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Over the past decade, the aggregation equation has become a popular

area of research within mathematics. While much of this interest has been

driven by the equation’s scientific applications, the equation also raises sig-

nificant mathematical questions. Steady states of the aggregation equation

are known to correspond to critical points — including global and local

minima — of an associated interaction energy. In this thesis, we partially

classify global energy minimizers, when working with the aggregation

equation endowed with a specific class of ‘power-law’ potentials. We then

explain this partial classification, as well as its limitations.

After this, we follow in the footsteps of Simione’s recent PhD thesis

to query the dynamics of solutions to the aggregation equation and,

in particular, the behaviour of solutions which begin ‘close to’ a global

minimizer of the interaction energy. In doing so, we outline a promising

future avenue of research.
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1
S E T T I N G : T H E
A G G R E G AT I O N E Q UAT I O N
A N D B A S I C O P T I M A L
T R A N S P O RT

At its core, the purpose of this thesis is to explain some crucial methods
of studying the aggregation equation, (1.2). To do so at an appropriate
level of detail, we use this chapter to build up some necessary background.
We begin by introducing a few basic concepts in optimal transportation,
a theory which provides us with invaluable perspectives and tools for
studying spaces of probability measures. After this, we introduce the
aggregation equation, our key object of study, and introduce the reader
to some of that equation’s properties and applications. We then discuss
the interaction energy associated with the aggregation equation, especially
when equipped with what is termed a ‘power-law potential.’ After this, we
explicitly define two classes of probability measures — simplicial measures,
and spherical shell measures — which are crucially important to the work
in Chapter 2. To cap off this introductory chapter, we derive an Euler-
Lagrange equation satisfied by any global minimizer of the interaction
energy within the space of probability measures.

The second purpose of this chapter is to serve as an informal literature
review, wherein we provide the reader with an overview of the work
which led up to and, in many ways, inspired the present work. Thus, upon
reading this chapter, a reader should have a full picture of the context for
the work done in later chapters.

1.1 preliminaries on optimal transportation

In this section, we introduce the reader to some basic preliminaries on
optimal transportation which will be necessary throughout this thesis. This
is not by any means meant to provide a complete introduction to the field,
and for a quick and understandable introduction, we refer readers to [33].
Additionally, for readers who wish to learn about the discipline in more
depth, an excellent general reference for optimal transport is provided in
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1.1 preliminaries on optimal transportation 2

[37] — in fact, the definitions in this section have generally been either
sourced from or cross-referenced with that text.

We begin with some notation on spaces of probability measures.

Definition 1.1 (Spaces of probability measures). We let P(Rn) denote the
space of Borel probability measures on Rn. For 0 < p < ∞, we define

Pp(R
n) :=

{
µ ∈ P(Rn) |

∫
|x|pdµ(x) < ∞

}
. (1.1)

to be the subspace of probability measures with finite pth moment. In the
limiting case, as p→ ∞, we define

P∞(R
n) := {µ ∈ P(Rn) | spt µ is bounded}.

Each of these spaces of probability measures comes endowed with
a metric structure which, as we will see, is provided by a Wasserstein
distance. To study these distances in their natural environment, we will
need to first define pushforward measures and transport plans:

Definition 1.2 (Pushforward measure). Given a measure µ on the space
X, and a measurable function F : X → Y, we define a probability measure
on Y, called pushforward, F#µ, of µ by F, by

F#µ(A) = µ(F−1(A))

for measurable subsets A ⊂ Y.

Definition 1.3 (Transport plans). We define the space Γ(µ, ν) of transport
plans between the measures µ, ν ∈ P(Rn) by

Γ(µ, ν) := {γ ∈ P(R2n)|π1#γ = µ and π2#γ = ν}.

Here, we think of R2n = Rn ×Rn, and of πi as the projection map onto
the ith copy of Rn.

With these definitions out of the way, we now define the Wasserstein dp

distance

Definition 1.4 (Kantorovich-Rubenstein-Wasserstein distance). Fix p ∈
[1, ∞] and let µ, ν ∈ Pp(Rn). We define

dp(µ, ν) := inf
γ∈Γ(µ,ν)

‖x− y‖Lp(dγ) = inf
γ∈Γ(µ,ν)

[∫
Rn×Rn

|x− y|pdγ(x, y)
]1/p

,

where the last identity only holds for p < ∞.
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Lemma 1.5. For any p ∈ [1, ∞], dp is a metric on Pp(Rn).

Proof. Symmetry and the fact that dp(µ, ν) = 0 if and only if µ = ν are
immediate from the definition of the Wasserstein metric. For the proof that
dp satisfies the triangle inequality, we refer the reader to Section 5.1 of [37]
in the 1 ≤ p < ∞ case and Section 5.5.1 of [37] in the p = ∞ case.

Interestingly enough, the d∞ distance lends itself to a rather simple
heuristic interpretation — d∞(µ, ν) can be thought of as the maximum
amount of distance which a non-negligible amount of mass is required
to move in order to transport the mass distribution represented by the
measure µ to the mass distribution represented by ν. In contrast, for p < ∞,
while dp(µ, ν) can be interpreted as the lowest cost to transport µ to ν

subject to the cost function c(x, y) = |x − y|p, dp(µ, ν) does not admit a
simple heuristic interpretation.

We will later consider an energy functional on P(Rn) which is translation-
invariant. As such, we often find it convenient to work exclusively with
probability measures whose barycentres lie at the origin. We define the
space of such measures as follows:

Definition 1.6 (Centred Probability Measures). We define the space, P0(Rn),
of centred probability measures on Rn by

P0(R
n) :=

{
µ ∈ P(Rn) |

∫
xdµ(x) = 0

}
.

Finally, although we suspect that the notion of convolution of measures
and functions is known to most readers, we provide the definition for
reference. A more thorough discussion can be found in [20, Chapter 8.6].

Definition 1.7 (Convolutions of Measures and Functions). Let p ∈ [1, ∞],
let f ∈ Lp(Rn), and let µ be a signed measure. Then we define the
convolution f ∗ µ of f and µ by

( f ∗ µ)(x) =
∫

Rn
f (x− y)dµ(y).

Remark 1.8. As seen in [20, Chapter 8.6], the assumptions in the preceding
definition ensure that f ∗ µ is an Lp function.

1.2 the aggregation equation

At this point, we introduce one of the key players in this thesis, the
aggregation equation, which is given by:

∂µ

∂t
= ∇ · (µ∇(W ∗ µ)) (1.2)
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For the aggregation equation, and indeed throughout this thesis, we
assume that µ ∈ P(Rn). In the specific case of the aggregation equation,
we think of µ = µ(t) as being a t-parametrized family of such measures,
lying in P(Rn) × [0, ∞). We call such a parametrized family of Borel
measures a probability curve [8]. We typically interpret Borel probability
measures as mass distributions, and the parameter t as time. Under this
viewpoint, the aggregation equation describes the time evolution of a mass
distribution, hinting that it is useful to study the equation and its solutions
through optimal transport theory and techniques.

On the other hand, W is simply a Borel-measurable function on Rn. We
tend to treat it as a parameter of the aggregation equation, and the diversity
of choices for W gives rise to a vast landscape of possible behaviours for
solutions to the aggregation equation, which we will discuss in the next
section. Depending on the application in the literature, W may be required
to be radial or sufficiently regular [4].

It is often interesting to study the steady-states of the aggregation
equation — that is, probability measures for which ∂µ

∂t = ∇ · (µ∇W ∗ µ) =

0. These steady states often act as attractors for the dynamics of the
aggregation equation — if µ is a steady state, and µ(0) is ‘close’ to µ,
in a sense which is to be made precise later with appropriate choice of
Wasserstein distance, it is often possible to quantify how ‘close’ µ(t) will be
to µ for later times t. In some instances it can be shown that µ(t) converges
to µ at an exponential rate [39], whereas in others all we can say is that
µ(t) cannot stray too far away from the steady state [14].

1.3 applications of the aggregation equation in the sci-
ences

In this section, we introduce the reader to a variety of applications of
the aggregation equation in the physical and social sciences. Many of
the most interesting applications arise through biological phenomena,
but we also discuss applications in physics and game theory. The aim
of this section is to convince readers outside of mathematics that the
study of the aggregation equation is a valuable and interesting pursuit,
with much to say about the sciences. On the other hand, readers who are
already satisfied with the aggregation equation’s intrinsic mathematical
significance and value may freely skip this section without compromising
their understanding of the remainder of this thesis.

Depending on the choice of potential, the aggregation equation has
many applications in the natural and social sciences. In particular, this
equation has often been applied to the swarming, schooling, and flock-
ing behaviours of insects, fish, and birds, respectively. Heuristically, the
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aggregation equation (equipped with an attractive-repulsive potential W)
provides a plausible model of these phenomena for the following reasons.
First, such organisms have biological incentives to remain close together
- such as safety from predators - balanced with very strong biological
incentives to remain a safe distance apart - in particular, movement imped-
iments. Insect swarming is a particularly interesting example of this, as
it can be easily modelled through both the two-dimensional aggregation
equation (as in the case of ants, roaches, or other flightless insects) or
by the three-dimensional aggregation equation (for flying insects such as
locusts) [41]. As Topaz and Bertozzi discuss in the introduction of [41],
there are two methods of modelling large swarms. The first such method
represents each insect as a Dirac mass, which interacts pairwise with other
insect Dirac masses through its senses. Of course, such models become
complicated when working with a large number of insects, meaning that
modelling large numbers of insects through a continuous density function
often yields better results. The models involving the aggregation equation
which we have just outlined are considered to be some of the simplest
models which still generate the emergent phenomena found so often in
nature [29]. We refer readers to the text and references of [3, 29] for a full
discussion of the applications of the aggregation equation in modelling
macroscopic organisms.

Of course, microscopic organisms such as bacteria also have the ability
to interact with each other through releasing chemicals, in a process known
as chemotaxis [16, 26]. Thus, the heuristic considerations motivating the
application of the aggregation equation to macroscopic life also apply
to bacteria, and such considerations are formalized through the Patlak-
Keller-Segel model, which was pioneered in [28, 36]. There are well-known
examples of both attractive and repulsive chemotaxis in both microorgan-
isms and their macroscopic counterparts [26] and this, combined with
physical constraints such as overcrowding, means that the aggregation
equation is well-suited to describe the behaviour of such organisms. For
example, under certain regimes, the aggregation equation has been used
to model the process of chemotactic collapse, whereby microorganisms
interacting via chemotaxis converge to a single point [24].

Another interesting application of the aggregation equation comes in
the domain of game theory and opinion formation. For example, by using
a potential which is attractive at short distances and repulsive at long
distances, we can model political party formation. That is, imagine that
people start out with a broad range of opinions, say, equidistributed over a
metric space such as R. Allowing people’s opinions to evolve according to
the aggregation equation, we find that people who start with rather similar
opinions wind up converging to a partial consensus — whereas people
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who are outside of this basin of ideological attraction will diverge from this
partial consensus. In effect, depending on the shape of a potential, people
with a wide range of initial opinions can wind up coming to a consensus, or
coalescing into a number of ideologically opposed camps [23]. Conversely,
Robert McCann has informally suggested that the aggregation equation,
when equipped with a potential which is repulsive at short distances and
attractive at long distances, could be used to model academic integrity
offences. Imagine a Discord channel full of students who are all asked
to complete a specific math problem, and who are all aware of each
other’s solutions. In this situation, there is an attractive force acting to
make students’ assignments somewhat similar, since no student wants to
submit an assignment which is outright incorrect, or radically different
from the others’ assignments. On the other hand, if any pair of students
submits overly similar assignments, then this will surely make the grader
suspicious. Thus, in this sense, assignments are both attracted to and
repelled from each other.

Of course, the examples provided from above are far from the only
applications of the aggregation equation and, as such, we will briefly
provide references for some additional selected applications. To begin,
most readers of this thesis will also have an application of the aggregation
equation on hand — quite literally, as the equation has been used to model
fingerprint formation during embryonic development [17]! Additionally,
the aggregation equation has been used to model vortex density evolution
in superconductors, as appears in [2], and the references of [2, 3, 12]. The
aggregation equation has also shown to be a physically plausible model for
clumping behaviour of particles, as discussed in [25]. The final interesting
application of the aggregation equation to note comes from the study of
granular media, which is treated in detail in [9, 10].

1.4 the interaction energy

One of the most fruitful ways in which we study the aggregation equation
and its steady states is through its interaction energy, which is given by

EW [µ] =
1
2

∫∫
Rn×Rn

W(x− y)dµ(x)dµ(y). (1.3)

The relationship between the aggregation equation and its interaction
energy can be viewed through a number of lenses. First, the interaction
energy is a Lyapunov functional for the aggregation equation [9], meaning
that, if µ(t) is a probability curve which solves the aggregation equation,
then f (t) := EW [µ(t)] is non-increasing.
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Another perspective on the relationship between the aggregation equa-
tion and its interaction energy comes from the theory of Wasserstein
gradient flows on spaces of probability measures, which is explained
quickly and readably in [37, Chapter 8], and in full detail in [1]. In par-
ticular, the aggregation equation can be thought of as the Wasserstein d2

gradient flow of EW , given that W is balanced (i.e. W(x) = W(−x) for all
x ∈ Rn) [37, Chapter 8].

This interaction energy also provides us with a new interpretation of
the interaction potential W, in the case that W is balanced with W(0) = 0.
Namely, W(x0 − x1) can be viewed as twice the interaction energy of two-
equal mass particles at positions x0 and x1. To see why, we use Fubini’s
Theorem and symmetry to deduce that

2EW

[
1
2
(δx0 + δx1)

]
=

1
2

∫∫
Rn×Rn

W(x− y)dδx0(x)dδx0(y)

+
∫∫

Rn×Rn
W(x− y)dδx0(x)dδx1(y)

+
1
2

∫∫
Rn×Rn

W(x− y)dδx1(x)dδx1(y)

= W(x0 − x1),

as desired.
We often assume that the potential W is radial or, in other words, that

there exists some function w : [0, ∞) → R such that W(x) = w(|x|). In
most applications, this is not an unreasonable assumption to make, given
that the attractive and repulsive forces between any two particles are often
taken to depend only on the distance between the two objects. However, in
the Appendix, we introduce a rudimentary theory of k−welled potentials
which might be robust enough to allow for anisotropic, or non-radial,
potentials.

