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After the introduction of the concept of lattice graph and a brief discussion of its role in the theory
of the Ising model, a related combinatorial problem is discussed, namely that of the statistics of
non-overlapping dimers, each occupying two neighboring sites of a lattice graph. It is shown that
the configurational partition function of this system can be expressed in terms of a Pfaffian, and
hence calculated explicitly, if the lattice graph is planar and if the dimers occupy all lattice sites.
By the examples of the quadratic and the hexagonal lattice, it is found that the dimer system may
show a phase transition similar to that of a two-dimensional Ising model, or one of a different nature,
or no transition at all, depending on the activities of various classes of bonds. The Ising problem is
then shown to be equivalent to a generalized dimer problem, and a rederivation, of Onsager’s expres-
sion for the Ising partition function of a rectangular lattice graph is sketched on the basis of this

equivalence.

I. INTRODUCTION

ANY aspects of the Ising model have been
investigated by exact methods' since the
publication of Onsager’s solution of the two-di-
mensional problem.’ In addition to their direct
significance for the theory of phase transitions, the
results thus obtained were important as a test for
the various approximation methods which have been
developed for the study of cooperative systems. It
was found that approximate theories, though de-
scribing the overall properties of the model in a
rather satisfactory way, fail to yield an adequate
description of its most characteristic behavior, viz.
that in the neighborhood of the transition tempera-
ture. This knowledge has, in turn, led to an increased
interest in exact solutions of other combinatorial
problems on crystal lattices. By studying a variety
of problems one might hope to get some insight into
such questions as: (a) Why, by the methods de-
veloped thus far, can the Ising problem be exactly
solved for a one-dimensional lattice in an arbitrary
magnetic field and for two-dimensional lattices with
nearest neighbor interaction in the absence of a
magnetic field, but not for any other system?
(b) What determines the mathematical form of the
singularities in the properties of the Ising model,
and can the behavior at the singular point be pre-
dicted if the lattice and the interactions are known?
(a) The first question has been answered only
partially thus far. It is easy to see that the applica-
bility of the existing methods depends not only
on the geometrical arrangement of the lattice sites

1For a general review, see C. Domb, Advan. Phys. 9,
149 (1960).
2 L. Onsager, Phys. Rev. 65, 117 (1944).

(and thus, e.g., the dimensionality, in the usual,
geometrical sense), but also on the way in which
the sites combine to interacting pairs. On the
other hand, it is obvious that when we represent
the resulting structure by a graph, connecting any
two interacting sites by a line, only the topological
and not the metrical properties of this latiice graph
are relevant.® We now know the determining
property, at least for the success of the determinantal
approach to the Ising problem introduced by Kac
and Ward*: the partition function of a system can
be expressed in terms of a single determinant only
if its lattice graph is planar, i.e. can be imbedded
(drawn without intersecting lines) in a plane. For
lattice graphs which can be imbedded in a torus
but not in a plane, one needs four determinants to
express the partition function; more generally, for
a graph which can be drawn on a surface of genus g,
but not on one of genus ¢ — 1 (and which is, there-
fore, called® a graph of genus g), one needs 4° de-
terminants. In the limit g — o, application of the
method is impossible even in principle. It can easily
be seen that the lattice graphs for which the Ising
problem could not be solved are all of infinite genus.
We thus see that the genus of the lattice graph

3 A system in a magnetic field is equivalent to a system
with a more complicated lattice graph in zero field; it 18 this
graph which will then be called the lattice graph of the
original system.

¢ M. Kac and J. C. Ward, Phys. Rev. 88, 1332 (1952);
R. B, Potts and J. C. Ward, Progr. Theoret. Phys. (Kyoto)
13, 38 (1955); S. Sherman, J. Math. Phys. 1, 202 (1960).

8 The genus g of a surface is the maximum number of
nonintersecting closed curves which one can draw on the
surface without disconnecting it. A plane and a sphere
have g = 0, a torus ¢ = 1, ete.

8 D. Konig, Theorie der endlichen und unendlichen Graphen
(Clllglsea Publishing Company, New York, 1936, and 1950),
p. 198.
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plays a dominant role in the solubility of the Ising
problem.

