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Abstract. We prove a splitting theorem for globally hyperbolic,
weighted spacetimes with metrics and weights of regularity C1

by combining elliptic techniques for the negative homogeneity p-
d’Alembert operator from our recent work in the smooth setting
with the concept of line-adapted curves introduced here. Our results
extend the Lorentzian splitting theorem proved for smooth globally
hyperbolic spacetimes by Galloway — and variants of its weighted
counterparts by Case and Woolgar–Wylie — to this low regularity
setting.
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1. Introduction

Einstein’s theory of gravity postulates that the geometry of spacetime
is described by a Lorentzian metric g on a smooth manifoldM that solves
the Einstein field equation: a second-order nonlinear system relating
the Ricci curvature of the metric tensor to the physics described by
the total densities and fluxes of energy and momentum in the system.
Even for the vacuum Einstein equation, solutions need not generally
be smooth. On one hand, the works of Penrose and Hawking give
generic conditions under which geodesics become incomplete either
inside black hole horizons (see Penrose [51]) or analogous to the big
bang (see Hawking [35]). On the other hand, linearization of the field
equations yields a wave equation, and wave equations are well-known
to support (and to propagate) nonsmooth solutions — in this case
representing nonsmooth gravity waves. It is thus highly desirable for a
theory of gravity which encompasses nonsmooth metric tensors g.

Nonsmooth proofs of the Hawking and Penrose theorems have been
provided for metric of class g ∈ C1 by Graf [33]; see also Kunzinger–
Ohanyan–Schinnerl–Steinbauer [37] for a version of the more sophisti-
cated Hawking–Penrose theorem in C1-regularity, as well as Schinnerl–
Steinbauer [53] for analogous work on the Gannon–Lee theorems. More
recently, Calisti–Graf–Hafemann–Kunzinger–Steinbauer [15] extended
the Hawking singularity theorem to locally Lipschitz metrics. Versions
of the Hawking (and Penrose) theorems have also been obtained by
Cavalletti and Mondino [20] (with Manini [18]) by building on the frame-
work of Kunzinger and Sämann [38], which relaxes even the assumption
that the underlying spacetime M is a manifold.

In our previous work [12] we gave an elliptic proof of the Eschen-
burg [23], Galloway [27] and Newman [47] splitting theorems which
apply to smooth Lorentzian metrics. Central to our approach was the
p-d’Alembert operator �p for 0 6= p < 1, whose elliptic action on non-
smooth time functions was already observed in [5]; cf. [9]. In the present
manuscript, we combine this novel strategy with additional ideas to
obtain a comparable but new result for metric tensors which are merely
of regularity g ∈ C1, and for which the Ricci tensor can moreover be
modified to include a C1-smooth Bakry–Émery style weight [2], as in
e.g. Case [17] and Woolgar [62] with Wylie [63, 64]. Our nonsmooth
result extends Galloway’s version of the theorem [27], which requires
global hyperbolicity. In the smooth setting either global hyperbolicity
or timelike geodesic completeness suffices, as shown by Galloway [27]
and by Newman [47] respectively, the latter having been conjectured a
decade earlier by Yau [65]. Global hyperbolicity is widely acknowledged
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to be the more physically relevant completeness assumption, as in e.g.
Witten [61]. For another relaxation of the splitting hypotheses see [28].

Let us recall some basics about spacetimes with metrics of regularity
C1. A pair (M, g) will be called a C1-spacetime if M is a second
countable, connected, smooth manifold, equipped with a signature
(+,−, . . . ,−) metric tensor g of regularity C1, and there exists a con-
tinuous vector field F on M satisfying g(F, F ) > 0 to distinguish future
from past. For gij ∈ C1(M)\C1,1

loc (M), geodesics still exist (by Peano’s
theorem) but need no longer be determined by their initial velocities
(since the right hand side of the geodesic equation

(1)
d2γi

dt2
= −Γijk

dγj

dt

dγk

dt
∀i ∈ {1, . . . , n = dimM}

is merely C0). However, as in Graf [33, Cor. 2.4], geodesics in this setting
remain C2-regular and causal geodesics do not change their causal type.
Here, a locally Lipschitz curve γ is called causal if g(γ′t, γ

′
t) ≥ 0 for a.e.

t ∈ I. The Lorentzian arclength functional L is defined in the usual
way for locally Lipschitz causal curves γ : I ⊂ R→M :

L(γ) :=

∫
I

√
g(γ′t, γ

′
t) dt.

A causal curve is said to be future-directed — or f.d. for short — if
in addition g(γ′t, F ) ≥ 0 for a.e. t ∈ I. The time separation is then

(2) `(x, y) := sup{L(γ) : γ : [a, b]→M f.d., γa = x, γb = y},

where the supremum is understood to be −∞ if there are no f.d. curves γ
from x to y. Curves achieving the maximum (2) are called maximizing,
maximizers or maximal; they are necessarily (reparametrizations of)
geodesics in the ODE sense, i.e., solutions of the geodesic equation (1),
see Lange–Lytchak–Sämann [40]. Unless noted otherwise, by geodesic
we will always mean a solution of the geodesic equation, hence in
particular affinely parametrized.

A C1-spacetime (M, g) is called globally hyperbolic if it is non-
totally imprisoning (i.e. no compact set contains a future or past in-
extendible causal curve) and the causal diamonds J+(x) ∩ J−(z) are
compact for each x, z ∈ M . Given −∞ ≤ a < b ≤ ∞, a causal curve
γ : (a, b) −→M is said to be inextendible unless

lim
t↓a

σt or lim
t↑b

σt

converges to a limit in the (boundaryless) manifold M . Standard conse-
quences of global hyperbolicity which remain true for g ∈ C1 include the
attainment of (2) whenever `(x, y) ≥ 0, the upper semicontinuity of the
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time separation `, and continuity and real-valuedness of `+ := max{`, 0};
see Sämann [52].

Given V ∈ C1(M) and a parameter N ∈ [n,∞) — with n := dimM

and the convention V = 0 if N = n — the Bakry–Émery Ricci tensor
can be defined as the distributional analog of

(3) Ric(g,N,V ) := Ric + HessV − 1

N − n
dV ⊗ dV,

noting the fact that C1(M) ⊂ W 1,2
loc (M) makes the metric tensor a

fortiori Geroch–Traschen class [29].

Definition 1 (Bakry–Émery energy condition; timelike distribution-

ally). We say the Bakry–Émery energy condition is satisfied if

Ric(g,N,V ) ≥ 0 holds timelike distributionally, i.e. whenever con-
tracted with X ⊗ X and integrated against µ, for each smooth (or,
equivalently, C1) timelike vector field X and each smooth compactly sup-
ported (unoriented) volume density µ ≥ 0 on M ; cf. Graf [33, Definition
3.3].

For us, a complete timelike line is a curve γ : R→M such that

(4) `(γs, γt) = t− s ∀s, t ∈ R, s < t.

Such lines are known to be locally Lipschitz maximizing g-geodesics [44]
— thus in fact C2-smooth [40]; cf. Lemma 7 below.

Theorem 2 (Weighted nonsmooth Lorentzian splitting theorem). Let
(M, g) be an n-dimensional globally hyperbolic spacetime with C1 metric

tensor, N ∈ [n,∞) and V ∈ C1(M). Assume the Bakry–Émery energy

condition, i.e. Ric(g,N,V ) ≥ 0 is satisfied timelike distributionally as in
Definition 1, and that M contains a complete timelike line γ : R→M .
Then there is a complete Riemannian manifold (S, h) with C1 metric
tensor and a bijection Φ : R× S →M so that:

- Φ is a C2 isometry, and g = dt2 − h on M ;
- Φ(t, z) = γt for every t ∈ R and some z ∈ S;
- the weighted measure e−V volg on M splits via Φ as dt⊗e−V volh;

- (S, h) has a distributionally nonnegative Bakry–Émery Ricci

tensor Ric(h,N−1,V ).

Remark 3 (Smoother splittings of smoother metrics). With the nota-
tion and hypotheses of Theorem 2, if g is Ck for some integer k ≥ 1,
then the isometry Φ acquires regularity Ck+1. This follows from results
of Hartman [34] in Corollary 27 below. Alternately, it follows from the
main result of Calabi and Hartman [14], after noting that Φ gives an
isometry between the Riemannian metrics dt2 +h on R×S and 2dt2−g
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on M . Similarly, if g ∈ Ck,α for k ≥ 1 and α ∈ (0, 1), then Φ ∈ Ck+1,α

by Taylor’s results for Riemannian isometries [56, Thm. 2.1]. �

Remark 4 (On the range of synthetic dimension N). In the context of
smooth Lorentzian splitting theorems, there are works where the cases
N =∞ and even N < 0 are permitted, see Case [17] and Woolgar–Wylie
[63, 64] (and Lu–Minguzzi–Ohta [42] as well as Caponio–Ohanyan–Ohta
[16] in the Lorentz–Finsler setting). In these ranges of N , a further
completeness assumption is required to ensure the weighted p-sub-
and p-superharmonicity, respectively, of the Busemann function in the
limit of the p-d’Alembertian comparisons obtained for the approximate
Busemann functions. In order not to distract from the adaptation of
our p-d’Alembertian techniques from [12] to the low regularity setting,
we will not consider these ranges of N in this work. �

Relative to previous approaches surveyed in our prequel [12], a tech-
nical innovation of the present manuscript — inspired by optimal
transportation ideas [1, 13, 59] — is the early introduction of curves
σ which are γ-adapted, meaning proper-time parametrized curves
σ : (a, b) −→ M along which the forward and backward Busemann
functions b± associated to the complete timelike line γ — as in (27)–(28)
below — agree and increase at their minimum possible (i.e. unit) rate.
In particular, γ itself is γ-adapted. More generally, any γ-adapted curve
σ is a maximizing timelike geodesic. We prove that any co-rays of
γ (defined in Lemma 9) which start on σ must be tangent to σ and
are hence necessarily timelike (Proposition 11). We exploit this prop-
erty as a substitute for the timelike co-ray condition of Beem, Ehrlich,
Markvorsen and Galloway, or rather to enforce that the latter holds not
only near γ but also near σ. As Eschenburg showed, where all co-rays
are timelike the forward and backward Busemann functions b± are not
only continuous [3] but locally Lipschitz [23]. As in our prequel [12],
this uniformizes the ellipticity of the p-d’Alembert operators acting on
b± near σ. Relaxing the equi-semiconcavity from [12], we show the
equi-superdifferentiability possessed by the Busemann limits in this
less smooth setting (Proposition 13 below) still allows us to deduce
that b+ ≥ b− are super- and sub-p-harmonic functions (Corollary 18)
which touch along σ. The strong maximum principle (Proposition 20)
extends the equality b+ = b− to a neighbourhood U of any γ-adapted
curve, forcing b+ ∈ C1(U). The fact that the Hessian of b := b+ = b−

vanishes on U (Proposition 23) then follows from a weighted version of
the Bochner–Ohta [7] [49] identity as in [12] (cf. [46]) with a whiff of
elliptic regularity theory (Lemma 21).
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Having now established b ∈ C2(U), we are prepared to prove our
splitting result, namely that the metric splits into tangential and normal
components along the level sets of b (since ∇b is parallel); these are
isometric to each other (since ∇b is Killing). We obtain this result not
only in a neighbourhood of γ, but along every curve σ that is γ-adapted.
We show that any co-rays (and asymptotes) of γ intersecting flow lines
of ∇b are γ-adapted. This allows us to deduce they cannot end in finite-
time using an argument which seems simpler to us than Galloway’s [27]

— and without recourse to the timelike geodesic completeness of [23]
[47] or the timelike nonbranching hypotheses of [20] [37]. This in turn
implies that the asymptotes σ to γ form complete timelike lines, allowing
us to conclude that the maximal neighbourhood U around γ which
splits has a product structure (Theorem 24), and that it must fill the
manifold M using a connectedness argument which seems simpler to us
than Eschenburg’s [23] — not to speak of its adaptations [27][12] to the
absence of the timelike geodesic completeness assumption. The isometry
provided is a priori C1; we upgrade it to C2 in an appendix devoted to
arbitrary isometries of semi-Riemannian metrics, or alternately using
[14] or [56]. Finally, we close with an outlook on related directions of
research to be explored in future work (Section 9).

2. Tensor distributions and smooth approximations

In this section, we summarize basics of distributional curvature
bounds and optional weights. All results are by now well-established in
the literature; we refer e.g. to Kunzinger et al. [39, 37], Graf [33] and
Braun–Calisti [11] for more details. These sources should be consulted
for technical details omitted here. A reader who is impatient or unfamil-
iar with tensor distributions can also skip directly to Lemma 5 below
and take its conclusions as a shortcut definition of “Bakry–Émery Ricci
curvature being bounded from below timelike distributionally.”

The intervening discussion will also clarify our C1-hypotheses on the
metric tensor and the weight, respectively.