1.5 power-law potentials and regimes

As mentioned earlier, the qualitative behaviour of solutions of (1.2) is
governed by the choice of potential W. Perhaps the most widely-studied
class of such potentials are the power-law potentials, which take the form

Wα,β(x) =
|x|α

α
− |x|

β

β
, (1.4)
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where −n < β < α < ∞, with the convention that the terms of the form
|x|0

0 are interpreted as log |x| whenever they appear [6]. While, depending
on the values of α and β, these potentials can give rise to a wide range of
behaviours, the requirement that α > β > 0 ensures that such potentials
are negative near the origin and positive for large enough |x|. We notice
that these power law-potentials are radially symmetric since, if we define
the function wα,β : (0, ∞)→ R by

wα,β(r) =
rα

α
− rβ

β
,

then we recognize that

Wα,β(x) = wα,β(|x|).

In many relevant cases, this allows us to study the aggregation equation
with potential Wα,β by studying the single variable function wα,β. As such,
we now point out some basic properties of wα,β. By factoring out rβ, and
setting wα,β(r) = 0, we can see that, if α > β > 0, wα,β(r) has precisely

two zeroes on [0, ∞), one at r = 0 and the other given by zα,β := ( α
β )

1
α−β .

Looking at derivatives, we see that

w′α,β(r) = rα−1 − rβ−1

is zero only at r = 1 and r = 0 (provided that β > 1). Combining this with
our knowledge of the end behaviour of wα,β shows that wα,β has a unique
minimum at r = 1.

Power law potentials tend to be simple enough that it is feasible to ana-
lyze their behaviour, yet complex enough that, depending on the attractive
exponent α and repulsive exponent β, steady states of the aggregation
equation with W = Wα,β can have radically different appearances as is
seen, for example, in [4, 13, 14, 15, 19, 31, 41, 42]. For a full picture, we
direct the reader to the references of [29].

Throughout the literature, there has been a consistent distinction made
between the mildly repulsive regime where β > 2 and the strongly re-
pulsive regime where β < 2, separated by the centrifugal line β = 2
[31]. While it is possible to make further distinctions than this, this one
is particularly relevant. This is because it has been known since the work
of Balagué, Carrillo, Laurent, and Raoul that the supports of energy min-
imizers in the mildly repulsive regime have Hausdorff dimension zero,
whereas supports of energy minimizers in the strongly repulsive regime
have nonzero Hausdorff measure [4]. In effect, the line β = 2 represents
a phase transition, from the strongly repulsive regime where the repul-
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sive potential is, as the name suggests, strong enough to counteract the
attractive potential and prevent minimizers from concentrating on sets
of Hausdorff dimension zero, and the mildly repulsive regime where the
repulsive potential is not strong enough to do so. We should also note that,
in the case of power-law potentials, numerical experiments have failed
to find evidence of energy minimizers whose support has non-integer
Hausdorff dimension [4]. Moreover, a recent preprint by Carrillo and Shu
partially validates these numerics by showing that, in one dimension,
the support of any energy minimizer necessarily has integer Hausdorff
dimension (i.e. Hausdorff dimension 0 or 1), although for more exotic
potentials, it is possible for energy minimizers to be supported on a set of
fractal dimension [11].

The distinction between the mildly and strongly repulsive regimes was
further strengthened by Carrillo, Figalli, and Patacchini, who showed
that, in the mildly repulsive regime, the support of any global energy
minimizer must have finite cardinality [8]. Following up on this work, Lim
and McCann used Γ-convergence to show that the unit simplex, a specific
measure with only a finite number of points in its support, is the unique
minimizer of EWα,β [·] for large enough α in the mildly repulsive regime
[31]. Recently, Lim, McCann, and myself were able to show that the unit
simplex is indeed the unique energy minimizer on all but a small sliver of
the mildly-repulsive regime [15], and this work features prominently in
Chapter 2 of the present thesis. To prepare for this, we will define simplices
and discuss their properties in the following section.

One outstanding consideration, however, is which the regime the cen-
trifugal line should be considered as a part of. Without going into too
much detail, and using the classification based on the Hausdorff dimension
of the support of the global minimizer as in [4], my recent work with Lim
and McCann indicates that, if n ≥ 2, energy minimizers have Hausdorff
dimension 0 for (α, β) ∈ (4, ∞)× {2} and Hausdorff dimension n− 1 for
(α, β) ∈ (2, 4)× {2} [14, 15]. Due to a uniqueness failure at (α, β) = (4, 2),
energy minimizers of EW4,2 can have Hausdorff dimension 0 or n− 1, or
possibly Hausdorff dimensions in between. This indicates that parts of
the centrifugal line are perhaps most at home with the mildly repulsive
regime, and other parts act more similarly to the strongly repulsive regime.

1.6 simplices and spherical shells

One key class of measures which appears in the following work is the
simplicial measures, i.e. those which distribute their mass uniformly over
the vertices of a regular simplex. More precisely,
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Definition 1.9 (Unit Simplex). A unit k-simplex (where k ≤ n) is any
collection of k + 1 points {x0, ..., xk} such that |xi − xj| = 1− δij for all
i, j = 0, ..., k.

Notice that the energy (1.3) is translation invariant. As such, throughout
this paper, we will assume any simplices which appear have barycentre at
the origin, such that they lie in P0(Rn) as discussed in Definition 1.6. In
this case, each point of the simplex is found at distance

rn :=
√

n
2n + 2

from the origin [30].
Additionally, for computational purposes, it is often convenient to work

with one of two canonical versions of the unit n-simplex, as defined below
in definitions (1.10) and (1.12):

Definition 1.10 (Canonical unit n-simplex in Rn). The canonical unit sim-
plex in R is given by the set of points {x1

0, x1
1}, where x1

0 := 1
2 and x1

1 = − 1
2 .

The canonical unit simplex in Rn for n ≥ 2 is given by the set of points
{xn

0 , ..., xn
n} where

xn
0 = rne1 and xn

i = − rn

n
e1 +

n−1

∑
j=1

(xn−1
i−1 · e

n−1
j )en

j+1 for 1 ≤ i ≤ n.

Here, {en
j }n

j=1 is the standard orthonormal basis for Rn, and likewise for

{en−1
j }n−1

j=1 .

Example 1.11. The canonical unit simplex in R2 has vertices given by
( 1√

3
, 0), (− 1

2
√

3
, 1

2 ), and (− 1
2
√

3
,− 1

2 ). In R3, these vertices are given by

(
√

3
8 , 0, 0), (− 1√

24
, 1√

3
, 0), (− 1√

24
,− 1

2
√

3
, 1

2 ), and (− 1√
24

,− 1
2
√

3
,− 1

2 ). This choice
of canonical unit simplex in n dimensions is often useful in calculations,
as it maximizes the number of zeroes present in the expression of each
vertex, while still working within the ambient space Rn.

Of course, we can express the unit n−simplex in an even simpler form
by considering it as a subset of Rn+1, as is done in [31]:

Definition 1.12 (Canonical unit n-simplex in Rn+1). The vertices of the
unit n−simplex in Rn+1 are given by {x0, ..., xn}, where xi =

1√
2
en+1

i+1 .

This definition is also often very useful for calculations, provided that
those calculations are unaffected by working in a higher-dimensional
ambient space.
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The first indication that simplices would be relevant to the study of the
aggregation equation may have come from the numerical experiments
of Sun, Uminsky, and Bertozzi [40]. These numerics were validated by
some recent work of Lim and McCann in [31]. In that paper, the authors
first show that, for any β ≥ 2, the simplex minimizes the interaction
energy at the hard confinement limit, α = +∞ (where the potential |x|

∞

∞

is interpreted as the pointwise limit as α→ ∞ of |x|
α

α , i.e. 0 if |x| ≤ 1 and
∞ if |x| > 1). As the name suggests, working with this limit ensures that
interaction energy minimizers µ of E∞,β are confined by a diameter bound
on their suppports, which requires that |x− y| ≤ 1 for all points x, y ∈spt
µ. Lim and McCann show that this effect, coupled with the still extant
repulsive potential |x|

β

β ensures that the simplex uniquely minimizes E∞,β,
up to translations and rotations.

In the same paper, Lim and McCann build on their work at the hard
confinement limit by using techniques of gamma convergence to work
perturbatively around the hard confinement limit. In doing so, they show
that, for any β ≥ 2, there exists some number α∆(β) such that the simplex
uniquely minimizes Eα,β for all α > α∆(β). As the notation suggests, α∆(β)

can be thought of as a function of β, known as the threshold function.
For the most part, Lim and McCann left the behaviour of the threshold
function as an open question, only providing the explicit lower bound
α∆(2) ≥ 4 [31]. As a preview of what follows, in my recent joint work with
Lim and McCann [14, 15], we have explicitly calculated α∆(2) = 4∗, where

4∗ =

{
3 if n = 1

4 if n ≥ 2
.

In particular, we must treat the case n = 1 separately due to the fact
that, in R, there is no distinction between the uniform distribution over
the unit 1-simplex and the uniform distribution over a spherical shell
of radius 1

2 . Moreover, we have shown that there exists some β ≤ 4∗

such that α∆(β) = β for β ≥ β. For β ∈ (2, β) we also provide some
reasonably strong estimates on α∆(β) and, in general, we derive some
properties of this threshold function. All of this work is either reproduced
or summarized in Chapter 2.

1.7 the euler-lagrange equation

We now derive the Euler-Lagrange equation for the interaction energy.
Our derivation is analogous to the standard derivation found in Chapter
8 of [18], albeit with some tweaks, as generously suggested by Robert
McCann and inspired by [22], to account for the fact that we are applying
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variational techniques to a functional which takes arguments from P(Rn),
rather than from a function space.

Proposition 1.13. Let µ be a global minimizer for (1.3) in P(Rn), where W ∈
L1

loc(dµ) is balanced in the sense that W(x) = W(−x). Then

µ ∗W(x) ≥ 2EW [µ], with equality µ− a.e.. (1.5)

Proof. We begin by fixing p ∈ spt µ, and r > 0. Since p ∈ spt µ, we have
that µ(Br(p)) 6= 0, and hence we may define a probability measure µp,r by

µp,r(A) =
µ(A ∩ Br(p))

µ(Br(p))
.

In turn, for any q ∈ Rn, we can define the a signed measure ρp,q,r by

ρp,q,r = µ(Br(p))(δq − µp,r),

noting that ρp,q,r(Rn) = 0, and moreover that µ + tρp,q,r is a probability
measure for any t ∈ [0, 1].

Thus, we consider the variation of EW in the direction of ρp,q,r. That is,
we consider the function given by

f (t) := EW [µ + tρp,q,r].

As we assumed that µ is a global minimizer of EW [·] in P(Rn), and as
µ + tρp,q,r ∈ P(Rn) for t ∈ [0, 1], we may deduce that f ′(0) ≥ 0, where
f ′(0) is interpreted as the right-sided derivative. In other words,

lim
t→0+

f (t)− f (0)
t

≥ 0 (1.6)

Notice that the condition in Equation (1.6) differs from the equivalent
condition in Evans’ standard derivation of the Euler-Lagrange equation
[18, Chapter 8] because µ + tρp,q,r is not, in general a probability measure
for t < 0, with the only exception occurring when µ({p}) > 0. This means
that, while µ+ tρp,q,r is a well-defined path in the space of signed measures
M(Rn), and although we can easily extend EW along this path such that
f is differentiable on R, the path, in general, exits P(Rn) for negative t.
Thus, since we are only concerned with minimizing EW over P(Rn), and
the above discussion shows that it is possible for µ to be a minimizer with
f ′(0) > 0, we need to allow for cases of inequality in Equation (1.6). With
this distinction covered, we may directly compute that:
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2EW [µ + tρp,q,r] =
∫∫

Rn×Rn
W(x− y)dµ(x)dµ(y)

+ 2t
∫∫

Rn×Rn
W(x− y)dρp,q,r(x)dµ(y)

+ t2
∫∫

Rn×Rn
W(x− y)dρp,q,r(x)dρp,q,r(y),

and hence

0 ≤ f ′(0) = 2
∫∫

Rn×Rn
W(x− y)dµ(y)dρp,q,r(x)

=
∫

Rn
µ ∗W(x)dρp,q,r(x)

= µ(Br(p))
[

µ ∗W(q)− 1
µ(Br(p))

∫
Br(p)

µ ∗W(x)dµ(x)
]

.

Rearranging, we deduce that

c :=
1

µ(Br(p))

∫
Br(p)

µ ∗W(x)dµ(x) ≤ µ ∗W(q) (1.7)

for our fixed p ∈ spt µ and r > 0, and for any q ∈ Rn. Averaging the
inequality (1.7) over Br(p) with respect to dµ(q) yields the same quantity,
c, on both sides, and hence we can conclude that (1.7) is saturated for
µ−a.e. q ∈ Br(p). As r is arbitrary, we may take r → ∞ to see that
µ ∗W(x) = c for µ-a.e. x ∈ Rn.

To conclude, we compute the value of c. Since µ ∗W(x) = c for µ-a.e. x,
we find that

2EW [µ] =
∫

Rn
µ ∗W(x)dµ(x)

=
∫

Rn
cdµ(x)

= c,

finishing the proof.



2
G L O B A L M I N I M I Z E R S O F
T H E I N T E R A C T I O N E N E R G Y
I N T H E M I L D LY R E P U L S I V E
R E G I M E

In this chapter of the thesis, I will discuss some recent joint work with
Tongseok Lim and Robert McCann on the global minimizers of the in-
teraction energy (1.3) for the mildly repulsive regime α > β > 2 and its
lower boundary α > β = 2 [14, 15]. The primary goal of this chapter is
to provide readers with a state-of-the-art view of what is known about
minimizers of the interaction energy in the mildly repulsive regime.