On the other hand, it is well known that several
other combinatorial problems defined with respect
to a lattice graph can be solved for arbitrary graphs,
both planar and nonplanar. Among these we mention
the problems of random walks on a lattice,” the
distribution of electric current and potential in an
infinite resistance network,® and the enumeration
of trees, or branched polymers, in a lattice graph.’

It might be a real step forward if we understood
clearly why in the Ising model the genus of the
lattice graph plays such an important part, whereas
in other problems it does not.

(b) There are various reasons for conjecturing
that the behavior in the critical region is primarily
determined by the dimensionality of the lattice
graph.! The dimensionality dim L of an infinite
lattice graph L can be defined with the aid of the
asymptotic behavior, for n — «, of the number
N, of lattice sites whose shortest path to a fixed
site consists of #» bonds of L: dim L = 1 + lim, .
(In N,/In n). It is not necessarily equal to the
geometrical dimensionality of the underlying point
lattice. Thus, if in a two-dimensional, quadratic
point lattice only horizontal neighbors are con-
nected by a bond, the resulting (nonconnected)
lattice graph has dimensionality 1. In those cases
where exact solutions are available, they generally
bear out the conjecture; numerical calculations seem
to support its validity for three-dimensional lattices,
and a comparison with other combinatorial problems
shows that analogous quantities have singularities
of the same mathematical form. However, no general
relations between dimensionality and eritical be-
havior of the Ising model have been rigorously
established thus far.

In order to contribute to the discussion on these
two points, we consider in this paper a cooperative
problem which has recently been solved for a certain
class of systems. It concerns the statistics of dimers
on a crystal lattice, when each dimer occupies two
neighboring lattice sites, and no dimers overlap.
This ‘“‘dimer problem” arises in the theory of liquids
consisting of molecules of different size,’® in the
cell-cluster theory of the liquid state,’’ and in the

7 E. W. Montroll, J. Soc. Ind. Appl. Math. 4, 241 (1956).
8 H Dayvies, Quart J. Math. (Oxford) 6, 232 (1 55).
N. V. Temperley, Discussions Faraday Soc. 25,
92 (1958).
10 E. A. Guggenheim, Miztures (Clarendon Press, Oxford,
England 1952) Chap. X.
E. G. D. Cohen, J. de Boer, and Z. W. Salsburg, Physica
21, 137 (1955)
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theory of adsorption of diatomic molecules.”” We
concentrate mainly on the case of the dimers com-
pletely filling the lattice. A method for solving this
problem for a rather general class of lattice graphs
is developed in Sec. 2; as no use is made of the
regular structure (periodicity) of a lattice graph,
the terms ‘“graph” and “lattice graph” are inter-
changeable in this section. In Secs. 3 and 4, two
applications to particular lattices are given, and
the phase transitions occurring there are discussed.
A connection between the dimer problem and the
Ising problem is derived in Sec. 5. The case of a
quadratic lattice has been dealt with in detail in an
earlier paper;'® an alternative approach, leading to
results identical to ours, has been independently
developed by Temperley and Fisher.™*

II. DIMER CONFIGURATIONS AND PFAFFIANS

Consider a latiice graph L consisting of N sites
(points, vertices), connected by K bonds (lines,
edges), which are divided into several classes,
C, Cs, -+, G, (e.g. the “horizontal” and “vertical”
bonds in a simple quadratic lattice). Dimers (figures
consisting of two points linked by a line) can be
placed on L so as to oceupy two sites connected
by a bond. A (close-packed) dimer configuraiion on L
is an arrangement of dimers on L such that all
sites are singly occupied. Obviously no such arrange-
ment is possible if the number of sites is odd; there-
forelet N beeven, N = 2M. Let g.(N,, N3, - -+, N,)
be the number of dimer configurations occupying
N, bonds from the class C,, N, from C,, --- , N,
fromC, (N, + --- + N, =3+ N = M). We want to
derive an expression for the generating funciton for
dimer configurations on L,

Zy (2,2, " o)
= X gy, N A ()
Ny, o+ .Na
The variables z, (@ = 1, , k) may be con-

sider as activities, and Z, as the configurational
partition funciion of the dimer system. If all z, are
set equal to 1, Z; reduces to the number of ways
in which L can be filled with dimers.