In the sequel, we follow closely the presentation in [37, Sec. 2]. For
k ∈ N0 ∪ {+∞}, let D′(k)(M) denote the topological dual of the locally
convex topological vector space of all k-times continuously differentiable,
compactly supported sections of the volume bundle Vol(M) of M (such
sections are also called volume densities ; they do not carry orientations).
We call D′(k)(M) the space of distributions of order k on M . If k =∞,
we simply write D′(M) and call it the space of distributions on M .
There are natural topological embeddings D′(k)(M) ↪→ D′(k+1)(M) ↪→
D′(M) for all k. Moreover, observe that D′(k)(M) is a module over
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Ck(M). (Recall that a module over a ring is an analogous structure
to a vector space over a field; we denote the tensor product of such
modules by ⊗Ck(M).) We call u ∈ D′(k)(M) nonnegative — and write
u ≥ 0 — if u(µ) ≥ 0 for every k-times continuously differentiable and
compactly supported volume density µ ≥ 0. Correspondingly, given v ∈
D′(k)(M) we write u ≥ v if u−v is nonnegative. Having defined (scalar)
distributions on M , tensor distributions can now be obtained via tensor
products: The space of tensor distributions of valence (r, s) and order
k is defined by D′(k)T rs (M) := D′(k)(M)⊗Ck(M) T rs (M), where T rs (M)
are the smooth tensors on M of valence (r, s). Standard terminology is
used for the more common valences, e.g. D′T 1

0 (M) are the distributional
vector fields on M ; (X(M) := T 1

0 (M) denotes the smooth vector fields).
A distributional connection on a smooth manifold M is a map

∇ : X(M) × X(M) → D′T 1
0 (M) that satisfies the usual computa-

tion rules for connections. If ∇XY is an Lploc (resp. Ck) vector field
for all X, Y ∈ X(M), then we call ∇ an Lploc (resp. Ck) connection.
Connections which map into these higher regularity spaces can be ex-
tended to accommodate less regular vector fields X, Y to give meaning
to ∇XY , see the discussion in [37, p. 1149]. Using this, one can then
define the distributional Riemann curvature tensor R ∈ D′T 1

3 (M) of an
L2
loc-connection ∇ (see [41, Def. 3.3] or [37, Def. 2.2]) by the usual for-

mula R(X, Y )Z := ∇X∇YZ−∇Y∇XZ−∇[X,Y ]Z (let us note here that
the tensor distribution R ∈ D′T 1

3 (M) is understood as a C∞(M)-linear
map X(M)3 → D′T 1

0 (M), in analogy with smooth tensors).
Let us turn to the setting of our main interest: If g is a semi-

Riemannian metric of regularity C1 on a smooth manifold M , then
its Levi-Civita connection ∇ is a C0-connection, from which it follows
that R ∈ D′(1)T 1

3 (M) [37, p. 1150]. Due to this higher regularity, it
was observed in the same reference that the object R(X, Y, Z,W ) =
g(W,R(X, Y )Z) can be defined as an element of D′(1)(M), even for
C1-vector fields X, Y, Z,W . This allows traces to be taken with respect
to local g-orthonormal frames and coframes, which are of regularity
C1. Given an open set U , a g-orthonormal frame Ei on U , then for all
C1-vector fields X, Y on U , we define

Ricg(X, Y ) :=
dimM∑
i=1

g(Ei, Ei)g(R(Ei, X)Y,Ei).

A partition of unity argument extends this definition to all C1-vector
fields X, Y on M , from which the (global) Ricci curvature tensor
Ric ∈ D′(1)T 0

2 (M) is obtained. Since we will consider weighted Ricci
curvature bounds in this work, let us note that if V ∈ C1(M), then its
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distributional g-Hessian HessV ∈ D′(1)T 0
2 (M) can be obtained following

the analogous steps as for the Ricci curvature.
Given any local coordinate chart (U,ϕ = (xi)) on a smooth manifold

M and u ∈ D′(k)(M), the pushforward of u|U , ϕ∗u ∈ D
′(k)(ϕ(U)) is an

ordinary k-th order distribution on ϕ(U) ⊂ Rn, acting on a function
f ∈ Ck

c (U) via

ϕ∗u(f) := u(f ◦ ϕ |dx1 ∧ · · · ∧ dxn|).

Similarly, if T ∈ D′(k)T rs (M), then ϕ∗T is a tensor distribution on ϕ(U)
which can be written as

ϕ∗T = T k1...krl1...ls

∂

∂xk1
⊗ · · · ⊗ ∂

∂xkr
⊗ dxl1 ⊗ · · · ⊗ dxls ,

with T k1...krl1...ls
∈ D′(k)(ϕ(U)).

For later use, let us recall the coordinate expressions of the Christoffel
symbols, the Ricci curvature and the Hessian, obtained from a C1-semi
Riemannian metric g; these are simply the usual coordinate expressions
which continue to be valid in this distributional regularity.

• C0-Christoffel symbols:

(5) Γkij =
1

2
gkm

(
∂gmj
∂xi

+
∂gim
∂xj

− ∂gij
∂xm

)
,

• Distributional Ricci curvature:

Ricgij :=
∂Γmij
∂xm

− ∂Γmim
∂xj

+ Γmij Γkkm − Γmik Γkjm,(6)

• Distributional Hessian of V ∈ C1(M):

(HessV )ij =
∂2V

∂xi∂xj
− Γkij

∂V

∂xk
.(7)

The distributional Bakry–Émery Ricci curvature Ric(g,N,V ), where
N ∈ [n,∞), is now simply defined by (3). Here, we will use the

conventions Ric(g,∞,V ) := Ricg + Hess V and Ric(g,n,V ) := Ricg.
From now on let g ∈ C1 be Lorentzian, i.e., of signature (+,−, . . . ,−).

Given K ∈ R we say Ricg ≥ K (or more precisely Ricg ≥ K g) timelike
distributionally if the distribution Ricg(X,X)−K g(X,X) ∈ D′(1)(M)
is nonnegative for every smooth (or equivalently C1) timelike vector
field X on M . Analogous notions are adopted for the other curvature
quantities.

Let (ρε)ε>0 be a family of standard mollifiers in Rn. By chartwise
convolution and using a partition of unity, one can construct a family
denoted by {g?ρε : ε > 0} of C∞ Lorentzian metrics such that gε → g in
C1
loc as ε→ 0 in a natural way, see e.g. [37, Subsec. 2.2]. Similarly, one
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can convolve the distributional Bakry–Émery Ricci curvature Ric(g,N,V ),
which yields a family {Ric(g,N,V ) ? ρε : ε > 0} of smooth sections of
the bundle T 0

2M of valence (0, 2)-tensors. As convolution preserves
nonnegativity, this regularization process preserves lower bounds on the
Bakry–Émery Ricci curvature in all timelike directions in the following
way:

Ric(g,N,V ) ≥ K g timelike distributionally

=⇒ Ric(g,N,V ) ? ρε ≥ K g ? ρε pointwise.

To derive geometric statements from this regularization procedure, one
would like to compare Ric(g,N,V ) ? ρε to Ric(g?ρε,N,V ?ρε). Due to the
nonlinear dependence of the Bakry–Émery Ricci tensor (6) both on g
and V , these two quantities do not coincide in general. On the other
hand, their error tends to zero locally uniformly: The case V = 0 was
established by Graf [33, Lem. 4.5], and her argument is easily seen to

generalize to Ric(g,N,V ) since V ∈ C1(M).
The proposed approximation of g will not respect the causal structure

defined by g, which necessitates a modification of g ? ρε to a smooth
Lorentzian metric gε whose causal structure is comparable to the one
of g. This was done by Kunzinger–Steinbauer–Stojković–Vickers [39]
in regularity g ∈ C1,1 and by Graf [33] in regularity g ∈ C1 (following
earlier work of Chruściel–Grant [22]). We report their main result
adapted to our weighted setting in Lemma 5 below (see also Braun–
Calisti [11]).

To formulate it, we define Vε := V ? ρε (understood with respect to
the same partition of unity used to construct g ? ρε). Given two not
necessarily smooth Lorentzian metrics g and g′, we write g′ ≺ g if every
g′-causal tangent vector is g-timelike (viz. g′ has strictly narrower light
cones than g). Given a continuous section S of the vector bundle T 0

2M
and a compact set C ⊂M , we define

‖S‖∞,C := sup
x∈C

sup
v∈TxM,
g̃(v,v)=1

|S(v, v)|

and analogously if S is a continuous section of T 0
3M . Here g̃ denotes

any complete smooth (background) Riemannian metric on M whose
topology is second countable [48] — considered fixed hereafter — and
∇̃ its Levi-Civita connection.

Lemma 5 (Good approximation). There exists a family {gε : ε > 0}
of smooth Lorentzian metrics, time oriented by the same vector field as
g, such that gε ≺ g for every ε > 0 and gε → g in C1

loc as ε→ 0. The
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latter means for every compact subset C ⊂M ,

lim
ε→0

[
‖gε − g‖∞,C + ‖∇̃gε − ∇̃g‖∞,C

]
= 0.

Moreover, if Ric(g,N,V ) ≥ K timelike distributionally, the above family
can be constructed with the following property. For every compact set
C ⊂ M and every c, δ, κ > 0, there exists ε0 > 0 such that for every
ε ∈ (0, ε0) and every v ∈ TM

∣∣
C

with g(v, v) ≥ κ and g̃(v, v) ≤ c,

Ric(gε,N,Vε)(v, v) ≥ (K − δ) gε(v, v).

We will frequently use the approximation gε and will refer to it as
the good approximation of g.

Remark 6 (Heredity of global hyperbolicity). If g is globally hyper-
bolic, and g′ ≺ g has narrow lightcones, our definition shows g′ to be
globally hyperbolic, as in e.g. Benavides-Navarro–Minguzzi [4] or Graf
[33, Rem. 1.1]. In particular, each member gε of the good approximation
is globally hyperbolic if g is. �

3. Ray-adapted curves σ and C1-compactness of geodesics

Let I ⊂ R be an interval and γ : I → M a Lipschitz causal curve.
By definition of time separation we have

(8) `(γs, γt) ≥
∫ t

s

|γ′r| dr ∀s, t ∈ I, s ≤ t,

where here |v| :=
√
g(v, v) for any v future directed. We say that γ is

a maximizer provided equality holds in (8) for any t, s as in there or,
equivalently, if

(9) `(γs, γt) = `(γs, γr) + `(γr, γt) ∀s, r, t ∈ I, s ≤ r ≤ t.

A g-geodesic is a C2 curve γ solving the geodesic equation ∇g
γ′γ
′ = 0.

We recall that by [40, Thm. 1.1] any Lipschitz maximizer has a parametriza-
tion making it a g-geodesic (since for C1-metrics Filippov solutions are
classical solutions). More generally, [44] yields a closely related criterion
for a priori discontinuous curves to be locally Lipschitz and maximizing

— hence C2-smooth g-geodesics:

Lemma 7 (Criterion for timelike maximizers and their regularity). In
a globally hyperbolic C1-spacetime, any — not necessarily continuous —
map σ : [0, 1] −→M satisfying

(10) `(σs, σt) = (t− s)`(σ0, σ1) > 0 ∀0 ≤ s < t ≤ 1

is actually a C2-smooth maximizing g-geodesic.
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Proof. A globally hyperbolic C1-spacetime is an example of a regularly
localizable [33, Cor. 2.4] and K-globally hyperbolic [52, Cor. 3.4]
Lorentzian length space [38]. Thus [44, Lem. 2 and Cor. 6] assert
any curve satisfying (10) becomes Lipschitz and maximizing after a
(homeomorphic) reparameterization. Now [40, Thm. 1.1] ensures that
there is a reparametrization making it a g-geodesic (hence C2 by the
geodesic equation (1)); but (10) also yields that |σ′t| is constant, so
neither reparametrization was actually needed. �

The following simple compactness properties will be useful throughout.
While (i) and (ii) are adaptations of well-known facts to our C1 setting,
(iii) is more subtle: it depends on the continuity of the timelike curves
described by the preceding lemma.

Lemma 8 (Local existence and C1 compactness of geodesics). Let
(M, g) be a globally hyperbolic C1-spacetime with compact sets K ⊂ TM
and K̃ ⊂ {` > 0}. Then:

(i) There is λ > 0 such that for any v ∈ K there is a g-geodesic
defined on [0, λ] having v as initial velocity.

(ii) The set of g-geodesics on [0, λ] with initial velocity in K is
compact in C1([0, λ]). Same for the subset of those that are also
future directed maximizers.

(iii) The collection of maximizing g-geodesics σ : [0, 1] −→ M with
endpoints (σ0, σ1) ∈ K̃ is compact in C1([0, 1],M).

