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Abstract. We consider the flow of two immiscible fluids of different mobility in a porous
medium. If the more mobile fluid displaces the other, a macroscopically sharp interface is unstable.
By growing a network of fingers on a mesoscopic scale, the two phases mix on a macroscopic scale.
We are interested in the evolution of this mixing zone. We show that the effect of a large but
finite mobility ratio λ is strong enough to limit the growth rate of the mixing zone. This is done by
rigorously deriving an a priori estimate for the Saffman–Taylor model. In this geometry of an infinite
channel, the estimate essentially states that the mobility ratio λ itself (in the nondimensionalized
setting with unit velocity imposed at infinity) is the optimal bound on the velocity by which the
penetrating phase progresses in direction of the channel.

Since the introduction of diffusion-limited aggregation, various stochastic algorithms simulating
this two-phase flow have been developed. The generated clusters, which correspond to the distribu-
tion of the highly mobile displacing phase, are fractal in the limiting case of λ = ∞ and “compact”
for λ = 1. With support of numerical experiments and renormalization-group arguments, it had
been conjectured that they eventually cross over from fractal to compact for all finite λ ∈ (1, ∞).
Our result may be interpreted as another confirmation of this conjecture.
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Introduction. We are interested in the flow of two immiscible fluids of different
mobility in a porous medium. If the more mobile phase displaces the less mobile one,
a macroscopically sharp interface is observed to be unstable. By forming a network
of fingers on a mesoscopic scale, the two phases effectively mix on a macroscopic scale
and the mixing zone grows in time (see for instance [31, pp. 261–267; 8]). The two-
phase flow between closely spaced parallel sheets of glass (the Hele–Shaw cell) can to
some extent be considered an experimental simulation of a two-dimensional two-phase
flow in a porous medium [26].

A free boundary model. It seems natural to model the flow of two immiscible
fluids in a Hele–Shaw cell by a two-dimensional free boundary problem for the interface
— as long as the length scales of the patterns in the phase distribution are large
compared to the spacing of the sheets of glass. We will follow this approach of
Saffman and Taylor [26]. We assume that the two-dimensional flow domain Ω is an
infinite strip

Ω := { (x, y) ∈ R2 | y ∈ (0, π) } .

Let s be the phase distribution; i.e.,

s(t, x, y) ∈ {0, 1}
indicates whether at time t ∈ [0, ∞) and location (x, y) ∈ Ω we are in the more mobile
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phase (s(t, x, y) = 1) or the less mobile phase (s(t, x, y) = 0). Let

v(t, x, y) ∈ R2 and p(t, x, y) ∈ R

denote, respectively, the fluid velocity and the pressure at time t and location (x, y).
We assume that the flow is incompressible and that there is no flux across the lateral
walls ∂Ω. This is expressed in the fact that v has zero spatial divergence and that its
normal component vanishes on the boundary

div v = 0 in Ω and v · ν = 0 on ∂Ω .(1)

Since we expect v to be discontinuous at the interface, we have to interpret (1) in the
distributional sense. The driving force is an imposed pressure gradient far downstream
and upstream, which we prefer to state in terms of the velocity, namely,

v → e for x → ±∞ ,

where e := (1, 0) is the downstream-pointing unit vector. To be more precise: We
actually suppose that at each time t, v(t) − e is square integrable on the unbounded
domain Ω:

v(t) − e ∈ L2(Ω) for all t ∈ (0, ∞) .(2)

We further assume that the phase distribution is advected by the flow, which is
expressed by the transport equation

∂ts + ∇s · v = 0 in Ω .

Using (1), this equation can be written in conservation form,

∂ts + div [s v] = 0 in Ω,(3)

and interpreted in the distributional sense. Observe that (1) implies that the normal
component of v is continuous across the interface; (3) then states that the normal
velocity of the interface is given by this normal component. Since we are interested
in phase distributions which are such that the more mobile fluid displaces the less
mobile, we always think of s = 1 far upstream and s = 0 far downstream. Last not
least we assume that Darcy’s law holds. Darcy’s law (nondimensionalized) states that

velocity = − mobility × pressure gradient .

In our case the mobility depends on the phase so that Darcy’s law assumes the form

v = − (1 + λ (1 − s)) ∇p ,(4)

where λ ∈ [1, ∞) is the mobility ratio. Observe that given the phase distribution s(t)
at a time t, the pressure p(t) and thus the velocity v(t) are determined as a solution
of the elliptic problem (1), (2), (4). Thus (1)–(4) formally define an evolution of the
phase distribution s(t) in time or equivalently: an evolution of the interface.

