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Abstract

Consider transportation of one distribution of mass onto another, chosen to optimize
the total expected cost, where cost per unit mass transported from x to y is given by
a smooth function c(x, y). If the source density f+(x) is bounded away from zero and
infinity in an open region U ′ ⊂ Rn, and the target density f−(y) is bounded away from
zero and infinity on its support V ⊂ Rn, which is strongly c-convex with respect to U ′,
and the transportation cost c is non-negatively cross-curved, we deduce continuity and
injectivity of the optimal map inside U ′ (so that the associated potential u belongs to
C1(U ′)). This result provides a crucial step in the low/interior regularity setting: in a
subsequent paper [15], we use it to establish regularity of optimal maps with respect to
the Riemannian distance squared on arbitrary products of spheres. The present paper
also provides an argument required by Figalli and Loeper to conclude in two dimensions
continuity of optimal maps under the weaker (in fact, necessary) hypothesis (A3w)
[17]. In higher dimensions, if the densities f± are Hölder continuous, our result permits
continuous differentiability of the map inside U ′ (in fact, C2,α

loc regularity of the associated
potential) to be deduced from the work of Liu, Trudinger and Wang [33].
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1 Introduction

Given probability densities 0 ≤ f± ∈ L1(Rn) with respect to Lebesgue measure L n on Rn,
and a cost function c : Rn × Rn 7−→ [0,+∞], Monge’s transportation problem is to find a
map G : Rn 7−→ Rn pushing dµ+ = f+dL n forward to dµ− = f−dL n which minimizes the
expected transportation cost [38]

inf
G#µ+=µ−

∫
Rn

c(x,G(x))dµ(x), (1.1)

where G#µ+ = µ− means µ−[Y ] = µ+[G−1(Y )] for each Borel Y ⊂ Rn.
In this context it is interesting to know when a map attaining this infimum exists; sufficient

conditions for this were found by Gangbo [20] and by Levin [31], extending work of a number
of authors described in [21] [46]. One may also ask when G will be smooth, in which case it
must satisfy the prescribed Jacobian equation |det DG(x)| = f+(x)/f−(G(x)), which turns
out to reduce to a degenerate elliptic partial differential equation of Monge-Ampère type for
a scalar potential u satisfying Du(x̃) = −Dxc(x̃, G(x̃)). Sufficient conditions for this were
discovered by Ma, Trudinger and Wang [37] and Trudinger and Wang [43] [44], after results
for the special case c(x, y) = |x − y|2/2 had been worked out by Brenier [4], Delanöe [12],
Caffarelli [6] [5] [7] [8] [9], and Urbas [45], and for the cost c(x, y) = − log |x−y| and measures
supported on the unit sphere by Wang [48].

If the ratio f+(x)/f−(y) — although bounded away from zero and infinity — is not con-
tinuous, the map G will not generally be differentiable, though one may still hope for it to
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be continuous. This question is not merely of academic interest, since discontinuities in f±

arise unavoidably in applications such as partial transport problems [10] [3] [13] [14]. Such
results were established for the classical cost c(x, y) = |x − y|2/2 by Caffarelli [5] [7] [8], for
its restriction to the product of the boundaries of two strongly convex sets by Gangbo and
McCann [22], and for more general costs satisfying the strong regularity hypothesis (A3) of
Ma, Trudinger and Wang [37] — which excludes the cost c(x, y) = |x − y|2/2 — by Loeper
[34]; see also [27] [32] [44]. Under the weaker and degenerate hypothesis (A3w) of Trudinger
and Wang [43], which includes the cost c(x, y) = |x− y|2/2 (and whose necessity for regular-
ity was shown by Loeper [34]), such a result remains absent from the literature; we aim to
provide it below under a slight strengthening of their condition (still including the quadratic
cost) which appeared in Kim and McCann [28][29], called non-negative cross-curvature. (Re-
lated but different families of strengthenings were investigated by Loeper and Villani [36] and
Figalli and Rifford [18].) Our main result is stated in Theorem 2.1. A number of interesting
cost functions do satisfy non-negative cross-curvature hypothesis, and have applications in
economics [16] and statistics [40]. Examples include the Euclidean distance between two con-
vex graphs over two sufficiently convex sets in Rn [37], the Riemannian distance squared on
multiple products of round spheres (and their Riemannian submersion quotients, including
products of complex projective spaces CPn) [29], and the simple harmonic oscillator action
[30]. In a sequel, we apply the techniques developed here to deduce regularity of optimal
maps in the latter setting [15]. Moreover, Theorem 2.1 allows one to apply the higher in-
terior regularity results established by Liu, Trudinger and Wang [33], ensuring in particular
that the transport map is C∞-smooth if f+ and f− are.

Most of the regularity results quoted above derive from one of two approaches. The
continuity method, used by Delanoë, Urbas, Ma, Trudinger and Wang, is a time-honored
technique for solving nonlinear equations. Here one perturbs a manifestly soluble problem
(such as |det DG0(x)| = f+(x)/f0(G0(x)) with f0 = f+, so that G0(x) = x) to the problem
of interest (|det DG1(x)| = f+(x)/f1(G1(x)), f1 = f−) along a family {ft}t designed to
ensure the set of t ∈ [0, 1] for which it is soluble is both open and closed. Openness follows
from linearization and non-degenerate ellipticity using an implicit function theorem. For the
non-degenerate ellipticity and closedness, it is required to establish estimates on the size of
derivatives of the solutions (assuming such solutions exist) which depend only on information
known a priori about the data (c, ft). In this way one obtains smoothness of the solution
y = G1(x) from the same argument which shows G1 to exist.

The alternative approach relies on first knowing existence and uniqueness of a Borel map
which solves the problem in great generality, and then deducing continuity or smoothness
by close examination of this map after imposing additional conditions on the data (c, f±).
Although precursors can be traced back to Alexandrov [2], in the present context this method
was largely developed and refined by Caffarelli [5] [7] [8], who used convexity of u crucially to
localize the map G(x) = Du(x) and renormalize its behaviour near a point (x̃, G(x̃)) of inter-
est in the borderline case c(x, y) = −〈x, y〉. For non-borderline (A3) costs, simpler estimates
suffice to deduce continuity of G, as in [22] [11] [34] [44]; in this case Loeper was actually
able to deduce an explicit bound α = (4n − 1)−1 on the Hölder exponent of G when n > 1,
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which was recently improved to its sharp value α = (2n− 1)−1 by Liu [32] using a technique
related to the one we develop below and discovered independently from us; both Loeper and
Liu also obtained explicit exponents α = α(n, p) for f+ ∈ Lp with p > n [34] or p > (n+1)/2
[32] and 1/f− ∈ L∞. Explicit bounds on the exponent are much worse in the classical case
c(x, y) = −〈x, y〉 [19], when such exponents do not even exist unless log f+(x)

f−(y)
∈ L∞ [8] [47].

Below we extend the approach of Caffarelli to non-negatively cross-curved costs, a class
which includes the classical quadratic cost. Our idea is to add a null Lagrangian term to the
cost and exploit diffeomorphism (i.e. gauge) invariance to choose coordinates which depend
on the point of interest that restore convexity of u(x); our strengthened hypothesis then
permits us to exploit Caffarelli’s approach more systematically than Liu was able to do [32].
However, we still need to overcome serious difficulties, such as getting an Alexandrov estimate
for c-subdifferentials (see Section 7) and dealing with the fact that the domain of the cost
function (where it is smooth and satisfies appropriate cross-curvature conditions) may not
be the whole of Rn. (This situation arises, for example, when optimal transportation occurs
between domains in Riemannian manifolds for the distance squared cost or similar type.)
The latter is accomplished using Theorem 5.1, where it is first established that optimal
transport does not send interior points to boundary points, and vice versa, under the strong
c-convexity hypothesis (B2u) described in the next section. ( For this result to hold, the
cost needs not to satisfy the condition (A3w).) Without our strengthening of Trudinger and
Wang’s hypothesis [43] (i.e. with only (A3w)), we obtain the convexity of all level sets of
u(x) in our chosen coordinates as Liu also did; this yields some hope of applying Caffarelli’s
method and the full body of techniques systematized in Gutierrez [23], but we have not
been successful at overcoming the remaining difficulties in such generality. In two dimensions
however, there is an alternate approach to establishing continuity of optimal maps which
applies to this more general case; it was carried out by Figalli and Loeper [17], but relies on
Theorem 5.1, first proved below.

2 Main result

Let us begin by formulating the relevant hypothesis on the cost function c(x, y) in a slightly
different format than Ma, Trudinger and Wang [37]. For each (x̃, ỹ) ∈ U × V assume:
(B0) U ⊂ Rn and V ⊂ Rn are open and bounded and c ∈ C4

(
U × V

)
;

(B1) (bi-twist) x ∈ U 7−→ −Dyc(x, ỹ)
y ∈ V 7−→ −Dxc(x̃, y)

}
are diffeomorphisms onto their ranges;

(B2) (bi-convex) Uỹ := −Dyc(U, ỹ)
Vx̃ := −Dxc(x̃, V )

}
are convex subsets of Rn;

(B3) (non-negative cross-curvature)

cross(x(0),y(0))[x
′(0), y′(0)] := − ∂4

∂s2∂t2

∣∣∣∣
(s,t)=(0,0)

c(x(s), y(t)) ≥ 0 (2.1)
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for every curve t ∈ [−1, 1] 7−→
(
Dyc(x(t), y(0)), Dxc(x(0), y(t))

)
∈ R2n which is an affinely

parameterized line segment.

If the convex domains Uỹ and Vx̃ in (B2) are all strongly convex, we say (B2u) holds.
Here a convex set U ⊂ Rn is said to be strongly convex if there exists a radius R < +∞
(depending only on U ,) such that each boundary point x̃ ∈ ∂U can be touched from outside
by a sphere of radius R enclosing U ; i.e. U ⊂ BR(x̃ − Rn̂U (x̃)) where n̂U (x̃) is an outer
unit normal to a hyperplane supporting U at x̃. When U is smooth, this means all principal
curvatures of its boundary are bounded below by 1/R. Hereafter U denotes the closure of
U , intU denotes its interior, diamU its diameter, and for any measure µ+ ≥ 0 on U , we use
the term support and the notation sptµ+ ⊂ U to refer to the smallest closed set carrying the
full mass of µ+.

Condition (B3) is the above-mentioned strengthening of Trudinger and Wang’s criterion
(A3w) guaranteeing smoothness of optimal maps in the Monge transportation problem (1.1);
unlike us, they require (2.1) only if, in addition [43],

∂2

∂s∂t

∣∣∣∣
(s,t)=(0,0)

c(x(s), y(t)) = 0. (2.2)

Necessity of Trudinger and Wang’s condition for continuity was shown by Loeper [34], who
noted its covariance (as did [28] [41]) and some relations to curvature. Their condition
relaxes the hypothesis (A3) proposed earlier with Ma [37], which required strict positivity
of (2.1) when (2.2) holds. The strengthening considered here was first studied in a different
but equivalent form by Kim and McCann [28], where both the original and the modified
conditions were shown to correspond to pseudo-Riemannian sectional curvature conditions
induced by the cost c on U × V , highlighting their invariance under reparametrization of
either U or V by diffeomorphism; see [28, Lemma 4.5]. The convexity of Uỹ required in
(B2) is called c-convexity of U with respect to ỹ by Ma, Trudinger and Wang (or strong
c-convexity if (B2u) holds); they call curves x(s) ∈ U , for which s ∈ [0, 1] 7−→ −Dyc(x(s), ỹ)
is a line segment, c-segments with respect to ỹ. Similarly, V is said to be strongly c∗-convex
with respect to x̃ — or with respect to U when it holds for all x̃ ∈ U — and the curve
y(t) from (2.1) is said to be a c∗-segment with respect to x̃. Such curves correspond to
geodesics (x(t), ỹ) and (x̃, y(t)) in the geometry of Kim and McCann. Here and throughout,
line segments are always presumed to be affinely parameterized.

We are now in a position to summarize our main result:

Theorem 2.1 (Interior continuity and injectivity of optimal maps). Let c ∈ C4
(
U × V

)
satisfy (B0)–(B3) and (B2u). Fix probability densities f+ ∈ L1

(
U

)
and f− ∈ L1

(
V

)
with

(f+/f−) ∈ L∞(
U × V

)
and set dµ± := f±dL n. If the ratio (f−/f+) ∈ L∞(U ′ × V ) for

some open set U ′ ⊂ U , then the minimum (1.1) is attained by a map G : U 7−→ V whose
restriction to U ′ is continuous and one-to-one.