It is not difficult to find a certain analogy with
the Ising problem. There the determinantal method
of Kac and Ward* was based on the fact that,
by their cyclic character, configurations of polygons
on a lattice are reminiscent of the terms in the

12 T, 8. Chang, Proc. Roy. Soc. (London) A169, 512 (1939).
13 P, W, Kasteleyn, Physica 27, 1209 (1961).
14 H. N. V. Temperley and M. E. Fisher, Phil. Mag. 6,
1061 (1961); M. E. Fisher, Phys. Rev. 124, 1664 (1961).
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expansion of a determinant. Here, the pairwise con-
nection of lattice sites in a dimer configuration re-
minds one of the terms of another mathematical
form, the Pfaffian.'” The Pfaffian of a skew-sym-
metric n X n matrix A with elements a(k, k')
(n even = 2m) is defined by'®

PfA = Z' epa(k,, k2)a(k37 k4) cee a(kn—l) kn) (23')
= [m12"™ 3 epalks, ko) -+ a(fons, k). (2b)

P

The first sum runs over those permutations P =
kik, -+ k, which satisfy &k, < ks ks < kg -+,
koor < kyyand'k, < ks < -+ < k,_,; the second
sum runs freely over all permutations, and ep is
the signature of the permutation P (e = +1or —1
according as P is even or odd). The equivalence of
Egs. (2a) and (2b) follows from the skew symmetry
of A. An important property of Pfaffians is their
relation to determinants:

[Pf A]® = det A. 3)

By analogy with the Kac-Ward method we shall
now try to construct a skew-symmetric N X N
matrix D with elements d(k, k") such that Pf D is,
in absolute value, equal to the generating function
for close-packed dimer configurations on L:

|PfD| = Zu(ar, -+ , 2. @

This will have been achieved if (a) there is a one-to-
one correspondence between the nonvanishing dif-
ferent terms of Pf D and the dimer configurations
on L; (b) to a dimer configuration occupying N,
bonds from C,, N; bonds from C,, etc., there cor-
responds a term in Eq. (2a) of absolute magnitude
272" -+ zy*; (c) all terms have the same sign
(either + or —).

To satisfy condition (a), let the row and column
indices of D correspond to the sites of L. (numbered
in an arbitrary way), and let

d(k, k') = 0 if the sites k and %’ are not (58)
connected by a bond. 2

Condition (b) can be fulfilled by defining

dlk, k') = —d{}', k) = +z,if kand k' are (5b)
connected by a bond of the class C,.

From Eqgs. (5a) and (5b),
PED= 3 274" -4 (6
N’..--’NA C

15 For earlier references to this connection, cf. G. Brunel,
Mém. Soc. Sci. Bordeaux (4) 5, 165 (1895); W. T. Tutte,
J. London Math. Soc. 22, 107 (1947).

16 T, Muir, A Treatise on the Theory of Determinants
(Cambridge University Press, New York, 1904), p. 92.
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1 2
(a) (b) (c)
F1G. 1. (a) Example of a lattice graph; (b) and (c) Close-

packed dimer configurations on this graph; (d) Representation
of the vanishing term in the corresponding Pfaffian.

(d)

where the second sum runs over all configurations C
with given values of N, (a = 1, ---, h). If, e.g.,, L
is the lattice graph of Fig. la, and

0 2 25 0
-z 0 0 2,
-2z 0 0 2
0 -z -z 0
then
PED = €230 d(1, 2) d(3, 4) + €324 d(1, 3) d(2, 4)
+ euzs d(1,4) d(2,8) = +25 — 2, + 0;

the three terms correspond successively to Figs. 1b
and lc (representing dimer configurations on L) and
1d (not representing a dimer configuration on L).

The crux of the problem lies in condition (c).
For an arbitrary choice of signs in Eq. (5b), the
terms in Eq. (6) will not have equal signs, owing
to the occurrence of the signature ep in Eq. (2)
and the skew symmetry of D. It is formally possible,
of course, to avoid all minus signs by working with
a symmetric matrix, and its hafnian and permanent'”
(in whose definitions ep does not occur). However,
this is of no use if we want to evaluate the partition
function for a large periodic lattice, since we do
not have a ‘“‘permanent calculus” by which to calcu-
late permanents of cyclic matrices. Therefore it
has to be investigated whether it is possible to
choose the signs in Eq. (5b) such as to satisfy
condition (c). To facilitate the discussion, we repre-
sent the signs of the matrix elements by arrows along
the bonds of L: an arrow pointing from site k to
site k' will indicate that d(k, k') > 0, and hence
d(¥’, k) < 0. To each choice of signs in Eq. (5b),
then, corresponds an orientation of the lattice
graph L.

