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6.4. Sobolev inequalities

Yobolev inequalities constitute another popular farily of inequalities at the
border between geometry and functional analysis. Whenever n > 118 an
integer and p 2 1 is a real number, define the Sobolev space

WEP(RY) = {f c IPRY); V€ LP(R”)}. |
When p € [1,7n), define
np
Y T n-p
Then the {critical) Soholev embedding WwhP(R™) C [P {R™) asserts the
existence of a finite constant Sn{p) >0 such that

(6.28) =

i/
o) viewwE), il <S0) ([ws)

Without loss of generality, we assume that Sn(p) is the smallest admissible
{or optimal) constant in this inequallty.

For the great majority of applications, it is not necessary 0 know more
about the Sobolev emnbedding, except maybe explicit bounds on Sp{p). How-
ever, in some circumstances one is interested in the exact value of the small-
est admissible constant Snlp) in (6:29). There are usually two possible
motivattons for this: either for the computation of the ground state energy
in some physical model, or because it provides some geometrical insights.
For instance, 1n sOme recent work about jsoperimetry ©n compact mani-
folds [114, 115] it is important to know that Snlp) — Sn(1) a8 p = 1r.

Of course, the value can be deduced from the identification of extremal
functions in (6.29). The hest constant Sn{p) in (6.29) for p > 1 was first

coraputed in the gixties, in unp(u}:)lished work by Eggdemich; then indepen-
dently obtained by Aubin [23]"ahd Talenti [234)."For p = 1 it has been
known for a very long time that (6.29) with sharp constant is equivalent to

the classical Buclidean isoperimetric inequality.

Below, we shall obtain the sharp constants in these Soholev inequalities,
as a simple application of the machinery developed in the previous chapters.
The proof will follow the recent work [93]. With respect to other exigting
proofs, the argument nas the merit of belng very clementary, and of applying
to any norm (not necessary Tuclidean) in K™ As a bonus, 1t exhibits an
unexpected dual problem, just as Barthe’s proof of Theorem 6.18. ‘

For 1 < p<n, We define the function hyp by

' (6.30) hp(z) = —— =8’
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where p/ = p/(p — 1) is the dual exponent of p (not to be mistaken for p*),
and oy is determined by the condition

(6.31) gl e = 1.
These functions will be the optimizers in the Sobolev inequality. Some-

what surprisingly, this property does not in fact depend on the choice of the

norm. Note that h, does not necessarily lie in LP (which has no importance
whatsoever).

Theorem 6.21 (Optimal Sobolev inequalities). Let p € (1,n). When-

ever f,g € IP(R™) are two functions satisfying ||f|lp» = Hg||Lp* and
Vi & LP(R"), then
flglp*(l—l/n) n—1)
n—
(6.32) <? IV |z,

(f WP g dy)w -

and equality holds if f = g = hy.
As immediate consequences we have

(i) the duality principle

f gl (1=1/m) | 1
(6.33) Sup S = pn— 1)
llgll =t ) . /v n{n — p) HfuLp o=l
v f@;? lgGnlF dy

with hy extremal in both varictional problems;

IV fllze

(#) the sharp Sobolev inequality: if f # 0 lies in L' (R™), then

Vv P
(6.34) % > [Vhyll e

(i1i) the Sobolev embedding WwheE) ¢ LPY(R™).

Proof of Theorem 6.21. It is clear that (6.32) implies both (i) and (i),
and that the latter is sharp. It is also clear that (iii) follows from (i),
because any function f € W% can be approximated by functions fr in
WLPNLF" in such a way that ||V fx||z» converge to ||V flzs. So we just have
to prove the inequality (6.32) for arbitrary f and g. Thanks to the identity
|V fi = V| fll, we only need to consider the case when f is nonnegative. By
a density argument, it is sufficient to consider the case when f and g are

smooth and compactly supported. Also, by homogeneity, we only need to
consider the case || flize* = gl = L.
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We introduce the two probability densities .
Flay= ), CW =g W

on R*. By Theorem 9.12 there exists a gradient of a convex function
(uniquely determined almost everywhere on the support of f ) such that

Vot (F do) = G dy.

