ON THE TRANSLOCATION OF MASSES

L. V. Kantorovich*

The original paper was published in Dokl. Akad. Nauk SSSR, 37, No. 7-8, 227-229 (1942).

We assume that R is a compact metric space, though some of the definitions and results given below can be formulated for more general spaces.

Let $\Phi(e)$ be a mass distribution, i.e., a set function such that: (1) it is defined for Borel sets, (2) it is nonnegative: $\Phi(e) \geq 0$, (3) it is absolutely additive: if $e = e_1 + e_2 + \cdots$; $e_i \cap e_k = 0$ ($i \neq k$), then $\Phi(e) = \Phi(e_1) + \Phi(e_2) + \cdots$. Let $\Phi'(e')$ be another mass distribution such that $\Phi(R) = \Phi'(R)$. By definition, a translocation of masses is a function $\Psi(e, e')$ defined for pairs of (B)-sets $e, e' \in R$ such that: (1) it is nonnegative and absolutely additive with respect to each of its arguments, (2) $\Psi(e, R) = \Phi(e)$, $\Psi(R, e') = \Phi'(e')$.

Let r(x,y) be a known continuous nonnegative function representing the work required to move a unit mass from x to y.

We define the work required for the translocation of two given mass distributions as

$$W(\Psi, \Phi, \Phi') = \int\limits_R \int\limits_R r(x, x') \Psi(de, de') = \lim_{\lambda \to 0} \sum_{i,k} r(x_i, x_k') \Psi(e_i, e_k'),$$

where e_i are disjoint and $\sum_{1}^{n} e_i = R$, e'_k are disjoint and $\sum_{1}^{m} e'_k = R$, $x_i \in e_i$, $x'_k \in e'_k$, and λ is the largest of the numbers diam e_i (i = 1, 2, ..., n) and diam e'_k (k = 1, 2, ..., m).

Clearly, this integral does exist.

We call the quantity

$$W(\Phi, \Phi') = \inf_{\Psi} W(\Psi, \Phi, \Phi')$$

the minimal translocation work. Since the set of all functions $\{\Psi\}$ is compact, there exists a function Ψ_0 realizing this minimum, so that

$$W(\Phi, \Phi') = W(\Psi_0, \Phi, \Phi'),$$

although this function is not unique. We call such a translocation Ψ_0 a minimal translocation.

In what follows, we say that a translocation Ψ from x to y is nonzero and write $x \to y$ if $\Psi(U_x, U_y) > 0$ for any neighborhoods U_x and U_y of the points x and y. We call Ψ a potential translocation if there exists a function U(x) such that $(1) |U(x) - U(y)| \le r(x, y)$, (2) U(y) - U(x) = r(x, y) if $x \to y$.

Then the following theorem holds.

Theorem. A translocation Ψ is minimal if and only if it is potential.

Sufficiency. Let Ψ_0 be a potential translocation with potential U. Then by property (2) of U

$$W(\Psi_{0}, \Phi, \Phi') = \int_{R} \int_{R} r(x, y) \Psi_{0}(de, de') = \int_{R} \int_{R} [U(y) - U(x)] \Psi_{0}(de, de')$$
$$= \int_{R} \int_{R} U(y) \Psi_{0}(de, de') - \int_{R} \int_{R} U(x) \Psi_{0}(de, de')$$
$$= \int_{R} U(y) \Phi'(de') - \int_{R} U(x) \Phi(de),$$

while if Ψ is another function, then

$$W(\Psi, \Phi, \Phi') = \int_{R} \int_{R} r(x, y) \Psi(de, de') \ge \int_{R} \int_{R} [U(y) - U(x)] \Psi(de, de')$$
$$= \int_{R} U(y) \Phi'(de') - \int_{R} U(x) \Phi(de),$$

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 312, 2004, pp. 11–14.

^{*}Deceased.

so that $W(\Psi, \Phi, \Phi') \geq W(\Psi_0, \Phi, \Phi')$, and Ψ_0 is minimal.