Proof. As recalled below in Section 3 (or see e.g. [46]) it is well-known by Kantorovich duality
that the optimal joint measure γ ∈ Γ(µ+, µ−) from (3.1) vanishes outside the c-subdifferential
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(3.3) of a potential u = uc∗c satisfying the c-convexity hypothesis (3.2), and that the map
G : U 7−→ V which we seek is uniquely recovered from this potential using the diffeomorphism
(B1) to solve (3.5). Thus the continuity claimed in Theorem 2.1 is equivalent to u ∈ C1(U ′).

Since µ± do not charge the boundaries of U (or of V ), Lemma 3.1(e) shows the c-Monge-
Ampère measure defined in (3.6) has density satisfying |∂cu| ≤ ‖f+/f−‖L∞(U×V ) on U and
‖f−/f+‖−1

L∞(U ′×V ) ≤ |∂cu| ≤ ‖f+/f−‖L∞(U ′×V ) on U ′. Thus u ∈ C1(U ′) according to
Theorem 9.2. Injectivity of G follows from Theorem 9.1, and the fact that the graph of G is
contained in the set ∂cu ⊂ U × V of (3.3).

Note that in case f+ ∈ Cc(U) is continuous and compactly supported, choosing U ′ =
U ′

ε = {f+ > ε} for all ε > 0, yields continuity and injectivity of the optimal map y = G(x)
throughout U ′

0.
Theorem 2.1 provides a necessary prerequisite for the higher interior regularity results

established by Liu, Trudinger and Wang in [33] — a prerequisite which one would prefer
to have under the weaker hypotheses (B0)–(B2) and (A3w). Note that these interior
regularity results can be applied to manifolds, after getting suitable stay-away-from-the-cut-
locus results: this is accomplished for multiple products of round spheres in [15], to yield the
first regularity result that we know for optimal maps on Riemannian manifolds which are not
flat, yet have some vanishing sectional curvatures.

3 Background, notation, and preliminaries

Kantorovich discerned [25] [26] that Monge’s problem (1.1) could be attacked by studying
the linear programming problem

min
γ∈Γ(µ+,µ−)

∫
U×V

c(x, y) dγ(x, y). (3.1)

Here Γ(µ+, µ−) consists of the joint probability measures on U × V ⊂ Rn × Rn having µ±

for marginals. According to the duality theorem from linear programming, the optimizing
measures γ vanish outside the zero set of u(x) + v(y) + c(x, y) ≥ 0 for some pair of functions
(u, v) = (vc, uc∗) satisfying

vc(x) := sup
y∈V

−c(x, y) − v(y), uc∗(y) := sup
x∈U

−c(x, y) − u(x); (3.2)

these arise as optimizers of the dual program. This zero set is called the c-subdifferential of
u, and denoted by

∂cu = {(x, y) ∈ U × V | u(x) + uc∗(y) + c(x, y) = 0}; (3.3)

we also write ∂cu(x) := {y | (x, y) ∈ ∂cu}, and ∂c∗uc∗(y) := {x | (x, y) ∈ ∂cu}, and
∂cu(X) := ∪x∈X∂cu(x) for X ⊂ Rn. Formula (3.2) defines a generalized Legendre-Fenchel
transform called the c-transform; any function satisfying u = uc∗c := (uc∗)c is said to be
c-convex, which reduces to ordinary convexity in the case of the cost c(x, y) = −〈x, y〉. In
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that case ∂cu reduces to the ordinary subdifferential ∂u of the convex function u, but more
generally we define

∂u := {(x, p) ∈ U × Rn | u(x̃) ≥ u(x) + 〈p, x̃ − x〉 + o(|x̃ − x|) as x̃ → x}, (3.4)

∂u(x) := {p | (x, p) ∈ ∂u}, and ∂u(X) := ∪x∈X∂u(x). Assuming c ∈ C2
(
U × V

)
(which

is the case if (B0) holds), any c-convex function u = uc∗c will be semi-convex, meaning its
Hessian admits a bound from below D2u ≥ −‖c‖C2 in the distributional sense; equivalently,
u(x)+‖c‖C2 |x|2/2 is convex on each ball in U [21]. In particular, u will be twice-differentiable
L n-a.e. on U in the sense of Alexandrov.

As in [20] [31] [37], hypothesis (B1) shows the map G : dom Du 7−→ V is uniquely defined
on the set dom Du ⊂ U of differentiability for u by

Dxc(x̃, G(x̃)) = −Du(x̃). (3.5)

The graph of G, so-defined, lies in ∂cu. The task at hand is to show continuity and injectivity
of G — the former being equivalent to u ∈ C1(U) — by studying the relation ∂cu ⊂ U × V .

To this end, we define a Borel measure |∂cu| on Rn associated to u by

|∂cu|(X) := L n(∂cu(X)) (3.6)

for each X ⊂ Rn; it will be called the c-Monge-Ampère measure of u. (Similarly, we define
|∂u|.) We use the notation |∂cu| ≥ λ on U ′ as a shorthand to indicate |∂cu|(X) ≥ λL n(X)
for each X ⊂ U ′; similarly, |∂cu| ≤ Λ indicates |∂cu|(X) ≤ ΛL n(X). As the next lemma
shows, uniform bounds above and below on the marginal densities of a probability measure
γ vanishing outside ∂cu imply similar bounds on |∂cu|.

Lemma 3.1 (Properties of c-Monge-Ampère measures). Let c satisfy (B0)-(B1), while u
and uk denote c-convex functions for each k ∈ N. Fix x̃ ∈ X and constants λ, Λ > 0.
(a) Then ∂cu(U) ⊂ V and |∂cu| is a Borel measure of total mass L n

(
V

)
on U .

(b) If uk → u∞ uniformly, then u∞ is c-convex and |∂cuk| ⇀ |∂cu∞| weakly-∗ in the duality
against continuous functions on U × V .
(c) If uk(x̃) = 0 for all k, then the functions uk converge uniformly if and only if the measures
|∂cuk| converge weakly-∗.
(d) If |∂cu| ≤ Λ on U , then |∂c∗uc∗ | ≥ 1/Λ on V .
(e) If a probability measure γ ≥ 0 vanishes outside ∂cu ⊂ U × V , and has marginal densities
f±, then f+ ≥ λ on U ′ ⊂ U and f− ≤ Λ on V imply |∂cu| ≥ λ/Λ on U ′, whereas f+ ≤ Λ
on U ′ and f− ≥ λ on V imply |∂cu| ≤ Λ/λ on U ′.

Proof. (a) The fact ∂cu(U) ⊂ V is an immediate consequence of definition (3.3). Since
c ∈ C1(U × V ), the c-transform v = uc∗ : V 7−→ R defined by (3.2) can be extended to a
Lipschitz function on a neighbourhood of V , hence Rademacher’s theorem asserts dom Dv is a
set of full Lebesgue measure in V . Use (B1) to define the unique solution F : dom Dv 7−→ U
to

Dyc(F (ỹ), ỹ) = −Dv(ỹ).
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As in [20] [31], the vanishing of u(x) + v(y) + c(x, y) ≥ 0 implies ∂c∗v(ỹ) = {F (ỹ)}, at least
for all points ỹ ∈ dom Dv where V has Lebesgue density greater than one half. For Borel
X ⊂ Rn, this shows ∂cu(X) differs from the Borel set F−1(X)∩V by a L n negligible subset
of V , whence |∂cu| = F#

(
L nbV

)
so claim (a) of the lemma is established.

(b) Let ‖uk − u∞‖L∞(U) → 0. It is not hard to deduce c-convexity of u∞, as in e.g. [16].
Define vk = uc∗

k and Fk on dom Dvk ⊂ V as above, so that |∂cuk| = Fk#

(
L nbV

)
. Moreover,

vk → v∞ in L∞(V ), where v∞ is the c∗-dual to u∞. The uniform semiconvexity of vk (i.e.
convexity of vk(y) + 1

2‖c‖C2 |y|2) ensures pointwise convergence of Dvk → Dv∞ L n-a.e. on
V . From Dyc(Fk(ỹ), ỹ) = −Dvk(ỹ) we deduce Fk → F∞ L n-a.e. on V . This is enough
to conclude |∂cuk| ⇀ |∂cuk|, by testing the convergence against continuous functions and
applying Lebesgue’s dominated convergence theorem.

(c) To prove the converse, suppose uk is a sequence of c-convex functions which vanish
at x̃ and |∂cuk| ⇀ µ∞ weakly-∗. Since the uk have Lipschitz constants dominated by ‖c‖C1

and U is compact, any subsequence of the uk admits a convergent further subsequence by the
Ascoli-Arzelà Theorem. A priori, the limit u∞ might depend on the subsequences, but (b)
guarantees |∂cu∞| = µ∞, after which [34, Proposition 4.1] identifies u∞ uniquely in terms of
µ+ = µ∞ and µ− = L nbV , up to an additive constant; this arbitrary additive constant is
fixed by the condition u∞(x̃) = 0. Thus the whole sequence uk converges uniformly.

(e) Now assume a finite measure γ ≥ 0 vanishes outside ∂cu and has marginal densities
f±. Then the second marginal dµ− := f−dL n of γ is absolutely continuous with respect
to Lebesgue and γ vanishes outside the graph of F : V 7−→ U , whence γ = (F × id)#µ−

by e.g. [1, Lemma 2.1]. (Here id denotes the identity map, restricted to the domain dom Dv
of definition of F .) Recalling that |∂cu| = F#

(
L nbV

)
(see the proof of (a) above), for any

Borel X ⊂ U ′ we have

λ|∂cu|(X) = λL n(F−1(X)) ≤
∫

F−1(X)
f−(y)dL n(y) =

∫
X

f+(x)dL n(x) ≤ ΛL n(X)

whenever λ ≤ f− and f+ ≤ Λ. We can also reverse the last four inequalities and interchange
λ with Λ to establish claim (e) of the lemma.

(d) The last point remaining follows from (e) by taking γ = (F × id)#L n. Indeed an
upper bound λ on |∂cu| = F#L n throughout U and lower bound 1 on L n translate into a
lower bound 1/λ on |∂c∗uc∗ |, since the reflection γ∗ defined by γ∗(Y × X) := γ(X × Y ) for
each X ×Y ⊂ U ×V vanishes outside ∂c∗uc∗ and has second marginal absolutely continuous
with respect to Lebesgue by the hypothesis |∂cu| ≤ λ.

Remark 3.2 (Monge-Ampère type equation). Differentiating (3.5) formally with respect to
x̃ and recalling |det DG(x̃)| = f+(x̃)/f−(G(x̃)) yields the Monge-Ampère type equation

det[D2u(x̃) + D2
xxc(x̃, G(x̃))]

|det D2
xyc(x̃, G(x̃))|

=
f+(x̃)

f−(G(x̃))
(3.7)

on U , where G(x̃) is given as a function of x̃ and Du(x̃) by (3.5). Degenerate ellipticity
follows from the fact that y = G(x) produces equality in u(x) + uc∗(y) + c(x, y) ≥ 0. A
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condition under which c-convex weak-∗ solutions are known to exist is given by∫
U

f+(x)dL n(x) =
∫

V
f−(y)dL n(y).

The boundary condition ∂cu(U) ⊂ V which then guarantees Du to be uniquely determined
f+-a.e. is built into our definition of c-convexity. In fact, [34, Proposition 4.1] shows u to
be uniquely determined up to additive constant if either f+ > 0 or f− > 0 L n-a.e. on its
connected domain, U or V .

A key result we shall exploit several times is a maximum principle first deduced from
Trudinger and Wang’s work [43] by Loeper; see [34, Theorem 3.2]. A simple and direct proof,
and also an extension can be found in [28, Theorem 4.10], where the principle was also called
‘double-mountain above sliding-mountain’ (DASM). Other proofs and extensions appear in
[44] [42] [46] [36] [18]:

Theorem 3.3 (Loeper’s maximum principle ‘DASM’). Assume (B0)–(B2) and (A3w)
and fix x, x̃ ∈ U . If t ∈ [0, 1] 7−→ −Dxc(x̃, y(t)) is a line segment then f(t) := −c(x, y(t)) +
c(x̃, y(t)) ≤ max{f(0), f(1)} for all t ∈ [0, 1].

It is through this theorem and the next that hypothesis (A3w) and the non-negative cross-
curvature hypothesis (B3) enter crucially. Among the many corollaries Loeper deduced from
this result, we shall need two. Proved in [34, Theorem 3.1 and Proposition 4.4] (alternately
[28, Theorem 3.1] and [27, A.10]), they include the c-convexity of the so-called contact set
(meaning the c∗-subdifferential at a point), and a local to global principle.