In Section 2.1, I state some of our key results — in particular, the
classification of minimizers on the centripetal line, and the northeast
comparison principle. The northeast comparison principle is a powerful
tool, which states that, if the unit n-simplex minimizes Eα0,β0 for some pair
(α0, β0), it minimizes EWα,β for all points (α, β) to the ‘northeast’ of (α0, β0),
in a sense to be defined later in this section. We conclude Section 2.1 by
showing that lower-dimensional simplices are saddle points of EWα,β with
respect to the Wasserstein dp metric, for any p ∈ [1, ∞].

Next, in Section 2.2, we introduce the threshold function α∆n(β), which
has the key property that, for all α > α∆n(β), the unit n-simplex is the
unique minimizer of EWα,β . We then derive a dimension-dependent lower
bound and a dimension-independent upper bound for α∆n , and show that,
as the dimension n tends to ∞, the lower bound tends to the upper bound
— meaning that, when working in high-dimensional spaces, we have a very
good hold on the behaviour of α∆n .

Finally, Section 2.3 serves as a discussion, wherein we speculate about
how to improve the bounds found in Section 2.2, and provide numerical
evidence supporting this speculation.

2.1 minmizers on the centrifugal line (n ≥ 2)

In this section, we first give a complete characterization of minimizers
of EWα,β along the centrifugal line β = 2, provided that n ≥ 2. Then we

14
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introduce the northeast comparison principle, which states that, if EWα,β

is (possibly non-uniquely) minimized by a simplex at some point (α, β)

of the mildly repulsive regime α > β ≥ 2, then both EWα′ ,β
and EWα,β′

are
uniquely minimized by the simplex for any α′ > α and β′ > β. Then,
with this northeast comparison principle in hand, we discuss the one-
dimensional case which, as we will see, exhibits substantially different
behaviour to that found in higher dimensions. Finally, we treat the case of
lower-dimensional simplices in Rn, and show that these are always saddle
points of EWα,β .

The n ≥ 2 Case.

Along the centrifugal line (β = 2, α > 2), which serves as the lower bound-
ary of the mildly repulsive regime, we provide a complete characterization
of the global minimizers of the interaction energy, provided that n ≥ 2:

Theorem 2.1 (Energy Minimizers on the Centrifugal Line in Higher Di-
mensions). Let n ≥ 2, and let β = 2. Then:

1. if α ∈ (2, 4), EWα,2 is uniquely minimized in P0(Rn) by a spherical shell of
radius

Rα,2 :=

[
Γ( n+1

2 )Γ( α
2 + n− 1)

Γ(n)Γ( α+n−1
2 )

]
. (2.1)

2. if α = 4, EW4,2 is minimized in P0(Rn) precisely by those measures concen-

trated on sphere of radius rn =
√

n
2n+2 which have second moment tensor

given by ∫
x⊗ xdµ(x) =

(∫
xixjdµ(x)

)
1≤i,j≤n

=
1

2n + 2
Id,

where Id is the n× n identity matrix.

3. if α > 4, EWα,2 is minimized in P0(Rn), uniquely up to rotations, by the
uniform distribution over the vertices of a unit n-simplex.

We sketch the proofs of parts (1) and (2), then postpone the proof of
part (3) until after we have discussed the northeast comparison principle,
as (3) is a direct corollary of (2) and the northeast comparison principle.
The proof sketches of the first two parts are meant to give the reader an
intuitive sense of why each of the results holds, and for the full, rigorous
proofs, we refer the reader to [14] (for (1)) and [15] (for (2)).
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Proof Sketch of Theorem 2.1(1). There are two key steps in this proof: first,
we show that any minimizers of EWα,2 must be spherically symmetric, and
second, we show that such minimizers are indeed spherical shells.

The first step is to show uniqueness of minimizers in this regime. In par-
ticular, we show that the functional EWα,2 is strictly convex in a variational
sense. In other words, if µ0 and µ1 are probability measures in P0(Rn),
and if we define µt := (1− t)µ0 + tµ1, we show that

d2

dt2 EWα,2 [µt] =
∫∫

Rn×Rn
Wα,2(x− y)d(µ1 − µ0)(x)d(µ1 − µ0)(y) > 0.

In order to do so, we consider the functional

Fα[ρ] :=
∫∫

Rn×Rn
|x− y|αdρ(x)dρ(y),

where ρ is thought of as the difference of two probability measures in
P0(Rn). Notice that, in this case,

d2

dt2 EWα,2 [µt] =
1
α

Fα[µ1 − µ0]−
1
2

F2[µ1 − µ0]. (2.2)

Moreover, by the definition of the Euclidean inner product,

F2[µ1− µ0] =
∫∫

Rn×Rn
(|x|2− 2x · y+ |y|2)d(µ1− µ0)(x)d(µ1− µ0)(y) = 0,

(2.3)
since

∫
Rn d(µ1 − µ0)(x) =

∫
Rn xd(µ1 − µ0)(x) = 0. This means that we

need only to show that Fα[µ1 − µ0] > 0 for any α ∈ (2, 4) and any two
distinct probability measures µ0, µ1 ∈ P0(Rn).

This follows from generalizing an argument of Lopes [32] from the case
of L1 probability densities to the case of more general probability measures,
as was originally done in [7, Theorem 27]. As we were unaware of this
work until Rupert Frank generously informed us of it, Lim, McCann, and
I formulated an independent argument in [14]. In short, our argument
proceeds by mollifying to get a sequence approximating µ0 − µ1, taking
the Fourier transforms of the mollified sequences as in [32], then taking
the limit on both sides to recover the identity in general. It should be
mentioned that our proof relies on the fact that the first and second
moments of µ0 − µ1 vanish, as this, through Laurent Schwartz’ Paley-
Wiener Theorem for distributions [38], is what ensures that the mollified
Fourier transform vanishes to sufficiently high order at 0.

This is enough to show strict convexity and hence uniqueness of the
minimizer of EWα,2 for α ∈ (2, 4). By a standard convexity argument, if µ0
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and µ1 are distinct candidate minimizers, then strict convexity ensures
that

EWα,2

[
µ0 + µ1

2

]
< EWα,2 [µ0] = EWα,2 [µ1],

and hence neither µ0 nor µ1 minimize EWα,2 [·]. Moreover, as EWα,2 [·] is
rotation-invariant, we may conclude that the minimizer of EWα,2 [·] is spher-
ically symmetric.

The second step of the proof is to show that the unique, spherically
symmetric minimizer is indeed a spherical shell. To show this, we use
elementary methods to examine the radial profile of Wα,2 ∗ µ, where µ

is taken to be the unique minimizer of EWα,2 . In particular, we show that
this radial profile has positive third derivative and hence, by the Euler-
Lagrange equation (1.5), the support of µ must coincide with a spherical
shell. Finally, by considering spherical shells σr and optimizing EWα,2(σr)

over r, we can derive the optimal radius in equation (2.1), which we note
was originally derived by [5] in an analogous context.

We now move on to the next case:

Proof Sketch of Theorem 2.1(2). Notice that, in this case, EW4,2 is still a convex
functional on P0(Rn). This can be seen by allowing α↗ 4. However, this
argument is not enough to yield strict convexity. Thus, in order to derive
necessary and sufficient conditions for EW4,2 [·] to be convex along lines in
P(Rn), we employ the notation of the previous proof sketch to derive that:

F4[µ1 − µ0] =
∫∫

Rn×Rn
(|x|2 − 2x · y + |y|2)2d(µ1 − µ0)(x)d(µ1 − µ0)(y)

= 2
∫∫

Rn×Rn
|x|2|y|2d(µ1 − µ0)(x)d(µ1 − µ0)(y)

+ 4
∫∫

Rn×Rn
(x · y)2d(µ1 − µ0)(x)d(µ1 − µ0)(y)

= 2
[∫

Rn
|x|2d(µ1 − µ0)(x)

]2

+ 4
n

∑
i,j=1

[∫
Rn

xixjd(µ1 − µ0)(x)
]2

.

We recognize the first integral which appears above as the trace of the
second moment tensor I(µ1 − µ0) of µ1 − µ0, and the second sum as the
trace of I(µ1 − µ0)2, allowing us to write

F4[µ1 − µ0] = 2(Tr I(µ1 − µ0))
2 + 4 Tr(I(µ1 − µ0)

2).
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Here, we notice that, since the second moment tensor is linear, F4[µ1−µ0] is
zero if and only if I(µ1) = I(µ0). Since, in light of equation (2.3), F2[µ1−µ0]

is identically zero, we can conclude that d2

dt2 EW4,2(µt) = 0 if and only if
I(µ1) = I(µ0). This means that, if µ0 and µ1 are candidate minimizers
of EW4,2 [·] with I(µ1) 6= I(µ0), we can apply the uniqueness argument
from the proof of Theorem 2.3(1) to show that neither µ0 nor µ1 actually
minimize EW4,2 . Thus, since [13, Theorem 2.3] shows that there exists a
minimizer of EW4,2 in P0(Rn), and since EWα,β is translation-invariant, we
find that all global minimizers of EW4,2 have the same second moment
tensor.

To determine what this second moment tensor is, we notice that EW4,2

is still convex, even if not strictly so, and hence we may take any given
minimizer µ and average over its rotations, in order to get a radially
symmetric, centred global minimizer of EW4,2 , which we will denote by σ.
It is clear to see that, by radial symmetry,∫

x2
i dµ(x) =

∫
x2

j dσ(x)

for any i, j = 1, ..., n. Moreover, a quick application of Fubini’s Theorem
implies that, for any i 6= j, ∫

xixjdσ(x) = 0.

Hence, we can write the shared second moment tensor of minimizers of
EW4,2 as λId for some constant λ > 0.

However, only some measures with second moment tensor λId will
actually minimize EW4,2 [·]. To see why this is the case, we let µ be an
arbitrary probability measure with second moment tensor given by λId
and directly calculate

EW4.2 [µ] =
1
8

F4[µ]−
1
4

F2[µ]

=
1
4

∫
Rn
|x|4dµ(x) +

1
4

[∫
|x|2dµ(x)

]2

+
1
2

n

∑
i,j=1

[∫
Rn

xixjdµ(x)
]2

− 1
2

∫
Rn
|x|2dµ(x)

=
1
4

∫
Rn
|x|4dµ(x) +

(Tr I(µ))2

4
+

Tr(I(µ))2

2
− Tr I(µ)

2
. (2.4)
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While the last three terms in (2.4) depend only µ only through I(µ), the
first one can vary, even among measures with the same second moment
tensor. Hence, the problem of finding the minimizers of EW4,2 is equivalent
to that of minimizing

∫
Rn |x|4dµ(x) over the set of measures µ with second

moment tensor given by λId. Of course, knowing that I(µ) = λId implies
that

∫
Rn |x|2dµ(x) = Tr I(µ) = nλ, we may use the (less restrictive) con-

straint that
∫

Rn |x|2dµ(x) = nλ. This allows us to apply [15, Lemma 2.4],
which tells us that, in order to minimize

∫
Rn |x|4dµ(x), and hence EW4.2 [µ],

subject to the constraint
∫

Rn |x|2dµ(x) = nλ, µ must concentrate all of its
mass on a spherical shell. Moreover, [15, Lemma 2.4] provides the radius
of this spherical shell in terms of λ — in particular, it must be given by
r(λ) =

√
nλ.

All that remains is to solve for the optimal value of λ. Notice that, since
any global minimizer µ is a probability measure supported on a sphere
of radius

√
nλ, we find that

∫
Rn |x|4dµ(x) = λ2n2. Likewise, since µ has

second moment tensor given by I(µ) = λId, we find that Tr I(µ) = nλ

and Tr(I(µ))2 = nλ2. Hence, Equation (2.4) simplifies to

EW4,2 [µ] =
1
2
(n2λ2 + nλ2 − nλ).

By basic calculus, the expression on the right hand side is minimized
when 2(n2 + n)λ = n or, in other words, when λ = 1

2n+2 , precisely as
desired. To conclude, we use this value as λ in [15, Lemma 2.4] to see that
µ is supported on a sphere of radius rn :=

√
nλ =

√
n

2n+2 , precisely as
desired.

The Northeast Comparison Principle and Immediate Applications

As discussed in the introduction to this chapter, we will now discuss the
northeast comparison principle [15], which is vital for determining for
which values of α and β the simplex minimize EWα,β . The statement of the
comparison principle is as follows:

Theorem 2.2 (Northeast Comparison Principle). Assume that the unit sim-
plex ν minimizes EWα,β in P0(Rn). Then, for any α′ ≥ α and β′ ≥ β such that
(α′, β′) 6= (α, β), EWα′ ,β′

is uniquely minimized in P0(Rn) by ν and its rotates.

We refer the reader to [15] for a proof of the comparison principle,
noting only that the proof relies on looking at the α and β derivatives of
the normalized radial profile of the potential

wα,β(r) :=
αβ

α− β
wα,β(r) =

βrα − αrβ

α− β
. (2.5)
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The northeast comparison principle allows us to provide a succinct
proof of Theorem 2.1(3):

Proof of Theorem 2.1(3). Notice that the unit n−simplex ν has second mo-
ment tensor given by 1

2n+2 Id. Thus, by Theorem 2.1(2), ν minimizes EW4,2

and hence, by Theorem 2.2, ν uniquely minimizes EWα,2 for any α > 4.

Remark 2.3 (‘North’ Comparison). The preceding proof only uses part of
the power of the comparison principle, as it is only comparing energies
for changing α (i.e. an ‘east’ comparison). Using the full power of the
comparison principle to do a ‘north’ comparison as well, we see that EWα,β

is uniquely minimized (up to rotations) in P0(Rn) by the unit simplex
for any pair of parameters (α, β) such that α > β, α ≥ 4, β ≥ 2, and
(α, β) 6= (4, 2).