Linear stability analysis. Consider the moving planar interface

s(t, x, y) =

{
1 for x < t

0 for x > t

}
.
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This s is a solution of (1)–(4). Reflecting the fact that this evolution of the phase
distribution will not be observed in experiments, the linear stability analysis of s
shows that it is mathematically highly unstable: Disturbances of this planar interface
grow in time with a rate proportional to the inverse of their wavelength [26, 3]. More
precisely, the growth rate of a small amplitude Fourier mode with wavenumber n is
given by

µ n, where µ :=
λ − 1
λ + 1

> 0 .(5)

Thus the linearization of our problem essentially behaves like the heat equation
backward—with a hyperbolic instead of a parabolic scaling. In particular there is
no bound on the growth rate of small-amplitude disturbances of the planar interface.
Only the modeling of additional physical effects, such as a line tension for the inter-
face, can provide such a bound. We are interested in the later stages of the evolution
of a perturbed moving planar interface. Is there a bound on the growth rate of the
mixing zone; more precisely: is there a bound on the velocity by which the pene-
trating phase {s = 1} progresses in the x-direction? We would like to convince the
reader with an estimate that it is the effect of the finite viscosity ratio which limits the
growth rate of the mixing zone. This must be a nonlinear effect, as the linear stability
analysis shows no qualitative difference between λ < ∞ and λ = ∞.

Numerical simulations with noise. In the case of the infinite mobility ratio
λ = +∞, the diffusion-limited aggregation (DLA) algorithm (introduced by [32]),
which generates a random family of clusters {K(t)}t∈Λ on a grid which grow in discrete
time t ∈ Λ, can be interpreted as a discretization of the above evolution problem
for {s(t)}t∈(0,∞) [23, 17]. The cluster K(t) (which corresponds to the set {s(t) =
1}) scales like a fractal; it has a specific dimension [33, 7, 30] and specific dynamic
properties [15, 16]. Stimulated by the success of DLA in qualitatively simulating
the formation and dynamics of ramified pattern, more general stochastic algorithms
have been developed (first in the context of dielectric breakdown [18]) and used as
a discretization of our flow problem in the case of finite λ (a simple modification
of DLA [27], a more sophisticated [5, 25, 24, 12, 13] and a deterministic algorithm,
where noise is introduced by simulating random pore sizes [4, 11, 2, 6]). Supported
by numerical results, it had been conjectured [11, 2, 6] that in the case of finite λ, the
generated cluster eventually crosses over from fractal to “compact” in the limit t ↑ ∞
or, equivalently, of vanishing grid size a and length of time step. We prefer to think
in terms of the limit a ↓ 0, since only in this case do the lateral boundary conditions
scale appropriately. Recently, renormalization-group arguments in favor of a limiting
compact behavior have been given [14, 19].

Statement of the a priori estimate. We will prove the following estimate for
fixed λ ∈ [1, ∞): For any C > λ, there exist an α > 0 such that

∂t

[∫
Ω

s(t, x, y) exp(α (x − C t)) dx dy

]
≤ 0(6)

for all solutions s of (1)–(4).

Interpretation of the estimate. Let us draw a conclusion from this result: For
any C > λ, the penetrating phase {s = 1} progresses—apart from a volume which
can be chosen arbitrarily small—with a velocity in the x-direction not bigger than
C. More precisely: For a given initial phase distribution and any ρ > 0, there exists
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an M < ∞ such that the volume of the invading phase in the moving half channel
{x > C t + M} is less than ρ:∫ ∞

Ct+M

∫ π

0
s(t, x, y) dx dy < ρ for all t ∈ (0, ∞) .

Hence the mobility ratio λ itself is an upper bound (in our nondimensionalized setting
with unit velocity imposed at infinity; see (2)) on the velocity by which the penetrating
phase progresses in the x-direction. This result confirms the conjecture of “compact”
behavior in the case of the finite mobility ratio.

