariance guarantees that there
is also equality when f = /,,, which is the content of (34).

The case a<1 is obtained exactly in the same way. This concludes the proof of
Theorem 4. [
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4. Further remarks and equality cases

The mass transportation method appears to be extremely efficient in the treatment
of sharp Gagliardo—Nirenberg inequalities, as illustrated by the short length and
simplicity of the proofs above. Among the other advantages of our method, we note
that it provides a common framework to all the family of Sobolev inequalities,
making the link with isoperimetric estimates clearer. It also emphasizes a strong
connection between the Brunn—Minkowski inequality (9) (and more generally
convex geometry) and sharp Sobolev inequalities. Finally, we should mention that
the use of the Brenier map is not compulsory: we could as well have worked with the
Knothe map [20].

Certainly, one of the most irritating open problems remaining in the field, is the
fact that we do not understand how to get sharp inequalities and extremal functions
in the rest of the range of the Gagliardo—Nirenberg family (3). The solution to this
problem may go through a better understanding of the duality principle which was
displayed in the present paper.

Another natural problem is that of the identification of all cases of equality in
Sobolev or Gagliardo—Nirenberg inequalities. In the case of a Euclidean norm, it is
known that the functions %, are the only minimizers, up to translation, dilation and
multiplication by a constant. But even in this case, the known proofs of this result are
far from being straightforward; they first use the Brothers—Ziemer theorem [7] to reduce
to the one-dimensional case, after which a somewhat tedious analysis is performed.

From our proof, it is possible to determine all cases of equality, even when dealing
with arbitrary norms. We restrict the discussion to the sharp Sobolev inequalities. A
similar proof would solve the problem for the Gagliardo—Nirenberg inequalities, at
least in the case o> 1.

Theorem 5. A function f € W'?(R") is optimal in the Sobolev inequality (18) if and only
if there exist CeR, 2#0 and xoeR" such that

S (x) = Chy(A(x = x0))- (43)

It is enough to prove Theorem 5 for nonnegative functions f. Indeed, for an
arbitrary optimal function f, | /| will also be optimal and then the conclusion of the
theorem will force f* to have constant sign on R".

Let f and g be two nonnegative measurable functions; we say that f is a dilation—
translation image of g if there exists C>0, 1#0 and xoeR" such that f(x) =
Cg(A(x — x0)). If [f* = [g* for some k>0, then necessarily f(x) = |A|"*g(A(x —
Xo)). This is equivalent to saying that the Brenier map V¢ pushing f*(x) dx forward
to g*(y) dy is a dilation—translation map, in the sense that Vo = A(Id — x;). Note
that f is a dilation—translation image of ¢ if and only if ¢ is a dilation—translation
image of f.

Of course, the Sobolev inequality is invariant under dilation—translation maps.
Thus, it suffices to prove Theorem 5 when fl’* is a probability density. In view of



D. Cordero-Erausquin et al. | Advances in Mathematics 182 (2004) 307332 325

Theorem 2, we just have to set g = /,, and prove that all /°s which achieve equality
in (16) are dilation—translation images of /,. Then, Theorem 5 is an immediate
consequence of

Proposition 6. Let pe(1,n), and let f and g be two nonnegative functions satisfying the
assumptions of Theorem 2. If equality holds in (16), then f is a dilation—translation

image of g.

The proof of Proposition 6 will not rely on any sharp rearrangement inequality,
but on rather standard tools from distribution theory, combined with careful
approximation procedures. Let us start with an informal discussion. Our derivation
of the optimal Sobolev inequality only relied on

(1) Theorem 1, together with the Monge—Ampeére equation (22) and the definition
of mass transport;

(i) the arithmetic-geometric inequality (23), (det D2(p)1/ "<A@/n, integrated with
respect to /2 (=17 (x) dx;

(iii) the integration by parts formula (24);

(iv) Holder’s inequality (11), in the form of Eq. (26).

If ¢ was smooth and f positive everywhere, equality in the arithmetic—geometric
inequality (ii) would imply that D¢ is a pointwise multiple of the identity, from
which it could be shown that it is in fact a constant multiple of the identity, so that
V¢ is a dilation—translation map. However, we do not know a priori that ¢ is
smooth, neither that f is positive almost everywhere. Moreover, it is definitely not
clear that the integration by parts formula (24) applies to the minimizer: we proved it
only in the case when f and g are compactly supported! This restriction on f and g
had no consequence on the generality of the final inequality, since a density
argument could be applied; but it prevents us to go anywhere as far as equality cases
are concerned. Therefore, our proof will be performed in two steps: (1) generalize the
proof of (16) in order to directly obtain the inequality for all admissible f’s and ¢’s,
not necessarily smooth and compactly supported; (2) trace back cases of equality in the
proof of this inequality, without assuming extra smoothness on f, g or .

