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PRIMARY SOURCES

Weeks

W1 Introduction and overview of optimal transport [9][10] [11] [12] [13].
Decide who presents what.

W2? L. Kantorovich. On the translocation of masses. C.R. (Doklady)
Acad. Sci. URSS (N.S.) 37, 199–201 (1942).

T.C. Koopmans. Optimum utilization of the transportation system.
Econometrica (Supplement), 17:136–146, 1949.

Kantorovich and Koopmans shared the 1975 Nobel Prize in Economics
for these. The mathematics is in the Kantorovich paper, the economics
in Koopmans. Both were trained as mathematicians, though Koop-
mans also had a degree in physics. A short modern proof appears
in 1.6.3 of [11]. An unexpected application to stable matching was
found in 3.1 of Shapley and Shubik A5. Any background in real and
functional analysis or linear programming would be a plus.

W3? R.T. Rockafellar. Characterization of the subdifferentials of convex
functions. Pacific J. Math. 17, 497–502 (1966).

Along with Theorem 1 (see also §6 of [10] for additional intuition),
it would be good if the presenter could cover some basic background
on convex functions and their Legendre transforms [1, Chapter 8.3]
and/or Alexandrov’s theorem on second differentiability of convex
functions (statement from 6.4 of [4]; proof from Theorem 3.2 sketched
in [9]).

W4 Y. Brenier. Décomposition polaire et réarrangement monotone des
champs de vecteurs. C.R. Acad. Sci. Paris Sér. I Math. 305,
805–808 (1987).

This short though difficult French paper proves a nice theorem with
a lot of nice connections, to e.g. Hodge theory. The basic argument
got expanded in English [2] but it is probably easier to follow in one
of [5, 8] or the following paper by Caffarelli. I recommend these two
presenters coordinate to divide up the proofs and the applications.

W5 L. Caffarelli. Allocation maps with general cost functions. In P. Mar-
cellini et al, editors, Partial Differential Equations and Applications,
pages 29–35. Dekker, New York, 1996.
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W6 A.D. Aleksandrov. Existence and uniqueness of a convex surface with
a given integral curvature. C.R. (Doklady) Acad. Sci. URSS (N.S.)
35, 131–134 (1942).

Spectacular, but not easy. Some background in geometry (the Gauss
map, curvature) is a plus. The uniqueness argument is spelled out in
more detail in:

W7 R.J. McCann. Existence and uniqueness of monotone measure-
preserving maps. Duke Math. J. 80, 309–323 (1995).

Brenier’s theorem from Aleksandrov and Rockafellar’s perspective.

W8 S. Alesker, S. Dar and V. Milman. A remarkable measure preserving
diffeomorphism between two convex bodies in Rn. Geom. Dedicata
74 (1999) 201–212.

More than you ever wanted to know about inequalities governing vec-
tor sums of convex bodies. The precursor is Brunn-Minkowski (Re-
mark 2.4 of [6]); domination the geometric by the arithemetic mean
gone bananas.

W9 D. Cordero-Erausquin, B. Nazaret, and C. Villani. A mass-transportation
approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv.
Math. 182 (2004) 307–332.

Combines entropy and transportation to recover this fundamental in-
equality in analysis. Although the paper is long, the key theorem and
its proof are more succinctly covered on pages 200-203 of [12].

W10 A. Aleksandrov. Smoothness of the convex surface of bounded Gaus-
sian curvature. C. R. (Doklady) Acad. Sci. URSS (N.S.) 36 (1942)
195–199.

Regularity (smoothness) theorems are hard, but rewarding. This pa-
per was ahead of its time; on of the more challenging works we cover
this semester. Uses a geometrical argument to show the surface con-
structed in W6 above is actually differentiable.

W11 R. Myerson. Optimal Auction Design. Math. Oper. Res. 6 (1981)
58-73.

A seller plans to auction off an object. Potential buyers have different
private valuations for the object; the seller knows only a statistical
(probablistic) description of their likely valuations. What rules should
the auction follow to maximize the seller’s expected revenue?
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W12 F. Otto. Viscous fingering: an optimal bound on the growth rate of
the mixing zone. SIAM J. Appl. Math. 57 (1997) 982–990.