To conclude this subsection, we summarize the results of Theorem 2.1
and Remark 2.3 in the following diagram:

Figure 2.1: A phase diagram, reproduced from [15], of the mildly repulsive regime
(for dimension n ≥ 2) which summarizes the results of Theorem 2.1.
Theorem 2.1(1) shows that EWα,2 is uniquely minimized by a spherical
shell along the red line segment, and Theorem 2.1(2) characterizes the
minimizers of EWα,β at the purple point (α, β) = (4, 2). Since Theorem
2.1(2) implies that the unit simplex ν is one of the minimizers of EW4,2 ,
it follows from the northeast comparison principle that ν uniquely
minimizes EWα,2 on the entire blue region labeled A4,2. As we will see
in the next section, the unit simplex ν does in fact minimize EWα,β on
at least part of the white triangle with vertices (2, 2), (4, 2), and (4, 4).

α

β

Centrifugal

Line (α, β) = (4, 2)

A4,2

2

2 4

α
=

β
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Minimizers on the Centrifugal Line (n = 1)

As mentioned in the introduction to this section, energy minimizers for
the interaction energy (1.3) behave quite differently when working on
R when compared to the Rn for n ≥ 2 case. Heuristically, this can be
explained by noticing that, if we are given a configuration of k particles on
R, which we will denote by {x1, ..., xk} and wish to move one such particle,
say xk0 , then inevitably we have to move xk0 either closer to or further
away from each of the other particles xj. In other words, particles do not
have a great degree of freedom in how they move. On the other hand,
even in two dimensions, particles can move much more freely, and this,
as a comparison of our earlier results with those we will discuss in this
subsection shows, markedly changes the behaviour of the steady states of
the aggregation equation.

It should also be noted that, in one dimension, the unit 1-simplex and the
sphere of radius 1

2 are the same shape, and hence the uniform distributions
over each of these are precisely the same measure. This means that the
northeast comparison principle applies equally well to spherical shell
measures. In particular, we have shown the following result in [14]:

Theorem 2.4 (Energy Minimizers on the Centrifugal Line in One Dimen-
sion). Let n = 1, β = 2, and α ≥ 3. Then the centred unit simplex ν is the
unique minimizer of EWα,β in P0(R).

We leave the tried-and-true proof to [14], and instead briefly outline a
potential alternative strategy:

Alternative strategy. By the northeast comparison principle, it suffices to
prove the theorem in the case (α, β) = (3, 2). It seems feasible that this can
be done relatively easily through a direct proof, which would complete
the alternative argument.

While our results have little to say about the portion of the centrifugal
line where α ∈ (2, 3), shortly after we posted our preprint [15] on arxiv,
Rupert Frank resolved this case, and we reproduce his result below, with
some minor tweaks to account for different notation conventions:

Theorem 2.5. [Theorem 1 of [21]] Let 2 < α < 3, and set

Rα :=

(√
π

2
Γ( 3−α

2 )

Γ( 4−α
2 )

sin((α− 1)π
2 )

(α− 1)π
2

) 1
α−2

.

Then
inf

µ∈P(R)
EWα,2 [µ] = −

α− 2
2α(4− α)

R2
α.
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Moreover, the infimum is attained if and only if, for some a ∈ R,

dµ(x) =
Γ( 4−α

2 )
√

πΓ( 3−α
2 )

Rα−2
α (R2

α − (x− a)2)−
α−1

2 1(|x− a| < Rα)dx.

Of course, throughout this thesis, we have used translation invariance
of the interaction energy to restrict our focus to P0(Rn). Thus, for conve-
nience, we specialize Frank’s result to this case below:

Corollary 2.6 (Application to P0(Rn)). Let 2 < α < 3, and let Rα be defined
as in the statement of Theorem 2.5. Then EWα,2 is uniquely minimized in P0(Rn)

by the measure µ, defined by

dµ(x) =
sin((α− 1)π

2 )

π(α− 1)
(R2

α − x2)−
α−1

2 1(|x| < Rα)dx.

A Few Words on Lower-Dimensional Simplices

Given that the unit n-simplex is the global minimizer of EWα,β over most of
the mildly repulsive regime when considering the aggregation equation in
Rn, it is natural to ask whether the unit n-simplex continues to minimize
EWα,β in Rm, for m > n. While Theorems 2.1 and 2.2 imply that such
measures cannot be global minimizers of EWα,β , we may still ask whether
lower-dimensional simplices are local minimizers with respect to dp for
some p ∈ [1, ∞].

This question turns out to be answered in the negative - lower dimen-
sional simplices are always saddle points, as the following proposition
shows:

Proposition 2.7. Fix m ∈ N, α > β > −m, n < m, and p ∈ [1, ∞]. Then the
unit n-simplex νn is a dp saddle point of EWα,β in P(Rm).

Proof. Fix ε > 0. We will find measures µ+
n and µ−n in P(Rm) such that

dp(µ+
n , νn) < ε, dp(µ−n , νn) < ε, EWα,β [µ

+
n ] > EWα,β [νn] and EWα,β [µ

−
n ] <

EWα,β [νn].
We will denote the set of vertices of the simplex νn as {x0, ..., xn}, and

let x′0 := x0 +
ε
n ∑n

i=1 xi. Define µ+
n to be the uniform distribution over

{x′0, x1, ...., xn}. We notice that

|x′0 − x0| = |
ε

n

n

∑
i=1

xi| ≤
ε

n

n

∑
i=1
|xi| < ε,
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since we have that |xi| = rn < 1. To check that dp(νn, µ+
n ) < ε, as we

consider the transport plan π+
n := 1

n+1 δ(x0,x′0)
+ 1

n+1 ∑n
i=1 δ(xi ,xi) between νn

and µ+
n , and notice that

dp(νn, µ+
n ) ≤

[∫∫
Rn×Rn

|x− y|pdπ+
n (x, y)

]1/p

=

[
1

n + 1
|x0 − x′0|p

]1/p

< ε.

On the other hand, we may directly compute

EWα,β [µ
+
n ]− EWα,β [νn] =

2
n + 1

n

∑
i=1

[
wα,β(|x′0 − xi|)− wα,β(|x0 − xi|)

]
. (2.6)

Now, notice that ε
n ∑n

i=1 xi = −cx0 for some constant c = c(ε) > 0. Hence,

|x′0 − xi| = |x0 − xi +
ε

n

n

∑
i=1

xi| = |(1− c)x0 − xi|.

Furthermore, notice that, for small ε > 0 (and hence c > 0) (1− c)x0 lies
in the interior of the simplex with vertices x0, ..., xn and hence

|x′0 − xi| = |(1− c)x0 − xi| < 1 = |x0 − xi|.

Thus, since wα,β(r) is uniquely minimized at r = 1, we find that each term
in (2.6) is strictly positive, and hence EWα,β [µ

+
n ] > EWα,β [νn], as desired.

Next, we notice that, since m > n, the set X := {x ∈ Rm | |x − xi| =
1 for i = 1, ..., n} can also be characterized as the intersection of the hyper-
sphere

S :=

{
x ∈ Rm |

∣∣∣∣∣x− 1
n

n

∑
i=1

xi

∣∣∣∣∣ =
∣∣∣∣∣x0 −

1
n

n

∑
i=1

xi

∣∣∣∣∣
}

and the linear space P :=span({x1, ...xn})⊥. This means S ∩ P is a sphere
of dimension at least one. Thus, we may find two distinct points, a and
b in S ∩ P such that |x0 − a| < ε, |x0 − b| < ε, and |a− b| > 0. Thus, we
define

µ−n :=
1

2(n + 1)
(δa + δb) +

1
n + 1

n

∑
i=1

δxi .

Defining the transport plan

π−n :=
1

2(n + 1)
(δx0,a + δx0,b) +

1
n + 1

n

∑
i=1

δxi ,

we see that
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dp(νn, µ−n ) ≤
[∫∫

Rn×Rn
|x− y|pdπ−n (x− y)

]1/p

=

[
1

2(n + 1)
(|x0 − a|p + |x0 − b|p)

]1/p

=

[
1

(n + 1)
εp
]1/p

< ε.

Finally, we may calculate

EWα,β [µ
−
n ]− EWα,β [νn] =

1
n + 1

wα,β(|a− b|), (2.7)

as all other terms are zero (in the case of self-interaction), or cancel out
(in the case of repeated terms). Thus, since we can readily take ε < 1

2 , and
since this implies that 0 < |a− b| < 1, we find that the difference in (2.7)
is negative, finishing the proof.

To help the reader gain more intuition behind the preceding proof,
we include a diagram portraying the supports of µ+

n and µ−n in the case
(m, n) = (2, 1) (i.e. the unit 1−simplex embedded in R2):

x

y

x1

a

b

x0

x′0

Figure 2.2: Images of spt ν1 = {x0, x1}, spt µ+
1 = {x′0, x0}, and spt µ−1 = {a, b, x1}

in R2. When defining µ+
1 , we move one vertex ν1 closer to the other,

and when defining µ−1 , we split the mass into two pieces, and move
each piece along the violet circle, without changing the distance be-
tween each piece and x1.
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2.2 an unfinished portrait of the mildly repulsive regime

We now turn our attention to a thorough treatment of the threshold
function α∆n(β), whose graph forms the boundary between the portion of
the mildly repulsive regime where the unit n-simplex uniquely minimizes
EWα,β and the portion where it is not a minimizer. While we are not able
to provide an explicit formula for this function, we do provide explicit,
usable bounds and derive certain properties of the threshold function.
Most of the work in this section is found in [15], and as such represents
the current state of knowledge on minimizers of the interaction energy —
although, as we emphasize, little is known about minimizers of EWα,β for
α < α∆n(β).

Introduction to the Threshold Function

Since the work of Lim and McCann in [31, Remark 1.5], it has been known
that, for each β ≥ 2, there exists a phase transition α∆n(β) such that EWα,β

is uniquely minimized (up to rotations and translations) in P(Rn) by the
unit simplex νn. More precisely,

Definition 2.8 (Threshold Function). We define the threshold function
α∆n : [2, ∞)→ [2, ∞) by

α∆n(β) = sup{α | there exists a minimizer of EWα,β

which is not a rotated translate of νn}.

Until our joint work in [15], very little was known about the behaviour
of α∆n , as the pioneering work in [31] was done by perturbing around the
hard confinement limit α = ∞, and as such, for the most part, could only
prove existence of α∆n . The only exception to this is Lim and McCann’s
proof that α∆n(2) ≥ 4 [31, Remark 1.5], wherein they adapted an argument
of Lopes [32] analogous to the adaptation found in the proof of Theorem
2.1(1).

However, the discovery of the northeast comparison principle (Theorem
2.2) has allowed us to derive many additional properties of α∆n . Even work
in the previous section sheds a lot of light on this matter, as is illustrated
by the following corollary to Theorems 2.1 and 2.2:

Corollary 2.9 (Immediate Results on the Threshold Function). Let β ≥ 2,
and let α∆n(β) be as defined above. Then:

• if β = 2, then α∆n(β) = 4

• if 2 < β < 4, then α∆n(β) ≤ 4
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• if β ≥ 4, then α∆n(β) = β.

In particular, this means that α∆n is totally determined when β lies
outside of the interval (2, 4). However, using the results from the previous
section, as well as the notion of Γ-convergence, it is possible to deduce
even more about the behaviour of the threshold function, as is done in [15,
Theorem 4.1]. We reproduce this result here, but refer the reader to the
original work for the proof:

Theorem 2.10 (Behaviour of the Threshold Function). Let α∆n be as defined
above. Then, for any α < α∆n(β), the unit simplex does not minimize EWα,β

in P(Rn). Moreover, if α = α∆n(β) and ν is a unit simplex, then either there
are non-simplicial minimizers of EWα,β or spt ν ( argmin(Wα,β ∗ ν). Finally,
there exists some βn ≤ 4 such that α∆n(β) = β for all β ≥ βn, and such that
α∆n : [2, βn]→ [βn, 4] is continuous and strictly decreasing.

Other than the bounds which will be discussed in the remainder of this
section, Theorem 2.10 represents the current state of knowledge on α∆n .

Additionally, the reader should recall that, if β > 2 and α lies in the
non-trivial interval (β, α∆n(β)), then Carrillo, Figalli, and Patacchini [8]
have shown that any global minimizer of EWα,β [·] is supported on a finite
point set. Moreover, in the case n = 1, the trio derived an explicit upper
bound on the cardinality of this finite point set [8].

An Upper Bound for the Threshold Function

We now establish an upper bound for α∆n which is almost independent
of the dimension n, in the sense that this upper bound has different
formulas for the n = 1 case and n ≥ 2 case, but that the n ≥ 2 formula is
independent of the exact value of n.

Definition 2.11. Let β ∈ [2, β∞], where β∞ := 1
log(3/2) if n = 1 and β∞ :=

2
log 2 if n ≥ 2. We define α∞ = α∞(β) as the largest solution of

eα/β∞

α
=

eβ/β∞

β
. (2.8)

Remark 2.12 (Number of solutions). For any given β ≥ 2, there are at most
two solutions to equation (2.8), which follows from the fact that − et/β∞

t is
unimodal on (0, ∞), in the sense which we will later discuss in Lemma
2.18. In particular, we see that

−t2β∞e−t/β∞
d
dt

et/β∞

t
= t− β∞

is positive on (0, β∞), zero at β∞, and negative on (β∞, ∞).
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Remark 2.13 (Alternative interpretation). In the context of (2.5), we under-
stand

wβ,β(r) := lim
α→β

wα,β(r) = rβ(β log r− 1),

and let zα,β denote the positive zero of wα,β, where zα,β = ( α
β )

1
α−β for

α 6= β and zβ,β := e1/β. Notice that z4∗,2 = 3
2 , if n = 1, and z4∗,2 =

√
2, if

n ≥ 2. Hence, after some rearranging, we may define β∞ by the equation
zβ∞,β∞ = z4∗,2 and α∞ as the largest solution of zα,β = z4∗,2, or rather
wα,β(z4∗,2) = 0.