Proof. (i) By compactness we can easily reduce to the case in which
the projection πM(K) of K in M is contained in a single coordinate
chart. Then, read in coordinates the initial velocities have uniformly
bounded components, thus the existence of λ > 0 such that the geodesic
equation (1) is solvable in [0, λ] for any initial datum in K is a direct
consequence of Peano’s theorem [6, §6.10], the compactness of K and
continuity of the Γijk’s.
(ii) The same argument also ensures that g-geodesics γ with γ′0 ∈ K
have second derivative uniformly bounded in [0, λ]. Precompactness in
C1([0, λ]) follows. For compactness notice that any C1-limit of solutions
of (1) is a weak solution of the same equation; moreover it is clear, by
simple ODE regularity, that weak solutions are actually strong solutions.

Compactness of maximizers also follows taking into account that limits
of maximizers are maximizers, as is clear from the characterization in
(9).

(iii) Let σn : [0, 1] −→ M be a sequence of maximizing g-geodesics
with endpoints (σn0 , σ

n
1 ) ∈ K̃. Compactness of K̃ provides a (nonre-

labelled) subsequence such that (x, y) := limn(σn0 , σ
n
1 ) converges. We
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claim a further subsequence of the σn converge in C1([0, 1]). By the limit
curve theorem (and without reparametrizing w.r.t. g̃-arclength, e.g. as in
[5, Thm. 2.30]), we know that there is a left continuous curve σ such that

— along a nonrelabelled subsequence — limn→∞ σ
n
t = σt for a.e. t ∈ [0, 1].

Since the σn’s are maximizers with limn `(σ
n
0 , σ

n
1 ) = `(x, y) > 0, they

are eventually timelike maximizers.
Thus for a.e. s < t we have

`(σs, σt) = lim
n
`(σns , σ

n
t ) = (t− s) lim

n
`(σn0 , σ

n
1 ) = (t− s)`(x, y).

Then, by left continuity we see that `(σs, σt) = (t− s)`(x, y) holds for
all s < t. Also, by the limit curve theorem we see that σ0 = limn σ

n
0

and there is a sequence tn ↗ 1 in [0, 1] such that σ1 = limn→∞ σtn . In
particular, by closedness of the causal relation ≤, we obtain σ1 ≤ y.
Moreover, we have

`(x, y) = `(σ0, y) ≥ `(σ0, σ1) + `(σ1, y) = `(x, y) + `(σ1, y).

Finally, a cutting the corner argument shows σ1 = y. Applying Lemma 7
yields that σ is a C2 maximizer from x to y. In particular σ is continuous
and we have that σnt → σt holds for all t ∈ [0, 1].

We need to improve this pointwise convergence to C1 convergence.
We shall prove σ′0 = limn→∞(σn)′0. After that part (ii) asserts C1 con-
vergence of σn to σ in a neighbourhood of t = 0, and trivial adaptation
to arbitrary initial (and final, using time reversal) times t ∈ [0, 1] to-
gether with compactness of the unit interval completes the proof of (iii).
Therefore, define vn := (σn)′0.

To derive a contradiction suppose vn → 0. Then part (ii) of the
lemma shows that for some λ > 0 the curves (σn) converge in C1([0, λ])
to a curve η with η′0 = 0; but this cannot happen because we already
established that the sequence converges pointwise to σ with σ′0 6= 0
(because σ is timelike).

If, on the other hand αn := |vn|g̃ → ∞, then ṽn := α−1
n vn converge

along a (nonrelabelled) subsequence to a non-zero vector ṽ. Part (ii) of
the lemma provides λ > 0 such that the rescaled curves σ̃n : [0, αn]→M
defined by σ̃nt := σnt/αn must — up to further subsequences — converge

in C1([0, λ]) to some η. The limit η must be a causal curve with
η′0 = ṽ 6= 0, thus η1 ≥ η0 with η1 6= η0; we can therefore find z ∈ M
such that x = η0 ∈ I−(z) and η1 /∈ I−(z). Now fix t ∈ (0, 1] and notice
that for n sufficiently large we have αnt ≥ 1 and thus σnt = σ̃nαnt ≥ σ̃1.
Passing to the limit in n we get σt ≥ η1 so σt /∈ I−(p). Since t ∈ (0, 1]
was arbitrary, we have contradicted the continuity of σt at t = 0.

The preceding (two) paragraphs imply a subsequence of the vn must
converge to a (nonzero) limit v. For some λ > 0 part (ii) of the lemma
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yields C1([0, λ)) convergence of σn along a further subsequence, to a
limit η. But this limit must agree with the pointwise limit σ; hence
v = η′0 = σ′0. Since this limit is independent of which subsequences have
been chosen along the way, we have convergence σ′0 = limn(σn)′0 along
the original (pointwise convergent) sequence, to complete the proof of
(iii). �

Given a future directed curve γ : [0, a) → M and a ∈ (0,∞], one
consequence of global hyperbolicity is that subsequential convergence
of limt↑a γt implies convergence of the full limit. If no such limit exists,
we say that γ is inextendible. If γ is Lipschitz with

∫ a
0
|γ′t|g̃ dt = +∞,

then we say that it is (future) complete. Note that any complete f.d.
curve is necessarily inextendible.

A future ray γ : [0,∞) → M is a future directed curve that is
inextendible and maximizing. For such a ray, we define I−(γ) :=
∪t≥0I

−(γt).
‘Past’ notions are defined analogously.
We turn to the important concept of co-ray. Notice that in the

statement below as well as through the rest of the text, when we assert
precompactness in C1([0, a]) or C1

loc([0, a)) of a collection of curves
parametrized over intervals as long or longer than [0, a), we implicitly
mean precompactness of their restrictions to the indicated domains.

Lemma 9 (Co-ray existence and dichotomy). Let (M, g) be a globally
hyperbolic C1-spacetime, γ : [0,∞) → M a future complete timelike
ray and ηn : [0, an] → M , n ∈ N, a timelike, maximizing g-geodesic
with endpoint ηnan = γtn for some tn ↑ +∞. Assume that limn→∞ η

n
0 =

z ∈ I−(γ) and that n 7→ (ηn)′0 ∈ TM admits a non-zero limit v. Then
an →∞ and (ηn) is precompact in C1

loc([0, a),M) for some a > 0.
Moreover, there exist λ ∈ (0,∞] and a C1

loc([0, λ),M)-limit η of some
subsequence so that for no λ′ > λ is there a further subsequence that
converges in C1

loc([0, λ
′),M). Then η is a ray — called a co-ray of γ —

and exactly one of the following holds:

i) η′t is timelike for every 0 ≤ t < λ, or
ii) `(ηs, ηt) = 0 for every 0 ≤ s ≤ t < λ.

Proof. We assumed z � γT for some T > 0, hence eventually ηn0 �
γT as well. By maximality we have `(ηn0 , γtn) = an|(ηn)′0| and by
reverse triangle inequality `(ηn0 , γtn) → ∞. Also, since (ηn)′0 → v,
we have |(ηn)′0| → |v| < ∞. It follows that an → ∞. The claimed
precompactness now follows from Lemma 8(ii) above, which also asserts
any limit curve is maximizing.
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To deduce the existence of λ and η, we will consider C1
loc-convergence

of various subsequences on intervals of different lengths. Set λ1 := a, so
there exists a subsequence {ηn(k)}k∈N converging on [0, λ1). Starting
from i = 1, given a subsequence converging on [0, λi) we let ci ≥ λi be
the supremum of those numbers c such that some further subsequence
converges on [0, c) and set λi+1 := λi + min{1, (ci − λi)/2}. Then there
exists subsequence converging at least on [0, λi+1) so the process can be
iterated with λi nondecreasing and ci nonincreasing to respective limits
λ, c ∈ (0,∞]. Moreover c > λ contradicts the construction so we must
have c = λ. A diagonal process now yields a subsequence of {ηn(k)}k∈N
which converges on [0, λ), with no further subsequence converging on
any longer interval.

Having established the existence of λ and η, we argue inextendibility
of η by contradiction. Therefore assume that y = limt↑λ ηt exists. From
the compactness of the set of solutions of the g-geodesic equation in a
neighbourhood of y we first see that λ <∞ (here the assumption v 6= 0
matters) and then that the (ηn)’s are relatively compact in C1

loc(I,M)
for some open interval I around λ, contradicting the supremality of λ
in the definition of η.

It remains to prove the dichotomy. It is clear that η′t is future causal
for every t. Also, since η is a g-geodesic we have that g(η′t, η

′
t) is constant.

Thus if g(η′t, η
′
t) = 0 for some t then g(η′t, η

′
t) = 0 for every t and (ii)

follows from maximality. �

We call co-ray of γ any curve η built as limit as in the above
statement. Notice that for every p ∈ I−(γ) a simple compactness
argument together with global hyperbolicity shows that there exists a
co-ray starting from p.

The study of co-rays is particularly relevant in connection with the
notions of Busemann function and of γ-adapted curve, that we now
introduce. Ray-adapted curves are inspired by the transport rays [25]
used simultaneously and independently by three groups of authors
[1, 13, 59] to fix the original construction of optimal transportation
maps [55], and which have subsequently proved fruitful in smooth [26, 36]
and nonsmooth geometry — both Riemannian [19] and Lorentzian [20].

Given a future complete timelike ray γ : [0,∞) → M , define the
approximate Busemann functions bt : I−(γt)→ R as

(11) bt(x) := `(γ0, γt)− `(x, γt)

and then the Busemann function b : I−(γ)→ R as

(12) b(x) := inf
t≥0

bt(x) = lim
t↑∞

bt(x).
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An application of the reverse triangle inequality shows that bs ≥ bt for
s ≤ t, so that the limit in t of these functions exist. It is then clear
that b is finite-valued, upper semicontinuous and 1-steep on I−(γ), the
latter meaning that

(13) b(y)− b(x) ≥ `(x, y) ∀x, y ∈ I−(γ), x ≤ y.

Notice the Busemann function b is set in a different font from the
endpoint (a, b).

A curve σ : (a, b)→ I−(γ) ⊂M will be called γ-adapted provided

(14) b(σt)− b(σs) = `(σs, σt) = t− s, ∀s, t ∈ (a, b) with s < t.

The rigidity provided by equality in (13) is the source of additional
regularity we shall continue to exploit — not only for σ but also for b.
Recall Lemma 7 implies a γ-adapted curve σ is necessarily a maximizing
g-geodesic.

Remark 10 (Gradient flow characterization of γ-adapted curves). Al-
though being γ-adapted is a nonsmooth concept, it is worth noticing
that if σ takes values in an open set U where b is C1 with |db| ≡ 1 (as
will happen later in our analysis), then σ is γ-adapted if and only if
σ′t = ∇b(σt) for every t ∈ (a, b). Indeed, if the latter holds we have
|σ′t| = |db|(σt) = 1 and also d

dt
b(σt) = |db|2(σt) = 1. Thus

t− s = b(σt)− b(σs) ≥ `(σs, σt) ≥
∫ t

s

|σ′r| dr = t− s,

forcing the validity of (14). Vice versa, if (14) holds then both |σ′t| and
d
dt

b(σt) exist and are identically 1, hence

1 =
d

dt
b(σt) = dbσt(σ

′
t) ≥ |db|(σt)|σ′t| = 1

and the equality in the reverse Cauchy-Schwarz inequality forces ∇b(σt)
and σ′t to be parallel. Since they both have norm 1, they agree. �

The concept of co-rays and of γ-adapted curves are related via the
following:

Proposition 11 (Co-rays are tangent to γ-adapted curves). Let (M, g)
be a globally hyperbolic C1-spacetime, γ : [0,∞)→ M a future complete
timelike ray and σ : (a, b) → M a γ-adapted curve. Then for every
t ∈ (a, b) and co-ray η starting from σt we have η′0 = kσ′t for some
k ∈ (0,+∞).

Proof. To derive a contradiction, suppose not. Recall the co-ray η :
[0, λ) −→ M is inextendible beyond some λ ∈ (0,∞]. By a standard
‘cutting the corner’ argument, the curve obtained by following σ up to
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time t and then η, cannot be a maximizer. The contradiction will come
by showing instead that

(15) `(σs, ηc) ≤ `(σs, σt) + `(σt, ηc) ∀s ∈ (a, t), c ∈ (0, λ).

By the definition of co-ray, there are maximizing g-geodesics ηn :
[0, an] → M , n ∈ N, converging to η in C1

loc([0, λ),M) with ηnan = γtn
for some tn ↑ ∞. Fixing r ∈ (a, b) with r > t, notice that eventually we
have ηn0 ∈ I−(σr) and that

lim
n→∞

`(σt, γtn)− `(ηn0 , γtn) ≤ lim
n→∞

`(σt, γtn)− `(ηn0 , σr)− `(σr, γtn)

(12)
= b(σr)− b(σt)− `(σt, σr)

(14)
= 0.

(16)

Also, the definition (12) of b gives

lim
n→∞

b(γtn)− `(σt, γtn) = lim
n→∞

`(γ0, γtn)− `(σt, γtn)

= b(σt).
(17)

Thus we have

`(σs, η
n
c ) ≤ `(σs, γtn)− `(ηnc , γtn)

(by (13)) ≤ b(γtn)− b(σs)− `(ηnc , γtn)

(by (17)) ≤ `(σt, γtn) + b(σt)− b(σs)− `(ηnc , γtn) + o(1)

(by (16) and (14)) ≤ `(ηn0 , γtn) + `(σs, σt)− `(ηnc , γtn) + o(1)

(ηn maximizing) = `(ηn0 , η
n
c ) + `(σs, σt) + o(1).