Corollary 3.4. Assume (B0)–(B2) and (A3w) and fix (x̃, ỹ) ∈ U × V . If u is c-convex
then ∂cu(x̃) is c∗-convex with respect to x̃ ∈ U , i.e. −Dxc(x̃, ∂cu(x̃)) forms a convex subset
of T ∗

x̃U . Furthermore, any local minimum of the map x ∈ U 7−→ u(x) + c(x, ỹ) is a global
minimum.

As shown in [29, Corollary 2.11], the strengthening (B3) of hypothesis (A3w) improves
the conclusion of Loeper’s maximum principle. This improvement asserts that the altitude
f(t, x) at each point of the evolving landscape then accelerates as a function of t ∈ [0, 1]:

Theorem 3.5 (Time-convex DASM). Assume (B0)–(B3) and fix x, x̃ ∈ U . If t ∈
[0, 1] 7−→ −Dxc(x̃, y(t)) is a line segment then t ∈ [0, 1] 7−→ f(t) := −c(x, y(t)) + c(x̃, y(t)) is
convex.

Remark 3.6. Since all assumptions (B0)–(B3) and (A3w) on the cost are symmetric in x
and y, all the results above still hold when exchanging x with y.

4 Cost-exponential coordinates, null Lagrangians, and affine
renormalization

In this section, we set up the notation for the rest of the paper. Recall that c ∈ C4(U × V )
is a non-negatively cross-curved cost function satisfying (B1)–(B3) on a pair of bounded
domains U and V which are strongly c-convex with respect to each other (B2u).
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Fix λ, Λ > 0 and an open domain Uλ ⊂ U , and let u be a c-convex solution of the
c-Monge-Ampère equation {

λL n ≤ |∂cu| ≤ 1
λL n in Uλ ⊂ U,

|∂cu| ≤ ΛL n in U.
(4.1)

We sometimes abbreviate (4.1) by writing |∂cu| ∈ [λ, 1/λ]. In the following sections, we will
prove interior differentiability of u on Uλ, that is u ∈ C1(Uλ); see Theorem 9.2.

Throughout Dy will denote the derivative with respect to the variable y, and iterated
subscripts as in D2

xy denote iterated derivatives. We also use

β±
c = β±

c (U × V ) := ‖(D2
xyc)

±1‖L∞(U×V ) (4.2)

γ±
c = γ±

c (U × V ) := ‖det(D2
xyc)

±1‖L∞(U×V ) (4.3)

to denote the bi-Lipschitz constants β±
c of the coordinate changes (4.4) and the Jacobian

bounds γ±
c for the same transformation. Notice γ+

c γ−
c ≥ 1 for any cost satisfying (B1),

and equality holds whenever the cost function c(x, y) is quadratic. So the parameter γ+
c γ−

c

crudely quantifies the departure from the quadratic case. The inequality β+
c β−

c ≥ 1 is much
more rigid, equality implying D2

xyc(x, y) is the identity matrix, and not merely constant.

4.1 Choosing coordinates which convexify c-convex functions

In the current subsection, we introduce an important transformation (mixing dependent and
independent variables) for the cost c(x, y) and potential u(x), which plays a crucial role
in the subsequent analysis. This change of variables and its most relevant properties are
encapsulated in the following definition and theorem. In the sequel, whenever we use the
expression c̃(q, ·) or ũ(q) we refer to the modified cost function and convex potential defined
here, unless otherwise stated. Since properties (B0)–(B3), (A3w) and (B2u) were shown
to be tensorial in nature (i.e. coordinate independent) in [28] [34], the modified cost c̃ inherits
these properties from the original cost c with one exception: (4.5) defines a C3 diffeomorphism
q ∈ U ỹ 7−→ x(q) ∈ U , so the cost c̃ ∈ C3(U ỹ × V ) may not be C4 smooth. However, its
definition reveals that we may still differentiate c̃ four times as long as no more than three
of the four derivatives fall on the variable q, and it leads to the same geometrical structure
(pseudo-Riemannian curvatures, including (2.1)) as the original cost c since the metric tensor
and symplectic form defined in [28] involve only mixed derivatives D2

qy c̃, and therefore remain
C2 functions of the coordinates (q, y) ∈ U ỹ × V .

Definition 4.1 (Cost-exponential coordinates and apparent properties). Given c ∈ C4
(
U ×

V
)

strongly twisted (B0)–(B1), we refer to the coordinates (q, p) ∈ U ỹ × V x̃ defined by

q = q(x) = −Dyc(x, ỹ), p = p(y) = −Dxc(x̃, y), (4.4)

as the cost exponential coordinates from ỹ ∈ V and x̃ ∈ U respectively. We denote the
inverse diffeomorphisms by x : U ỹ ⊂ T ∗

ỹ V 7−→ U and y : V x̃ ⊂ T ∗
x̃U 7−→ V ; they satisfy

q = −Dyc(x(q), ỹ), p = −Dxc(x̃, y(p)). (4.5)

10



The cost c̃(q, y) = c(x(q), y) − c(x(q), ỹ) is called the modified cost at ỹ. A subset of U
or function thereon is said to appear from ỹ to have property A, if it has property A when
expressed in the coordinates q ∈ U ỹ.

Remark 4.2. Identifying the cotangent vector 0⊕ q with the tangent vector Q⊕ 0 to U ×V
using the pseudo-metric of Kim and McCann [28] shows x(q) to be the projection to U of
the pseudo-Riemannian exponential map exp(x̃,ỹ) Q⊕ 0; similarly y(p) is the projection to V
of exp(x̃,ỹ) 0⊕ P . Also, x(q) =: c∗-expỹ q and y(p) =: c-expx̃ p in the notation of Loeper [34].

Our first contribution is the following theorem. For a non-negatively cross-curved cost
(B3), it shows that any c̃-convex potential appears convex from ỹ ∈ V . Even if the cost
function is weakly regular (A3w), the level sets of the c̃-convex potential appear convex
from ỹ, as was discovered independently from us by Liu [32], and exploited by Liu with
Trudinger and Wang [33]. Note that although the difference between the cost c(x, y) and the
modified cost c̃(q, y) depends on ỹ, they differ by a null Lagrangian c(x, ỹ) which — being
independent of y ∈ V — does not affect the question of which maps G attain the infimum
(1.1). Having a function with convex level sets is a useful starting point, since it enables
us to apply Caffarelli’s affine renormalization of convex sets approach and a full range of
techniques from Gutierrez [23] to address the regularity of c-convex potentials.

Theorem 4.3 (Modified c-convex functions appear convex). Let c ∈ C4
(
U × V

)
satisfying

(B0)–(B2) be weakly regular (A3w). If u = uc∗c is c-convex on U , then ũ(q) = u(x(q)) +
c(x(q), ỹ) has convex level sets, as a function of the cost exponential coordinates q ∈ U ỹ from
ỹ ∈ V . If, in addition, c is non-negatively cross-curved (B3) then ũ is convex on U ỹ. In
either case ũ is minimized at q0 if ỹ ∈ ∂cu(x(q0)). Furthermore, ũ is c̃-convex with respect to
the modified cost c̃(q, y) := c(x(q), y) − c(x(q), ỹ) on U ỹ × V , and ∂ c̃ũ(q) = ∂cu(x(q)) for all
q ∈ U ỹ.

Proof. The final sentences of the theorem are elementary: c-convexity u = uc∗c asserts

u(x) = sup
y∈V

−c(x, y) − uc∗(y) and uc∗(y) = sup
q∈U ỹ

−c(x(q), y) − u(x(q)) = ũc̃∗(y)

from (3.2), hence

ũ(q) = sup
y∈V

−c(x(q), y) + c(x(q), ỹ) − uc∗(y)

= sup
y∈V

−c̃(q, y) − ũc̃∗(y),

and ∂ c̃ũ(q) = ∂cu(x(q)) since all three suprema above are attained at the same y ∈ V . Taking
y = ỹ reduces the inequality ũ(q) + ũc̃∗(y) + c̃(q, y) ≥ 0 to ũ(q) ≥ −ũc̃∗(ỹ) , with equality
precisely if ỹ ∈ ∂ c̃ũ(q). It remains to address the convexity claims.

Since the supremum ũ(q) of a family of convex functions is again convex, it suffices to
establish the convexity of q ∈ U ỹ 7−→ −c̃(q, y) for each y ∈ V under hypothesis (B3). For a
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similar reason, it suffices to establish the level-set convexity of the same family of functions
under hypothesis (A3w).

First assume (A3w). Since

Dy c̃(q, ỹ) = Dyc(x(q), ỹ) := −q (4.6)

we see that c̃-segments in U ỹ with respect to ỹ coincide with ordinary line segments. Let
q(s) = (1−s)q0+sq1 be any line segment in the convex set U ỹ. Define f(s, y) := −c̃(q(s), y) =
−c(x(q(s)), y) + c(x(q(s)), ỹ). Loeper’s maximum principal (Theorem 3.3 above, see also
Remark 3.6) asserts f(s, y) ≤ max{f(0, y), f(1, y)}, which implies convexity of each set
{q ∈ U ỹ | −c̃(q, y) ≤ const}. Under hypothesis (B3), Theorem 3.5 goes on to assert
convexity of s ∈ [0, 1] 7−→ f(s, y) as desired.

The effect of this change of gauge on Jacobian inequalities is summarized in a corollary:

Corollary 4.4 (Transformed c̃-Monge-Ampère inequalities). Using the hypotheses and no-
tation of Theorem 4.3, if |∂cu| ∈ [λ, Λ] ⊂ [0,∞] on U ′ ⊂ U , then |∂ c̃ũ| ∈ [λ/γ+

c , Λγ−
c ] on

U ′
ỹ = −Dyc(U ′, ỹ), where γ±

c = γ±
c (U ′×V ) and β±

c = β±
c (U ′×V ) are defined in (4.2)–(4.3).

Furthermore, γ±
c̃ := γ±

c̃ (U ′
ỹ × V ) ≤ γ+

c γ−
c and β±

c̃ := β±
c̃ (U ′

ỹ × V ) ≤ β+
c β−

c .

Proof. From the Jacobian bounds |det Dxq(x)| ∈ [1/γ−
c , γ+

c ] on U ′, we find L n(X)/γ−
c ≤

L n(q(X)) ≤ γ+
c L n(X) for each X ⊂ U ′. On the other hand, Theorem 4.3 asserts ∂ c̃ũ(q(X)) =

∂cu(X), so the claim |∂ c̃ũ| ∈ [λ/γ+
c , Λγ−

c ] follows from the hypothesis |∂cu| ∈ [λ, Λ], by def-
inition (3.6) and the fact that q : U −→ U ỹ from (4.4) is a diffeomorphism; see (B1). The
bounds γ±

c̃ ≤ γ+
c γ−

c and β±
c̃ ≤ β+

c β−
c follow from D2

qy c̃(q, y) = D2
xyc(x(q), y)Dqx(q) and

Dqx(q) = −D2
xyc(x(q), ỹ)−1.

4.2 Affine renormalization

The renormalization of a function ũ by an affine transformation L : Rn → Rn will be useful
in Section 7 to prove our Alexandrov type estimates. Let us therefore record the following
observations. Define

ũ∗(q) = |det L|−2/nũ(Lq). (4.7)

Here det L denotes the Jacobian determinant of L, i.e. the determinant of the linear part of
L.

Lemma 4.5 (Affine invariance of c̃-Monge-Ampère measure). Assuming (B0)–(B1), given
a c̃-convex function ũ : Uỹ 7−→ R and affine bijection L : Rn 7−→ Rn, define the renormalized
potential ũ∗ by (4.7) and renormalized cost

c̃∗(q, y) = |det L|−2/nc̃(Lq, L∗y) (4.8)

using the adjoint L∗ to the linear part of L. Then, for all Borel Z ⊂ U ỹ,

|∂ũ∗|(L−1Z) = |det L|−1|∂ũ|(Z), (4.9)

|∂ c̃∗ ũ∗|(L−1Z) = |det L|−1|∂ c̃ũ|(Z). (4.10)
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Proof. From (3.4) we see p̄ ∈ ∂ũ(q̄) if and only if |det L|−2/nL∗p̄ ∈ ∂ũ∗(L−1q̄), thus (4.9)
follows from ∂ũ∗(L−1Z) = |det L|−2/nL∗(∂ũ(Z)

)
. Similarly, since (3.2) yields (ũ∗)c̃∗∗(y) =

|det L|−2/nũc̃∗(L∗y), we see ȳ ∈ ∂ c̃ũ(q̄) is equivalent to |det L|−2/nL∗ȳ ∈ ∂ c̃∗ ũ∗(L−1q̄) from
(3.3) (and Theorem 4.3), whence ∂ c̃∗ ũ∗(L−1Z) = |det L|−2/nL∗(∂ c̃ũ∗(Z)

)
to establish (4.10).