Optimality of the estimate. The condition C > λ in our a priori estimate is
optimal in the following sense: If α > 0 and C < ∞ are such that

∂t

[∫
Ω

s(t, x, y) exp(α (x − C t)) dx dy

]
≤ 0

holds for all solutions of (1)–(4), then necessarily C ≥ λ. This is a consequence
of the existence of the Saffman–Taylor fingers [26]. Those form a one-parameter
family of exact traveling-wave solutions of the free boundary problem with tip velocity
(depending on their relative width) ranging in (1, λ). Hence the mobility ratio λ is
the optimal upper bound on the velocity by which the penetrating phase {s = 1}
progresses in the x-direction. We would like to interpret this result in the following
way: It is the effect of the finite mobility ratio which limits the growth rate of the
mixing zone. We conjecture that λ is also the generic bound on the velocity by which
the cluster {K(t)}t∈Λ grows in the x-direction in the stochastic algorithms described
above. This question is related to the issue whether some (mean) statistic properties
of {K(t)}t∈Λ can be described by solutions of partial differential equations. In the case
of the original DLA algorithm, it has been discovered numerically [1] that a specific
level set of the mean occupancy agrees with the Saffman–Taylor finger of width 1

2 (and
hence tip velocity 2), provided that the time scale is chosen appropriately. (Time is
measured in units decreasing with the grid size.) In [21], we will propose a mean-field
approach for the finite mobility ratio in the physical time scale, that is, the time scale
determined by the fixed velocity imposed at infinity (see (2)).

Extension. It is well known that the free boundary problem (1)–(4) is math-
ematically ill posed: the free boundary may develop a singularity in finite time
[9, 10]. Hence it might be objected that we prove a result for solutions of an ill-
posed problem—after all, there may be no solution for generic initial data. This is
why we also investigated a singular perturbation of (1)–(4) which leads to a well-
posed evolution problem and proved (6) with an α not depending on the perturbation
parameter. The interested reader will find this rigorous analysis in [22].

Derivation of the estimate. For details and mathematical rigor, we refer the
reader to [22] and give only a sketch here. The main ingredient for (6) is the L2-
estimate (12) with exponential weight

ωα(x, y) := exp(α x)

for the elliptic problem (1), (2), (4). (A related study of an elliptic equation in a
semi-infinite strip can be found in [29].) For convenience, we eliminate the somewhat
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underdetermined pressure and state (1), (2), (4) in terms of v alone: For given {0, 1}-
valued s find a velocity field v such that v − e ∈ L2(Ω) and

div v = 0 in Ω and v · ν = 0 on ∂Ω ,

curl
v

1 + (λ − 1)s
= 0 in Ω .

(7)

Let us first observe that v can be expressed in terms of s with help of the Helmholtz
projection Γ for the infinite strip Ω:

v − e = (λ − 1) ( id − Γ ) ( id − µ (1 − 2 s) Γ )−1
s e ,(8)

where the Atwood mobility ratio µ ∈ [0, 1) is given in (5). We recall that Γ is the
orthogonal projection on the curl-free vector fields with respect to L2(Ω), the Hilbert
space of square integrable vector fields on Ω. Hence (7) is equivalent to

Γ (v − e) = 0 and ( id − Γ )
(

v

1 + (λ − 1) s
− e

)
= 0

and thus to

( id + (λ − 1) Γ s )
(

v

1 + (λ − 1) s
− e

)
= −(λ − 1) Γ s e ,

which can be restated as

v − e = (λ − 1){ s e − (1 + (λ − 1) s) ( id + (λ − 1) Γ s )−1
Γ s e }

= (λ − 1){ s e − (1 + (λ − 1) s) Γ ( id + (λ − 1) s Γ )−1
s e }

= (λ − 1) ( id − Γ ) ( id + (λ − 1) s Γ )−1
s e

= (λ − 1) ( id − Γ ) ( id − µ (1 − 2 s) Γ )−1
s e.

Thanks to the above algebra, we may use the following estimate for Γ:(∫
Ω

| Γf |2 ωα

)1/2

≤ 1 + (α
2 )2

1 − (α
2 )2

(∫
Ω

|f |2 ωα

)1/2

for |α| < 2 .(9)

Inequality (9) can be shown as follows: It is equivalent to the estimate without weight(∫
Ω

| Γ(α)f |2
)1/2

≤ 1 + α2

1 − α2

(∫
Ω

|f |2
)1/2

for |α| < 1(10)

for the conjugated operator Γ(α) given by

Γ(α)f = ωα Γ (ω−α f) .

Γ(α) has a simple representation in terms of the Fourier transform in the x-variable
and the Fourier series in the y-variable:

(Γ(α)f)(ξ, n)

=
1

(ξ − iα)2 + n2 f(ξ, n) ·
(

iξ − α
n

) (
iξ − α

n

)
.
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Here ξ is the dual variable of x, the Fourier coefficients are numbered by n, and
· denotes the scalar product on the two-dimensional vector space over the complex
numbers. Equation (10) follows immediately from this representation.