Passing to the limit in n we get (15) and the conclusion. �

This last result is the basis on which the following compactness
statement is built. It will be a starting point for our study of the
regularity of the Busemann function b.

Proposition 12 (From γ-adapted curves to compactness in C1 ). Let
(M, g) be a globally hyperbolic C1-spacetime, γ : [0,∞)→ M a future
complete timelike ray, σ : (a, b)→M a γ-adapted curve (14), t̄ ∈ (a, b)
and Λ > 0 with `(σt̄, γΛ) > 0. Then there is a neighbourhood U of
σt̄ such that: for small enough λ > 0, the collection G of maximizing
g-geodesics parametrized by g-arclength starting from U and ending in
{γt : t ≥ Λ} is precompact in C1([0, λ],M). Also, the C1-closure of G
only contains timelike maximizers.

Proof. Indirectly assume that no such neighbourhood exists. So, let
xn → σt̄ and for every n ∈ N let ηn : [0, an] → M be a maximizing
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g-geodesic parametrized by g-arclength from xn to γtn for some tn ≥ Λ.
Put vn := (ηn)′0. We shall prove — after passing to a non-relabeled
subsequence — that the vn’s converge to a timelike vector. By the
arbitrariness of (xn) and (ηn), a diagonalization argument and Lemma
8(ii) this suffices to conclude.

Possibly passing to a subsequence we distinguish two cases.
CASE 1: tn ≤ Λ′ for every n and some Λ′ <∞.
Let K denote the closure of {xn}n∈N. In this case the ηn’s have

image contained in the emerald J+(K)∩ J−(γΛ′), which is compact, by
global hyperbolicity [52, Cor. 3.4]. Also, on the compact set {(x, γt) :
x ∈ K, t ∈ [Λ,Λ′]} the time separation is positive and finite, hence
contained in some interval [λ, β] ⊂ (0,∞), say. Thus an ∈ [λ, β] for
every n so that after uniformly biLipschitz affine reparametrization we
can assume that all the curves are defined in [0, 1]. Then Lemma 8(iii)
ensures that the ηn’s are precompact in C1([0, 1],M), hence {vn}n∈N
is precompact in TM and then clearly any limit η is a maximizing
g-geodesic with η0 ∈ K and η1 ∈ {γt : t ∈ [Λ,Λ′]}. Thus `(η0, η1) > 0
and η is timelike, as desired.

CASE 2: tn → +∞.
Since ηn0 → σt̄, possibly passing to a subsequence we can find a

sequence (αn) ⊂ [0,∞] admitting limit α ∈ [0,∞] such that the sequence
n 7→ ṽn := αnvn has a non-zero limit ṽ. (For example, one may introduce
any Riemannian metric g̃ on M and choose αn = |vn|−1

g̃ .)
To conclude it is sufficient to prove that α ∈ (0,∞).

Notice that since |vn| :=
√
g(vn, vn) = 1, no subsequence of the vn’s

can converge to the zero vector. Hence α 6=∞.
Also, since |ṽ| = limn |ṽn| = limn αn = α, to prove that α 6= 0 it

suffices to show that ṽ is timelike.
With this aim, let us introduce the auxiliary curves η̃n : [0, an

αn
]→M

as η̃nt := ηnαnt, and notice that (η̃n)′0 = ṽn → ṽ 6= 0. By Lemma 8(ii) in
some right-neighbourhood [0, λ) of 0 we have C1

loc convergence of the
η̃n’s to a limit η̃: our goal is to prove that η̃ is timelike.

Possibly passing to a further subsequence and picking a bigger λ we
can assume that for no λ′ > λ are the η̃n’s convergent in C1

loc([0, λ
′),M).

In this case the limit curve η̃ is by definition a co-ray starting from
σt̄, hence timelike by Proposition 11. �

4. The Busemann function is superdifferentiable near σ

In this section we start making more quantitative regularity estimates
on the Busemann function, the main result being Proposition 14, where
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its superdifferentiability is shown in the proximity of a γ-adapted seg-
ment σ. As before, we continue to fix an auxiliary complete Riemannian
metric tensor g̃ on M . We shall denote by d̃ the induced distance.

Given U ⊂ M open, a function u : U → R is called locally Lip-
schitz, provided for any K ⊂ U compact there is C(K) > 0 such
that

|u(y)− u(x)| ≤ Cd̃(x, y) ∀x, y ∈ K.
A family of functions on U is called locally equi-Lipschitz if the same
constant C(K) can be chosen in the above inequality for all of the
functions.

We say that u is superdifferentiable at x ∈ U if there exists
v ∈ T ∗xM such that

(18) u(expg̃xw)− u(x)− (v, w) ≤ o(|w|g̃)

as w → 0. Any such v is called a superdifferential of u at x. Here expg̃

denotes the Riemannian exponential map and (v, w) the duality pairing
of cotangent with tangent vector. Analogously, a family {ui}i∈I is said
to be equi-superdifferentiable on U ⊂M , if for any x ∈ U and i ∈ I
there is a superdifferential vi,x of ui at x such that each compact set
K ⊂ U satisfies

(19) sup
i∈I, x∈K

{
ui(expg̃xw)− ui(x)− (vi,x, w)

}
≤ o(|w|g̃).

In other words, if the error term in (18) is uniform over i ∈ I,
x ∈ K. Notice that in this case any choice of superdifferentials vi,x
does the job in the above. Similarly, a family {ui}i∈I is said to be
equi-subdifferentiable if {−ui}i∈I is equi-superdifferentiable. (Equi-
superdifferentiability of a family is a local differential topological concept:
it depends neither on any Lorentzian metric, nor on the choice of Rie-
mannian metric: equi-superdifferentiability for one Riemannian metric
g̃ on M implies equi-superdifferentiability for every other choice of
Riemannian metric as well.)

Our first task is to show the approximate Busemann functions (b+
t )t≥T

are locally equi-Lipschitz and equi-superdifferentiable in a neighbour-
hood of the image of a γ-adapted curve. This essentially reduces to
showing these regularities for negatives of Lorentz distance functions,
as stated in Proposition 13. For a fixed Lorentzian metric g = g0

this is proved in the spirit of Villani [60, Proposition 10.15(iii)] and
McCann [43, Theorem 3.6]. For later use in Section 5 however, we
merge this with the observation that our equi-superdifferentiability and
local equi-Lipschitz continuity statements hold with error terms that are
independent of ε across the good approximation {gε : ε > 0} of g from
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Lemma 5. We adopt the following notational convention. Whenever an
object is tagged with an ε, it refers to the respective quantity induced
by gε; otherwise, it is understood with respect to g. We also write
g0 := g.

Proposition 13 (Equi-superdifferentiable Lorentz distance functions).
Let (M, g) be a globally hyperbolic C1-spacetime. Let {gε : ε > 0} be a
good approximation of g as in Lemma 5. As above, we set g0 := g. Let
K,H ⊂M be compact so that K ×H ⊂ {` > 0}. Then there is ε0 > 0
such that the family {−`ε(·, o) : ε ∈ [0, ε0), o ∈ H} is equi-Lipschitz
and equi-superdifferentiable on K. Also, |d`ε(·, o)|gε = 1 a.e. on K for
every ε ∈ [0, ε0) and o ∈ H.

Proof. The idea underlying this proof is that we have enough compact-
ness and smoothness to quantify the approximation provided by the
first variation formula, even if we lack sufficient smoothness to derive
a second variation formula. We exploit the fact that a continuous
derivative on a compact set has a uniform modulus of continuity.

Recall that the Lagrangian Lε : TM → R defined as Lε(v) :=
−gε(v, v)1/2 (which is of regularity C1 on the timelike future bundle
T ε+M ⊂ T 0

+M) induces the time separation `ε via

(20) `ε(x, y) := sup
σ(0)=x,σ(1)=y

∫ 1

0

Lε(σ
′
s) ds.

Moreover `ε → ` uniformly as ε→ 0 on the compact subset K ×H of
{` > 0}, cf. Braun–Calisti [11, Cor. 3.5]. Thus, there exists ε0 > 0 such
that infε∈(0,ε0) infx∈K, o∈H `ε(x, o) > 0.

Hence a simple variant of Lemma 8(iii) — easily achievable by in-
specting the proof — asserts the collection G of maximizing gε-geodesics
on [0, 1], ε ∈ [0, ε0], starting in K and ending in H is C1([0, 1],M)

compact and also K̂ := {σ′s : σ ∈ G, s ∈ [0, 1]} ⊂ T 0
+M . In particular

there is Û ⊃ K̂ open, whose closure is compact and contained in T+M .
Since K is compact, assume it can be covered by a single smooth

coordinate chart (x1, . . . , xn) without loss of generality. To construct
suitable variations near x of the geodesic curve attaining the maximum
in (20), multiply each coordinate vector field ∂

∂xi
with a smooth cutoff

function to obtain a smooth compactly supported vector field w(i) which

agrees with ∂
∂xi

on K but vanishes outside the coordinate chart as well
as on H. On TK × M , define W ((ξ, x), y) =

∑n
i=1 ξ

iw(i)(y) where
(ξ1, . . . , ξn) denote the coordinates of the tangent vector ξ ∈ TxM in
the given coordinate system. Notice W ((ξ, x), x) = ξ, meaning the
vector field W ((ξ, x), ·) represents a perturbation which displaces x in
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direction ξ. For fixed (ξ, x) ∈ TK the corresponding unit variation
M 3 y 7→ expg̃y(W ((ξ, x), y)) ∈ M depends smoothly on all of its
arguments; we shall denote by Svx(ξ) ∈ Texpg̃y(Wx(ξ)(y))M the y-differential

of this map evaluated at v ∈ TyM . Notice that Svx(0) = v and let Rv
x :

TxM → Tv(TM) be the ξ-differential of Svx(·) at 0 ∈ TxM . Compactness

of K and K̂ imply the existence of a constant C > 0 independent of
x ∈ K and of v ∈ K̂ such that

(21) ‖Rv
x(ξ̃)‖g̃ ≤ C|ξ̃|g̃, ∀v ∈ K̂, ξ̃ ∈ TxM

where ‖ · ‖g̃ is the Sasaki metric on Tv(TM) ∼g̃ TyM × TyM .

The C1-convergence of Lε to L0 as ε ↓ 0 implies C1(Û)-compactness
of {Lε : ε ∈ [0, ε0]}, which in turn gives equi-superdifferentiability of
both Lε and −Lε. Thus from (21) we get the uniform estimate

(22) Lε(S
v
x(ξ))− Lε(v)−DLε,v(Rv

x(ξ)) = o(|ξ|g̃),

where the error term is independent of ε ∈ [0, ε0], x ∈ K and v ∈ K̂;
(note that a simple compactness argument shows that for |ξ|g̃ small

enough we have Svx(ξ) ∈ Û for every v ∈ K̂, thus in particular Lε(S
v
x(ξ))

is well defined). For σ ∈ G, x ∈ K and ξ ∈ TxM we define the curve
[0, 1] 3 s 7→ σξ,s := expg̃σs(W ((x, ξ), σs)) ∈ M and notice that σ′ξ,s =

S
σ′s
x (ξ). Defining the linear map ξ 7→ Qε,σ(ξ) :=

∫ 1

0
DLε,σ′s(R

σ′s
x (ξ)) ds,

from (22) we get∫ 1

0

Lε(σ
′
ξ,s) ds−

∫ 1

0

Lε(σ
′
s) ds−Qε,σ(ξ) = o(|ξ|g̃),

with error term independent of ε ∈ [0, ε0] and σ ∈ G.
To conclude, pick x ∈ K, o ∈ H, ε ∈ [0, ε] and let σ = σ(x, o) ∈ G

optimal in (20) for the definition of `ε(x, o). Then for every ξ ∈ TxM the
defining properties of W ((x, ξ), ·) give that σξ,0 = expg̃x(ξ) and σξ,1 = o,
i.e. σξ is a competitor for the definition of `ε(expg̃x(ξ), o) and thus

`ε(expg̃x(ξ), o)− `ε(x, o) ≥
∫ 1

0

Lε(σ
′
ξ,s) ds−

∫ 1

0

Lε(σ
′
s) ds

= Qε,σ(ξ) + o(|ξ|g̃),

with error term independent of x, o and ε ∈ [0, ε0]. This establishes the
desired equi-superdifferentiability of −`ε(·, o).

The equi-Lipschitz property is now a standard consequence of equi-
superdifferentiability, as is easily verified in charts.