The following proposition and corollary demonstrate that α∞ is indeed
an upper bound for the threshold function:

Proposition 2.14. Let 2 < β < α < 4∗. Then w4∗,2(r) ≤ wα,β(r) for all
r ∈ [0, zα,β] if and only if zα,β ≤ z4∗,2.

Proof. One direction is trivial, as if w4∗,2(r) ≤ wα,β(r) for all r ∈ [0, zα,β],
then, in particular, w4∗,2(zα,β) ≤ wα,β(zα,β) = 0, and hence zα,β ≤ z4∗,2.

The proof of the other direction is somewhat more involved. We begin
by defining

g(r) := w4∗,2(r)− wα,β(r) =
2r4∗ − 4∗r2

4∗ − 2
− βrα − αrβ

α− β
.

In particular, we divine the behaviour of g from that of its fifth derivative,
which is given by

g(5)(r) = −αβrβ−5

α− β
(α− 1)(α− 2)(α− 3)(α− 4)rα−β

+
αβrβ−5

α− β
(β− 1)(β− 2)(β− 3)(β− 4),

for r ∈ (0, ∞). Written in this form, we see that g(5)(r) is monotone and
hence has at most one sign change. Thus, g′′′(r) is either convex-concave,
concave-convex, or strictly convex on (0, ∞). Moreover, we may write

g′′′(r) = 2 · 4∗(4∗ − 1)r4∗−3

+
αβ

α− β

[
−(α− 1)(α− 2)rα−3 + (β− 1)(β− 2)rβ−3

]
.

Here, both the highest order term, corresponding to r4∗−3, and the lowest
order term, corresponding to rβ−3, have positive coefficients, which implies
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that g′′′ is positive outside a compact subinterval of (0, ∞). This, combined
with the convex/concave structure of g′′′, implies that g′′′ can have at most
two zeroes on (0, ∞) and, in particular, may change signs at most twice -
from positive to negative to positive.

Thus, at worst, g′ is convex-concave-convex on (0, ∞). That is, we will
assume g′ is convex-concave-convex as, if it is simply convex, an easier
argument than what follows will yield the desired conclusion. Notice that

g′(r) =
4∗ · 2

4∗ − 2
(r4∗−1 − r)− αβ

α− β
(rα−1 − rβ−1)

is negative near zero and hence, the fact that it is convex-concave-convex
implies that it changes sign at most thrice on (0, ∞). It is clear that g′(1) =
0. Moreover, since g(0) = g(1) = 0, and since g′ is negative near zero, we
see that g′ necessarily changes from negative to positive somewhere on
the interval (0, 1), implying the existence of a zero of g′ on this interval.
This leaves only one (potential) zero of g′ unaccounted for, and hence g′

has at most one zero on (1, ∞). Now notice that there exists some ε > 0
such that either g′ is positive on (1, 1 + ε) or g′ is negative on (1, 1 + ε). In
particular, if g′ is positive on some interval of the form (1, 1 + ε), it must
remain non-negative on the entirety of (1, ∞). In this case, since g(1) = 0,
we know that g(r) is positive on the entire interval (0, ∞). Hence, we may
rule out this case as it only occurs if zα,β > z4∗,2.

Thus, we know that, if zα,β ≤ z4∗,2, there exists some c > 0 such that
g′ < 0 on (1, 1 + c) and g′ > 0 on (1 + c, ∞). Since g(1) = 0, and since the
leading term of g has positive coefficient, this implies that g has a unique
zero on (1, ∞). Of course, since zα,β ≤ z4∗,2, we know that g(zα,β) ≤ 0, as
w1

4∗,2(zα.β) ≤ 0 and w1
α,β(zα.β) = 0. Thus, since there is only one zero of g

on (1, ∞), and as g is positive for sufficiently large r, our assumption that
zα,β ≤ z4∗,2 allows us to conclude that g ≤ 0 on [1, zα,β].

All that remains is to show that, in this case, g ≤ 0 on [0, 1]. By way of
contradiction, assume that g is positive at some point on p ∈ (0, 1). then g′

would have to change signs (at least) twice on the interval (0, 1) — from
negative to positive to negative again. Combining this with the fact that
g′(0) = 0 and the inferred zero of g′ on (1, ∞) would yield a total of at
least four zeroes of g′ on (0, ∞), whereas our earlier argument implies
that g′ can have at most three zeroes on this interval, thus concluding the
proof.

Corollary 2.15. For any β ≥ 2, α∞(β) ≥ α∆n(β).

Proof. By [13, Theorem 2.3], there exists (at least one) minimizer of EWα∞(β),β
[·]

in P0(Rn). Moreover, by [27, Lemma 1], any such minimizer has support
of diameter at most zα∞(β),β. In light of Remark 2.13, we know that α∞(β)
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is the largest solution of zα,β = z4∗,2, and hence, by Proposition 2.14,
w4∗,2(r) ≤ wα∞(β),β(r) for all r ∈ [0, zα∞(β),β].

Integrating, we find that, for any candidate minimizer µ of EWα∞(β),β
,

2 · 4∗
4∗ − 2

EW4∗ ,2
(µ) ≤ βα∞(β)

α∞(β)− β
EWα∞(β),β

(µ). (2.9)

On the other hand, if ν is the uniform distribution over the vertices of
a unit simplex, then |x− y| = 0 or 1 for any pairs of points x, y ∈ spt ν.
Thus, since w4∗,2(0) = wα∞(β),β(0) = 0 and w4∗,2(1) = wα∞(β),β(1) = −1,
we have that ν saturates inequality (2.9). Moreover, since Theorems 2.1(2)
and 2.4 imply that EW4∗ ,2

(ν) ≤ EW4∗ ,2
(µ), we find that

βα∞(β)

α∞(β)− β
EWα∞(β),β

(ν) =
2 · 4∗

4∗ − 2
EW4∗ ,2

(ν)

≤ 2 · 4∗
4∗ − 2

EW4∗ ,2
(µ)

≤ βα∞(β)

α∞(β)− β
EWα∞(β),β

(µ),

and hence EWα∞(β),β
(ν) ≤ EWα∞(β),β

(µ) for any candidate minimizer µ. Thus,
we may conclude that the simplex ν is a global minimizer of EWα∞(β),β

in
P0(Rn), and hence that α∞(β) ≥ α∆n(β), as desired.

Lower Bounds for the Threshold Function

While α+
∆n(β), as defined in [15], is the strongest lower bound for α∆n(β)

apparent to us, it does not lend itself particularly well to computation. As
such, we will provide a somewhat weaker lower bound for α∆n , which can
be easily computed directly. Before doing so, it will be useful to introduce
the following family of functions and prove their unimodality:

Definition 2.16. Define fn : (0, ∞)→ R by

fn(t) :=

{
(2−1 − 2−t)/t if n = 1

(n− ( 2n
n+1 )

t/2 − n( n−1
n+1 )

t/2)/t if n ≥ 2.

Through this family of functions, we are able to properly define a new
family of lower bounds:

Definition 2.17. For β ≥ 2, define α∆n(β) by

α∆n(β) = max{α ≥ 2 | fn(α) = fn(β)}.
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In particular, the set over which we take the maximum in the previous
definition has at most two elements, as the following lemma shows:

Lemma 2.18 (Unimodality of fn). For any n ≥ 1, the function fn is uni-
modal. By this, it is meant that there exists a unique global maximum β

n
:=

argmaxt>0 fn, and moreover, f ′n(t) > 0 for t ∈ (0, β
n
) and f ′n(t) < 0 for

t ∈ (β
n
, ∞).

Proof. We first treat the case n = 1 separately. Here, notice that t2 f ′1(t) =
(t log 2 + 1)2−t − 2−1, and hence f ′1(t) has the same sign as g1(t) :=
(t log 2 + 1)2−t − 2−1. Since g′1(t) = −t2−t log2 2 is always negative, and
since g1(0) = 1

2 and limt→∞ g1(t) = − 1
2 , we conclude that f ′1 switches sign

from positive to negative at its unique zero in (0, ∞), and has no other
sign changes. As such, we denote the unique zero of f ′1 by β

1
.

The n ≥ 2 case proceeds in a similar manner. Here, we notice that

gn(t) := t2 f ′n(t) = −
t
2

((
2n

n + 1

)t/2

log
2n

n + 1
+ n

(
n− 1
n + 1

)t/2

log
n− 1
n + 1

)

− n +

(
2n

n + 1

)t/2

+ n
(

n− 1
n + 1

)t/2

,

and compute

g′n(t) = −
t
4

[(
2n

n + 1

)t/2

log2 2n
n + 1

+ n
(

n− 1
n + 1

)t/2

log2 n− 1
n + 1

]
.

Since g′n(t) is negative everywhere, gn(0) = 1, and limt→∞ gn(t) = −∞,
we may apply an identical argument to the one employed in the n = 1
case to show the existence of β

n
with all desired properties.

Remark 2.19. Notice that α∆n(β) > β if and only if β < β
n
. In other words,

the graph of αn intersects the line α = β at the point (β
n
, β

n
).

Proposition 2.20 (Comparison of bounds). For any n ≥ 1, and β ≥ 2.
α∆n(β) ≤ α∆n(β).

Proof. We proceed by deriving the defining equations for α∆n directly from
the Euler-Lagrange equation (1.5) for a unit simplex ν ∈ P(Rn). As in the
introduction, we denote the vertices of the unit n−simplex by {x0, ...., xn}.
We will prove this result in two cases, n = 1 and n ≥ 2. Notice that, in
either case, the inequality is trivial for any β for which α∆n(β) = β, so we
are free to assume that α∆n(β) > β.

If n = 1, notice that the Euler-Lagrange equation (1.5) ensures that
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(Wα,β ∗ ν)(x0) ≤ (Wα,β ∗ ν)(0).

More explicitly, since ν =
δx0+δx1

2 , this inequality reads:

1
2

[
1
α
− 1

β

]
≤ 1

α2α
− 1

β2β
,

or, after some minor rearranging,

f1(α) =
2−1 − 2−α

α
≤ 2−1 − 2−β

β
= f1(β).

By definition, α = α∆1(β) saturates this inequality. Thus, assuming that
α∆1(β) > β, unimodality of f1, as in Lemma 2.18, ensures that for any
γ ∈ (β, α∆1(β)),

f1(γ) > f1(β) = f1(α∆1(β)).

This implies that the simplex ν violates the Euler-Lagrange equation for
Wβ,γ , and hence that α∆1(β) ≥ γ. Of course, since this inequality holds for
all γ ∈ (β, α∆1(β)), this proves that α∆1(β) ≤ α∆1(β) for any β ≥ 2.

Our proof proceeds analogously for n ≥ 2, with the key difference being
that the formula for fn is derived from the inequality

(Wα,β ∗ ψ)(x0) ≤ (Wα,β ∗ ψ)(−x0),

which again is a necessary condition for the Euler-Lagrange equation to
hold for ν. Exploiting the geometry of the simplex, which ensures that
|x0| =

( n
2n+2

)1/2 and |x0 + x1| =
( n−1

n+1

)1/2
, this equation can be expressed

as:

n
n + 1

(
1
α
− 1

β

)
≤ 1

n + 1

( 2n
n+1

)α/2

α
−
( 2n

n+1

)β/2

β


+

n
n + 1

( n−1
n+1

)α/2

α
−
( n−1

n+1

)β/2

β

 ,

or, after multiplying by n + 1 and rearranging,

fn(α) =
n−

( 2n
n+1

)α/2 − n
( n−1

n+1

)α/2

α
≤

n−
( 2n

n+1

)β/2 − n
( n−1

n+1

)β/2

β
= fn(β).
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Since Lemma 2.18 ensures that fn is still unimodal for n ≥ 2, the proof
proceeds in an identical manner to the one-dimensional proof, and hence
we omit it.

We summarize our findings in the n = 2 case with the following graph,
which is an analogue of one of the figures of [15]

Figure 2.3: The mildly repulsive regime for n = 2. In the red region to the
left of the blue curve α = α∆2(β), the simplex does not minimize
EWα,β . Conversely, in the rightmost blue region, the simplex uniquely
minimizes EWα,β . In the intermediate region, it is not entirely known
where the simplex minimizes EWα,β and, in fact, the graph of the
threshold function α∆2 must lie entirely in this region.

Relationship Between Upper and Lower Bounds

Interestingly enough, even this weak lower bound tends to the upper
bound α∞ as n→ ∞.

Proposition 2.21 (Dimensional asymptotics). As n→ ∞, α∆n(β)→ α∞(β)

for all β ∈ [2, 4].
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Proof. Recall that the defining equation of α∆n(β) is given by

n−
( 2n

n+1

)α/2 − n
( n−1

n+1

)α/2

α
=

n−
( 2n

n+1

)β/2 − n
( n−1

n+1

)β/2

β
.

Taking the limit as n→ ∞ of this equation yields:

2α/2

α
− 1 =

2β/2

β
− 1,

or rather that wα,β(
√

2) = 0, which is precisely the equation which appears
in Remark 2.13.

Remark 2.22 (Monotonicity). Our numerical experiments indicate that
α∆n(β) ↗ α∞(β) for all β ∈ [2, 4] and that α∆n(β) ↘ α∞(β) for β /∈ (2, 4).
To prove this, it would suffice to show that, for any n ≥ 2, the difference
fn+1− fn is a unimodal function on (0, ∞). This is because, for n ≥ 2, fn(t)
has zeroes only at t = 2 and t = 4, and hence, assuming unimodality, these
are the only two zeroes of fn+1− fn. Since limt→∞ ( fn+1(t)− fn(t)) = −∞,
this implies that fn+1 > fn on (2, 4), fn+1 = fn on {2, 4}, and fn+1 < fn

outside of [2, 4].
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Figure 2.4: Graphs of fn(t) for selected values of n. Our numerical experiments
indicate that, for all t ∈ [2, 4], fn(t) increases monotonically to f∞(t) :=
1− 2t/2

t .