Consider two configurations, C and C’, and further
the graph consisting of the sites of L, the bonds of L
occupied by C, and the bonds occupied by C’
(Fig. 2); it is made up of double bonds and cycles
(closed paths without double points). Clearly, C’
can be obtained from C (and vice versa) by shifting,

17 E. R. Caianiello, Nuovo Cimento 10, 1634 (1953).
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zssfall

(a) (b)

Fic. 2. (¢) Transition graph of two close-packed dimer
configurations (a) and (b).

in each of these cycles, all dimers by one step in
either direction; therefore we call this graph the
transttion graph of C and C’, and its cycles transition
cycles. As each cycle contains an even number of
sites, the transition from C to C’ involves as many
odd permutations of lattice sites as there are cycles
in the transition graph. Now the sign of a term in
Pf D is the product of the signature of a permutation
and the signs of M matrix elements. From this, one
readily sees that the terms representing C and C’
have equal signs if in all cycles of the transition graph
the number of bonds ortented in either direction is odd.
If, for'a cycle of even length (even cycle), the parity
of the number of bonds oriented in either direction
is called the orientation parity, we thus have the
following theorem:

(A) If the orientation of L which corresponds
to D is such that the orientation parity of all
transition cycles is odd, then |Pf D| = Z,.

From now on, the discussion will be restricted
to planar lattice graphs, although for the next
theorem a more general formulation can be given
which holds for nonplanar graphs as well. A plane
representation of a planar graph L is a net whose
meshes are bounded by cycles (mesh cycles). The
following theorems can easily be proved:

(B) A planar graph can be oriented in such a
way that for all even mesh cycles the orienta-
tion parity is odd.

If in an oriented planar graph the orientation
parity of all even mesh cycles is odd, then the
orientation parity of an arbitrary even cycle
enclosing an even (odd) number of sites is
odd (even).

In a planar graph all transition cycles en-
close an even number of sites.

From (A), (B), (C) and (D) we conclude that for
planar lattice graphs, a matrix D can be defined
such that |Pf D| = Z.. It is only in the proof of
(C) and (D) that the planarity of the graph plays
an essential role: if a nonplanar graph is represented
in a plane (with intersecting lines, of course),
neither (C) nor (D) is true.

When the dimers do not completely fill the lattice,
le. when vacancies or monomers are present, the

(©)

(D)
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theory also ceases to be true. It is not difficult to
construct a matrix whose Pfaffian generates all
monomer—dimer configurations on a lattice graph.
However, except for graphs such as that of Fig.
1(a), which have no “interior points,”’ it is impossible
to get all configurations correctly counted. The
reason is that in this case a transition cycle may
enclose an odd number of sites, e.g. one site occupied
by a monomer, contrary to Theorem (D).

As in the case of the Ising model, the above
method can be extended formally to cover nonplanar
lattice graphs as well. For a toroidal graph, however,
the partition function is a linear combination of
four Pfaffians, etc., and for lattice graphs of infinite
genus the method fails completely. The only use
of this extension lies in the application to two-
dimensional lattice graphs with periodic boundary
conditions.™

III. THE QUADRATIC LATTICE

For a quadratic m X n lattice graph with N = mn
even, (suppose: m is even), the orientation sketched
in Fig. 3 satisfies the condition of Theorem (A).
According to (3), the evaluation of Pf D can be
reduced to that of det D. If the class C, contains
all “horizontal” and C, all “vertical” bonds, the
matrix D has a periodic structure, so that it can
be diagonalized, and its determinant evaluated.
For the total partition function (generation function)
Z.n(21, 2,) and the partition function per site for
the infinite quadratic lattice, Z(z,, 2,), we then find

Zmn(zl H] z2)

%’ﬂl n k
— 2 2 AT 2 2
HH2[21 cos m+ 1 + 2; cos

k=1 1=

Ir ]*
paril RENC)