Finally, Rademacher’s theorem implies differentiability of −`ε(·, o)
a.e. The fact that the differential has gε-norm 1 follows from 1-steepness
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(w.r.t. gε) of −`ε(·, o) and the fact that along gε-geodesics toward o it
increases with speed exactly 1. �

Proposition 14 (Equi-superdifferentiable Busemann limits). Let (M, g)
be a globally hyperbolic C1-spacetime, γ : [0,∞)→ M a future complete
timelike ray and σ̄ : (a, b) → M a γ-adapted curve (14). Then there
is a neighbourhood U of the image of σ̄ on which the approximate
Busemann functions {bt}t≥T of γ are all locally equi-Lipschitz and
equi-superdifferentiable. In particular:

(i) The Busemann function b is superdifferentiable and locally Lip-
schitz on U ,

(ii) dbt → db a.e. on U , and
(iii) |db| = 1 a.e. on U .

Proof. Let t̄ ∈ (a, b) and apply Proposition 12 to find a compact neigh-
bourhood K of σ̄t̄ and λ > 0 so that the collection G of maximizing
g-geodesics parametrized with g-arclength from points in K with end-
points in {γt, t ≥ T} is precompact in C1([0, λ],M) and moreover, such
that each limit σ of curves in G is timelike. We shall prove the conclu-
sions (i),(ii),(iii) with K in place of U : by the arbitrariness of t̄ this
suffices to conclude.

Notice that the set H := {σλ : σ ∈ G} is compact and assume for the
moment that K ×H ⊂ {` > 0}.

Let x ∈ K and for t ≥ T pick σx,t ∈ G be starting from x and ending
in γt. Setting ux,t(·) := `(γ0, γt) − `(·, σx,tλ ) − `(σx,tλ , γt), the reverse
triangle inequality yields

bt(x
′) ≤ ux,t(x′) ∀x′ ∈ K,

bt(x) = ux,t(x)
(23)

and thus also

(24) bt(x
′) = inf

x∈K
ux,t(x′) ∀x′ ∈ K.

Since σx,tλ ∈ H, Proposition 13 ensures that the family {ux,t}x∈K,t≥T of
functions on K is equi-Lipschitz and equi-superdifferentiable. Hence
from (24) we see that the approximate Busemann functions (bt)t≥T are
equi-Lipschitz on K and from (23) that they are equi-superdifferentiable.

To reduce to the case K ×H ⊂ {` > 0} we argue as follows. Pick
x ∈ K and σx,t as above and recall that our choice of K ensures
Hx := {σx,tλ : t ≥ T} is contained in I+(x). By continuity of ` there
is a compact neighbourhood Kx of x such that Kx × Hx ⊂ {` > 0}
and by compactness of K a finite collection x1, . . . , xn ∈ K such that
K ⊂ ∪iKxi . Then the above arguments ensures that the bt’s have the
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desired uniform properties in each of the Kxi ’s and hence on their finite
union.

Now the fact that b is locally Lipschitz follows, as in the above, from
the fact that the infimum of a family of equi-Lipschitz functions is
Lipschitz. For superdifferentiability we shall verify below the claims
that: any family (vt) ⊂ T ∗xM for which vt is a superdifferential of bt at
x must be precompact and that any limit of subsequences as t ↑ ∞ is a
superdifferential of b (so that, in particular, b is superdifferentiable on
K).

The precompactness claim follows noticing that if vt is a superdifferen-
tial of bt at x ∈ I−(γ), then |vt|g̃∗ is bounded by the Lipschitz constant
of bt. Now let tn ↑ ∞ be so that the superdifferentials vtn ∈ TxM have
a limit v. Equi-superdifferentiability of the bt’s in a neighbourhood of
x tells that

sup
t≥t0

{
bt(expg̃x(w))− bt(x)− (vt, w)

}
≤ o(|w|g̃).

Passing to the limit in this we see that v is a superdifferential of b at x.
Thus (i) is proved.

(ii) follows along the same lines taking into account Rademacher’s
theorem and the fact that if a function is differentiable at a point, then
the differential is the only superdifferential at that point.

(iii) is a direct consequence of (ii) and |dbt| = 1 a.e., which in turn
follows from the final assertion of Proposition 13. �

Remark 15 (Differentials of time separations converge a.e.). An anal-
ogous argument yields the following. Let {gε : ε > 0} be a good
approximation of a globally hyperbolic C1-Lorentzian metric g on M .
Then for every o ∈M and every compact subset X ⊂ I−(o), we have
d`ε(·, o)→ d`(·, o) a.e. on X. �

5. The Busemann function is p-superharmonic near σ

In this section we start investigating the effects of the lower Ricci
bound on the Busemann function. The goal of this part is to establish p-
superharmonicity of b on a neighbourhood U of each γ-adapted curve σ,
cf. Corollary 18 below. As is customary in the proof of splitting theorems
across different signatures, such result is obtained as limit of estimates
in place for the approximate Busemann functions bt, given here in
Proposition 17. In principle, the proof of this latter result might follow
by combining (i) the nonsmooth d’Alembert comparison theorem of
Beran–Braun–Calisti–Gigli–McCann–Ohanyan–Rott–Sämann [5] with
(ii) the main result of Braun and Calisti [11], which implies weighted
spacetimes with C1-metrics and distributionally nonnegative timelike
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Ricci curvature satisfy both the timelike measure contraction property
of Cavalletti–Mondino [20] and its variant by Braun [8]. In favor of a
simpler and more streamlined presentation, we give a self-contained
proof based on the approximation of the metric tensor as in Lemma 5.
This is naturally based on the smooth d’Alembert comparison theorem
valid outside the cut locus, as in our prequel [12]. It was Case [17] who
extended Eschenburg’s result [23] to smooth Bakry–Émery spacetimes.
Since approximation worsens the distributional timelike Ricci bound
K = 0 (recall Lemma 5), we will need to extend [17, Lem. 5.4] to nonzero
K. (In the unweighted case, such a result goes back to Treude [57] and
Treude–Grant [58].) The proof is standard, yet we include some details.

We shortly fix some notation. Given κ ∈ R let sinκ be the unique
function obeying the Jacobi equation s′′ + κs = 0 with s(0) = 0 and
s′(0) = 1. Explicitly,

sinκ(t) =


κ−1/2 sin(κ1/2t) if κ > 0,

t if κ = 0,

|κ|−1/2 sinh(|κ|1/2t) otherwise.

Let πκ denote the first positive root of sinκ, i.e. πκ = π/
√
κ if κ > 0,

and conventionally πκ =∞ otherwise. We also consider the generalized
cotangent function cotκ : [0, πκ)→ R given by

cotκ(t) :=
sin′κ(t)

sinκ(t)
.

In the sequel, given 0 6= p < 1 and V ∈ C1(M) we define

�(g,V )u := −div∇u+ g∗(dV, du),

�(g,V )
p u := −div

( ∇u
|du|2−p

)
+ g∗

(
dV,

du

|du|2−p
)(25)

at every point where these expressions make sense pointwise for the
given function u. Here g∗ is the bilinear form induced by duality by
g on the cotangent space, and divX = |det g|−1/2 ∂(X i |det g|1/2)/∂xi

is the usual divergence operator induced by the C1-metric g. Observe
the operators in (25) simply correspond to the divergence ∇(g,V ) ·X :=
divX −X(dV ) induced by the weighted volume measure

vol(g,V ) := e−V vol

applied to the gradient and the p-gradient of u, respectively.

Lemma 16 (D’Alembert comparison theorem outside cut locus). Let
(M, g) be a globally hyperbolic n-dimensional C∞-spacetime and V ∈
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C∞(M). Let K ∈ R, N ∈ [n,∞) and assume that Ric(g,N,V ) ≥ K holds
in all timelike directions.

Then for every 0 6= p < 1 and o ∈M , the inequality

�(g,V )
p (−`(·, o)) = �(g,V )(−`(·, o)) ≤ (N − 1) cotK/(N−1)(`(·, o))

holds at every point in I−(o) outside the past timelike cut locus of o.

Proof. The case K = 0 is due to Case [17, Lem. 5.4].
Let x ∈ I−(o) not belong to the timelike cut locus of o and let

γ denote the unique past-directed proper-time parametrized timelike

geodesic from o to x. Set u = (−�(g,V )
p `(·, o)) ◦ γ. As in [17, Lem. 5.4]1,

on the half-open interval (0, l(x, o)] we estimate

u′ ≤ −Ric(g,N,V )(γ̇, γ̇)− 1

N − 1
u2 ≤ −K − 1

N − 1
u2.

On the same interval, the assignment v(t) := (N−1) cotK/(N−1)(t) solves
the Riccati-type ODE v′ = −K − 1

N−1
v2, thus by a standard Riccati

comparison argument it follows that u ≤ v holds in every interval [0, a)
on which v is smooth. This suffices to conclude.

We point out that for K > 0 the maximal such interval is [0, πK/(N−1)),
a fact that can be used to prove the timelike Bonnet–Myers theorem of
Cavalletti–Mondino [20, Prop. 5.10]. �

Let C1
0 (U) denote the continuously differentiable functions with com-

pact support in U ⊂M .

Proposition 17 (Weak d’Alembert comparison for Lorentz distances).
Let (M, g) be a globally hyperbolic C1-spacetime, V ∈ C1(M), K ∈ R

and N ∈ [n,∞). Assume that the Bakry–Émery energy condition
Ric(g,N,V ) ≥ 0 holds timelike distributionally (3). Put f o := −`(·, o) and
let 0 6= p < 1.

Then for every 0 ≤ φ ∈ C1
0(I−(o)) we have:∫ [(N − 1)φ

f o
+ g∗

(
dφ+ φdV,

df o

|df o|2−p
)]
dvol(g,V ) ≤ 0.

Note: the term |df o| in the statement as well we the analogous |df oε |
occurring in the proof is a.e. equal to 1. Hence in principle we could
omit them in favor of simpler looking formulas. However, doing so
would hide the fact that it is the ellipticity of the p-d’Alembertian that
makes possible the proof of the global estimate (and the whole proof
plan we are pursuing here), thus we prefer to keep it.

1The parameter m in [17] corresponds to N − n in our case. Moreover, Case uses
the opposite signature convention on gij .
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Proof. Let {gε : ε > 0} be the good approximation of g from Lemma 5;
since gε is smooth and again globally hyperbolic for every ε > 0, the
hypotheses on the timelike cut locus from our prequel [12, Prop. 7] are
trivially satisfied. We apply Lemma 5 to the choices C := J(sptφ, o)
and κ := infx∈sptφ `(x, o)

2 > 0 to deduce that for any δ > 0 there
exists ε0 > 0 such that for every ε ∈ (0, ε0) and every v ∈ TM

∣∣
C

with g(v, v) ≥ κ and g̃(v, v) ≤ c, we have Ric(gε,N,Vε)(v, v) ≥ −δ gε(v, v).
Let `ε denote the time separation function induced by gε, and recall
`ε → ` uniformly as ε → 0 on the compact subset sptφ × {o} of the
chronological relation {` ≥ 0} as in Braun and Calisti [11, Cor. 3.5].
Employing Lemma 16 in place of Eschenburg’s d’Alembert comparison
theorem in our prior proof of [12, Prop. 7], for ε ∈ (0, ε0) we get∫ [

(N − 1)φ cot −δ
N−1

(f oε ) +
g∗ε(dφ+ φdVε, df

o
ε )

|df oε |
2−p
ε

]
dvol(gε,Vε) ≤ 0,

where f 0
ε := −`ε(·, o). Now we let ε→ 0 in this expression. Since gε → g

and Vε → V locally uniformly, the vol-density of vol(gε,Vε) converges
locally uniformly to the vol-density of vol(g,V ). Combined with the
previously mentioned locally uniform convergence of `ε and Lebesgue’s
dominated convergence theorem,

lim
ε→0

∫
cot −δ

N−1
(f oε )φ dvol(gε,Vε) =

∫
cot −δ

N−1
(f o)φ dvol(g,V ).

Moreover — recalling from Proposition 13 that the Lipschitz constant
Lip `ε of `ε is uniformly bounded for sufficiently small ε — Remark 15
yields d`ε(·, o) → d`(·, o) a.e. on sptφ as ε → 0. Since gε → g locally
uniformly and g is nonsingular, we see that g∗ε → g∗ locally uniformly
as well as ε→ 0. Hence Lebesgue’s theorem again yields

lim
ε→0

∫
g∗ε(dφ, df

o
ε )

|df oε |
2−p
ε

dvol(gε,Vε) =

∫
g∗(dφ, df o)

|df o|2−p
dvol(g,V ).

With a similar argument using dVε → dV locally uniformly (as V ∈ C1

is regularized by convolution in charts), we get

lim
ε→0

∫
g∗ε(dVε, df

o
ε )

|df oε |
2−p
ε

dvol(gε,Vε) =

∫
g∗(dV, df o)

|df o|2−p
dvol(g,V ).