As a corollary to this lemma, we recover the affine invariance not only of the Monge-
Ampère equation satisfied by ũ(q) — but also of the c̃-Monge-Ampère equation it satisfies
— under coordinate changes on V (which induce linear transformations L on T ∗

ỹ V and L∗

on TỹV ): for q ∈ Uỹ,

d|∂ũ∗|
dL n

(L−1q) =
d|∂ũ|
dL n

(q) and
d|∂ c̃∗ ũ∗|

dL n
(L−1q) =

d|∂ c̃ũ|
dL n

(q).

5 Strongly c-convex interiors and boundaries not mixed by ∂cu

The subsequent sections of this paper are largely devoted to ruling out exposed points in
Uỹ of sets on which ordinary convexity of the c̃-convex potential from Theorem 4.3 fails to
be strict. This current section rules out exposed points on the boundary of Uỹ. We do this
by proving an important topological property of the (multi-valued) mapping ∂cu ⊂ U × V .
Namely, we show that the subdifferential ∂cu maps interior points of spt |∂cu| ⊂ U only to
interior points of V , under hypothesis (4.1), and conversely that ∂cu maps boundary points
of U only to boundary points of V . This theorem may be of independent interest, and was
required by Figalli and Loeper to conclude their continuity result concerning maps of the
plane which optimize (A3w) costs [17].

This section does not use the cross-curvature condition (B3) (nor A3w) on the cost
function c ∈ C4(U × V ), but relies crucially on the strong c-convexity (B2u) of its domains
U and V (but importantly, not on spt |∂cu|). No analog for Theorem 5.1 was needed by
Caffarelli to establish C1,α regularity of convex potentials u(x) whose gradients optimize the
classical cost c(x, y) = −〈x, y〉 [8], since in that case he was able to take advantage of the fact
that the cost function is smooth on the whole of Rn to chase potentially singular behaviour
to infinity. (One general approach to showing regularity of solutions for degenerate elliptic
partial differential equations is to exploit the threshold-hyperbolic nature of the solution
to try to follow either its singularities or its degeneracies to the boundary, where they can
hopefully be shown to be in contradiction with boundary conditions; the degenerate nature
of the ellipticity precludes the possibility of purely local regularizing effects.)

Theorem 5.1 (Strongly c-convex interiors and boundaries not mixed by ∂cu). Let c satisfy
(B0)–(B1) and u = uc∗c be a c-convex function (which implies ∂cu(U) = V ), and λ > 0.

(a) If |∂cu| ≥ λ on X ⊂ U and V is strongly c∗-convex with respect to X, then interior
points of X cannot be mapped by ∂cu to boundary points of V : i.e. (X × ∂V ) ∩ ∂cu ⊂
(∂X × ∂V ).
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(b) If |∂cu| ≤ Λ on U , and U is strongly c-convex with respect to V , then boundary points
of U cannot be mapped by ∂cu into interior points of V : i.e. ∂U × V is disjoint from
∂cu.

Proof. Note that when X is open the conclusion of (a) implies ∂cu is disjoint from X × ∂V .
We therefore remark that it suffices to prove (a), since (b) follows from (a) exchanging the
role x and y and observing that |∂cu| ≤ Λ implies |∂c∗uc∗ | ≥ 1/Λ as in Lemma 3.1(d).

Let us prove (a). Fix any point x̃ in the interior of X, and ỹ ∈ ∂cu(x̃). Assume by
contradiction that ỹ ∈ ∂V . At (x̃, ỹ) we use (B0)–(B1) to define cost-exponential coordinates
(p, q) 7−→ (x(q), y(p)) by

p = −Dxc(x̃, y(p)) + Dxc(x̃, ỹ) ∈ T ∗
x̃ (U)

q = D2
xyc(x̃, ỹ)−1(Dyc(x(q), ỹ) − Dyc(x̃, ỹ)) ∈ Tx̃(U)

and define a modified cost and potential by subtracting null Lagrangian terms:

c̃(q, p) := c(x(q), y(p)) − c(x(p), ỹ) − c(x̃, y(p))
ũ(q) := u(x(q)) + c(x(q), ỹ).

Similarly to Corollary 4.4, |∂ c̃ũ| ≥ λ̃ := λ/(γ+
c γ−

c ), where γ±
c denote the Jacobian bounds

(4.3) for the coordinate change. Note (x̃, ỹ) = (x(0), y(0)) corresponds to (p, q) = (0,0).
Since c-segments with respect to ỹ correspond to line segments in Uỹ := −Dyc(U, ỹ) we see
Dpc̃(q,0) depends linearly on q, whence D3

qqpc̃(q,0) = 0; similarly c∗-segments with respect
to x̃ become line segments in the p variables, Dq c̃(0, p) depends linearly on p, D3

ppqc(0, p) = 0,
and the extra factor D2

xyc(x̃, ỹ)−1 in our definition of x(q) makes −D2
pq c̃(0,0) the identity

matrix (whence q = −Dpc̃(0, q) and p = −Dq c̃(p,0) for all q in Uỹ = x−1(U) and p in Vx̃ :=
y−1(V )). Although the change of variables (q, p) 7−→ (x(p), y(q)) is only a C3 diffeomorphism,
we can still take four derivatives of the modified cost provided at least one of the four
derivatives is with respect to q and another is with respect to p. We denote Xỹ := x−1(X)
and choose orthogonal coordinates on U which make −ên the outer unit normal to Vx̃ ⊂ T ∗

x̃U
at p̃ = 0. Note that Vx̃ is strongly convex by hypothesis (a).

In these variables, consider a small cone of height ε and angle θ around the −ên axis:

Eθ,ε :=
{

q ∈ Rn |
∣∣∣ − ên − q

|q|

∣∣∣ ≤ θ, |q| ≤ ε

}
Observe that, if θ, ε are small enough, then Eθ,ε ⊂ Xỹ, and its measure is of order εnθn−1.
Consider now a slight enlargement

E′
θ,C0ε :=

{
p = (P, pn) ∈ Rn | pn ≤ θ|p| + C0ε|p|2

}
,

of the polar dual cone, where ε will be chosen sufficiently small depending on the large
parameter C0 forced on us later.

The strong convexity ensures Vx̃ is contained in a ball BR(Rên) of some radius R > 1
contained in the half-space pn ≥ 0 with boundary sphere passing through the origin. As long
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Figure 1: If ∂ c̃ũ sends an interior point onto a boundary point, then by c̃-monotonicity of ∂ c̃ũ the
small cone Eθ,ε has to be sent onto E′

θ,C0ε ∩ Vx̃. Since for ε > 0 small but fixed L n(Eθ,ε) ∼ θn−1,
while L n(E′

θ,C0ε ∩ Vx̃) . θn+1 (by the uniform convexity of Ṽx̃), we get a contradiction as
θ → 0.

as C0ε < (6R)−1 we claim E′
θ,C0ε intersects this ball — a fortiori Vx̃ — in a set whose volume

tends to zero like θn+1 as θ → 0. Indeed, from the inequality

pn ≤ θ
√

|P |2 + p2
n +

1
6
|P | + 1

3
pn

satisfied by any (P, pn) ∈ E′
θ,C0ε ∩ BR(Rên) we deduce p2

n ≤ |P |2(1 + 9θ2)/(2 − 9θ2), i.e.
pn < |P | if θ is small enough. Combined with the further inequalities

|P |2

2R
≤ pn ≤ θ

√
|P |2 + p2

n + C0ε|P |2 + C0εp
2
n

(the first inequality follows by the strong convexity of Vx̃), this yields |P | ≤ 6θ
√

2 and
pn ≤ O(θ2) as θ → 0. Thus L n(E′

θ,Cε
∩Vx̃) ≤ Cθn+1 for a dimension dependent constant C,

provided C0ε < (6R)−1.
The contradiction now will come from the fact that, thanks to the c̃-cyclical monotonicity

of ∂ c̃ũ, if we first choose C0 big and then we take ε sufficiently small, the image of all q ∈ Eθ,ε

by ∂ c̃ũ has to be contained in E′
θ,C0ε for θ small enough. Since ∂ c̃ũ

(
Xỹ

)
⊂ Vx̃ this will imply

εnθn−1 ∼ λ̃L n(Eθ,ε) ≤ |∂ c̃ũ|(Eθ,ε) ≤ L n(Vx̃ ∩ E′
θ,C0ε) ≤ Cθn+1,

which gives a contradiction as θ → 0, for ε > 0 small but fixed.
Thus all we need to prove is that, if C0 is big enough, then ∂ c̃ũ(Eθ,ε) ⊂ E′

θ,C0ε for any ε

sufficiently small. Let q ∈ Eθ,ε and p ∈ ∂ c̃ũ(q). Combining∫ 1

0
ds

∫ 1

0
dtD2

qpc̃(sq, tp)[q, p] = c̃(q, p) + c̃(0,0) − c̃(q,0) − c(0, p) ≤ 0
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(where the last inequality is a consequence of c̃-monotonicity of ∂ c̃ũ; see for instance [46,
Definitions 5.1 and 5.7]) with

D2
qpc̃(sq, tp) =D2

qpc̃(0, tp) +
∫ s

0
ds′D3

qqpc̃(s
′q, tp)[q]

=D2
qpc̃(0,0) +

∫ t

0
dt′D3

qppc̃(0, t′p)[p]

+
∫ s

0
ds′D3

qqpc̃(s
′q,0)[q] +

∫ s

0
ds′

∫ t

0
dt′D4

qqppc̃(s
′q, t′p)[q, p]

yields

−〈q, p〉 ≤ −
∫ 1

0
ds

∫ 1

0
dt

∫ s

0
ds′

∫ t

0
dt′D4

qqppc̃(s
′q, t′p)[q, q, p, p]

≤ C0|q|2|p|2

since D3
qppc̃(0, t′p) and D3

qqpc̃(s
′q,0) vanish in our chosen coordinates and −D2

pq c̃(0,0) is the
identity matrix. Due to the tensorial nature of the cross-curvature (2.1), C0 depends on
‖c‖C4(U×V ) and the bi-Lipschitz constants β±

c from (4.2).
From the above inequality and the definition of Eθ,ε we deduce

pn = 〈p, ên +
q

|q|
〉 − 〈p,

q

|q|
〉 ≤ θ|p| + C0ε|p|2

so p ∈ E′
θ,C0ε as desired.

6 The Monge-Ampère measure dominates the c̃-Monge-Ampère
measure

In this section we shall prove that — up to constants — the ordinary Monge-Ampère mea-
sure |∂ũ| dominates the c̃-Monge-Ampère measure |∂ c̃ũ|, when defined in the coordinates
introduced in Theorem 4.3. Let us begin with a lemma which motivates our proposition
heuristically. The conclusions of the lemma extend easily from smooth to non-smooth func-
tions by an approximation argument combining Lemma 3.1(b)–(c) with results of Trudinger
and Wang [44]. However this approach would require the domains U and V to be smooth, so
in Proposition 6.2 we prefer to construct an explicit approximation which proves the state-
ment we need, requires no additional smoothness hypotheses, and is logically independent of
both Lemma 6.1 and [44].

Lemma 6.1. Assume (B0)–(B3) and let ũ : U ỹ 7−→ R be a convex c̃-convex function as in
Theorem 4.3. If ũ ∈ C2(U ′

ỹ) for some open set U ′
ỹ ⊂ Uỹ, then |∂ c̃ũ| ≤ γ−

c̃ |∂ũ| on U ′
ỹ, where

γ±
c̃ = γ±

c̃ (U ′
ỹ × V ) are defined as in (4.3).
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Proof. In addition to the convexity of ũ(q), for any y ∈ V Theorem 4.3 asserts the convexity
of the c̃-convex function q ∈ U ỹ 7−→ −c̃(q, y). Thus

det(D2
qqũ(q̃) + D2

qq c̃(q̃, y)) ≤ det D2
qqũ(q̃)

by the concavity of S 7−→ det1/n(S) on symmetric non-negative definite matrices. On the
other hand, for c̃-convex ũ ∈ C2(U ′

ỹ), the measure |∂ c̃ũ| is absolutely continuous, with
Lebesgue density given by the left hand side of (3.7). Thus at any q̃ ∈ U ′

ỹ,

d|∂ c̃ũ|
dL n

(q̃) =
det(D2

qqũ(q̃) + D2
qqc(q̃, G̃(q̃)))

|det D2
qy c̃(y, G̃(q̃))|

≤ γ−
c̃ det D2

qqũ(q̃) (6.1)

as desired.