To carry out step 1, it is sufficient to generalize the proof of the integration by
parts (24) to more general functions f and ¢. This is the content of the following:

Lemma 7. Let e W'7(R") and ge LP*(R") be two nonnegative functions such that
WA+ = lgll,« =1 and [ ¢ ()||y]|" dv< + 0. Let Vo denote the Brenier map
pushing f*(x) dx forward to g"*(y) dy. Then, f?*/9V ¢ e L1(R") and

./.f"*(l—l/"m(p <- /V[f”*““/’”] Vo = _%/f”*/qvf-w, (44)

where Ag = tr D> =0 denotes the absolutely continuous part of the distributional
Laplacian.
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To achieve step 2, and eventually prove Proposition 6, we shall have to overcome a
few more technical difficulties. Our first task will be to establish that /" is positive; the
proof of this fact was given to us by Almut Burchard, who is warmly thanked. As we
shall see, the argument eventually relies on the fact that there should be equality in
Holder’s inequality (iv) above. From this strict positivity we shall deduce that the
distributional Hessian D?@,q) is absolutely continuous, and therefore coincides with

D?¢@, defined almost everywhere. Once we have introduced the distributional Hessian
in our problem, we will use a standard regularization argument to conclude the
proof.

A subtle point in the argument is the following: for our proof to work out, it is not
sufficient to prove that f is positive almost everywhere. Indeed, if / would vanish at
some place, then we could not exclude the possibility that D?¢ has some singular
part, living precisely on the set where f vanishes. On the other hand, f is not a priori
continuous, so discussing the positivity of /" everywhere does not seem to make much
sense. To avoid this contradiction, we shall show that f is positive everywhere in the
sense that it is, locally, bounded from below almost everywhere by a positive
constant.

After these explanations, we can go on with the proofs of Lemma 7 and of
Proposition 6.

Proof of Lemma 7. By definition of mass transport (7), we know that | 1 [[Veol|T =
fgp* [|?dy and so fp*/qV(peL‘l(R”). The proof of (44) will be done by
approximation and regularization; there is no fundamental difficulty, but one has
to be careful enough.

Let Q be the interior of the convex set where ¢ < 4 co. Note that Q contains the
support of £, and that 9Q is of zero measure. Without loss of generality we assume
that 0€ Q. Whenever ¢>0 is a (small) positive number, we define

. X

fox) = min[ £ (=), () 2(6)]. (43)

where y is a C* cut-off function with 0<y <1, x(x) =1 for |x|<1/2, y(x) =0 for

|x|>1. Note that the support of f; is compact and contained within Q (here we use
the fact that Q is starshaped with respect to 0).

Both functions in the right-hand side of (45) are bounded in W'?(R"), uniformly
in ¢. This is clear for the first one; for the second one this is a consequence of

/ﬂmwmmww:w/ﬂmeWx
5 n

4

(") (e af
L e

N
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where we used Holder’s inequality and the change of variables x — ex. Thus (by the
formula min(f,g) = (f +¢)/2—|f —g|/2), f; lies in W' and in fact Vf, is
bounded in L? as ¢—0.

We now fix ¢>0, and let Q. be a bounded open set whose closure is contained
within Q, and which contains the support of f;. It is standard that f, can be
approximated in W'#(R") by a sequence f°—f, of smooth nonnegative functions
compactly supported inside 2,; for this one just has to regularize f, by convolution
with a kernel whose support is contained within a ball of radius d, 6 small enough
and going to 0. Then we can use the fact that A (in the sense of Aleksandrov) is
bounded above by the distributional Laplacian of ¢ in Q (see [18, pp. 236-242] or
[12]), and write

*(1_ n S pXx(1_ n * N
JuErae < = [ W[y ] -o =~ [(27Ts Vo )

where ¢,, = p(n—1)/(n—p)>0. We know that f° converges to f; in " (by
convergence in W'?(R")) and since V¢ remains essentially bounded within Q,, we

conclude that (f2)" Y V¢ converges to (f.) Y V¢ in L7. On the other hand we
know that fo’ converges to Vf, in L”. We then deduce from (46) by Fatou’s
lemma that