This results in the inequality∫ [
(N − 1)φ cot −δ

N−1
(f o) +

g∗(dφ+ φdV, df o)

|df o|2−p
]
dvol(g,V ) ≤ 0

and letting δ → 0 gives the claim. �

The following is now argued as in the proof of [12, Cor. 8], using
Proposition 14 and its corollaries.
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Corollary 18 (Weak d’Alembert comparison for Busemann limits).
With the same assumptions and notation of Proposition 17, let γ :
[0,∞) −→M be a future complete timelike ray with Busemann function
(12) and let σ : (a, b)→ M be γ-adapted (14). Then there is a neigh-
bourhood U of the image of σ such that for any φ ∈ C1

0 (U) nonnegative
we have

(26)

∫
g∗
(
dφ+ φdV,

db

|db|2−p
)
dvol(g,V ) ≤ 0

Proof. We pick as U the neighbourhood of the image of σ given by
Proposition 14. Fix 0 ≤ φ ∈ C1

0 (I−(γ)) and notice that for t sufficiently
big its support is contained in I−(γt). Then Proposition 17 gives∫

g∗
(
dφ+ φdV,

dbt
|dbt|2−p

)
dvol(g,V ) ≤

∫
φ
N − 1

`(·, γt)
dvol(g,V ).

Letting t ↑ ∞ we see that the right hand side goes to 0, while the left
one (recalling the estimates and convergences in Proposition 14, that
can be applied thanks to our assumptions on φ) goes to the left hand
side of (26). �

Remark 19 (On the timelike cutlocus). In the d’Alembert comparison
result of Proposition 17, we do not presume that the cut locus of o is
closed or has zero measure, as we did in the smooth case [12, Prop. 7].
In fact, to our knowledge, no notion of cut locus appears in the literature
of low regularity spacetime metrics. Because we now assume global
hyperbolicity (which we did not in [12, Prop. 7]), these requirements
on the cut locus are trivially satisfied by the globally hyperbolic good
approximations from Lemma 5. Since Proposition 17 is proved using
these approximations, this suffices to get the desired conclusion. �

6. The Busemann function is p-harmonic near σ

In this section we start working with a complete timelike line, rather
than just with a future complete timelike ray as before.

Recall that a complete timelike line in M — hereafter simply a line
— is a curve γ : R→M such that

`(γs, γt) = t− s ∀s, t ∈ R, s < t.

Lemma 7 shows such a line to be a maximizing g-geodesic both future
and past complete.

To such γ we associate two Busemann functions (one forward, one
backward) as follows. We first define for t ≥ 0 the functions

b+
t (x) := `(γ0, γt)− `(x, γt) = t− `(x, γt),

b−t (x) := `(γ−t, x)− `(γ0, γt) = `(γ−t, x)− t.
(27)
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Then we put

b+(x) := lim
t→+∞

b+
t (x) = inf

t≥0
b+
t (x),

b−(x) := lim
t→+∞

b−t (x) = sup
t≥0

b−t (x).
(28)

The reverse triangle inequality shows that the inf and sup in these
formulas coincide with the limits, making clear that the functions b± are
well defined and finite on I(γ) := I−(γ)∩I+(γ) = ∪t≥0(I−(γt)∩I+(γ−t)).
Another consequence of the reverse triangle inequality is that

b+(x) ≥ b−(x) ∀x ∈ I(γ)

and a direct computation shows that

b+(γt) = b−(γt) = t ∀t ∈ R.

The results established in the previous sections apply directly to b+,
it being the Busemann function associated to the restriction of the
complete timelike line to [0,+∞). Analogous statements are in place
for b− — with similar proofs (or by time reversal) — provided we deal
with the ‘past’ version of γ-adapted segment.

In fact we shall be even more restrictive and introduce the notion
of segment adapted to the complete timelike line γ (as opposed to
the future/past complete ray): we say that a curve σ : (a, b) → M is
γ-adapted to the line γ provided (14) holds and moreover we have the
additional rigidity

(29) b+(σt) = b−(σt) ∀t ∈ (a, b).

When dealing with a complete timelike line γ instead of a ray, we
shall always refer to this stricter notion, so we hope no confusion can
occur. Notice that, trivially from the above considerations, γ itself is
γ-adapted.

It is then clear that in the proximity of a γ-adapted segment the func-
tion b− is locally Lipschitz, subdifferentiable and p-subharmonic (mean-
ing −b− is locally Lipschitz, superdifferentiable and p-superharmonic,
provided we disregard the fact that increasing and decreasing func-
tions cannot both belong to the same domain of ellipticity for the
p-d’Alembert operator �p).

Our next goal is to prove that b+ = b− in the proximity of a γ-
adapted segment: this will follow from a strong tangency principle
related to the ellipticity of the p-d’Alembertian. Note from (25) that
the additional weight V only contributes (locally bounded) lower order
terms to the weighted p-d’Alembertian it induces, so the argument can
be given in a similar vein as in the unweighted case [12, Prop. 9].
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Proposition 20 (Strong tangency principle). Under the assumptions
and notation of Theorem 2, let σ be γ-adapted.

Then there is a neighbourhood of the image of σ on which b+ = b−.

Proof. We proceed along the lines of [12, Prop. 9]. By Proposition 14,
Corollary 18 and their ‘past analogs’ we know that there is a neigh-
bourhood W of the image of σ where b+, b− are both Lipschitz, with
|db±| = 1 a.e., b+ is weakly p-superharmonic (i.e. (26) holds) and b−

is weakly p-subharmonic (meaning the opposite inequalities hold).
Set u := b+ − b−, and b(t) := b− + tu (so that b(0) = b− and

b(1) = b+) and let U ⊂ W be a coordinate chart that is diffeomorphic
to Ω ⊂ Rn. Then for all 0 ≤ φ ∈ C1

0(U) we have

0 ≤−
∫
U

dvol(g,V )

∫ 1

0

d

dt
g∗(dφ+ φdV, |db|p−2db)dt

=−
∫
U

dvol(g,V )

∫ 1

0

|db|p−2g∗(dφ+ φdV, ((p− 2)
db⊗∇b

|db|2
+ I)du)dt

=

∫
Ω

dx e−V
√
|g|∂iφ∂ju

∫ 1

0

|db|p−2

(
(2− p)∂

ib∂jb

|db|2
− gij

)
dt

+

∫
Ω

dx e−V φ∂iV ∂ju

∫ 1

0

|db|p−2

(
(2− p)∂

ib∂jb

|db|2
− gij

)
dt.

Viewing the coefficients as frozen, u is thus a supersolution Lu ≥ 0 of a
linear operator L in divergence form, i.e.,

Lu = −∂i(aij∂ju) + cj∂ju,

with L∞loc-coefficients

aij(x) := e−V
√
|g|
∫ 1

0

|db|p−2

(
(2− p)∂

ib∂jb

|db|2
− gij

)
dt,

cj(x) := e−V
√
|g|∂iV

∫ 1

0

|db|p−2

(
(2− p)∂

ib∂jb

|db|2
− gij

)
dt = aij∂iV.

Note that the expression in the brackets of aij is the matrix diag(1−
p, 1, . . . , 1) at σ(t0) in any orthonormal coordinate system with ∂1|σ(t0) =
σ′(t0), which is positive definite precisely because p < 1. This, together
with local Lipschitz continuity of b± can now be used to derive ellipticity
of L (after shrinking W if necessary), see the discussion in [12, Rem. 10].
At this point, since u ≥ 0, Lu = 0, and u ◦ σ = 0, the strong tangency
principle (see [32, Thm. 8.19]) yields u = 0, i.e., b+ = b− on W . �

To deduce higher regularity of b±, we need the following generalization
of Evans [24, Sec. 8.3.1, Thm. 1], whose proof is straightforward but
included for convenience. In this lemma and its proof, we denote
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coordinate derivatives by subscripts having a further super- or subscript
of their own.

Lemma 21 (Using ellipticity to gain a second Sobolev derivative). Let
U, Ũ ⊂ Rn be open and bounded, with Ũ convex. Let H : U × Ũ → R
be C1, as well as smooth in the second variable. Denote (x, v) =
(x1, . . . , xn, v1, . . . , vn) ∈ U × Ũ and assume there exist C ≥ θ > 0 such
that all (x, v, ξ) ∈ U × Ũ ×Rn satisfy

|ξ|2θ ≤
∑
i,j

Hvi,vj(x, v)ξiξj ≤ C|ξ|2.

Suppose that u ∈ C1(U) is a weak solution of
n∑
i=1

(Hvi(x, du(x)))xi = 0,

meaning all φ ∈ W 1,2
0 (U) satisfy

(30)

∫
U

n∑
i=1

Hvi(x, du(x))φxidx = 0.

Then u ∈ W 2,2
loc (U).

Proof. We follow the proof of [24, Sec. 8.3.1, Thm. 1]. Given W ⊂ U
open, we suppose it is precompact in W̃ which is open and precompact
in U . We fix a smooth cutoff ζ which is 1 on W , vanishes outside of W̃ ,
and satisfies 0 ≤ ζ ≤ 1. Given |h| > 0 small, we choose as test function

φ = −∆−hk (ζ2∆h
ku), where ∆h

ku(x) :=
u(x+he(k))−u(x)

h
is the difference

quotient of u of parameter size h in the k-th coordinate direction e(k).
Inserting φ in (30) and using ‘integration by parts’ on the difference
quotient yields

n∑
i=1

∫
U

∆h
k(Hvi(x, du(x))(ζ2∆h

ku)xi = 0.(31)

We calculate now as follows:

∆h
kHvi(x, du(x))

=
Hvi(x+ he(k), du(x+ he(k))−Hvi(x, du(x))

h

=
1

h

∫ 1

0

d

ds
Hvi(x+ she(k), (1− s)du(x) + s(x+ he(k)))ds

=
1

h

∫ 1

0

n∑
j=1

Hvi,vj(uxj(x+ he(k))− uxj(x))ds+

∫ 1

0

∂xkHvids
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=:
n∑
j=1

aij,h∆h
kuxj(x) + ci,h,

where

aij,h :=

∫ 1

0

Hvi,vj(x+ she(k), (1− s)du(x) + sdu(x+ he(k)))ds,

ci,h :=

∫ 1

0

∂xkHvi(x+ she(k), (1− s)du(x) + sdu(x+ he(k)))ds.

Substituting this into (31) and using the product rule yields

0 = A1 + A2 + A3 + A4,

where

A1 =
∑
i,j

∫
U

ζ2aij,h(∆h
kuxj)(∆

h
kuxi)dx,

A2 =
∑
i,j

∫
U

aij,h(∆h
kuxj)(∆

h
ku)2ζζxidx,

A3 =
∑
i

∫
U

ζ2ci,h(∆h
kuxi)dx,

A4 =
∑
i

∫
U

ci,h(∆h
ku)2ζζxidx.

The terms A1 and A2 are estimated just as in [24, Sec. 8.3.1, Thm. 1],
using the uniform convexity assumptions on H. Since ci,h is continuous
and u is C1, we can estimate

|A3| ≤
∑
i

∫
U

ζ2|ci,h||∆h
kdu|dx

≤ C

∫
U

ζ2|∆h
kdu|dx

≤ Cε̄

∫
U

ζ2|∆h
kdu|2dx+

C

ε

∫
U

ζ2dx

and |A4| ≤ C

∫
U

ζ2|∆h
ku|2dx+ C

∫
U

(ζxi)
2dx

similarly. If we choose ε̄ sufficiently small (depending on C and θ), then
these estimates, along with the ones for A1 and A2, give an estimate on∫
W
|∆h

kdu|2dx in terms of
∫
W
|du|2dx plus a constant. Since this estimate

is independent of h, by letting h ↓ 0 we conclude that u ∈ W 2,2(W ), as
desired. �
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The next corollary collects the regularity information we know so far
on b±.

Corollary 22 (p-harmonicity of the Busemann function). Under the
assumptions and notation of Theorem 2, let σ be γ-adapted. Then there
is an open neighbourhood W of the image of σ such that b+ = b− in W ,
these functions are in C1(W ) ∩W 2,2

loc (W ) and p-harmonic, i.e. equality
holds in (26) for all φ ∈ C1

0(W ).