Necessity. Let Ψ_0 be a minimal translocation. Take a set of points ξ_0, ξ_1, \ldots that is dense in R. Denote by D_n the smallest set containing ξ_n such that if $x \in D_n$ and $x \to y$ or $y \to x$, then $y \in D_n$. Obviously, if $y \in D_n$, then there exists a system of points x_i, y_i such that $\xi_0 = x_0 \to y_1, x_1 \to y_1, x_1 \to y_2, \ldots, x_{n-1} \to y_n, x_n \to y_n$ $(y_n = y)$ (or a similar chain with arrows at the beginning or at the end directed differently). In the above case let

$$U(y) = \sum_{1}^{n} r(x_{i-1}, y_{i-1}) - \sum_{1}^{n} r(x_i, y_i).$$

It is not difficult to check that the value of U does not depend on the choice of the connecting chain and also that properties (1) and (2) of a potential hold for U if $x, y \in D_0$. Namely, we can show that the failure of either of these statements would allow us to replace Ψ_0 by a translocation involving less work, which contradicts the assumed minimality of Ψ_0 .

Now suppose that the function U is already defined on domains $D_0, D_1, \ldots, D_{n-1}$.

If the point ξ_n belongs to $D_0 + D_1 + \cdots + D_{n-1}$, then the function U is already defined for both this point and the whole domain D_n . Otherwise define a function V(x) on the domain D_n in the same way as we have defined U on D_0 , except that ξ_n plays now the role of ξ_0 . Then choose a number μ within the limits

$$\inf_{\substack{x \in D_0 + \dots + D_{n-1} \\ y \in D_n}} \{ U(x) - V(y) - r(x, y) \} \le \mu \le \inf_{\substack{x \in D_0 + \dots + D_{n-1} \\ y \in D_n}} \{ U(x) - V(y) + r(x, y) \}$$

The existence of such a μ is again established using the minimality of Ψ_0 . Now let $U(x) = V(x) + \mu$ for $x \in D_n$. Thus the function U is defined on $D_0 + D_1 + \cdots$, and, since this set is dense in R, the function U can be extended to the whole R thanks to condition (2) and satisfies both (1) and (2), i.e., the translocation is potential.

The theorem just proved provides a convenient method of checking whether a given translocation of masses is minimal. Namely, to check this, it suffices to try and construct the potential for such a translocation by the method outlined in the necessity part of the proof. If this attempt fails, i.e., if the translocation is not minimal, then one will discover a method of lowering the translocation work. This allows one to come gradually to the minimal translocation.

It is interesting to study the space of mass distributions taking the quantity $W(\Phi, \Phi')$ as a metric (where $r(x,y) = \rho(x,y)$ is the distance). This method of metrization seems to be, in a sense, the most natural for this space.

In conclusion, we mention two practical problems to the solution of which our theorem can be applied.

Problem 1. On the assignment of consumption locations to production locations. A network of railways connects a number of production locations A_1, A_2, \ldots, A_m with daily output of a_1, a_2, \ldots, a_m carriages of a certain good, respectively, to a number of consumption locations B_1, B_2, \ldots, B_n with daily demand of b_1, b_2, \ldots, b_n carriages $(\sum a_i = \sum b_k)$. Given the cost $r_{i,k}$ involved in moving one carriage from A_i to B_k , find an assignment of consumption locations to production locations such that the total transport expenses be minimal.

A detailed account of the solution of this and more complicated problems of the same type is given in a paper by L. V. Kantorovich and M. K. Govurin, which is soon to be published.²

Problem 2. Levelling a land area. Given the relief of the locality, i.e., the equations of the earth surface z = f(x,y) and $z = f_1(x,y)$ before and after levelling [with $\iint f(x,y) dx dy = \iint f_1(x,y) dx dy$], and the cost of transporting 1 m³ of earth from (x,y) to (x_1,y_1) , find a plan of transporting of earth masses with the minimum total transportation cost.

Translated by A. N. Sobolevskiĭ.

¹Before the war, M. K. Gavurin spelled his name with "o." – Editor's comment.

 $^{^2}$ The paper by L. V. Kantorovich and M. K. Gavurin was published in 1949. – Editor's comment.