2.3 discussion : intuition for lower bounds

In this section of the present work, we study the values of α and β for
which the unit simplices in one and two dimensions violate the Euler-
Lagrange equations. In particular, we detail partial progress made toward
simplifying the checking of such violations. Much of what follows will
be mere speculation about where such violations are most likely to occur
but, nevertheless, may be useful in practice - as any violation of the Euler-
Lagrange equation at (α0, β0) provides a lower bound for the threshold
function α∆n(β0), and better guesses of course give better bounds.
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The One-Dimensional Case

In the proof of Proposition 2.20, we derived the lower bound by checking
whether or not the Euler-Lagrange equation for the simplex is violated
at the origin. Our rationale for this stems from the work of Kang, Kim,
Lim, and Seo in [27]. In this work, the quartet showed that for (α, β) =

(2.5, 2.1) the simplex ν = 1
2 (δ0 + δ1) does not minimize EWα,β over P(R), by

comparing ν directly to the measure ν′ = 0.420137δ0 + 0.159726δ0.548674 +

0.420137δ1.09735. In addition, in unpublished notes, I showed that, if β = 2
and α ∈ (2, 3), then at least one measure of the form

Mδ0 +
1−M

2
δr +

1−M
2

δ−r,

where M > 0, has strictly lower interaction energy than the simplex ν.
As such, it seems that moving even a small amount of mass to the origin
can often decrease the energy of a particle configuration and. This means
that, in the one-dimensional case, it makes sense to start by checking for
Euler-Lagrange violations at the origin.

The Two-Dimensional Case

The lower bounds α∆n for n ≥ 2 were derived primarily using intuition and
symmetry, motivated by numerics, without much in the way of rigorous
justification. Nevertheless, I provide some intuition in this subsection, as
well as some open conjectures. Throughout this subsection, we will assume,
for the sake of simplifying notation, that any simplices which appear are
canonical in the sense of Definition 1.10. We begin with a conjecture:

Conjecture 2.23. Let n ≥ 2, νn be the canonical unit n-simplex, and α > β ≥ 2.
Then, if there exists some point in x ∈ Rn \ spt νn such that the Euler-Lagrange
equation (1.5) is violated (where W = Wα,β), there also exists some r > 0 such
that (1.5) is violated at −re1.

Remark 2.24. As in the proof of Proposition 2.20, we suspect that it will be
useful to express the fact that x violates the Euler-Lagrange equation by
the inequality

(Wα,β ∗ νn)(x) < (Wα,β ∗ νn)(x0).

Assuming this conjecture holds, checking if the Euler-Lagrange equation
is violated reduces to a single variable optimization problem, i.e.
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Corollary 2.25. Assume Conjecture 2.23 holds. Then νn satisfies the Euler-
Lagrange equation if and only if:

2EW4,2 [νn] = (Wα,β ∗ νn)(x0) ≤ inf
r>0

(Wα,β ∗ νn)(−re1). (2.10)

Proof. Clearly, (2.10) is a necessary condition for the Euler-Lagrange equa-
tion to hold, as it can be derived directly from (1.5).

By the conjecture, the inequality in (2.10) is enough to guarantee that
(Wα,β ∗ νn)(x0) ≤ (Wα,β ∗ νn)(x) for all x ∈ Rn \ spt νn, so all that remains
is to show that (Wα,β ∗ νn)(x) ≡ 2EW4,2 [νn] on spt νn. This follows from
symmetry, as |xi − xj| = 1 for all i 6= j, and hence

(Wα,β ∗ νn)(xi) =
1

n + 1

n

∑
j=0

Wα,β(xi − xj) (2.11)

=
1

n + 1

n

∑
j=0

wα,β(|xi − xj|)

=
1

n + 1
wα,β(0) +

n
n + 1

wα,β(1).

This implies that (Wα,β ∗ νn)(xi) = (Wα,β ∗ νn)(xj) for any i, j. Hence, we
can average (2.11) over i to find that (Wα,β ∗ νn)(xi) = 2EW4,2 [νn], as desired.

Now that we have explained the motivation for the conjecture, we
discuss some numerical experiments which lend support to its veracity.
First, for every pair of (α, β) tested, the region on which the Euler-Lagrange
equation is violated tends to look something like the union of three lens-
shaped regions opposite each vertex of the simplex, provided that β 6= 2
and α is sufficiently larger than β, as illustrated in the figure below:
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(a) (3.5, 2.1) (b) (3.6, 2.1) (c) (3.7, 2.1) (d) (3.75, 2.1)

(e) (2.6, 2.5) (f) (2.8, 2.5) (g) (3, 2.5) (h) (3.07, 2.5)

(i) (2.75, 2.7) (j) (2.775, 2.7) (k) (2.8, 2.7) (l) (2.825, 2.7)

Figure 2.5: The shaded region of R2 on which the Euler-Lagrange equation is
violated, plotted for selected pairs (α, β) where this region is clearly
partitioned into three disjoint subregions.

In the case where β = 2, or in the case where α and β are close enough,
these regions often fuse into a single region, as indicated in the following
figure:
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(a) (2.25, 2) (b) (2.5, 2) (c) (2.75, 2) (d) (3, 2)

(e) (3.25, 2) (f) (3.5, 2) (g) (3.75, 2) (h) (3.99, 2)

(i) (2.3, 2.1) (j) (2.6, 2.1) (k) (2.9, 2.1) (l) (3.2, 2.1)

Figure 2.6: The shaded region of R2 on which the Euler-Lagrange equation is
violated, for selected pairs (α, β), where β = 2 or 2.1. This illustrates
that the region on which the Euler-Lagrange equation is violated is
sometimes connected.

Of course, in both Figures 2.5 and 2.6, the Euler-Lagrange equation
is violated at some point on the negative x-axis, lending credence to
Conjecture 2.23. Moreover, symmetry alone does not guarantee that any
Euler-Lagrange violations must happen (at least partially) on the negative
x−axis. For example, one could imagine that the Euler-Lagrange equation
is violated on a region composed of six lobes, one on either side of each
vertex of the simplex.

Additionally, it is important to notice that Conjecture 2.23 does not
require that the global minimum of Wα,β ∗ ν lie on the negative x−axis.
It is entirely possible that this global minimum could be attained at six
(or more) separate points, two of which straddle the negative x−axis, and
where the other four are rotations of the first two by 2π

3 and 4π
3 about the

origin.
Finally, it should be noted that, for generic pairs of (α, β), −x0 is not the

best point against which to check for Euler-Lagrange violations and, in



2.3 discussion : intuition for lower bounds 39

fact, the plot in the following figure indicates that it is entirely possible for
the Euler-Lagrange equation to be satisfied at −x0, but violated elsewhere
on the negative real-axis:

Figure 2.7: The red region on which the simplex ν2 violates the Euler-Lagrange
equation for EWα,β , where (α, β) = (3.076, 2.5). Notice that, according
to this plot, the purple point −x0 is not contained in such a region,
and hence the Euler-Lagrange equation is satisfied at that point.



3
A TA S T E O F T H E D Y N A M I C S

In this section, we begin by explaining the distinction between two im-
portant types of stabiilty — Lyapunov and asymptotic, inspired by the
discussion in [14, Section 5]. Then we use this framework to contextual-
ize and elaborate on Simione’s treatment of asymptotic stability in [39],
explaining in particular his distinction between spreading stability and
displacement stability as they apply to the aggregation equation. After
this, given that our previous arguments show that the simplex uniquely
minimizes EWα,β on most of the mildly repulsive regime, we examine what
Simione’s arguments have to say about measures which uniformly dis-
tribute their mass over the vertices of a unit n−simplex. In one dimension,
Simione’s spreading stability condition is strictly more restrictive than
his displacement stability condition and, as such, governs whether or
not the unit simplex is asymptotically stable. In higher dimensions, we
can hope that such a result holds, especially given that it tends to be
less computationally demanding to quantify the spreading stability of a
measure.

3.1 types of stability

We now explain the distinction between two key types of stability for
steady states of general PDEs, and in particular steady states of the ag-
gregation equation (1.2), in a discussion heavily influenced by that in [14,
Section 5]. The first notion of stability is asymptotic stability which, heuris-
tically, means that configurations which start out sufficiently ‘close’ to a
given steady state will, in either finite or infinite time, become arbitrarily
close to the steady state. More precisely,

Definition 3.1 (Asymptotic Stability for the Aggregation Equation). Let
d be a metric on (some subset of) P(Rn), and let µ be a steady state of
the aggregation equation (1.2). We say that µ is asymptotically stable with
respect to d if there exists some δ > 0 such that, for any ε > 0 and any
probability curve µ(t) with d(µ(0), µ) < δ, there exists some T > 0 such
that d(µ(t), µ) < ε for any t > T.

When working with an asymptotically stable steady state, it is often
possible to quantify the rate at which nearby probability curves converge to

40
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the steady state — for example, in the domain of application of Simione’s
arguments in the next subsection, nearby probability curves converge to
the steady state at an exponential rate, and in infinite time. Nevertheless,
not every steady state — and indeed, not every global minimizer of (1.3)
— is asymptotically stable. For example, this failure occurs when there
are d-local minimizers of EWα,β arbitrarily close to the steady state µ. For
example, in the context of Theorem 2.1(1), it is known that discrete particle
rings are steady states of the aggregation equation [14] and, as the number
of particles tends to ∞, such particle ring configurations get arbitrarily
close to the global minimizer σ in the dp metric, for any p ∈ [1, ∞].

On the other hand, we have a strong theoretical incentive to be able
to say that such steady states are stable in some sense. This leads us
to the notion of Lyapunov stability, which is defined as follows for the
aggregation equation:

Definition 3.2 (Lyapunov Stability for the Aggregation Equation). Let d
be a metric on (some subset of) P(Rn) and let µ be a steady state of
the aggregation equation. We say that µ is Lyapunov stable if, for any
ε > 0, there exists some δ > 0 such that, if µ(t) is a probability curve with
d(µ(0), µ) < δ, then d(µ(t), µ) < ε for all t ≥ 0.

The notion of Lyapunov stability is useful in the context of the aggrega-
tion equation since [14] showed that minimizers of (1.3) for α > β > 0 and
α ≥ 1 are dα Lyapunov-stable.

A useful toy model to illustrate the difference between asymptotic and
Lyapunov stability is the continuous function f : R→ R given by

f (x) :=

{
|x|(1 + sin 1

|x| ) x 6= 0

0 x = 0
, (3.1)

as illustrated in the graph below:

Figure 3.1: The graph of f (x) as defined in Equation (3.1)
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Clearly, f attains its minimum value of 0 precisely at 0 and points of
the form ± 1

π(2k+3/2) , for integers k ≥ 0. Now, imagine we place a ball
on the graph of f , subject to the effects of gravity and friction. For each
minimum of the form 1

π(2k+3/2) , so long as we place the ball close enough

to xk =
1

π(2k+3/2) , the ball will eventually come to rest exactly at the point
xk, meaning that, in some sense, xk is asymptotically stable. On the other
hand, no matter how close we place our ball to 0, there are always infinitely
many points of the form xk between its initial position and the origin,
each of which comes with its own well. This means that, unless our ball
is placed directly at x0 = 0, it will come to rest at some point of the form
xk, rather than exactly at 0. Thus, the point 0 is Lyapunov stable, but not
asymptotically stable, as there are many nearby local minima which are
more attractive to the particle dynamics.

Remark 3.3 (Two Views on Stability). Given that the interaction energy is
both rotation and translation invariant, any rotated translates of the steady
state µ are also steady states of the interaction equation, which means
that it is difficult to directly apply any arguments involving either type of
stability. There are two principal methods of resolving this difficulty and
allowing a stability analysis. First, we can restrict our focus from P(Rn)

to a subset of P0(Rn) where, in some sense, all probability measures
have the same orientation as µ. However, this method has its flaws, as
it is possible for a probability measure to rotate as it evolves under the
aggregation equation. The second, more robust, method of treating this
problem is to define a manifold M ⊂ P(Rn) which consists of µ and
its rotated translates, and instead ask questions about the stability of
this manifold. Thankfully, Definitions 3.1 and 3.2 can be generalized in
a natural manner to describe the stability of manifolds. Additionally, we
will outline Simione’s treatment of this issue, which contains aspects of
both approaches, in the next section.

3.2 simione’s arguments

We are now ready to discuss Simione’s results on the asymptotic stability of
minimizers of EWα,β , as formulated in his PhD Thesis [39]. In particular, we
will outline the background material for [39, Theorem 25], apply this result
to the one-dimensional case, discuss Simione’s application to the two-
dimensional case, and in general discuss some ideas on how to optimize
and simplify Simione’s arguments.
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Basic Definitions and Preliminaries

We begin by providing some background, as well as some definitions
which are necessary to understand Simione’s work. We note that Simione
works exclusively on P2(Rn), which we recall is the space of Borel prob-
ability measures with finite second moment. While this is at first glance
a non-trivial restriction, we recall that from, e.g., [27] it is known that
any global minimizer µ of EWα,2 has compact support, and hence lies in
P∞(Rn) ⊆ P2(Rn). Likewise, by the triangle inequality, if µ ∈ P(Rn) is
such that d2(µ, µ) < ∞, then µ ∈ P2(Rn), and hence Simione’s restriction
does not affect our work around global minimizers.

Thus, we begin in earnest by defining the tangent plane to a given
probability measure in P2(Rn) :

Definition 3.4 (Tangent Plane at µ ∈ P2(Rn)). We define the tangent plane
Tµ to µ ∈ P2(Rn) as the L2(dµ) closure of the set of vector fields which
can be realized as gradients of functions in C∞

c .