Proof. We already know that on some neighbourhood W of the image
of σ we have b+ = b−. Then p-harmonicity follows from super/sub p-
harmonicity of b+ and b−. Super/sub differentiability of these functions
together with closure of super/sub differentials yield C1 regularity.
Finally, for W 2,2

loc regularity we apply Lemma 21 above with H(x, v) =
−1
p
(gij(x)vivj)

p/2 and u = b±. �

7. The Busemann function has vanishing Hessian near σ

Recall that on a smooth spacetime (M, g), whose cotangent bundle is
equipped with the Hamiltonian H(v) = f(|v|) with f ∈ C∞((0,∞)) for
v future timelike, we have the following version [12, Lemma 12] of the
Bochner–Ohta identity [49] for functions u ∈ C3(M̄) with |du| ≥ δ > 0:

∇ · [D2H|dud(H|du)]− (DH)d[∇ · (DH|du)]
= Tr[(D2H)(∇2u)(D2H)(∇2u)] + Ric(DH,DH).(32)

Although H(v, x) is defined on the cotangent bundle T ∗M , the operator
D denotes differentiation with respect to v only, whereas d (and ∇)
denote exterior (and covariant) differentiation with respect to x ∈M .
In the specific case H(v) = −|v|p/p (0 6= p < 1) of interest to us, this
can be rewritten as

g(|du|p−2du, d(�pu))−∇ · ((D2H)d(|du|p/p))

= Tr
[√

D2H(∇2u)D2H(∇2u)
√
D2H

]
+ |du|2p−4Ric(du, du).(33)

The incorporation of an additional weight V ∈ C∞(M) in this formula
is straightforward. Setting ∇(g,V ) · Y := ∇ · Y − Y (dV ) and adding the
expression

X i∇i(X
j∇jV )− (∇jV )X i∇iX

j = X iXj∇i∇jV

for the Hessian of V applied to the vector field X := DH yields

g(|du|p−2 du, d(�(g,V )
p u))−∇(g,V ) · ((D2H)d(|du|p/p))

= Tr[(D2H)(∇2u)(D2H)(∇2u)] + Ric(DH,DH) + HessV (DH,DH).
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We note that the weighted Hilbert–Schmidt norm of the Hessian of u
is unaffected by the weight. When integrated against a test function
φ ∈ C1

0(U), we get∫
U

(
Tr

[(√
D2H(∇2u)

√
D2H

)2
]

+
(Ric +∇2V )(du, du)

|du|4−2p

)
φ e−V dvol

=

∫
U

[(�(g,V )
p u)∇(g,V ) · (φDH)−D2H(dφ, d(H))]e−V dvol.(34)

We can use this formula and the previous information gathered about
Busemann functions to obtain the following crucial local structural
result:

Proposition 23 (Local structure). Adopt the assumptions and notation
of Theorem 2. If σ is γ-adapted then on a neighbourhood of its image:
b± ∈ C2 and has zero Hessian, |db±| ≡ 1 and dV (∇b±) = 0.

Proof. We write u := b+ in the following. Fix any relatively compact
open coordinate neighbourhood Ũ ⊂ W of the neighbourhood W from
Corollary 22 and φ ∈ C1

0 (Ũ). Approximate g by the good approximation
gε of Lemma 5, u by smooth functions uε in (C1 ∩ W 2,2)(Ũ) such
that |duε|ε ≥ 1 − ε (since |du| = 1) and V by the smooth weights
Vε := V ? ρε. In particular, we also have that ∇2

εuε → ∇2u in L2(Ũ)

and, as a consequence, �(gε,Vε)
p uε → �(g,V )

p u in L2(Ũ).

Note that the Bakry–Émery energy condition Ric(g,N,V )(X,X) ≥ 0
for C1 timelike vector fields X yields the corresponding condition for
N = ∞, and also yields an approximate energy condition for gε by
Lemma 5. Since we have fixed the coordinate neighbourhood Ũ and
the (Euclidean) norms |duε|e are all uniformly bounded on Ũ , for any

δ > 0 there exists ε0 > 0 such that Ric(gε,∞,Vε)(duε, duε) ≥ −δ for

all 0 < ε < ε0. Rewriting vol =
√
|g|Ln, where Ln is the Lebesgue

measure on Ũ (here identified with its image in Rn), as well as using
that gε → g in C1(Ũ), we see that ultimately we may pass to the limit
in the following weighted Bochner–Ohta identity for the approximate
metrics:∫
Ũ

[φTr

[(√
D2Hε(∇2

εuε)
√
D2Hε

)2
]

+ φ|duε|2p−4Ric(gε,∞,Vε)]dvol(gε,Vε)

=

∫
Ũ

[(�(gε,Vε)
p uε)∇(gε,Vε) · (φDHε)−D2Hε(dφ, d(Hε(duε)))]e

−Vεdvolε,

where the Ricci curvature is evaluated in (duε, duε). Here, Hε(v) :=
−|v|pε/p and its derivatives DHε and D2Hε with respect to v are under-
stood to be evaluated at v = duε. Due to the convergences discussed
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above, passing to the limit here and noting the fact that u is weighted
p-harmonic and |du| = 1 we conclude∫

Ũ

φTr

[(√
D2H(∇2u)

√
D2H

)2
]
≤ 0(35)

for φ ≥ 0. Now positive-definiteness of D2H and arbitrariness of φ ≥ 0
imply Hessu = 0 a.e. on Ũ . Since the metric g is C1, we get from the
coordinate representation of the Hessian (recall (7)) that u ∈ C2(Ũ),
hence C2(U) by arbitrariness of Ũ . As a consequence, Hessu = 0
everywhere.

Moreover, this improved regularity du ∈ C1 allows us to upgrade
the inequality (35) obtained in the limit ε→ 0 above to a nonsmooth

weighted Bochner–Ohta identity (34) in which the Bakry–Émery Ricci

tensor Ric(g,∞,V ) is understood in the distributional sense of Geroch
and Traschen [29] and all the other integrals vanish. Arbitrariness of φ
then yields

0 = (Ric + HessV )(du, du) ≥ 1

N − n
g∗(dV, du)2 ≥ 0,

where the second inequality holds since (M, g) satisfies the Bakry–Émery
energy condition of Definition 1. Hence dV (∇u) = 0, as desired. �

8. The spacetime splits

In this section we globalize our local structural result from Proposi-
tion 23 to obtain the full splitting theorem.

Theorem 24 (Product structure). Adopt the assumptions and notation
from Theorem 2. Then there is a C2 complete Riemannian manifold
(S, h) of dimension n−1 and a C1 isometric embedding Fl : R×S →M
such that all y ∈ S satisfy:

- the (open) image of R× S via Fl is contained in I(γ) and on it
b is C2 with vanishing Hessian and |db| ≡ 1;

- Flt(s, y) = Flt+s(0, y) for all t, s ∈ R;
- R 3 t 7→ Flt(y) is γ-adapted with Fl0(y) = y;
- Flt(z) = γt for every t ∈ R and some z ∈ S;

- (S, h) has Bakry-Émery tensor Ric(h,N−1,V ) ≥ 0 distributionally;
- the function V (Flt(y)) is independent of t.

Here R × S is equipped with the Lorentzian tensor ĥ := dt2 − h and
‘isometric embedding’ means Fl∗g = ĥ.

Proof. Set up: Let U ⊂ I(γ) ⊂ M be the maximal connected open
set containing γ0 such that b+ = b− ∈ C2(U) with zero Hessian and
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dV (∇b±) = 0: the fact that γ is γ-adapted and Proposition 23 yield
that one such open set exists; U is therefore well defined, since the
union of all such open sets has the same properties. Set b := b+ = b−

on U . Since ∇b(γ0) = γ′0, throughout U we see that ∇b is timelike on
U with |db| ≡ 1.

The implicit function theorem ensures that S := U ∩ {b = 0} is a C2

hypersurface; equip it with the C1 Riemannian metric tensor h := −g|S,
call d the distance it induces, and set

B̄(r) := {x ∈ S : d(x, γ0) ≤ r}

For x ∈ U let Λ(x) > 0 be the supremum of the t’s such that
there is a (necessarily unique) solution (−t, t) 3 s 7→ Fls(x) ∈ U of
the ordinary differential equation d

ds
Fls(x) = ∇b(Fls(x)) with initial

condition Fl0(x) = x. Local solvability of this Cauchy problem implies
lower semicontinuity of Λ(·).

Equip R×S with the Lorentzian metric tensor ĥ := dt2−h as in the
statement and let W ⊂ R×S be the set of (t, x) such that |t| < Λ(x). It
is clear that W is open and, since b has zero Hessian its (unit) gradient
is a Killing vector field on U , so Fl : W → U ⊂ I(γ) ⊂M is an isometric
embedding. The construction also ensures that all the claims in the
statement will be proved once we show that W = R × S and that S
is complete. The fact that dV (∇b) = 0 follows from the analogous

claim in Proposition 23. It implies the Bakry-Émery lower bound
Ric(h,N−1,V ) ≥ 0 on S distributionally from the timelike distributional
lower bound Ric(g,N,V ) ≥ 0 on M , the tensorization of Ricci curvature
[50, Corollary 7.43], and the calculation N − n = (N − 1)− (n− 1).

Let R ⊂ [0,∞) be the collection of radii R for which the closed d
ball B̄(R) ⊂ S centered at γ0 is compact and Λ(x) = +∞ for every
x ∈ B̄(R) ⊂ S. If we prove that R = [0,∞) we are done.

Since γ is γ-adapted, by Proposition 23 we know that 0 ∈ R. We
shall now show that R is both open and closed; this will suffice to
conclude.
Claim 1: R is open (via ‘vertical extension’). Let R ∈ R.

By the local compactness of S and the compactness of B̄(R) ⊂ S we see
that there is R′ > R such that B̄(R′) ⊂ S ⊂ U is still compact. For such
R′, by lower semicontinuity and positivity we have ε := infB̄(R′) Λ(·) > 0,
hence possibly picking a smaller R′ > R (a choice that increases ε) we
can assume that R′ −R < ε.

For T ≥ 0 consider the compact subset KT of R× S defined as

KT := {(t, x) ∈ R× S : x ∈ B̄(R′), |t|+ d(x, γ0) ≤ T +R′}
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and notice that the choice of R′ ensures that K0 ⊂ W . To prove our
claim it suffices to check that KT ⊂ W for any T ≥ 0.

Let ≤W be the causal relation in (W, ĥ) (this might be different from
the restriction to W of the causal relation in R× S as we might have
fewer causal curves), and notice that if KT ⊂ W for some T ≥ 0 then

(−T −R′, γ0) ≤W (t, x) ≤W (T +R′, γ0) ∀(t, x) ∈ KT .

Also, since Fl : W → M is an isometric embedding we have that
(t, x) ≤W (s, y) implies Flt(x) ≤ Fls(y). Thus KT ⊂ W implies Fl(KT ) ⊂
DT , the diamond DT := J+(γ−T−R′) ∩ J−(γT+R′) being compact by
global hyperbolicity.

The set T of times T such that KT ⊂ W is (i) non-empty (since
0 ∈ T ) and (ii) open (because W is open and KT is compact); to
conclude T = [0,∞) it suffices to show that T is (iii) closed. We claim
that if KTn ⊂ W for Tn ↑ T then in fact KT ⊂ W .

For x ∈ B̄(R′) let T̂ (x) := T +R′−d(x, γ0) and notice that the causal

curve (−T̂ (x), T̂ (x)) 3 t 7→ Flt(x) is well defined, γ-adapted (obvious
from the definition, i.e. (14), (29)) and takes values in DT . Hence

it admits limits x+ and x− as t ↑ T̂ (x) and t ↓ −T̂ (x), respectively.
By the local structural result Proposition 23 and the arbitrariness of
x ∈ B̄(R′), to conclude it suffices to show that x± are intermediate

points of γ-adapted segments, as then it is clear that (±T̂ (x), x) ∈ W .
We show this for x+ ∈ U by proving that there is γ-adapted curve

η : [0, λ)→M so that x+ = ηt for some t ∈ (0, λ): by the local structural
result Proposition 23 and the maximality of U , this will suffices to
conclude. The argument for x− is analogous. Let ηn : [0, an]→M be
maximizing g-geodesics from x to γtn for some tn ↑ ∞. Possibly up to
subsequences and affine reparametrizations we can assume that (ηn)′0
have a non-zero limit. Hence up to a further subsequence we know
that (ηn) converges in C1

loc([0, λ),M) to some limit co-ray η which is

inextendible at λ ∈ (0,∞] by Lemma 9. Since (−T̂ (x), T̂ (x)) 3 t 7→
Flt(x) is γ-adapted, by Proposition 11 we know that η is timelike, hence
up to a further affine reparametrization (of the converging sequence and
limit by proper time, to be able to pass to the limit in the expressions
below) we can assume that `(ηs, ηt) = t− s for any s, t ∈ [0, λ), s < t.

We now claim that η is γ-adapted. Given what was just proved, the
1-steepness of b± and the global inequality b+ ≥ b−, to check this it
suffices to prove that b+(ηs)− b+(x) ≤ `(x, ηs) for any s ∈ [0, λ). Fix
such s, pick t ∈ (s, λ) and notice that ηs � ηt as η is timelike. Hence for
n sufficiently large we have ηs � ηnt , thus `(ηs, γtn) ≥ `(ηs, η

n
t )+`(ηnt , γtn)
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and therefore

b+
tn(ηs)− b+

tn(x) = `(x, γtn)− `(ηs, γtn) ≤ `(x, ηnt )− `(ηs, ηnt ).

Letting n→∞ we obtain b+(ηs)−b+(x) ≤ `(x, ηt)−`(ηs, ηt) = `(x, ηs),
as desired.