We now prove the proposition that we actually need subsequently.

Proposition 6.2 (Monge-Ampère measure dominates c̃-Monge-Ampère measure). Assume
(B0)–(B3), and let ũ : U ỹ 7−→ R be a convex c̃-convex function from Theorem 4.3. Then
|∂ c̃ũ| ≤ γ−

c̃ |∂ũ| on U ′
ỹ ⊂ Uỹ, where γ±

c̃ = γ±
c̃ (U ′

ỹ × V ) are defined as in (4.3).

Proof. It suffices to prove |∂ c̃ũ|
(
Br(q̄)

)
≤ γ−

c̃ |∂ũ|
(
Br(q̄)

)
for each ball whose closure is con-

tained in U ′
ỹ. Given such a ball, let h(q) := |q− q̄|, and let ρε(q) = ε−nρ(q/ε) ≥ 0 be a smooth

mollifier vanishing outside Bε(0) and carrying unit mass. For ε > 0 sufficiently small, we can
define the smooth convex function

ũε,δ = (ũ + δh) ∗ ρε

on Br(q̄). Since ũ and h are locally Lipschitz, letting R denote a bound for Lip(ũ) + Lip(h)
inside Br(q̄) yields

‖ũε,δ − (ũ + δh)‖L∞(Br(q̄)) ≤ εR

for all δ < 1.
Claim: Fix 0 < t < 1 and 0 < δ < 1. For ε > 0 sufficiently small, we claim that to each

y0 ∈ ∂ c̃ũ(Btr(q̄)) corresponds some qε,δ ∈ Br(q̄) such that (qε,δ, y0) ∈ ∂ c̃ũε,δ.
Indeed, for y0 ∈ ∂ c̃ũ(q0) with |q0 − q̄| < tr, observe

ũ(q) ≥ −c(q, y0) − ũc̃∗(y0) ∀ q ∈ U ỹ,

with equality at q0. Moreover h(q0) ≤ tr. Therefore

ũε,δ(q0) − (−c(q0, y0) − ũc̃∗(y0)) ≤ εR + ũ(q0) + δh(q0) − (−c(q0, y0) − ũc̃∗(y0))
= εR + δh(q0) ≤ εR + trδ.

On the other hand, if q ∈ ∂Br(q̄), then h(q) = r, and so

ũε,δ(q) − (−c(q, y0) − ũc̃∗(y0)) ≥ −εR + ũ(q) + δh(q) − (−c(q, y0) − ũc̃∗(y0))
≥ −εR + δh(q) = −εR + rδ.
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Thus, if for fixed δ small we choose ε small enough so that

rδ − εR > trδ + εR,

we deduce that if we lower the graph of the function −c(q, y0)− ũc̃∗(y0) to the lowest level at
which it intersects the graph of ũε,δ, then the point of intersection must lie over Br(q̄). This
proves the claim.

Having established the claim, let E ⊂ Br(q̄) denote the (Borel) set of all qε,δ which arise
from ∂ũε,δ(Btr(q̄)) in this way. Since ũε,δ is smooth, the condition y0 ∈ ∂ c̃ũε,δ(qε,δ) implies

Dqũε,δ(qε,δ) = −Dq c̃(qε,δ, y0), (6.2)

as well as
Dqqũε,δ(qε,δ) ≥ −Dqq c̃(qε,δ, y0). (6.3)

By (6.2) and (B1) we can define a smooth map Gε,δ(q0) throughout E using the relation

Dqũε,δ(q0) = −Dq c̃(q0, Gε,δ(q0)),

and find that ∂ c̃ũε,δ(qε,δ) = {Gε,δ(qε,δ)} is a singleton. In this way we obtain

|∂cũ|(Btr(q̄)) ≤ |∂cũε,δ|(E) =
∫

E
|detDqGε,δ|(q) dq

=
∫

E

det(Dqqũε,δ(q) + Dqq c̃(q, Gε,δ(q)))
|det D2

qy c̃(q, Gε,δ(q))|
dq,

where in the last equality we used (6.3) to deduce that Dqqũε,δ(q) + Dqqc(q, Gε,δ(q)) is non-
negative definite. Hence the inequality

det(Dqqũε,δ(q) + Dqq c̃(q, Gε,δ(q)))
|det D2

qy c̃(q,Gε,δ(q))|
≤ γ−

c̃ det Dqqũε,δ(q)

holds (similarly to (6.1) above), and so

|∂cũ|(Btr(q̄)) ≤ γ−
c̃

∫
E

det(Dqqũε,δ(q)) dq ≤ γ−
c̃ |∂ũε,δ|(Br(q̄)).

Letting first ε → 0 and then δ → 0, we finally deduce

|∂cũ|(Btr(q̄)) ≤ lim sup
ε,δ→0

γ−
c̃ |∂ũε,δ|(Br(q̄)) ≤ γ−

c̃ |∂ũ|
(
Br(q̄)

)
.

Here, to see the last inequality one may, for instance, use Lemma 3.1(b) with c(x, y) = −〈x, y〉.
Arbitrariness of 0 < t < 1 yields the desired result.
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7 Alexandrov type estimates and affine renormalization

In this section we prove the key estimates for c-convex potential functions which will eventu-
ally lead to the continuity and injectivity of optimal maps. Namely, we extend Alexandrov
type estimates commonly used in the analysis of Monge-Ampère equations (thus for the cost
c(x, y) = −〈x, y〉), to general non-negatively curved cost functions. This is established in
Lemma 7.2 (plus Proposition 6.2) and Lemma 7.9. These estimates are used to compare
the infimum of c-convex function on a section with the size of the section, which are the
key ingredients in the proof of our main results; see Propositions 7.3 and 7.10. Lemma 7.9
represents the most nontrivial and technical result we obtain in this section.

We recall a basic lemma for convex sets due to Fritz John [24], which will play an essential
role in the rest of the paper.

Lemma 7.1 (John’s lemma). For a compact convex set S ⊂ Rn, there exists an affine
transformation L : Rn → Rn such that B1 ⊂ L−1(S) ⊂ Bn.

We now estimate the infimum of ũ in terms of the Monge-Ampère measure in a section.
The following lemma is a standard fact for convex functions. With Lemma 7.1 in mind, we
state it for normalized functions ũ∗ and sections Z∗. However, the estimate (7.1) is invariant
under the affine renormalization (4.7); according to (4.9), it holds with or without stars.

Lemma 7.2 (Upper bound on Dirichlet solutions to Monge-Ampère inequalities). Let ũ∗ :
Rn 7−→ R ∪ {+∞} be a convex function whose section Z∗ := {ũ∗ ≤ 0} satisfies B1 ⊂ Z∗ ⊂
Bn. Assume that ũ∗ = 0 on ∂Z∗. Then, for all t ∈ (0, 1),

|∂ũ∗| (tZ∗) ≤ C(n)
(1 − t)n

| infZ∗ ũ∗|n

L n(Z∗)
, (7.1)

where tZ∗ denotes the dilation of Z∗ by a factor t with respect to the origin.

Although the proof of this result is classical (see for instance [23]), for sake of completeness
we prefer to give all the details.

Proof. We can assume that ũ∗|Z∗ 6≡ 0, otherwise the estimate is trivial. It is not difficult to
prove that

|p∗| ≤ | infZ∗ ũ∗|
(1 − t)

∀ p∗ ∈ ∂ũ∗(tZ∗). (7.2)

Indeed, if q∗ ∈ tZ∗ and p∗ ∈ ∂ũ∗(q∗), then

〈p∗, q − q∗〉 ≤ ũ(q) − ũ(q∗) = |ũ(q∗)| ∀ q ∈ ∂Z∗,

and taking the supremum in the left hand side among all q ∈ ∂Z∗ (7.2) follows. Thus, since
L n(Z∗) ≤ C(n), we conclude

|∂ũ∗|(tZ∗) ≤ C(n)
(1 − t)n

| infZ∗ ũ∗|n

L n(Z∗)
.
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Combining the above lemmas, we obtain:

Proposition 7.3. Assume (B0)–(B3) and define γ±
c̃ = γ±

c̃ (Z ×V ) as in (4.3). Any convex
c̃-convex function ũ : U ỹ 7−→ R from Theorem 4.3 which satisfies |∂cũ| ∈ [λ, 1/λ] in a section
of the form Z := {q ∈ U ỹ| ũ(q) ≤ 0}, and ũ = 0 on ∂Z, also satisfies

L n(Z)2 ≤ C(n)
γ−

c̃

λ
| inf

Z
ũ|n. (7.3)

Proof. First use the affine map L as given in Lemma 7.1 to renormalize ũ into ũ∗ using (4.7).
This does not change the bound |∂ũ∗| ∈ [λ, 1/λ], but allows us to apply Lemma 7.2 with
t = 1/2. Its conclusion (7.1) has been expressed in a form which holds with or without the
stars, in view of (4.9). Proposition 6.2 now yields the desired inequality (7.3).

7.1 c̃-cones over convex sets

We now progress toward the Alexandrov type estimate in Lemma 7.9. In this subsection we
construct and study the c̃-cone associated to the section of a c̃-convex function. This c̃-cone
plays an essential role in our proof of Lemma 7.9.

Definition 7.4 (c̃-cone). Assume (B0)–(B2) and (A3w), and let ũ : U ỹ 7−→ R be the
c̃-convex function with convex level sets from Theorem 4.3. Let Z denote the section {ũ ≤ 0},
fix q̃ ∈ intZ, and assume ũ = 0 on ∂Z. The c̃-cone hc̃ : Uỹ 7−→ R generated by q̃ and Z
with height −ũ(q̃) > 0 is given by

hc̃(q) := sup
y∈V

{−c̃(q, y) + c̃(q̃, y) + ũ(q̃) | −c̃(q, y) + c̃(q̃, y) + ũ(q̃) ≤ 0 on ∂Z}. (7.4)

Notice the c̃-cone hc̃ depends only on the convex set Z ⊂ U ỹ, q̃ ∈ intZ, and the value
ũ(q̃), but is otherwise independent of ũ. Recalling that c̃(q, ỹ) ≡ 0 on Uỹ, we record several
key properties of the c̃-cone:

Lemma 7.5 (Basic properties of c̃-cones). Adopting the notation and hypotheses of Definition
7.4, let hc̃ : U q̃ 7−→ R be the c̃-cone generated by q̃ and Z with height −ũ(q̃). Then

(a) hc̃ has convex level sets; it is a convex function if (B3) holds;

(b) hc̃(q) ≥ hc̃(q̃) = ũ(q̃) for all q ∈ Z;

(c) hc̃ = 0 on ∂Z;

(d) ∂ c̃hc̃(q̃) ⊂ ∂ c̃ũ(Z).

Proof. Property (a) is a consequence of the level-set convexity of q 7−→ −c̃(q, y) proved in
Theorem 4.3, or its convexity assuming (B3). Moreover, since −c̃(q, ỹ)+ c̃(q̃, ỹ)+ ũ(q̃) = ũ(q̃)
for all q ∈ Uỹ, (b) follows. For each pair z ∈ ∂Z and yz ∈ ∂ c̃ũ(z), consider the supporting
mountain mz(q) = −c̃(q, yz) + c̃(z, yz), i.e. mz(z) = 0 = ũ(z) and mz ≤ ũ. Consider the
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c̃-segment σ(t) connecting σ(0) = ỹ and σ(1) = yz in V with respect to z. Since −c̃(q, ỹ) ≡ 0,
by continuity there exists some t ∈]0, 1] for which m̄z(q) := −c̃(q, σ(t)) + c̃(z, σ(t)) satisfies
m̄z(q̃) = ũ(q̃). From Loeper’s maximum principle (Theorem 3.3 above), we have

m̄z ≤ max[mz,−c̃(·, ỹ)] = max[mz, 0],

and therefore, from mz ≤ ũ,
m̄z ≤ 0 on Z.