[ —
Moreover, Supp(G) = Vo(Supp(F))-

Recall from Chapter that the functional F +— = fF 1-1/7 {g digplace-
ment cONVEX. This can be expressed by the above-tangent formulation of
Qection 5.2.6; more precisely, from Theorem 5.30 we find that

1
(6.35) fGl—% < ']FP%AA@.

i

Since G is compactly supported, 1t follows that V¢ is bounded, and ¢
can be extended info & CONVEX function on the whole of R™ {exercise). Then,
since I' 18 gmooth and compactly supported, we ¢an write
1 1 1
(6.36) ffFl’% Aap < —]Flf% Apip = —— fV(Fl’%) Ve
nJ n n
Returning to our original notation F = fp* and G = gp*, we have just
shown, combining (6.35) and (6.36), that
(6.37)

pln=1) pln — 1 f a(p—1) p(n — 1) .
S N e = 2 R £ ey s PP f - V.
[ sl pve= =S )

By Holder’s inequality (in ifs vector-valued version),
! * 2 l/p’
s - [V Tesivis ([ ol )

But, by the definition of push-forward, f F7 IV olP = ] Wi g7 (y) dy-
Therefore the combination of (6.37) and (6.38) concludes the proof of in-
equality (6.32).

et us now choose f=9= hps and check that equality holds at all
ihe steps of the proof, and therefore 10 (6.32). Of course this function
is not compactly supported, but in this particular case the Brenier-map
reduces to the jdentity map Velz) = %, and all the steps cail be checked
explicitly. Indeed, Vplz) = leads to an equality in (6.35) and 1n (6.36)
(via integration by parts). Then oné can also check that there is equality
in (6.38). This ends the proof of Theorem 6.21.

Remarks 6.22. (i) The choice f=g=hpis nob mysterious: it cail be
guessed by looking ab equality cases in Holder’s inequality. In fact, equallty
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in (6.38) implies ||V f(z)|?-= k7" (D) Ve(@)||P" for almost all z € R™. If
we now assume V(z) = z, and look for radially symmetric minimizers, we
arrive at fip.

(ii) In the present case, inequality (6.35) can be proven in a more direct
way without invoking Theorem 5.30: using the definition of push-forward
and the Monge-Ampére equation {4.10), one can write

JEO RS | P& 6(Vela)y i e
- [ F(a)F(z) Y"{det ()" de

then (6.35) follows by the inequality (det D4@)l/™ < (Aap)}/n, which is
another instance of the arithmetic-geometric inequality (Lemma, 5.23).

(iii) The very same proof works, mutatis mutandis, for arbitrary norms on

R™. Letting || - || be a norm on R", we define its dual norm by
[ X« = sup X Y.
' ¥l<1

Then the Sobolev norm is defined by ([ |V fI¥) /P and the minimizers by
U et )
(op -+ [ll?) =
(iv) Tt is possible to establish (6.37) directly, even when F and G are neither

smooth, nor compactly supported, assuming only that f & WLP(R™) and
g € L¥(R™) are two nonnegative functions such that | fll ox = ||gllz»x = 1

and fgp* (1) [y]? dy < +co. A proof is given in [93].
(v) By tracing cases of equality in the inequalities used above, one can

prove

Theorem 6.23 (Cases of equality in the Sobolev inequality). A func-
tion f € LF (R™) is optimal in the Sobolev inequality (6.34) if and only if
there exist C ¢ R, A £ 0 and zp € R™ such that

(639 flz) = C hy(Mz — z0)).

Again, the theorem applies to general norms in R™. The proof based
on the strategy above is rather technical, see [93]; it is however somewhat
simpler than the “classical” proof, based on rearrangement Inequality and
reduction to a one-dimensional problem (the inequality |V f*||z» < |V f||L»,
where f* is the monotone radially symmetric rearrangement of f, is known
as the Polya-Szegd principle; see Lieb [176] for a short proof based on
the Riesz rearrangement inequality in the case p = 2).

In [93] it is also shown how to obtain by the same method the optimal
Gagliardo-Nirenberg inequalities proven by Dolbeault and Del Pino [1.04],