Z(2,2) = lim [Z,.(z, 22)]"™

m—co
n—

I

exp {(%)‘2 [0 deo, fo dws In 202 + 22

+ 27 cos w, + 27 cos wz]}. ®

Fia. 3. Orientation of the m X n quadratic lattice graph,
(m even).
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The molecular freedom ¢, of dimers in an infinite
lattice defined as the mumber of arrangements per
dimer, is given by

0, = Z(1,1) = exp (2G/x) = 1.791 622 812 -- - ,
9

where G = 172 — 372 4+ 572 — 7% 4 ... =
0.915 965 594 - - - (Catalan’s constant).

The expression (8) has a remarkable resemblance
to Onsager’s expression for the Ising partition func-
tion per site for an infinite rectangular lattice.” In
fact, when 2, and z, are replaced by sinh (2J/kT)
and sinh (2J'/kT), where J and J' are the hori-
zontal and vertical Ising coupling constants, Eq. (8)
reduces, apart from uninteresting factors, to the
Ising partition function at the critical point (which
varies with J and J'). This is consistent with the
fact that for no values of z,/2z; has Eq. (8) a singular
point.™*

It is possible to extend the dimer problem on a
quadratic lattice so that a correspondence to the
Ising problem at all temperatures is established. To
achieve this, make a further distinction between
various types of horizontal and vertical bonds, e.g.
by introducing four activities, z,, 2;, z; and z,, as
indicated in Fig. 4. The dimer partition has then,
for real values of the activities, a singularity at
2, = 2%, 23 = 2;. The mathematical form of the
singularity is the same as in the Ising partition
function. If 2,/2, = 23/2, = u, and if u is increased
from 0 to =, a “phase transition” takes place at
u = 1. We are used to relate such a transition to
the appearance or disappearance of a certain order-
ing. It is not immediately evident, however, in
which respect the phase with « > 1 or that with
u < 1 is ordered. What is more, the symmetry of
the system with respect to the transformation
u — u~' seems to exclude the possibility that one
phase is ordered, and the other disordered. The
solution to this dilemma is simple. It is possible to
find two order criteria such that the phase with
u > 1 is ordered with respect to the first criterion,
but disordered with respect to the second, whereas

IR

Z3 23 2 f_ 23

{ Z Z ;g 2—+—

z . L l F16. 4. Generalized quad-

* + 54 %4 ratic lattice exhibiting a
..}_ATL_ZZ__‘%_A { phase transition.

Zy Zy Zy 23
'l“zr‘ﬁ'—zz—l'-—z,—i-
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Fig. 5. The four
phases of a close-
packed system of
dimers on a hexagonal
lattice.

the phase with 4 < 1 is disordered with respect to
the first criterion, but ordered with respect to the
second. A full discussion of these two kinds of order
would take us too far, but it is intended to publish
the details elsewhere.

IV. THE HEXAGONAL LATTICE

When in the infinite hexagonal lattice graph three
classes of bonds are distinguished, each one contain-
ing all bonds parallel to one of the three principal
directions, a close-packed system of dimers on this
lattice shows an interesting behavior.'® The partition
function per site, Z (21, 2,, 2s), is a smoothly varying
function of the activities 2, 2, and 2z, if these are
in a ‘“triangle relation”, ie. if 2, < 2z, + 23, 2, <
2 + 2, 2 < 2z, + 2. If, on the other hand, one
of the activities is larger than the sum of the other
two, Z is identically equal to the square root of
the largest activity, e.g., for z, > 2, + 2 we find
Z(z), 2., 2) = 2, independent of z; and 2. In
words, when “z; bonds” are favored strongly enough,
only one dimer configuration, viz. that with dimers
only on 2; bonds is realized. This is related to the
fact that all transition cycles connecting this ordered
configuration with other configurations have infinite
length, i.e. that no configurations exist which deviate
from it in the position of only a finite number of
dimers. Obviously, a phase transition takes place
when 2, = 2, + 2;; it can be shown that at the transi-
tion point Z (2, 2, 2;) behaves as 2i[1+a(z,+2:—2)1.
Likewise we find a phase transition when 2z, = 2z; + 2,
and when z; = 2z, + 2. The four phases of this
system of dimers are best represented in a triangular
diagram where the distances of a point to the three
axes are proportional to z,, 2, and 2. In Fig. 5, the
regions I, II and III represent successively the