In other words, a typical element of Tµ is a vector field v on Rd such
that there exists a sequence of C∞

c functions {ϕn}∞
n=1 with the property

that
[∫

Rn |∇ϕ− v|2dµ
]1/2 → 0. It should also be noted that Definition 3.4

is motivated by Otto’s formal Riemannian structure on P2(Rn) [34, 43].
Heuristically, and with some caveats (see Definition 3.7 and the preceding
discussion), we can think of such vector fields v as describing the evolution
of the probability measure µ over an infinitesimal amount of time. That is,
for each point x ∈ spt µ, we imagine that the mass µ assigns to x moves
an infinitesimal amount in the direction of the vector v(x). While this
intuition is valuable, we will often only treat Tµ as a useful space with
which to formulate other definitions. One of the most important such
definitions is that of the Hessian of the energy functional EW :

Definition 3.5 (Hessian of the Energy Functional). Let W : Rn → R be a
potential function of the type discussed in Section 1.2. Then we define the
Hessian Hess EW,µ at µ by its action on Tµ as follows. We say that, for each
v ∈ Tµ,

Hess EW,µ[v, v]

=
∫∫

Rn×Rn
(v(x)− v(y)) ·Hess W(x− y)(v(x)− v(y))dµ(x)dµ(y).

Simione derives this definition using a variational approach in [39,
Chapter 1.5]. In particular, this Hessian quantifies the convexity of EW
near the measure µ ∈ P2(Rn) - for example, if µ is a local minimizer of
the aggregation equation with potential µ, then Hess EW,µ ≥ 0.
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However, matters are complicated due to the fact that, for many po-
tentials of interest, including power-law potentials, EW has a number of
symmetries - for example, if Wα,β is a power-law potential, then EWα,β [·] is
both rotation and translation invariant. Of course, for such vector fields,
any rotation or translation of an energy minimizer will also be a mini-
mizer, which significantly dilutes the notion of uniqueness which we must
work with. In Chapter 2, we handled the issue of translation invariance
by considering minimizers in P0(Rn), and largely skirted around rota-
tion invariance by adding appropriate language to our assumptions and
conclusions. Nevertheless, when treating the dynamics, it makes sense
to handle rotations and translations in a somewhat different and more
careful manner.

More precisely, a minimizer µ of EWα,β can only be unique up to transla-
tion and rotation. Hence, heuristically, if we consider the Hessian along a
path consisting exclusively of rotated translates of µ, it will be identically
zero, even though µ is the unique minimizer of EWα,β up to rotation and
translation. As such, Simione defines a notion of admissible vector fields to
account for this nonuniqueness.

Definition 3.6. We say that v ∈ Tµ is an admissible vector field if

•
∫

v(x)dµ(x) = 0 (orthogonality to translation).

•
∫

v(x) · (Ax)dµ(x) = 0 for any skew-symmetric matrix A ∈ so(n)
(orthogonality to rotation).

Using the heuristic intuition which we discussed before, the first condi-
tion means that, after each point x in the support of µ moves an infinites-
imal amount in the direction v(x), the resulting measure has the same
centre of mass as the original measure µ. Likewise, the second condition
ensures that the resulting measure is, in some sense, oriented in the same
way as the original - i.e. it has not rotated.

Of course, as we mentioned in the discussion after Definition 3.4, we
will need to introduce an additional complication to deal with the fact
that we are working with probability measures. Namely, the space P2(Rn)

allows for Dirac δ masses to split, or even spread out into non-singular
measures. For example, for any point x ∈ Rn, both δ0 and δx+δ−x

2 lie in
P0(Rn). However, vector fields are limited in that they can only prescribe
one direction for mass at a given point to travel, and do not, for example,
allow mass which is originally located at the origin to end up at two
distinct locations. Thus, in order for our theory to reflect our intuitive
idea of tangent vectors as modelling the infinitesimal-in-time evolution
of probability measures into other probability measures, we will need to
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make it somewhat more robust. To do so, Simione introduces the notion
of the full tangent plane, which we provide a revised interpretation of as
follows:

Definition 3.7 (Full Tangent Plane). Let µ ∈ P2(Rn). We define the full
tangent plane, FT µ of µ by:

FT µ := {(v, π) | v ∈ Tµ, π ∈ Γ(µ, ν) for some ν ∈ P2(R
n),

and v(x, s) : Rn × spt ν→ Rn, v ∈ L2(dπ)}.

In effect, the choice of the measure ν reflects the ‘end goal’ of µ, i.e. the
measure which we wish for it to change into. This definition allows our
(full) tangent vector field v to prescribe direction vectors to mass based not
just on its starting location, but also based on where the mass eventually
ends up. In particular, this allows for mass to split and spread, as we
would expect in P2(Rn). This treatment of the full tangent plane is the last
of the background material needed to understand Simione’s thesis, and as
such, we move on to his first key idea — the decomposition of Hess EW
into spreading and displacement components.

Spreading and Displacement Hessians

Simione’s work from here on is concerned with the behaviour of proba-
bility curves µ(t) which start d∞ close to a steady state µ (which we will
think of as a global minimizer of EW [·]).

In particular, fix ε > 0 and assume that d∞(µ(0), µ) < ε. Simione’s key
result in Chapter 4 of his thesis [39, Theorem 16] states that, under certain
spreading and displacement assumptions on µ which we will discuss in
what follows, we may estimate

Hess EW,µ[v, v] ≥ r
∫
|v|2dµ,

where r = r(ε, µ, W) > 0. Of course, we will need to build up some
additional background in order to rigorously discuss the appropriate
spreading and displacement assumptions.

The first thing to note is that, since the measures we are working with
are all found in close proximity to µ, it is natural to consider the subspace
of FT µ given by

{(v, π) | v ∈ Tµ, π ∈ Γopt(µ, µ) and v(x, s) : Rn× spt µ→ Rn, v ∈ L2(dπ)},

i.e. where the splitting plan is an optimal transport plan between µ and µ.
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In this context, Simione decomposes the vector field v ∈ Tµ into two
pieces, each of which lies in FT µ. In order to do this, he first trivially
extends v to an element of FT µ, by setting v(x, x) = v(x) and, as above,
letting π be a d∞-optimal transport plan between µ and µ. In effect, this
assigns the initial velocity v(x) to all the mass which has the initial position
of x, regardless of how that mass is split, or its ultimate location after
transporting µ to µ through the transport plan π.

Using this, Simione defines a vector field v on spt µ by

v(x) =
∫

Rn
v(x, x)dπx(x),

where the transition kernel πx is defined by the equation dπ(x, x) =

dπx(x)dµ(x) (see, for example, [35, Chapter 1.4] for a general discussion
on transition kernels). Heuristically, this assigns the point x an initial
velocity which is a weighted average of the initial velocities of the particles
of µ which get transported to the point x by the optimal transport plan π.
In effect, v represents the displacement, i.e. the effects of the velocity field
v which translate over to a velocity field v on spt µ. Simione then defines
the remainder, ṽ by

ṽ(x, x) = v(x)− v(x)

so that we may decompose

v(x) = v(x) + ṽ(x, x). (3.2)

We interpret ṽ(x, x) as the spreading tangent vector, which represents how
mass must spread out when transporting µ to µ.

Using this decomposition, Simione [39, Section 4.3.1] decomposes Hess EW,µ

as
Hess EW,µ[v, v]

=
∫∫

Rn×Rn
(v(x)− v(y)) ·Hess W(x− y)(v(x)− v(y))dµ(x)dµ(y)

=
∫∫

(v(x)− v(y)) ·Hess W(x− y)(v(x)− v(y))dπ(x, x)dπ(y, y)

+ 2
∫∫

ṽ(x, x)Hess W(x− y)ṽ(x, x)dπ(x, x)dπ(y, y).

As the decomposition (3.2) suggests, Simione uses the first term to quantify
the displacement stability of a steady state, and the second term to quantify
its spreading stability. In practice, Simione provides alternative criteria
which are easier to check, although we will need to establish yet more
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definitions in order to make use of these criteria. Most of the technical
difficulties arise as a result of the fact that the displacement vector field
v need not be orthogonal to rotations, in the sense of Definition 3.6. This
means Simione’s framework requires a further decomposition of each
vector field v into vector fields vR and vR⊥ , by defining

vR(x) = argmax
Ax,A∈so(n)

∫
Rn
(Ax) · v(x)dµ(x), (3.3)

and by defining vR⊥ by

vR⊥(x) = v(x)− vR(x).

We believe that the definition of vR in [39], as reproduced in (3.3), contains
a clerical error of some sort. This is because the algebra, so(n), of skew-
symmetric matrices is not compact, and hence it is not clear why

∫
Rn(Ax) ·

v(x)dµ(x) can be optimized over so(n). Notwithstanding this potential
clerical error (or misinterpretation), we proceed with our exposition of
Simione’s work.

The vector field vR is called the rotational part of v and, as Simione’s
arguments show, does not affect the displacement stability of a steady
state, meaning that Simione can limit his focus to the component vR⊥ .

Finally, Simione defines a notion of ‘general position’ for finite sets of
particles:

Definition 3.8. We say the particles {x1, ..., xk} ⊂ Rn are in general posi-
tion if there exists some c > 0 such that,

max
i∈{1,2,...,n}

|Axi| ≥ c||A||

for every skew-symmetric matrix A ∈ so(n), and where the norm || · || is
given by ||A|| =

√
Tr(At A).

Remark 3.9. Due to the equivalence of matrix norms, it is possible to work
with any matrix norm, although this will affect the exact value of the
constant c.

With this background out of the way, we now can quantify the displace-
ment and spreading stability of a steady state:

Definition 3.10 (Coefficient of Displacement Stability). Let µ be a steady
state of the aggregation equation with potential W, and let v be a vector
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field which is not identically zero in spt µ. We define the quotient Q(µ, v)
of spreading stability by:

Q(µ, v) :=

∫∫
(v(x)− v(y)) · (Hess W)(x− y)(v(x)− v(y))dµ(x)dµ(y)∫

|v(x)|2dµ(x)

Subsequently, we define the coefficient λW
d of spreading stability by:

λW
d (µ) := inf {Q(µ, vR⊥)| vR⊥ is as in (3.3) and µ(vR⊥ = 0) = 0} ,

with the convention that λW
d (µ) = ∞ and ∞ · 0 = 0 in the event that vector

fields vR⊥ vanish except on a set of µ measure zero.

Remark 3.11 (Alternative Characterization). Notice that, if c is such that,
for any vector field vR⊥ as defined above,

∫∫
(vR⊥(x)− vR⊥(y)) · (Hess W(x− y))(vR⊥(x)− vR⊥(y))dµ(x)dµ(y)

≥ c
∫
|vR⊥(x)|2dµ(x), (3.4)

then c ≤ λW
d (µ).

Definition 3.12 (Coefficient of Spreading Stability). If µ is a steady state
of the aggregation equation with potential W, we define the coefficient
λW

s (µ) of spreading stability by:

λW
s (µ) := 2 min {eigenvalues of Hess W ∗ µ(x) | x ∈ spt(µ)} .

Simione’s Key Results

Using the assumptions discussed in the previous subsection, Simione
proves some of his key results. His first result, which we reproduce here,
shows that if µ is both spreading and displacement stable, then the Hessian
is a positive definite bilinear form on the space of admissible vector fields.
More precisely,

Theorem 3.13 (Theorem 16 of [39]). Let µ ∈ P2 be a finite particle steady state
(µ = ∑k

i=1 miδxi) of the aggregation equation with potential W, and let there be
some λ > 0 such that min(λW

s (µ), λW
d (µ)) ≥ λ. Moreover, assume that c is

such that the particles {x1, ..., xk} in spt µ are in general position with constant
c, or, in other words, that

max
i=1,...,k

|Axi| ≥ c||A||.
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Let m = mini=1,...,k mi, and let cW be the Lipschitz constant of Hess W (i.e.
|(Hess W(x)−Hess W(y))z| ≤ cW |x− y||z| for all x, y, z ∈ Rn).

Then, if µ ∈ P2 is such that d∞(µ, µ) < ε, and v is admissible as defined in
Definition 3.6, we find that

Hess EW,µ[v, v] ≥
(

λ− 2cWε− λ

cm
ε2
) ∫
|v(x)|2dµ(x).

Additionally, if r ∈ (0, 1) and ε satisfies

ε < − cWcm
λ

+

√( cWcm
λ

)2
+ (1− r)cm,

then
Hess EW,µ[v, v] ≥ rλ

∫
|v(x)|2dµ(x).

Simione uses this theorem to prove that, under sufficient spreading
and displacement stability assumptions at the steady state µ, the dy-
namics of the aggregation equation are both d∞-Lyapunov stable and
d2-asymptotically stable near µ. To show this, we will need to define a few
additional quantities:

Definition 3.14 (Various quantities).

• Let B be an orthonormal basis of so(n), with respect to the inner
product 〈A, A′〉 = Tr(At A′) such that {B = A1, ..., An(n−1)/2}. We
take c1 to be an arbitrary number such that ||Ai|| ≤ 1√

c1
for all

i = 1, ..., n(n−1)
2 , i.e. we can take c1 = 1. If µ is in general position in

the sense of Definition 3.8, then such a c1 is guaranteed to exist.

• If spt µ = {x1, ..., xk}, then we define ` := mini 6=j |xi − xj| and L :=
maxi |xi|.

• Given a steady state µ, we define its manifold of rotations,Mµ by

Mµ := {O#µ | O ∈ SO(n)},

where SO(n) refers to the special orthogonal group of rotation ma-
trices.

• Given a potential W, we define LW to be the Lipschitz constant of
∇W, in the sense that

|∇W(x)−∇W(y)| ≤ LW |x− y|.

We are now ready to state Simione’s main result:
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Theorem 3.15 (Theorem 25 of [39] — d∞-Lyapunov and d2-asymptotic
stability near steady states). Let µ := ∑k

i=1 miδxi be a finite particle steady
state of the aggregation equation with potential function W, and let λ > 0 satisfy
min(λW

d (µ), λW
s (µ)) ≥ λ Let c1, `, and L be as defined in Definition 3.14, let

m := min1,...,n mi, and assume 0 < δ < 1
8 m
√

c1. Moreover, assume that µ(t) is
a solution to the aggregation equation such that

d∞(µ(0),Mµ) < δ0 :=
δ

4
min

 1
( 4L

m
√

c1
+ 1)

,
λ

2(LW + 4n(n−1)
m λ)

 .

Then, for all t > 0

1. d∞(µ(t),Mµ) <
3δ
4 (d∞-Lyapunov stability), and

2. d2(µ(t),M) ≤ δd2(µ(0),Mµ)e−
λ
4 t (d2-asymptotic stability).