By the construction, m̄z is of the form

−c̃(·, y) + c̃(q̃, y) + ũ(q̃),

and vanishes at z. This proves (c). Finally (d) follows from (c) and the fact that hc̃(q̃) = ũ(q̃).
Indeed, it suffices to move down the supporting mountain of hc̃ at q̃ until the last moment at
which it touches the graph of ũ on Z from below. The conclusion then follows from Loeper’s
local to global principle, Corollary 3.4 above.

The following estimate shows that the Monge-Ampère measure, and the relative location
of the vertex within the section which generates it, control the height of any well-localized
c̃-cone. Afficionados of the Monge-Ampère theory may be less surprised by this estimate once
it is recognized that the localization in coordinates ensures the cost is approximately affine,
at least in one of its two variables. Still, it is vital that the approximation be controlled!
Together with Lemma 7.5(d), this proposition plays a key role in the proof of our Alexandrov
type estimate (Lemma 7.9).

Proposition 7.6 (Lower bound on the Monge-Ampère measure of a small c̃-cone). Assume
(B0)–(B3) and define c̃ ∈ C3

(
U ỹ × V

)
as in Definition 4.1. Let Z ⊂ U ỹ be a closed convex

set and hc̃ the c̃-cone generated by q̃ ∈ intZ of height −hc̃(q̃) > 0 over Z. Let Π+, Π−

be two parallel hyperplanes contained in T ∗
ỹ V \ Z and touching ∂Z from two opposite sides.

Then there exists εc > 0 small, depending only on the cost (and given by Lemma 7.7), and a
constant C(n) > 0 depending only on dimension, such that if diam(Z) ≤ εc/C(n) then

|hc̃(q̃)|n ≤ C(n)
min{dist(q̃, Π+), dist(q̃, Π−)}

`Π+

|∂hc̃|({q̃})L n(Z), (7.5)

where `Π+ denotes the maximal length among all the segments obtained by intersecting Z with
a line orthogonal to Π+.

To prove this, we first observe a basic estimate on the cost function c.

Lemma 7.7. Assume (B0)–(B2). For c̃ ∈ C3
(
U ỹ ×V

)
from Definition 4.1 and each y ∈ V

and q, q̃ ∈ U ỹ,

| − Dq c̃(q, y) + Dq c̃(q̃, y)| ≤ 1
εc
|q − q̃| |Dq c̃(q̃, y)| (7.6)

where εc is given by ε−1
c = 2(β+

c )4(β−
c )6‖D3

xxyc‖L∞(U×V ) in the notation (4.2).
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Proof. For fixed q̃ ∈ U ỹ introduce the c̃-exponential coordinates p(y) = −Dq c̃(q̃, y). The
bi-Lipschitz constants (4.2) of this coordinate change are estimated by β±

c̃ ≤ β+
c β−

c as in
Corollary 4.4. Thus

dist(y, ỹ) ≤ β−
c̃ | − Dq c̃(q̃, y) + Dq c̃(q̃, ỹ)|

= β+
c β−

c |Dq c̃(q̃, y)|.

where c̃(q, ỹ) ≡ 0 from Definition 4.1 has been used. Similarly, noting the convexity (B2) of
Vq̃ := p(V ),

| − Dq c̃(q̃, y) + Dq c̃(q, y)| = | − Dq c̃(q̃, y) + Dq c̃(q, y) + Dq c̃(q̃, ỹ) − Dq c̃(q, ỹ)|
≤ ‖D2

qqDpc̃‖L∞(Uỹ×Ṽq̃)|q̃ − q||p(y) − p(ỹ)|

≤ ‖D2
qqDy c̃‖L∞(Uỹ×V )(β

−
c β+

c )2|q̃ − q|dist(y, ỹ)

The result follows since |D2
qqDy c̃| ≤ ((β−

c )2 + β+
c (β−

c )3))|D2
xxDyc| ≤ 2β+

c (β−
c )3|D2

xxDyc| .
(The last inequality follows from β+

c β−
c ≥ 1.)

Proof of Proposition 7.6. We fix q̃ ∈ Z. Let Πi, i = 1, · · ·n, (with Π1 equal either Π+ or
Π−) be hyperplanes contained in Rn \ Z, touching ∂Z, and such that {Π+, Π2, . . . ,Πn} are
all mutually orthogonal (so that also {Π−, Π2, . . . ,Πn} are mutually orthogonal). Moreover
we choose {Π2, . . . , Πn} in such a way that, if π1(Z) denotes the projection of Z on Π1 and
H n−1(π1(Z)) denotes its (n − 1)-dimensional Hausdorff measure, then

C(n)H n−1(π1(Z)) ≥
n∏

i=2

dist(q̃, Πi), (7.7)

for some universal constant C(n). Indeed, as π1(Z) is convex, by Lemma 7.1 we can find an
ellipsoid E such that E ⊂ π1(Z) ⊂ (n − 1)E, and for instance we can choose {Π2, . . . , Πn}
among the hyperplanes orthogonal to the axes of the ellipsoid (for each axis we have two
possible hyperplanes, and we can always choose the furthest one so that (7.7) holds).

Each hyperplane Πi touches Z from outside, say at qi ∈ T ∗
ỹ V . Let pi ∈ TỹV be the

outward (from Z) unit vector at qi orthogonal to Πi. Then sipi ∈ ∂hc̃(qi) for some si > 0,
and by Corollary 3.4 there exists yi ∈ ∂ c̃hc̃(qi) such that

−Dq c̃(qi, yi) = sipi.

Define yi(t) as
−Dq c̃(qi, yi(t)) = t sipi,

i.e. yi(t) is the c̃-segment from ỹ to yi with respect to qi. As in the proof of Lemma 7.5 (c),
the intermediate value theorem yields 0 < ti ≤ 1 such that

−c̃(·, yi(ti)) + c̃(q̃, yi(ti)) + hc̃(q̃) ≤ 0 on Z
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mi(ti)

mi

hc̃

qiq̃

Figure 2: The dotted line represents the graph of mi := −c̃(·, yi) + c̃(q̃, yi) + hc̃(q̃), while the dashed
one represents the graph of mi(ti) := −c̃(·, yi(ti)) + c̃(q̃, yi(ti)) + hc̃(q̃). The idea is that, whenever
we have mi a supporting function for hc̃ at a point qi ∈ ∂Z, we can let y vary continuously along the
c̃-segment from ỹ to yi with respect to qi, to obtain a supporting function mi(ti) which touches hc̃

also at ỹ.

with equality at qi. Thus, by the definition of hc̃, yi(ti) ∈ ∂ c̃hc̃(q̃) ∩ ∂ c̃hc̃(qi),

−Dq c̃(q̃, yi(ti)) ∈ ∂hc̃(q̃) and tisipi = −Dq c̃(qi, yi(ti)) ∈ ∂hc̃(qi).

Therefore by the convexity of hc̃ shown in Lemma 7.5(a), the affine function P i with slope
−Dq c̃(qi, yi(ti)) and with P i(Πi) ≡ 0 satisfies P i(q̃) ≤ hc̃(q̃). This shows

| − Dq c̃(qi, yi(ti))| ≥
|hc̃(q̃)|

dist(q̃, Πi)
. (7.8)

Also, by (7.6)

| − Dq c̃(q̃, yi(ti)) + Dq c̃(qi, yi(ti))| ≤
1
εc
|q̃ − qi| | − Dq c̃(q̃, yi(ti)|

≤ 1
εc

diam Z | − Dq c̃(q̃, yi(ti)|.

Therefore if diam Z ≤ δnεc with δn > 0 small, each vector −Dq c̃(q̃, yi(ti)) is close to
−Dq c̃(qi, yi(ti)), say

| − Dq c̃(q̃, yi(ti)) + Dq c̃(qi, yi(ti))| ≤ δn| − Dq c̃(q̃, yi(ti))|.

Since the vectors {−Dq c̃(qi, yi(ti))} are mutually orthogonal, the above estimate implies
that for δn small enough the convex hull of {−Dq c̃(q̃, yi(ti))} has measure of order

∏n
i=1 | −

Dq c̃(qi, yi(ti))|. Thus, by the lower bound (7.8) and the convexity of ∂hc̃(q̃), we obtain

L n(∂hc̃(q̃)) ≥ C(n)
|hc̃(q̃)|n∏n

i=1 dist(q̃, Πi)
.
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Rn′′

Rn′

π′′(Z)

Z ′
x̄′′

Z

Figure 3: The volume of any convex set always controls the product (measure of one slice) · (measure
of the projection orthogonal to the slice).

Since Π1 was either Π+ or Π−, we have proved that

|hc̃(q̃)|n ≤ C(n) min{dist(q̃, Π+), dist(q̃, Π−)}
n∏

i=2

dist(q̃, Πi)|∂hc̃|({q̃}).

To conclude the proof, we apply Lemma 7.8 below with Z ′ given by the segment obtained
intersecting Z with a line orthogonal to Π+. Combining that lemma with (7.7), we obtain

C(n)|Z| ≥ `Π+

n∏
i=2

dist(q̃, Πi),

and last two inequalities prove the proposition (taking C(n) ≥ 1/δn larger if necessary).

Lemma 7.8 (Estimating a convex volume using one slice and an orthogonal projection). Let
Z be a convex set in Rn = Rn′ × Rn′′. Let π′, π′′ denote the projections to the components
Rn′, Rn′′, respectively. Let Z ′ be a slice orthogonal to the second component, that is

Z ′ = (π′′)−1(x̄′′) ∩ Z for some x̄′′ ∈ π′′(Z).

Then there exists a constant C(n), depending only on n = n′ + n′′, such that

C(n)L n(Z) ≥ H n′
(Z ′)H n′′

(π′′(Z)),

where H d denotes the d-dimensional Hausdorff measure.
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Proof. Let L : Rn′′ → Rn′′ be an affine map with determinant 1 given by Lemma 7.1 such
that Br ⊂ L(π′′(Z)) ⊂ Bn′′r for some r > 0. Then, if we extend L to the whole Rn as
L̃(x′, x′′) = (x′, Lx′′), we have L n(L(Z)) = L n(Z), H n′

(L̃(Z ′)) = H n′
(Z ′), and

H n′′
(π′′(L̃(Z))) = H n′′

(L(π′′(Z))) = H n′′
(π′′(Z)).

Hence, we can assume from the beginning that Br ⊂ π′′(Z) ⊂ Bn′′r. Let us now consider
the point x̄′′, and we fix an orthonormal basis {ê1, . . . , ên′′} in Rn′′ such that x̄′′ = cê1 for
some c ≤ 0. Since {rê1, . . . , rên′′} ⊂ π′′(Z), there exist points {x1, . . . , xn′′} ⊂ Z such that
π′′(xi) = rêi. Let C ′ denote the convex hull of Z ′ with x1, and let V ′ denote the (n′ + 1)-
dimensional strip obtained taking the convex hull of Rn′ × {x̄′′} with x1. Observe that
C ′ ⊂ V ′, and so

H n′+1(C ′) =
1

n′ + 1
dist(x1,Rn′ × {x̄′′})H n′

(Z ′) ≥ r

n′ + 1
H n′

(Z ′). (7.9)

We now remark that, since π′′(xi) = rêi and êi ⊥ V ′ for i = 2, . . . , n′′, we have dist(xi, V
′) = r

for all i = 2, . . . , n′′. Moreover, if yi ∈ V ′ denotes the closest point to xi, then the segments
joining xi to yi parallels êi, hence these segments are all mutually orthogonal, and they are
all orthogonal to V ′ too. From this fact it is easy to see that, if we define the convex hull

C := co(x2, . . . , xn′′ , C ′),

then, since |xi − yi| = r for i = 2, . . . , n′′, by (7.9) and the inclusion π′′(Z) ⊂ Bn′′r ⊂ Rn′′ we
get

L n(C) =
(n′ + 1)!

n!
H n′+1(C ′)rn′′−1 ≥ n′!

n!
H n′

(Z ′)rn′′ ≥ C(n)H n′
(Z ′)H n′′

(π′′(Z)).

This concludes the proof, as C ⊂ Z.

7.2 An Alexandrov type estimate

The next Alexandrov type lemma holds for localized sections Z of c̃-convex functions.