Let us now infer from (8) and (9) the existence of an α0 > 0 and a continuous
C: [0, α0] → [λ, ∞), depending only on λ ∈ [1, ∞), such that

C(0) = λ(11)

and with the following property: for any v and s satisfying (7) and α ∈ (0, α0] the
estimate ∫

Ω
|v − e|2 ωα ≤ (C(α) − 1)2

∫
Ω

s ωα(12)

holds. Indeed, from (9) we immediately deduce that there exist α0 > 0 and C0 < ∞
such that ∫

Ω

∣∣∣∣ ( id − Γ ) ( id − µ (1 − 2 s) Γ )−1
g

∣∣∣∣2 ωα0 ≤ C2
0

∫
Ω

|g|2 ωα0 .(13)

But in order to obtain the optimal bound C(0) = λ, we need the second estimate∫
Ω

∣∣∣∣ ( id − Γ ) ( id − µ (1 − 2 s) Γ )−1
s f

∣∣∣∣2 ≤
∫

Ω
|f |2 ,(14)

which is shown as follows: Define g by

( id − µ (1 − 2 s) Γ ) g = s f ,

multiply this identity by g + µ (1 − 2 s) Γ g and integrate over Ω∫
Ω
(g − µ (1 − 2 s) Γ g) · (g + µ (1 − 2 s) Γ g) =

∫
Ω

s f · (g − µ Γ g) .

The left-hand side can be written as∫
Ω
(g − µ (1 − 2 s) Γ g) · (g + µ (1 − 2 s) Γ g)

=
∫

Ω
|g|2 − µ2

∫
Ω

| Γ g |2

=
∫

Ω
| (id − Γ) g |2 + (1 − µ2)

∫
Ω

| Γ g |2 ,

whereas the right-hand side is estimated as follows:∫
Ω

s f · (g − µ Γ g)

≤
(∫

Ω
|f |2

)1/2 (∫
Ω

| g − µ Γ g |2
)1/2

=
(∫

Ω
|f |2

)1/2 (∫
Ω

| (id − Γ) g |2 + (1 − µ)2
∫

Ω
| Γ g |2

)1/2

.
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Because of 1 − µ2 ≥ (1 − µ)2, we obtain in particular(∫
Ω

| (id − Γ) g |2
)1/2

≤
(∫

Ω
|f |2

)1/2

,

which establishes (14). By complex interpolation of (13) (for g = s f) and (14) (for
complex interpolation, see, for instance, [28, Chap. V]) we obtain for all α ∈ [0, α0]
the estimate∫

Ω

∣∣∣∣ (λ − 1) ( id − Γ ) ( id − µ (1 − 2 s) Γ )−1
s f

∣∣∣∣2 ωα ≤ (C(α) − 1)2
∫

Ω
|f |2 ωα(15)

with

C(α) := 1 + (λ − 1) C
α

α0
0 .

We apply (15) to f = s e and so infer (12) from (8).
Now we are in the situation to prove (6). We assume that all integrals exist (and

refer the reader once again to [22] for mathematical rigor). We multiply (3) by

exp(α (x − C(α) t))

and obtain after partial integration

∂t

[∫
Ω

s(t, x, y) exp(α (x − C(α) t)) dx dy

]
= α (1 − C(α))

∫
Ω

s(t, x, y) exp(α (x − C(α) t)) dx dy

+ α

∫
Ω
[s (v − e) · e](t, x, y) exp(α (x − C(α) t)) dx dy .

Let us apply the Cauchy–Schwarz inequality to the last integral of the right-hand
side: ∣∣∣∣∫

Ω
[s (v − e) · e](t, x, y) exp(α (x − C(α) t)) dx dy

∣∣∣∣
≤

(∫
Ω

s(t, x, y) exp(α (x − C(α) t)) dx dy

)1/2

×
(∫

Ω
|v(t, x, y) − e|2 exp(α (x − C(α) t)) dx dy

)1/2

.

Consider the second factor of the right-hand side. According to (1), (2), (4), v = v(t)
solves the elliptic problem (7) with s = s(t); we thus obtain from (12)(∫

Ω
|v(t, x, y) − e|2 exp(α (x − C(α) t) dx dy

)1/2

≤ (C(α) − 1)
(∫

Ω
s(t, x, y) exp(α (x − C(α) t)) dx dy

)1/2

.

Hence we have

∂t

[∫
Ω

s(t, x, y) exp(α (x − C(α) t)) dx dy

]
≤ 0.

Together with (11), this proves our a priori estimate (6).
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