18 A gimilar behavior is found for a dimer system on a
quadratic lattice graph if a suitable, but somewhat more
artificial classification of bonds is introduced. This is not
surprising, as the hexagonal lattice graph can be considered
as a quadratic lattice graph with certain bonds removed
(or having zero activity). On the other hand, there is also
an (again less ‘“‘natural’’) classification of the bonds of the
hexagonal lattice graph for which the partition function

shows the analytical behavior sketched in the previous
section.
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Q

Fig. 6. Part of a finite simple quadratic lattice graph Q
and the corresponding part of the cluster lattice graph Q’

ordered phases in which Z is identically equal to
2, 24 and 2}; region IV represents the disordered
phase, in which Z is a more complicated, continuous
function of all three activities. It is interesting to
compare this behavior of a system of dimers on a
hexagonal lattice with the peculiar properties of the
Ising antiferromagnetic triangular lattice.'

A system like this will be realized when diatomic
molecules with an electric dipole moment p fixed to
the axis are adsorbed on a hexagonal surface (leaving
no vacancies) in the presence of an electric field E.
This system exhibits a phase transition at a tempera-
ture T, given by pE/kT, = 2 In [3(1 + 3% 4 2i3Y)].
A remarkable feature of this phase transition is
that at the transition point the system shows a perfect
(directional) ordering; when the temperature is
lowered from T = T, to T = 0, this ordering exhibits
no further change.

V. THE ISING PROBLEM

In Sec. II, we have seen that the dimer problem
is analogous to the Ising problem in that it admits
of a combinatorial solution involving one single
determinant for planar lattices only. The relation
between the two problems is much clarified by the
fact that the Ising problem can be formulated as a
dimer problem. This was implied already in the
recent approach to the Ising problem by Hurst
and Green.” Whereas these authors arrived at a
Pfaffian by an algebraic method,”® and did not
introduce dimers at all, we shall reduce the Ising
problem directly to a (generalized) dimer problem,
which can then be solved by the method developed
in Sec. II. In this way another purely combinatorial
solution of the Ising problem is obtained.

It is well known' that the solution of the Ising
problem for a simple quadratic lattice graph Q can
be reduced to the determination of the number of
ways in which a given number of horizontal and of
vertical bonds can be selected so as to form closed

19 R. M. F. Houtappel, Physica 16, 425 (1950).

20 C. A. Hurst and H. 8. Green, J. Chem. Phys. 33,
1059 (1960).

21 Essentially the same method has been used by Fisher!4
in his solution of the dimer problem.
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polygons, i.e. configurations in which the number of
selected bonds incident with any site is even (0,
2 or 4).

Now associate with Q another lattice graph Q'
in the following way: replace each site of Q by a
cluster containing four sites, and each bond between
two sites of @ by a bond between the opposite sites
of two corresponding clusters; within the cluster,
connect any site with any other (Fig. 6).

Consider a dimer configuration on the “cluster
lattice” Q. Since each cluster contains an even
number of sites, the total number of dimers con-
necting it to neighboring clusters is even (0, 2 or 4).
The analogy of these dimer configurations with the
polygon configurations on Q, and therefore the
possibility of translating them into each other, is
obvious. More precisely, we have the following
correspondence: (1) With each dimer configuration
on Q', we can uniquely associate a polygon con-
figuration on Q. (2) With each polygon configuration
on Q we can associate a dimer configuration on Q';
this association, however, s not unique. For a site
of Q, where four or two bonds of a polygon meet,
there is only one way of translating this local con-
figuration with the aid of dimers, placed on the
corresponding cluster of sites of Q' (cf. Fig. 7(a),
7(b); in the latter case an extra dimer has to be
introduced to connect the two sites which are not
connected by a dimer to the sites of neighboring
clusters. For a site of Q that does not lie on any
polygon, on the other hand, there are three ways
of translating, i.e. of connecting the four corre-
sponding sites of Q' [Fig. 7(c)].