Lemma 7.9 (Alexandrov type estimate and lower barrier). Assume (B0)–(B3) and let
ũ : U ỹ 7−→ R be a convex c̃-convex function from Theorem 4.3. Let Z denote the section
{ũ ≤ 0}, assume ũ = 0 on ∂Z, and fix q̃ ∈ intZ. Let Π+, Π− be two parallel hyperplanes
contained in Rn \ Z and touching ∂Z from two opposite sides. Then there exists ε′c(n) > 0
small, depending only on dimension and the cost function (with ε′c(n) = εc/C(n) given by
Proposition 7.6) such that if diam(Z) ≤ ε′c(n) then

|ũ(q̃)|n ≤ C(n)γ+
c̃ (Z × V )

min{dist(q̃, Π+), dist(q̃, Π−)}
`Π+

|∂ c̃ũ|(Z)L n(Z),

where `Π+ denotes the maximal length among all the segments obtained by intersecting Z with
a line orthogonal to Π+, and γ±

c̃ = γ+
c̃ (Z × V ) is defined as in (4.3).

25



Proof. Fix q̃ ∈ Z. Observe that ũ = 0 on ∂Z and consider the c̃-cone hc̃ generated by q̃ and
Z of height −hc̃(q̃) = −ũ(q̃) as in (7.4). From Lemma 7.5(d) we have

|∂ c̃hc̃|({q̃}) ≤ |∂ c̃ũ|(Z),

and from Loeper’s local to global principle, Corollary 3.4 above,

∂hc̃(q̃) = −Dq c̃(q̃, ∂ c̃hc̃(q̃)).

Therefore
|∂hc̃|({q̃}) ≤ ‖det D2

qy c̃‖C0({q̃}×V )|∂chc|({q̃}).

The lower bound on |∂hc̃|({q̃}) comes from (7.5). This finishes the proof.

7.3 Estimating solutions to the c̃-Monge-Ampère inequality |∂ c̃ũ| ∈ [λ, 1/λ]

Combining the results of Proposition 7.3 and Lemma 7.9 yields:

Proposition 7.10 (Bounding local Dirichlet solutions to c̃-Monge-Ampère inequalities).
Assume (B0)–(B3) and let ũ : U ỹ 7−→ R be a convex c̃-convex function from Theorem 4.3.
There exists ε′c(n) > 0 small, depending only on dimension and the cost function (and given
by Lemma 7.9), and constants C(n), Ci(n) > 0, i = 1, 2, depending only on dimension, such
that the following holds: Letting Z denote the section {ũ ≤ 0}, assume |∂ c̃ũ| ∈ [λ, 1/λ] in Z
and ũ = 0 on ∂Z. Let Π+ 6= Π− be parallel hyperplanes contained in T ∗

ỹ V \Z and supporting
Z from two opposite sides. If diam(Z) ≤ ε′c(n) then

C1(n)
λ

γ−
c̃

≤ | infZ ũ|n

L n(Z)2
≤ C2(n)

γ+
c̃

λ
(7.10)

and
|ũ(q)|n

L n(Z)2
≤ C(n)

γ+
c̃

λ

min{dist(q, Π+), dist(q, Π−)}
`Π+

∀ q ∈ intZ, (7.11)

where `Π+ denotes the maximal length among all the segments obtained by intersecting Z with
a line orthogonal to Π+, and γ±

c̃ = γ+
c̃ (Z × V ) is defined as in (4.3).

Proof. Equation (7.11) follows from Lemma 7.9 and the assumption |∂ c̃ũ| ≤ 1/λ. Now, by
Lemma 7.1, we deduce that there exists an ellipsoid E such that E ⊂ Z ⊂ nE, where nE
denotes the dilation of E by a factor n with respect to its barycenter q̄. Taking Π+ and Π−

orthogonal to one of the longest axes of E and q = q̄ in (7.11) yields

|ũ(q̄)|n ≤ C(n)
γ+

c̃

λ

n

2
L n(Z)2.

On the other hand, convexity of ũ along the segment which crosses Z and passes through
both q̄ and the point q̃ where infZ ũ is attained implies

| inf
Z

ũ| ≤ n|ũ(q̄)|,

since the barycenter of E divides the segment into a ratio at most n : 1. Combining these
two estimates with (7.3) we obtain (7.10), to complete the proof.
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Remark 7.11 (Stability of bounds under affine renormalization). Noting γ±
c̃ ≤ γ+

c γ−
c from

Corollary 4.4, we observe that the estimate (7.10) is stable under affine renormalization: let
L be an affine transformation, and recall the renormalization

ũ∗(q) := |det L|−2/nũ(Lq).

Then L−1(Z) is a section for ũ∗ and

| inf
L−1(Z)

ũ∗|n = |det L|−2| inf
Z

ũ|n ∼ |det L|−2L n(Z)2 = L n(L−1(Z))2.

On the other hand, estimate (7.11) is not stable under affine renormalization (a line orthog-
onal to Π+ is not an affinely invariant concept). For this reason, both in the proof of the
c-strict convexity (Section 8) and in the proof of differentiability u ∈ C1 (Section 9) we ap-
ply our Alexandrov estimates directly to the original sections, without renormalizing them.
Using this strategy, our estimates turn out to be strong enough to adapt to our situation the
strict convexity and interior continuity theory of Caffarelli [5] [8]. We perform this in the
remainder of the manuscript.

8 The contact set is either a single point or crosses the domain

In this section and the final one, we complete the crucial step of proving the strict c-convexity
of the c-convex potentials u : U 7−→ R arising in optimal transport, meaning ∂cu(x) should be
disjoint from ∂cu(x̃) whenever x, x̃ ∈ Uλ are distinct. This is accomplished in Theorem 9.1.
In this section, we show that, if the contact set does not consist of a single point, then it
extends to the boundary of U . Our method relies on the non-negative cross-curvature (B3)
of the cost c.

From now on we adopt the following notation: a ∼ b means that there exist two positive
constants C1 and C2, depending on n and γ+

c γ−
c /λ only, such that C1a ≤ b ≤ C2a. Analo-

gously we will say that a . b (resp. a & b) if there exists a positive constant C, depending
on n and γ+

c γ−
c /λ only, such that a ≤ Cb (resp. Ca ≥ b).

Recall that a point x of a convex set S ⊂ Rn is exposed if there is a hyperplane supporting
S exclusively at x. Although the contact set S := ∂c∗uc∗(ỹ) may not be convex, it appears
convex from ỹ by Corollary 3.4, meaning its image q(S) ⊂ Uỹ in the coordinates (4.4) is
convex. The following theorem shows this convex set is either a singleton, or contains a seg-
ment which stretches across the domain. We prove it by showing the solution geometry near
certain exposed points of q(S) inside Uỹ would be inconsistent with the bounds established
in the previous section.

Theorem 8.1 (The contact set is either a single point or crosses the domain). Assume
(B0)–(B3) and let u be a c-convex solution of (4.1) with Uλ ⊂ U open. Fix x̃ ∈ Uλ and
ỹ ∈ ∂cu(x̃), and define the contact set S := {x ∈ U | u(x) = u(x̃)−c(x, ỹ)+c(x̃, ỹ)}. Assume
that S 6= {x̃}, i.e. it is not a singleton. Then S intersects ∂U .
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−Dyc(K
1
0 , ỹ)

q̃ q̄

−Dyc(K0, ỹ)

q0

Figure 4: If the contact set Sỹ has an exposed point q0, we can cut two portions of Sỹ with two
hyperplanes orthogonal to q̃ − q0. The diameter of −Dyc(K0, ỹ) needs to be sufficiently small to
apply the Alexandrov estimate Lemma 7.9, while −Dyc(K1

0 , ỹ) has to intersect Uλ
ỹ is a set of positive

measure to make use of Lemma 7.2 in the case q0 is not an interior point of spt |∂ c̃u|.

Proof. As in Definition 4.1, we transform (x, u) 7−→ (q, ũ) with respect to ỹ, i.e. we consider
the transformation q ∈ U ỹ 7−→ x(q) ∈ U , defined on U ỹ := −Dyc(U, ỹ) ⊂ T ∗

ỹ V by the
relation

−Dyc(x(q), ỹ) = q,

and the modified cost function c̃(q, y) := c(x(q), y) − c(x(q), ỹ) on U ỹ × V , for which the
c̃-convex potential function q ∈ U ỹ 7−→ ũ(q) := u(x(q)) + c(x(q), ỹ) is convex. We observe
that c̃(q, ỹ) ≡ 0 for all q, and moreover the set S = ∂c∗uc∗(ỹ) appears convex from ỹ, meaning
Sỹ := −Dyc(S, ỹ) ⊂ U ỹ is convex, by the Corollary 3.4 to Loeper’s maximum principle.

Our proof is reminiscent of Caffarelli’s for the cost c̃(q, y) = −〈q, y〉 [8, Lemma 3]. Observe
q̃ := −Dyc(x̃, ỹ) lies in the interior of the set Uλ

ỹ := −Dyc(Uλ, ỹ) where |∂ c̃ũ| ∈ [λ/γ+
c , γ−

c /λ],
according to Corollary 4.4. Choose the point q0 ∈ Sỹ ⊂ U ỹ furthest from q̃; it is an exposed
point of Sỹ. We claim either q0 = q̃ or q0 ∈ ∂Uỹ. To derive a contradiction, suppose the
preceding claim fails, meaning q0 ∈ Uỹ \ {q̃}.

For a suitable choice of Cartesian coordinates on V we may, without loss of generality,
take q0 − q̃ parallel to the positive y1 axis. Denote by êi the associated orthogonal basis for
TỹV , and set b0 := 〈q0, ê1〉 and b̃ := 〈q̃, ê1〉, so the halfspace q1 = 〈q, ê1〉 ≥ b0 of T ∗

ỹ V ' Rn

intersects Sỹ only at q0. Use the fact that q0 is an exposed point of Sỹ to cut a corner K0

off the contact set S by choosing s̄ > 0 small enough that b̄ = (1 − s̄)b0 + s̄b̃ satisfies:

(i) −Dyc(K0, ỹ) := Sỹ ∩ {q ∈ U ỹ | q1 ≥ b̄} is a compact convex set in the interior of Uỹ;

(ii) diam(−Dyc(K0, ỹ)) ≤ ε′c/2, where ε′c is from Lemma 7.9.
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ms̄
ε

m1
ε

Kε

K1
ε

u

x0x̄x̃

Figure 5: We cut the graph of u with the two functions ms̄
ε and m1

ε to obtain two sets Kε ≈ K0 and
K1

ε ≈ K1
0 inside which we can apply our Alexandrov estimates to get a contradiction (both Lemma

7.2 and Lemma 7.9 to Kε, but only Lemma 7.2 to K1
ε ). The idea is that the value of u−ms̄

ε at x0 is
comparable to its minimum inside Kε, but this is forbidden by our Alexandrov estimates since x0 is
too close to the boundary of Kε

0 . However, to make the argument work we need also to take advantage
of the section K1

ε , in order to “capture” some positive mass of the c-Monge-Ampère measure.

Defining qs := (1 − s)q0 + sq̃, xs := x(qs) the corresponding c-segment with respect to
ỹ, and q̄ = qs̄, note that Sỹ ∩ {q1 = b̄} contains q̄, and K0 contains x̄ := xs̄ and x0.
Since the corner K0 needs not intersect the support of |∂cu| (especially, when q0 is not
an interior point of spt |∂cu|), we shall need to cut a larger corner K1

0 as well, defined by
−Dyc(K1

0 , ỹ) := Sỹ ∩ {q ∈ U ỹ | q1 ≥ b̃}, which intersects Uλ at x̃. By tilting the supporting
function slightly, we shall now define sections Kε ⊂ K1

ε of u whose interiors include the
extreme point x0 and whose boundaries pass through x̄ and x̃ respectively, but which converge
to K0 and K1

0 respectively as ε → 0.
Indeed, set yε := ỹ + εê1 and observe

ms
ε(x) := −c(x, yε) + c(x, ỹ) + c(xs, yε) − c(xs, ỹ)

= ε〈−Dyc(x, ỹ) + Dyc(xs, ỹ), ê1〉 + o(ε)

= ε(〈−Dyc(x, ỹ), ê1〉 − (1 − s)b0 − sb̃) + o(ε) (8.1)

Taking s ∈ {s̄, 1} in this formula and ε > 0 shows the sections defined by

Kε := {x | u(x) ≤ u(x̄) − c(x, yε) + c(x̄, yε)},
K1

ε := {x | u(x) ≤ u(x̃) − c(x, yε) + c(x̃, yε)},

both include a neighbourhood of x0 but converge to K0 and K1
0 respectively as ε → 0.