/(fé)p*(l_l/m Ap < — Cn,p/(fé)p*/q VY. - Vo. (47)

It now remains to pass to the limit in (47) as ¢—0. For this we argue as follows.
First of all we note that, up to possible extraction of a subsequence & = (&), .y, /¢
converges almost everywhere to f as ¢—0. To prove this, it is sufficient to
show that g.(x) =f(x/(l —¢)) converges almost everywhere to f(x) as ¢—0.
Clearly, g, is bounded in W!”(R") as ¢—0, and it also converges to f in the
sense of distributions, since for all compactly supported test-functions ¢ one
can write

[ao=-ar [t -om dx— [ fo.

So g, converges weakly to f in W'? and therefore locally strongly in L’ for any
re(l,p*). It follows that (up to extraction of a subsequence) g.—f almost
everywhere. As a consequence, f, converges to f almost everywhere. Since

e <f eLP*, by dominated convergence theorem f;—f in . Similarly (or as a
consequence of the I” convergence of f; to ) Vf; converges to Vf in distributional
sense on R", and is also bounded in L, so Vf, converges weakly in L? to Vf. On the
other hand, again because f; < f, we know that (ﬁ)p*/qHV(pHeLq. So, by domi-

nated convergence, (f;)” */qqu converges (strongly) in L? to fp*/qV(p. Thus

we can pass to the limit as ¢é—0 in the right-hand side of (47), and by Fatou’s



328 D. Cordero-Erausquin et al. | Advances in Mathematics 182 (2004) 307332

lemma we obtain

/fl’*(l’l/"m(p < — Cn,plii%/(fﬂ)p*/q V- Vo = —cup /fp*/fj Vf -Vo.

This concludes the proof of (44). [

Proof of Proposition 6. With the notations of Theorem 2, let us fix nonnegative
functions f and ¢ for which there is equality in (16). We will trace back the equality
cases in the proof of (16). Recall that V¢ denotes the Brenier map pushing ff’*(x)dx
forward to g” *(y) dy. Our goal is to prove that V¢ is a dilation—translation map. As
before, we denote by Q the interior of the convex set where ¢ < + o0; we recall that Q
contains supp(f ), and that 9Q is of zero measure.

The proof will be done in three steps:

Step 1: The function f is positive on Q;
Step 2: D%, has no singular part on Q;
Step 3: Vo is a dilation—translation map.

Let us first show that f is positive everywhere, or more rigorously that for every
compact subset K of Q, there exists a positive constant og such that

VxeK, f(x)=oax >0. (48)

Here, of course “Vx” should be understood as “for almost all x”. A proof was
suggested to us by Almut Burchard; we reproduce her argument almost verbatim
below.

For equality to hold in Hélder’s inequality (11) it is necessary that, for some
positive constant k>0,

I|IX|I? = k|| Y]|? almost everywhere (49)

(a short proof is recalled at the end of the paper).
Therefore, equality in (26) implies

IV ) = K7™ ()| V()| (50)

for almost every xe Q.
Let us introduce f,,(x) = max(f(x),1/m). We know that Vf,,e L? and that in fact
Vfm = Vflso1m It follows that

IV < IV IE = k™ )|Vl < kA5 ()| V()|
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As a consequence,

—p/(n— p _
|vuxmpm*<wmgj;)wmw@”. (51)

Since ||V || is locally bounded on Q, it follows from (51) that the functions £,/
are uniformly (in m) locally Lipschitz on Q. Taking m to infinity shows that f—2/("=7)
is locally Lipschitz, and therefore locally bounded, on Q. From this we deduce that f
is positive, locally bounded away from 0 on Q, in the sense of (48). This implies in
particular that the support of f is Q.