Derives an inequality which limits the rate of mixing between two
immiscible fluids at the unstable interface as the more mobile one dis-
places the other under pressure but forms fingers as the displacement
occurs in a porous medium (or a channel between two glass plates).
The presenter should have a basic comfort level with partial differential
equations, ideally those which arise in the study of fluids.

W13 R. Latala and D. Matlak. Royen’s proof of the Gaussian correla-
tion inequality. In Geometric Aspects of Functional Analysis (Cham:
Springer, 2017) 265–275.

2014 proof of a long-standing and well-known conjecture, stating that
the Gaussian mass of the intersection of any pair of convex symmetric
sets A and B dominates the product of their Gaussian masses. In
other words, convex symmetric events are positively correlated under
Gaussian measure. This presentation may take place on Dec 7 or 8.

Alternates (To be presented if time allows)

A2 D. Gale and L.S. Shapley. College Admissions and the Stability of
Marriage, Amer. Math. Monthly 69 (1962) 9–15.

Introduced the stable marriage problem and solved it using the de-
ferred acceptance algorithm assuming no transfers between spouses.

A4 L.S. Shapley and M. Shubik. The assignment game I: The core. In-
ternat. J. Game Theory 1 (1972) 111–130.

Showed that when utility is transferable between husbands and wives,
the stable marriage problem becomes an optimal transport problem.

A5 G.G. Lorentz. An inequality for rearrangements, Amer. Math.
Monthly 60 (1953) 176–179. (Also Appendix B of [7].)

Assortativity of 1D matching (Becker / Spence / Mirrlees Nobel prizes).

A6 H. Hotelling. Stability in competition. Econom. J. 39 (1929) 41–57.

Why different political parties end up sharing the same policies.

A7 H. Sonnenschein. Price dynamics based on the adjustment of firms.
Amer. Econom. Rev. 72 (1982) 1088–1096. (c.f. Ch 8 of [11])

Unexpectedly anticipates steepest descent wrt transportation metric.

3



MAT 477H — Fall Semester Supplementary

References

[1] R Adams and J Fournier “Sobolev Spaces. 2ed” Academic Press (2003).

[2] Y. Brenier. Polar factorization and monotone rearrangement of vector-
valued functions. Comm. Pure Appl. Math. 44, 375–417 (1991).

[3] L.C. Evans. Partial differential equations and Monge-Kantorovich mass
transfer. In R. Bott et al., editors, Current Developments in Mathemat-
ics, pages 26–78. International Press, Cambridge, 1997.

[4] L.C. Evans and R.F. Gariepy. Measure Theory and Fine Properties of
Functions. CRC Press (1992) Boca Raton.

[5] W. Gangbo and R.J. McCann. Optimal maps in Monge’s mass transport
problem. C.R. Acad. Sci. Paris Sér. I Math. 321, 1653–1658 (1995).

[6] R.J. McCann A convexity principle for interacting gases. Adv. Math.
128 (1997) 153–179.

[7] R.J. McCann. Exact Solutions to the Transportation Problem on the
Line. Proc. Roy. Soc. London Ser. A 455 (1999) 1341–1380.

[8] R.J. McCann. Polar Factorization of Maps on Riemannian Manifolds.
Geom. Funct. Anal. 11 (2001) 589–608.

[9] R.J. McCann and N. Guillen. Five lectures on optimal transportation:
geometry, regularity and applications. In Analysis and Geometry of Met-
ric Measure Spaces. G. Dafni et al, eds. Providence: Amer. Math. Soc.
(2013) 145-180.

[10] R.J. McCann. A glimpse into the differential topology and geometry of
optimal transport. Discrete Contin. Dyn. Syst. 34 (2014) 1605–1621.

[11] F. Santambrogio. Optimal Transport for Applied Mathematicians.
Birkhauser (2015) Cham.

[12] C. Villani. Topics in Optimal Transportation. American Mathematical
Society (2003) Providence.

[13] C. Villani. Optimal Transport, Old and New. Spring (2009) Berlin.
http://cedricvillani.org/wp-content/uploads/2012/08/preprint-1.pdf

4