We thus see that both [0, T̂ (x)) 3 t 7→ Flt(x) and [0, λ) 3 t 7→ ηt are
solutions of the Cauchy problem ξ′t = ∇b(ξt) with ξ0 = 0 and since
b ∈ C2(U) this problem admits a unique maximal solution. It follows

that ηt = Flt(x) for any t ∈ [0,min{T̂ (x), λ}) and since η is inextendible

at λ while [0, T̂ (x)) 3 t 7→ Flt(x) is not (as x+ exists), we see that

λ > T̂ (x) and ηT̂ (x) = x+, concluding Claim 1.

Claim 2: R is closed (via ‘lateral extension’).
Let (Rn) ⊂ R satisfy Rn ↑ R. Our goal is to prove that R ∈ R.
By definition of geodesic distance in S it is clear that any point in

B̄(R) is limit of points in B(R) := ∪N B̄(Rn), hence to prove that B̄(R)
is compact it suffices to prove that any d-Cauchy sequence (xn) in B(R)
has a limit in B̄(R).

The assumption (xn) ⊂ B(R) ⊂ U together with the previous step
yield the existence of γ-adapted lines σn : R→ M with σn0 = xn (via
the explicit formula σnt := Flt(xn)).

Let T > 0 and notice that the same arguments used in the previous
step ensure that {σnt : n ∈ N, |t| ≤ T} is contained in the (compact)
diamond J−(γR+T )∩ J+(γ−R−T ). From `(σn−T , σ

n
T ) = 2T it follows that

the closure K̃ of {(σn−T , σnT )}n∈N is a compact subset of {` > 0}. Thus
an application of Lemma 8(iii) and a diagonalization argument show
that — after passing to a non-relabeled subsequence — the lines σn

converge in C1
loc(R,M) to a complete timelike limit line σ. If we prove

that σ is γ-adapted we are done: the local structural result Proposition
23 then implies that σ0 belongs to S and is the d-limit of the xn’s.

The continuity of ` on {` ≥ 0} and the analogous property of the
σn’s give that `(σs, σt) = t − s for any s, t ∈ R, s < t, thus recalling
that b+ ≥ b− on I(γ), to conclude it suffices to prove that b+(σT ) ≤
T ≤ b−(σT ) for every T ∈ R. Fix T , recall that for t ≥ R + T we have
σT , σ

n
T ≤ γt, n ∈ N, and that σnT → σT in M . Thus the continuity of `

in {` ≥ 0} yields

bt(σT ) = t− `(σT , γt) = lim
n→∞

t− `(σnT , γt).

The identities σnT = FlT (xn) and γt = Flt(γ0) together with the product
structure established in the previous step give the bound `(σnT , γt) ≥
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(t− T )2 − d2(xn, γ0) ≥

√
(t− T )2 −R2, hence

b+(σT ) = lim
t↑+∞

bt(σT ) ≤ lim
t↑+∞

t−
√

(t− T )2 −R2 = T.

An analogous argument holds for b−, hence the proof is complete. �

It is in principle not yet clear that the image of Fl in the last statement
is the whole manifold M . Inspired by Eschenburg’s [23, Proof of Lem.
7.3], we prove this using the following general lemma.

Lemma 25 (Reaching the boundary of any open set with a geodesic).
Let M be a connected, smooth, second countable manifold equipped with
a C1 semi-Riemannian metric tensor g and U (M open and nonempty.
Then there is a g-geodesic σ : [0, 1]→M such that σ(s) ∈ U for every
s ∈ [0, 1) and σ(1) /∈ U .

Proof. Let g̃ be the auxiliary smooth complete Riemannian tensor on
M provided using second countability by Nomizu and Ozeki [48]. Pick

z ∈ ∂U and let R > 0 be such that for any y ∈ Bg̃
R(z) the g̃-exponential

map is a smooth diffeomorphism from Bg̃
R(0) ⊂ TyM to its image in

M . Pick y ∈ Bg̃
R(z) ∩ U , let r := minx∈M\U dg̃(y, x) > 0 and pick x

achieving the minimum. Then the (only) g̃-geodesic from x to y meets
the smooth boundary of Bg̃

r (y) transversally. Let v ∈ TxM be the speed
at 0 of such geodesic. Transversality implies that if η : [0, 1] → M is
a C1 curve with η(0) = x and η′(0) = v, then for some ε > 0 we have
η((0, ε)) ⊂ Bg̃

r (y) ⊂ U . In particular, this applies to the solution of
the g-geodesic equation with such initial data provided by Lemma 8:
reversing time and rescaling we get the desired curve. �

We can now conclude:

Proof of Theorem 2. With the notation of Theorem 24, let U ⊂M be
the open image of R× S in M via Fl. We want to prove that U = M .
If not, we use Lemma 25 above to find a g-geodesic σ : [0, 1]→M with
σt ∈ U for t < 1 and σ1 /∈ U . For t < 1 put (σR

t , σ
S
t ) := Fl−1(σt) ∈ R×S

and notice that since Fl : R× S → U ⊂M is an isometric embedding,
the curves σR, σS are geodesics on [0, 1) in R, S respectively. Since
R and S are complete, these geodesics have limits σR

1 , σ
S
1 and by

the continuity of Fl we have U 3 FlσR
1

(σS1 ) = σ1, contradicting the

assumption σ1 /∈ U .
It remains to discuss the regularity of Fl. The construction and

b ∈ C2(M) yield Fl ∈ C1. The improvement to Fl ∈ C2 follows from
Proposition 26. Alternately, it follows from the Riemannian isometry
results of Calabi and Hartman [14] or Taylor [56] as in Remark 3. �
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9. Outlook

In the research of low regularity spacetimes, it is natural to ask
whether such splitting theorems remain true for (continuous) Geroch–
Traschen metrics [29] (see also [54]), which are the lowest regularity
class of metrics for which curvature tensors can be stably defined
distributionally. However, as far as splitting theorems are concerned,
that regularity seems to be outside of the scope of current methods. More
reasonably, one could investigate locally Lipschitz continuous metrics,
for which promising approximation results were recently developed [15].

In analogy with splitting theorems for low regularity metrics, there
is the problem of establishing a splitting theorem for infinitesimally
Minkowskian metric measure spacetimes satisfying timelike curvature-
dimension conditions first mentioned with the octet [5] and more explic-
itly stated as an open problem in Braun’s survey [10]. Such a result in
the metric spacetime setting can be expected to give rise to a structure
theory for spacetimes with lower timelike Ricci curvature bounds (and
upper dimension bounds), as Gigli’s nonsmooth extension [31, 30] of
the Cheeger-Gromoll splitting theorem [21] to RCD(0, N) spaces did in
Riemannian signature [45].

Appendix A. Regularity of semi-Riemannian isometries

In this appendix we prove the following proposition concerning the
regularity of isometries between semi-Riemannian manifolds equipped
with C1 metric tensors. In a corollary we combine it with a result of
Hartman [34] to yield the corresponding improvement when g ∈ Ck for
1 < k ∈ N. When the metric has Riemannian signature the same results
were among those obtained by Calabi–Hartman [14], and extended to
metrics of Ck,α regularity for k ∈ N and 0 < α < 1 by Taylor [56] using
different methods.

Proposition 26 (Regularity of semi-Riemannian isometries). Let (M, g)
and (M̄, ḡ) be semi-Riemannian manifolds (of equal signature and di-
mension) such that g and ḡ are of regularity C1. Suppose Φ : M → M̄
is a C1-diffeomorphism satisfying Φ∗ḡ = g. Then Φ is of regularity C2.

Proof. At any fixed point x0 ∈M1 a smooth change of variables allows us
to find a smooth coordinate system in which x0 = 0 and the Christoffel
symbols (5) vanish at x0; we may also assume gij(x0) has unit magnitude
whenever i = j and vanishes for all i 6= j. We call such coordinates
infinitesimally normal at x0; (they differ from normal coordinates in
that we do not assert the geodesy of any segment through the origin).
The same is true of ḡ at the point x̄0 = Φ(x0). We henceforth express
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both metrics in such coordinates and regard Φ as a map from Rn to
Rn which acts as a C1 diffeomorphism in a neighbourhood of 0 = Φ(0),
whose derivative is denoted by ∂Φ(x). For any y, v ∈ Be

r(0) in a small
enough coordinate ball, there exists a (possibly nonunique) g-geodesic
{yt}t∈[0,1] ⊂ Rn with y0 = x and ẏ0 = v. Since Γijk(yt) = o(1) as r → 0,
for the Euclidean distance | · |e on our infinitesimally normal coordinates,
the geodesic equation yields

|ẏ1 − ẏ0|e ≤ c|v|2e.

It is easy to see that Φ must map g-geodesics to ḡ-geodesics: Indeed,
if yt is a g-geodesic, then Φ(yt) is C1 and a weak solution of the ḡ-
geodesic equation. Since ḡ is C1 and the right-hand side of the geodesic
equation is −(Γḡ)ijk

d
dt

Φ(yt)
j d
dt

Φ(yt)
k and thus continuous, we conclude

that d
dt

Φ(yt)
i is W 1,1

loc , in particular it is absolutely continuous and thus
a.e. differentiable. So, in fact, Φ(yt) solves the ḡ-geodesic equation a.e.
pointwise. Again invoking the continuity of the right-hand side, we
conclude that Φ(yt)

k is C2 and a classical solution.
Hence, since ȳt := Φ(yt) is a ḡ-geodesic and Φ is a diffeomorphism,

| ˙̄y1 − ˙̄y0|e ≤ c|v|2e
similarly. In both cases limr→0 c = 0. Since ˙̄yt = ∂Φ(yt)ẏt and v = ẏ0,
the foregoing imply

|(∂Φ(y1)− ∂Φ(y0))v|e ≤ |∂Φ(y1)ẏ1 − ∂Φ(y0)ẏ0|e + c|v|2e
≤ c|v|2e.

Arbitrariness of y0, v ∈ Be
r(0) therefore yield

‖∂Φ(y1)− ∂Φ(y0)‖Rn×Rn ≤ c|v|e ≤ c|y1 − y0|e.

Thus ∂Φ has a Lipschitz constant c which decays to 0 as r → 0. This
shows Φ is twice differentiable at the origin and its derivative vanishes
there. Since x0 was arbitrary, Φ is twice differentiable at every other
point too; thus ∂2Φ(y0) exists. Now ‖∂2Φ(y0)‖ ≤ c, so limr→0 c = 0
shows Φ to be twice continuously differentiable at the origin — hence
at every other point too. �

Corollary 27 (Higher regularity of semi-Riemannian isometries). With
the same hypotheses and notation as Proposition 26, if g and ḡ are of
regularity Ck for any integer k ≥ 1 then Φ is of regularity Ck+1.

Proof. Follows immediately by combining Proposition 26 with Hartman
[34, Thm. II]. �
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comparison theorem and causal differential calculus on metric measure space-
times. arXiv:2408.15968, 2024.

[6] Garrett Birkhoff and Gian-Carlo Rota. Ordinary differential equations. John
Wiley & Sons, Inc., New York, fourth edition, 1989.

[7] S. Bochner. Vector fields and Ricci curvature. Bull. Amer. Math. Soc., 52:776–
797, 1946.
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Sämann. An elliptic proof of the splitting theorems from Lorentzian geometry.
arXiv:2410.12632, 2024.

[13] L.A. Caffarelli, M. Feldman and R.J. McCann. Constructing optimal maps for
Monge’s transport problem as a limit of strictly convex costs. J. Amer. Math.
Soc., 15:1–26, 2002.

[14] Eugenio Calabi and Philip Hartman. On the smoothness of isometries. Duke
Math. J., 37:741–750, 1970.

[15] Matteo Calisti, Melanie Graf, Eduardo Hafemann, Michael Kunzinger, and
Roland Steinbauer. Hawking’s singularity theorem for Lipschitz Lorentzian
metrics. arXiv:2501.18450, 2025.

[16] Erasmo Caponio, Argam Ohanyan, and Shin-ichi Ohta. Splitting theorems for
weighted Finsler spacetimes via the p-d’Alembertian: beyond the Berwald case.
arXiv:2412.20783, 2024.

[17] Jeffrey S. Case. Singularity theorems and the Lorentzian splitting theorem for
the Bakry-Emery-Ricci tensor. J. Geom. Phys., 60:477–490, 2010.

[18] Fabio Cavalletti, Davide Manini, and Andrea Mondino. On the geometry of
synthetic null hypersurfaces. arXiv:2506.04934, 2025.

[19] Fabio Cavalletti and Andrea Mondino. Sharp and rigid isoperimetric inequalities
in metric-measure spaces with lower Ricci curvature bounds. Invent. Math.,
208:803–849, 2017.

[20] Fabio Cavalletti and Andrea Mondino. Optimal transport in Lorentzian syn-
thetic spaces, synthetic timelike Ricci curvature lower bounds and applications.
Camb. J. Math., 12(2):417–534, 2024.

[21] Jeff Cheeger and Detlef Gromoll. The splitting theorem for manifolds of non-
negative Ricci curvature. J. Differential Geometry, 6:119–128, 1971/72.
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