We now prove that D?@,go has no singular part. Since this is a nonnegative matrix-
valued measure, it is enough to prove that its trace A4 ¢ is itself absolutely
continuous in Q. Let A;¢ be the singular part of A, ¢@; recall that A;p is a
nonnegative measure and that 4,¢ = Ap + 4,¢. Since there should be equality in
(44), we deduce from the proof of Lemma 7 that

. pn=1)
lin?) lirg"li(r)lf <(f;)) n=r Aspy oy =0. (52)
e —

Without loss of generality, we assume that 0eQ. Let K be an arbitrary convex
compact subset of Q containing 0 in its interior. For dx = d(K,Q°), let K' =
{xeQ; d(x,K)<dk/2}. From its definition K’ is a convex compact subset of Q
whose interior is a neighborhood of K. By (48) we know that there exists o = og >0
such that f'>o g, where 1g stands for the indicator function of K’. If ¢ is small
enough, we can make sure that K/(1 — ¢)* = K’; then, with the notation of Lemma 7
we have f;(x) = a g/ (x). If 0 is small enough, this implies

fj = o 1[(.
As a consequence, when both ¢ and 6 are small enough we see that
YT A9) 5 > (71 A, K], (53)

Combining this with (52) and the positivity of o, we find that A;¢[K] = 0. Since K is
arbitrary, we conclude that A,¢ vanishes. As announced above, this means that Dé,(p
is absolutely continuous.

We can now conclude the proof of Proposition 6. Since we have equality in the
arithmetic—geometric inequality (23) for fl’*“’l/")(x) dx almost every xeQ, and
therefore for almost every xeQ, we conclude that D?p, which can be identified
with Dij,(p, is proportional to the identity matrix at almost every xe Q. Let k be a
smooth regularizing kernel with support included in a small ball of radius ¢. Since
D*(p * k) = D*¢ x x, we deduce that the smooth function ¢ * x is such that its
Hessian is also pointwise proportional to the identity matrix on Q, =
{xeQ; d(x,0Q2)>¢}. From this one easily shows that D?(¢ * k) is a constant
multiple of the identity. By making « tend to a Dirac mass, we see that Dgf;,(p is also a
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constant multiple of the identity on the whole of , and therefore V¢ is a dilation—
translation map on Q. This concludes the proof of Proposition 6. [

Remark. (1) No strict convexity of the norm is required for (49), as shown by the
following short argument. Let 1> 0 satisfy

(/HXH:)I/p(/Hwq)l/q—%p(/||X||z) ([,

Then, equality in Hoélder’s inequality (11) implies a pointwise (almost everywhere)
equality in Young’s inequality (10). When there is equality in Young’s inequality, the
function «(f) == (X - Y)t — (A7?||X||}/p)? achieves its maximum at =1, and
therefore A77||X||? = 29||Y||?. This implies (49) with k = A9,

(2) In the case g = h,>0, once the strict positivity of / has been proven, it is
possible to appeal to Caffarelli’s interior regularity results [10] for solutions of the
Monge-Ampére equation, in order to conclude directly that g€ Wlic” («>1). This
argument also implies that Df],(p has no singular part; it has however the drawback
to rely on very sophisticated results.

(3) If we look for extremal g’s in (17), we can set f = h, in (16) and check for
equality cases there. From Proposition 6 we know that g has to be a dilation—
translation image of /,, and that V¢ is a dilation—translation map. But, as in the
proof of Proposition 6, equality in Holder’s inequality with f =/, implies
[|[Vo(x)|| = A||x|| almost everywhere, for some A>0 (see (50)). Therefore Vo (x) =
+/x, and the only cases of equality are dilations of /,. Of course, in (29) with f* = £,,
the only equality cases will again be the dilation—translation images of 7,, as in
Theorem 5.

(4) Replacing Holder’s inequality by Young’s inequality—in fact, we eventually
used the cases of equality in Young’s inequality!—in the proof of Proposition 6, we
can conclude that for equality to hold in (30), it is necessary that f be a translation—
dilation image of g.

(5) It was pointed out to us by Maggi [24] that the technicalities encountered above
can be greatly simplified if one restricts to radially symmetric functions. Indeed, in
this case we have to deal with a one-dimensional transportation problem, which is
completely elementary. The interest of this remark lies in the fact that it is often
possible, for many variational problems, to show a priori that optimal functions
have to be radially symmetric around some point, by sharp rearrangement
inequalities (in this case, the Brothers—Ziemer theorem). Once this reduction has
been performed, the classical procedure for the identification of extremals is still
somewhat subtle, and even in this context the mass transportation argument leads to
substantial simplifications. On the other hand, these sharp rearrangement inequal-
ities are in general nontrivial. A proof of the Brothers—Ziemer theorem for general
norms has been recently announced by Ferone and Volpicelli (after a similar result
for strictly convex norms, by Esposito and Trombetti); by combining this with
Maggi’s remark, one can devise an alternative proof of Theorem 5.
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