We remark that there exist a priori no coordinates in which all set Kε are convex. However
for each fixed ε > 0, we can change coordinates so that both Kε and K1

ε become convex: use
yε to make the transformations

q := −Dyc(xε(q), yε),
c̃ε(q, y) := c(xε(q), y) − c(xε(q), yε),
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so that the functions

ũε(q) := u(xε(q)) + c(xε(q), yε) − u(x̄) − c(x̄, yε),

ũ1
ε(q) := u(xε(q)) + c(xε(q), yε) − u(x̃) − c(x̃, yε).

are convex on Uyε := Dyc(U, yε). Observe that, in these coordinates, Kε and K1
ε become

convex:

K̃ε := −Dyc(Kε, yε) = {q ∈ Uyε | ũε(q) ≤ 0},
K̃1

ε := −Dyc(K1
ε , yε) = {q ∈ Uyε | ũ1

ε(q) ≤ 0},

and either K̃ε ⊂ K̃1
ε or K̃1

ε ⊂ K̃ε since ũε(q) − ũ1
ε(q) = const. For ε > 0 small, the inclusion

must be the first of the two since the limits satisfy K̃0 ⊂ K̃1
0 and q̃ ∈ K̃1

0 \ K̃0.
In the new coordinates, our original point x̃ ∈ Uλ, the exposed point x0, and the c-convex

combination x̄ with respect to ỹ, correspond to

q̃ε := −Dyc(x̃, yε), q0
ε := −Dyc(x0, yε), q̄ε := −Dyc(x̄, yε).

Thanks to (ii), we have diam(K̃ε) ≤ ε′c for ε sufficiently small, so that the estimate of Lemma
7.9 applies. In these coordinates (chosen for each ε) we consider the parallel hyperplanes
Π+

ε 6= Π−
ε which support K̃ε ⊂ Uyε from opposite sides and which are orthogonal to the

segment joining q0
ε with q̄ε. Since limε→0 q0

ε − q̄ε = q0 − q̄ paralles the ê1 axis the limiting
hyperplanes Π±

0 = limε→0 Π±
ε must coincide with Π+

0 = {q ∈ TỹV | q1 = b0} and Π−
0 = {q ∈

TỹV | q1 = b̄}. Thus q0 ∈ Π+
0 and

dist(q0
ε , Π

+
ε )

|q0
ε − q̄ε|

→ 0 as ε → 0.

Observing that |q0
ε − q̄ε| is shorter than segment obtained intersecting K̃ε with the line

orthogonal to Π+
ε and passing through q0

ε ∈ int K̃ε, Lemma 7.9 combines with Kε ⊂ K1
ε and

|∂ c̃ε ũε|(Kε) ≤ Λγ−
c L n(Kε) from (4.1) and Corollary 4.4 to yield

|ũε(q0
ε)|n

Λγ−
c L n(K̃1

ε )2
→ 0 as ε → 0. (8.2)

On the other hand, x̄ ∈ S implies ũε(q0
ε) = −ms̄

ε(x
0), and x̃ ∈ S implies ũ1

ε(q
0
ε) = −m1

ε(x
0)

similarly. Thus (8.1) yields

ũε(q0
ε)

ũ1
ε(q0

ε)
=

ε(b0 − b̄) + o(ε)
ε(b0 − b̃) + o(ε)

→ s̄ as ε → 0. (8.3)

Our contradiction with (8.2)–(8.3) will be established by bounding the ratio |ũ1(q0
ε)|n/L n(K1

ε )2

away from zero.
Recall that

b0 = 〈−Dyc(x0, ỹ), ê1〉 = max{q1 | q ∈ −Dyc(K0, ỹ)}) > b̃
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and u(x)− u(x̃) ≥ −c(x, ỹ) + c(x̃, ỹ) with equality at x0. From the convergence of K1
ε to K1

0

and the asymptotic behaviour (8.1) of m1
ε(x) we get

ũ1
ε(q

0
ε)

infK̃1
ε
ũ1

ε

=
−u(x0) − c(x0, yε) + u(x̃) + c(x̃, yε)

supq∈K̃1
ε
[−u(x(q)) − c(x(q), yε) + u(x̃) + c(x̃, yε)]

≥ −c(x0, yε) + c(x̃, yε) + c(x0, ỹ) − c(x̃, ỹ)
supx∈K1

ε
[−c(x, yε) + c(x̃, yε) + c(x, ỹ) − c(x̃, ỹ)]

≥ ε(〈−Dyc(x0, ỹ), e1〉 − b̃) + o(ε)
ε(max{q1 | q ∈ −Dyc(K1

ε , ỹ)} − b̃) + o(ε)

≥ 1
2

(8.4)

for ε sufficiently small. This shows ũ1(q0
ε) is close to the minimum value of ũ1

ε. We would like
to appeal to Lemma 7.2 to conclude the proof, but are unable to do so since we only have
bounds |∂cu| ∈ [λ, 1/λ] on the potentially small intersection of Uλ with K1

ε . However, this
intersection occupies a stable fraction of K1

ε as ε → 0, which we shall prove as in [8, Lemma
3].

Since K1
ε converges to K1

0 for sufficiently small ε, observe that K1
ε is uniformly bounded.

Therefore the affine transformation (L1
ε)

−1 that sends K̃1
ε to B1 ⊂ K̃1,∗

ε ⊂ Bn as in Lemma
7.1 is an expansion, i.e. |(L1

ε)
−1q−(L1

ε)
−1q′| ≥ C0|q−q′|, with a constant C0 > 0 independent

of ε. Since x̃ is an interior point of Uλ, B2β−
c δ/C0

(x̃) ⊂ Uλ for sufficiently small δ > 0, hence
B2δ/C0

(q̃ε) ⊂ Uλ
yε

with β−
c from (4.2). Defining Uλ

yε
:= −Dyc(Uλ, yε), we have

Uλ,∗
yε

:= (L1
ε)

−1(Uλ
yε

) ⊃ B2δ(q̃∗ε).

Reducing δ if necessary to ensure δ < 1, define (to apply Lemma 7.2 later)

K̃1,∗
ε,δ := (1 − δ)K̃1,∗

ε .

(As in Lemma 7.2, (1 − δ)K̃1,∗
ε denotes the dilation of K̃1,∗

ε of a factor (1 − δ) with respect
to the origin.) Since K̃1,∗

ε is convex, it contains the convex hull of B1 ∪ {q̃∗ε}, and so

L n(B2δ(q̃∗ε) ∩ K̃1,∗
ε,δ ) ≥ Cδn.

for some constant C = C(n) > 0 depending on dimension only. Letting K̃1
ε,δ := L1

ε(K̃
1,∗
ε,δ )

this implies
L n(Uλ

yε
∩ K̃1

ε,δ) ≥ C|det L1
ε|δn ∼ L n(K̃1

ε )δn.

Recalling that & and . denote inequalities which hold up to multiplicative constants de-
pending on n, λ and γ+

c γ+
c /λ, Proposition 6.2 combines with this estimate to yield

|∂ũ1
ε|(K̃1

ε,δ) & |∂ c̃ε ũ1
ε|(K̃1

ε,δ) & L n(K1
ε )δn,

31



where (4.1) and Corollary 4.4 have been used. Finally, since the conclusion of Lemma 7.2
holds with or without stars in light of (4.7)–(4.9), taking t = (1 − δ) in (7.1) yields

| infK̃1
ε
ũ1

ε|n

L n(K̃1
ε )2

& δ2n.

Since δ > 0 is independent of ε this contradicts (8.2)–(8.3) to complete the proof.

Remark 8.2. As can be easily seen from the proof, one can actually show that if Uλ = U
and S is not a singleton, then Sỹ has no exposed points in the interior of Uỹ. Indeed, if by
contradiction there exists q0 an exposed point of Sỹ belonging to the interior of Uỹ, we can
choose a point q̃ ∈ Sỹ in the interior of Uỹ = Uλ

ỹ such that the segment q0 − q̃ is orthogonal
to a hyperplane supporting Sỹ at q0. Then it can immediately checked that the above proof
(which could even be simplified in this particular case) shows that such a point q0 cannot
exist.

9 Continuity and injectivity of optimal maps

The first theorem below combines results of Sections 5 and 8 to deduce strict c-convexity of
the c-potential for an optimal map, if its target is strongly c-convex. This strict c-convexity
— which is equivalent to injectivity of the map — will then be combined with an adapta-
tion of Caffarelli’s argument [5, Corollary 1] to obtain interior continuity of the map — or
equivalently C1-regularity of its c-potential function — for non-negatively cross-curved costs,
yielding the concluding theorem of the paper.

Theorem 9.1 (Injectivity of optimal maps to a strongly c-convex target). Let c satisfy (B0)–
(B3) and (B2u). If u is a c-convex solution of (4.1) on Uλ ⊂ U open, then u is strictly
c-convex on Uλ, meaning ∂cu(x) and ∂cu(x̃) are disjoint whenever x, x̃ ∈ Uλ are distinct.

Proof. Suppose by contradiction that ỹ ∈ ∂cu(x) ∩ ∂cu(x̃) for two distinct points x, x̃ ∈ Uλ,
and set S = ∂c∗uc∗(ỹ). According to Theorem 8.1, the set S intersects the boundary of U
at a point x̄ ∈ ∂U ∩ ∂c∗uc∗(ỹ). Since (4.1) asserts λ ≤ |∂cu| on Uλ and |∂cu| ≤ Λ on U ,
Theorem 5.1(a) yields ỹ ∈ V (since x, x̃ ∈ Uλ), and hence x̄ ∈ U by Theorem 5.1(b). This
contradicts x̄ ∈ ∂U and proves the theorem.

Theorem 9.2 (Continuity of optimal maps to strongly c-convex targets). Let c satisfy (B0)–
(B3) and (B2u). If u is a c-convex solution of (4.1) on Uλ ⊂ U open, then u is continuously
differentiable inside Uλ.

Proof. Recalling that c-convexity implies semiconvexity, all we need to show is that the c-
subdifferential ∂cu(x̃) of u at every point x̃ ∈ Uλ is a singleton.

Assume by contradiction that is not. As ∂cu(x̃) is compact, one can find a point y0 in
the set ∂cu(x̃) such that −Dxc(x̃, y0) ∈ ∂u(x̃) is an exposed point of the compact convex
set ∂u(x̃). Similarly to Definition 4.1, we transform (x, u) 7−→ (q, ũ) with respect to y0, i.e.
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0

v ∂ũ(0)

Figure 6: v ∈ ∂ũ(0) and the hyperplane orthogonal to v is supporting ∂ũ(0) at 0.

0

v

ε

ũ

∼ ε∼ ε/o(1)

Figure 7: Since the hyperplane orthogonal to v is supporting ∂ũ(0) at 0, we have ũ(−tv) = o(t) for
t ≥ 0. Moreover, ũ grows at least linearly in the direction of v.

we consider the transformation q ∈ Uy0 7−→ x(q) ∈ U , defined on Uy0 = −Dyc(U, y0) +
Dyc(x̃, y0) ⊂ T ∗

y0
V by the relation

−Dyc(x(q), y0) + Dyc(x̃, y0) = q,

and the modified cost function c̃(q, y) := c(x(q), y) − c(x(q), y0) on Uy0 × V , for which the
c̃-convex potential function q ∈ Uy0 7−→ ũ(q) := u(x(q)) − u(x̃) + c(x(q), y0) − c(x̃, y0) is
convex. We observe that c̃(q, y0) ≡ 0 for all q, the point x̃ is sent to 0, ũ ≥ ũ(0) = 0, and
ũ is strictly convex thanks to Theorem 9.1. Moreover, since −Dxc(x̃, y0) ∈ ∂u(x̃) was an
exposed point of ∂u(x̃), 0 = −Dq c̃(0, y0) is an exposed point of ∂ũ(0). Hence, we can find a
vector v ∈ ∂ũ(0) \ {0} such that the hyperplane orthogonal to v is a supporting hyperplane
for ∂ũ(0) at 0. Thanks to the convexity of ũ, this implies that

ũ(−tv) = o(t) for t ≥ 0, ũ(q) ≥ 〈v, q〉 + ũ(0) for all q ∈ Uy0 . (9.1)

Let us now consider the section Kε := {ũ ≤ ε}. Since ũ(0) = 0, ũ ≥ 0 and ũ is strictly
convex, Kε → {0} as ε → 0. Thus by (9.1) it is easily seen that for ε sufficiently small the
following hold:

Kε ⊂ {q | 〈q, v〉 ≤ ε}, −α(ε)v ∈ Kε,
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where α(ε) > 0 is a positive constant depending on ε and such that α(ε)/ε → +∞ as ε → 0.
Since 0 is the minimum point of ũ, this immediately implies that one between our Alexandrov
estimates (7.10) or (7.11) must be violated by ũ inside Kε for ε sufficiently small, which is
the desired contradiction.
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