If this correspondence had been purely one-to-one
or purely one-to-three, we should have been able
to enumerate polygon configurations on Q by

(a)

(b)

e e

(ed) (c2) (ca)

Fia. 7. Correspondence between local polygon configurations
on Q and local dimer configurations on Q’.
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enumerating dimer configurations on Q. Still, the
mixed character of the correspondence is an ad-
vantage rather than a disadvantage. This becomes
evident when we try to apply the method developed
in See. II to the lattice graph Q. It turns out that
we cannot find the proper generating function for
dimer configurations on Q. Q' is nonplanar (unless
it is a 2 X n lattice, but this restriction is not
essential to what follows), and no orientation
satisfying the condition of theorem (A) can be
found. We can, however, easily orient the bonds
of Q' in such a way that the orientation parity of
all even cycles without self-intersections is odd
(Fig. 8). Then, the orientation parity of the transi-
tion cycles connecting the local dimer configurations
(c;) and (es), and (c.) and (cs), of Fig. 7 is even.
This implies that the configuration (c;) is counted
with a different sign from that of (c,) and (c5).
If then we put 2z, = 1 for all bonds connecting sites
of the same cluster, the three local configurations
on Q corresponding to a single isolated site in the
polygon configuration on Q, are counted as 1 -+
1 — 1 = 1. So the nonplanarity of Q' just compen-
sates for the one-to-three correspondence between
isolated sites on Q and isolated clusters on Q.
Apart from this effect, all dimer configurations on Q'
are correctly counted.

Therefore, if we let |d(k, k)| be equal to x, y, L or 0,
accordingly as k and &’ are connected by a hori-
zontal intercluster bond, a vertical intercluster bond,
an intracluster bond, or no bond, and we choose
the signs of the d(k, %) in accordance with the
orientation of Fig. 8, |Pf D| s the generating function
for polygon configurations on Q. D is then equivalent
to the matrix introduced by Hurst and Green.*
The Pfaffian, and hence the Ising partition function,
can, in principle, be calculated in the standard way.
However, there is no simple way of diagonalizing D
when the lattice graph has edges, i.e., is planar.
For a toroidal lattice graph (lattice with periodic
boundary conditions), on the other hand, the
calculation is easy, although, of course, four Pfaffians
(i.e., four matrices) must be introduced. Instead
of carrying out the calculations, one may equally
well prove that the four corresponding determinants
are equal to those introduced by Potts and Ward*
in their analysis of the Ising model.

The generalization of the above to arbitrary
planar (toroidal) graphs is straightforward. The only
care to be taken is that a site where an odd number
of bonds, say p, meet, is replaced by a cluster of
P + 1 sites in order that the number of dimers
connecting the cluster to neighboring clusters be

293

Fia. 8. An orientation of the
cluster lattice graph Q.

even. The addition of fwo extra sites has no effect.

Finally, the Ising partition funection of a lattice
graph L 2n the presence of a magnetic field involves
the enumeration of configurations of polygons and
open chains on L. This is equivalent to the enumera-
tion of configurations of dimers and monomers on
the cluster lattice L', for which the present method
is not adequate. Only if the ends of the open chains
are fixed to certain lattice sites of L, can the above
method be used; the clusters of L’ corresponding
to these sites should then consist of an odd number
of sites. This is important for the calculation of the
correlations and the spontaneous magnetization of an
infinite lattice.

VI. CONCLUDING REMARKS

It has been shown that the dimer problem has
many features in common with the Ising problem.
Like the latter, it can only be solved for planar (or
toroidal) lattices, under a restrictive condition (no
monomers present). It should be added that, here
too, the partition function for a one-dimensional
lattice can be exactly calculated even if this condition
is not fulfilled.’''* Morevover, it has been shown
that the Ising problem is a special case of a general-
ized dimer problem (where dimer configurations are
not counted as different when they differ within a
“cluster”). This approach to the Ising problem has
the advantage of making more natural the ap-
pearance of square roots of determinants as the
fundamental quantities (e.g. in the analysis of
toroidal lattices, where linear combinations of
Piaffians rather than of determinants occur).

The question of why the genus plays a part in
these problems and not in others, has not been
answered. The form of the singularity in the parti-
tion function, however, has been found to be of the
well-known type again, although in particular cases
(e.g. the hexagonal lattice), the specific form of the
problem may lead to the appearance of additional
singularities of a different mathematical form.
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