In what follows, we will apply Theorem 3.15 to simplicial measures on
R and discuss Simione’s application on R2.
Remark 3.16. In the next section, we will use Theorem 3.15 to derive some
rather surprising stability results. We take this to mean that either (i) the
scope of that theorem is in some way narrower than what we envisioned in
this thesis or (ii) the theorem needs to be further adapted and specialized
in order to apply in one dimension.

3.3 application to the one-dimensional case

We now specialize Simione’s results to the one-dimensional case and, in
particular, show that, for a simplicial steady state νm := mδ−1/2 + (1−
m)δ1/2 and a power-law potential W = Wα,β, λ

Wα,β
s (νm) ≥ λ

Wα,β

d (νm). We
proceed by directly computing each quantity for a general potential W
which is radial and sufficiently regular, and then specialize to the case of
power law potentials Wα,β, where our results can be made more explicit.

Proposition 3.17 (Calculation of λW
s ). Let νm be as defined above, and let W

be twice-differentiable on {− 1
2 , 1

2}+ {−
1
2 , 1

2}. Then

λW
s (νm) = 2 min(mW ′′(−1) + (1−m)W ′′(0), mW ′′(0) + (1−m)W ′′(1))

In particular, if W = Wα,β for α > β ≥ 2, then

λW
s (νm) =

{
2 min(m(α− β)− (1−m),−m + (1−m)(α− β)) β = 2

2 min(m(α− β), (1−m)(α− β)) β > 2
(3.5)
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Proof. Since we are working in R, and since − 1
2 and 1

2 are the only two
points in spt νm, it is immediate that

λW
s (νm) = 2 min((W ′′ ∗ νm)(−

1
2
), (W ′′ ∗ νm)(

1
2
))

= 2 min(mW ′′(−1) + (1−m)W ′′(0), mW ′′(0) + (1−m)W ′′(1)).

Now notice that, if W = Wα,β for α > β ≥ 2, then we may directly
compute:

W ′′α,β(x) =

{
(α− 1)|x|α−2 − (β− 1)|x|β−2, β > 2

(α− 1)|x|α−2 − 1 β = 2
. (3.6)

Hence, W ′′α,β(1) = W ′′α,β(−1) = α − β, and W ′′α,β(0) = 0 if β > 2 and
W ′′α,β(0) = −1 if β = 2. Substituting these values into the formula for
λW

s (νm) yields Equation (3.5), finishing the proof.

Proposition 3.18 (Calculation of λW
d ). Let νm be as defined above, and let W

be differentiable on {− 1
2 , 1

2}+ {−
1
2 , 1

2}, with W ′′(0) = 0. Then

λW
d (νm) = W ′′(1) + W ′′(−1).

In particular, if W = Wα,β for α > β ≥ 2, then

λW
d (νm) = 2(α− β)

Proof. We first consider the admissibility conditions in Definition 3.6. No-
tice that, since we are working on R, any vector field v is trivially orthogo-
nal to rotations, and hence v = vR⊥ . On the other hand, the requirement
that v be orthogonal to translation simplifies to the condition

0 =
∫

v(x)dνm(x) = mv(−1
2
) + (1−m)v(

1
2
),

and hence
(1−m)v(

1
2
) = −mv(−1

2
).

Thus, we explicitly calculate:∫∫
(v(x)− v(y))W ′′(x− y)(v(x)− v(y))dµ(x)dµ(y)

=
∫∫

W ′′(x− y)(v(x)− v(y))2dµ(x)dµ(y)

= m(1−m)

[
W ′′(1)(v(

1
2
)− v(−1

2
))2 + W ′′(−1)(v(−1

2
)− v(

1
2
))2
]
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= m(1−m)(W ′′(1) + W ′′(−1))(v(−1
2
)− v(

1
2
))2. (3.7)

Employing the fact that vR⊥ is admissible, we see that

m(v(−1
2
)− v(

1
2
)) = −((1−m)v(

1
2
) + mv(

1
2
)) = −v(

1
2
),

and likewise

(1−m)(v(−1
2
)− v(

1
2
)) = (1−m)(v(−1

2
) + mv(−1

2
)) = v(−1

2
).

Thus, we may rewrite the expression in (3.7) as:

−v(
1
2
)v(−1

2
)(W ′′(1) + W ′′(−1)).

On the other hand, we can express∫
(v(x))2dνm(x) = mv(−1

2
)2 + (1−m)v(

1
2
)2

= −(1−m)v(−1
2
)v(

1
2
)−mv(−1

2
)v(

1
2
)

= −v(−1
2
)v(

1
2
),

which means the inequality (3.4) simplifies to

−v(
1
2
)v(−1

2
)(W ′′(1) + W ′′(−1)) ≥ −λv(

1
2
)v(−1

2
)

for all admissible vector fields v. Moreover, notice that since v is orthog-
onal to translation, −v( 1

2 )v(−
1
2 ) ≥ 0. Hence, since there exist non-trivial

admissible vector fields v, we can conclude that

W ′′(1) + W ′′(−1) ≥ λ,

or rather, that the largest possible choice of λ is W ′′(1) + W ′′(−1).
In the case of the power-law potential Wα,β, we notice that W ′′α,β(1) =

W ′′α,β(−1) = α− β, and hence, in this case, the optimal choice of λ is given
by 2(α− β).

Remark 3.19 (Comparison of λ
Wα,β
s (νm) and λ

Wα,β

d (νm)). Regardless of the
value of β, the quantity in (3.5) is, at most, α− β, and hence

λ
Wα,β

d (νm) = 2(α− β) > α− β ≥ λ
Wα,β
s (νm).
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This implies that, at least in one dimension, any simplex νm which is
spreading stable with coefficient λ

Wα,β
s (νm) will also be displacement stable

with coefficient λ
Wα,β
s (νm). Thus, in our following application of Simione’s

argument, we need only to concern ourselves with calculating λ
Wα,β
s (νm).

We now turn our attention to applying Theorem 3.15 in the case of
power-law potentials Wα,β and simplicial measures νm such that λ

Wα,β
s (νm) >

0. Of course, if β > 2, then Equation (3.5) implies that λ
Wα,β
s (νm) > 0. How-

ever, for β = 2, it is possible for λs,Wα,β(νm) to be non-positive. Thus, for

the sake of convenience, we provide an equivalent condition for λ
Wα,2
s (νm)

to be positive:

Lemma 3.20. λ
Wα,2
s (νm) is positive if and only if m ∈ ( 1

α−1 , α−2
α−1 ).

Proof. Recall that

λ
Wα,2
s (νm) = 2 min(m(α− 2)− (1−m),−m + (1−m)(α− 2))

= 2 min(m(α− 1)− 1, α− 2−m(α− 1)).

Clearly, m(α− 1)− 1 is positive precisely on ( 1
α−1 , ∞), and likewise, α− 2−

m(α− 1) is positive precisely on (−∞, α−2
α−1 ), and hence their minimum is

positive only on the intersection of those intervals, precisely as desired.

Now we may properly apply Theorem 3.15. Notice that, in the one-
dimensional context, where νn = mδ−1/2 + (1 − m)δ1/2, we have that
` = 1, L = 1

2 , and we can choose c1 to be arbitrary. As such, we will take
c1 = ∞, as this simplifies the result. Moreover, we notice that ∇Wα,β(x) =
W ′α,β(x) = x(|x|α−2 − |x|β−2) is not globally Lipschitz. However, we can
resolve this issue by noticing that νm is compactly supported, and hence,
we may restrict our potential to a compact interval of the form [−R, R],
and define a new potential W̃α,β by changing the values of Wα,β outside of
[−R, R] such that the Lipschitz constant of Wα,β on [−R, R] coincides with
the global Lipschitz constant of W̃α,β. Notice that the Lipschitz constant of
W ′α,β on [−R, R] is simply the maximum modulus of its derivative, W ′′α,β,
on [−R, R]. Thus, in light of Equation (3.6), we may assume that R is large
enough that

LW̃α,β
=

{
(α− 1)Rα−2 − (β− 1)Rβ−2, β > 2

(α− 1)Rα−2 − 1, β = 2.
(3.8)

Thus, we are at last able to apply Theorem 3.15:
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Corollary 3.21 (Theorem 25 of [39] for Simplicial Measures and power-law
potentials.). Assume that the simplex νm = mδ−1/2 + (1−m)δ1/2 is a steady
state of the aggregation equation with potential Wα,β, for some α > β ≥ 2.
Moreover, assume that either β > 2 or m ∈ ( 1

α−1 , α−2
α−1 ), such that

λ :=

{
2 min(m(α− 1)− 1, (α− 2)−m(α− 1)), β = 2

2 min(m(α− β), (1−m)α− β), β > 2

is positive. By symmetry, assume m < 1
2 . Let δ > 0, and let µ(t) be a solution to

the aggregation equation such that

d∞(µ(0), νm) <
δ

4
min

{
1,

λ

2(LW + 4n(n−1)
m λ)

}
.

Then for all t > 0,

1. d∞(µ(t), νn) <
3δ
4 , and

2. d2(µ(t), νn) ≤ δd2(µ(0), νn)e−
λ
4 t.

Remark 3.22. We now clarify our earlier discussion in Remark 3.16. In
particular, our concern is that Corollary 3.21 applies for any δ > 0 and,
as such, guarantees that, for each potential Wα,β, there exists a single
steady state µ to which all other probability measures in P2(Rn) converge
asymptotically with respect to the d2 metric. More work needs to be done
to determine the cause and implications of this unexpected result.

3.4 application to the two-dimensional case

In [39, Chapter 6], Simione explores the consequences of his argument in
the context of simplicial steady states of the aggregation equation with
power-law potential Wα,β. We summarize his results in the following, and
then attempt to build on them.

Proposition 3.23 (Spreading Stability; Section 6.2.1.2 of [39] ). Let m =

(m1, m2), and consider the simplicial steady state νm := m1δx1 + m2δx2 + (1−
m1 −m2)δx3 where, without loss of generality, m1 ≤ m2 ≤ 1−m1 −m2. Then
for any radially symmetric potential W(x) = w(|x|), which is sufficiently regular,

λW
s (νm) = w′′(0)(1−m1−m2)+

w′′( 1√
3
)

2

(
m1 + m2 −

√
m2

1 −m1m2 + m2
2)

)
Remark 3.24. In the case of power-law potentials Wα,β with β > 2, we will
have that w′′(0) < 0 and that w′′( 1√

3
) > 0. Moreover, notice that
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lim
m1→0

[
m1 + m2 −

√
m2

1 −m1m2 + m2
2

]
= 0,

and hence, by Proposition 3.23,

lim
m1→0

λW
s (νm) < 0.

This implies that, as in the one-dimensional case, a simplicial probability
measure which fails to allocate a certain minimum amount of mass to each
vertex of the simplex will necessarily fail to be spreading stable.

Turning to displacement stability, Simione does not explicitly compute
the coefficient of displacement stability in [39]. While this thesis does not
have much to add to the work done in Simione’s thesis, one can hope that,
as in the one-dimensional case, the simplicial measure νm satisfies

λW
s (νm) ≤ λW

d (νm) (3.9)

While we do not know how to prove (3.9) in general dimension, or indeed
even in two dimensions, we hope to compute λW

d (νm) in the future and, by
comparing this to the formula for λW

s (νm) from Proposition 3.23, readjust
our expectations for whether or not (3.9) holds.

Remark 3.25 (Stability in higher dimensions). If (3.9) indeed holds for sim-
plices in general dimension, then this makes Simione’s arguments, and
in particular Theorems 3.13 and 3.15, much more useful for computa-
tions. In particular, while it becomes harder to compute both λW

s (νm) and
λW

d (νm) as the dimension of the ambient space increases, the computation
of λW

d (νm) involves computing the eigenvalues of a larger matrix. For
example, in two dimensions, Simione computes λW

s (νm) as the minimum
eigenvalue of a 2× 2 matrix, whereas in order to compute λW

d (νm) using
Simione’s method, one would have to compute the minimum eigenvalue
of a 6× 6 matrix.



A
M U LT I - W E L L E D
P O T E N T I A L S

We now take a brief excursion into the theory of k-welled potentials, both
in R and Rn. The purpose of this theory, as suggested by Robert McCann,
is to allow for certain results on power-law potentials to be extended to
account for more general potentials, as the definitions we will provide
in this section do not require any assumptions of radiality or symmetry.
One potential use of this theory is to show stability results, by considering
perturbations of probability measures. In this section, we begin by defining
k-welled potentials in R, show a key recursive criterion for a potential to
be k-welled, and then proceed to generalize the theory to Rn, by discussing
potentials which have k-welled restrictions to any given line.

a.1 motivation and definition in one dimension

Although we have not yet defined k-welled potentials, we may view them
as a generalization of attractive-repulsive potentials, at least those which
have no singularities at zero. We define k-welled potentials as follows:

Definition A.1 (k-welled potential). A function f : R → R ∪ {+∞} is
said to be k-welled if it has at most k− 1 local maxima, is C2k−2

loc smooth
except possibly at the local maxima, has at most k other critical points and,
when it possesses k− 1 local maxima as well as k other critical points, is
non-degenerate, in the sense that its second derivative is nonzero, at each
of the latter.

For example, any potential of the form Wα,β(x) = |x|α
α −

|x|β
β is a 2-welled

potential, provided that α > β. Notice that our definition is broad enough
to include even the case where β < 0, and hence Wα,β has a singularity at
the origin - in this case, we simply say that Wα,β(0) = ∞.

The theory of k-welled potentials is potentially quite powerful - while it
loses some of the specific advantages of working with power-law potentials,
the class is broad enough to include sums of power law potentials, as
well as their perturbations. This means that, while there have not yet been
many substantive results proved for k-welled potentials, they provide a
promising new avenue for generalizing our work in the first three chapters.
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a.2 recursive criterion in one dimension

The theory of k-welled potentials seems to be a promising avenue of study
because this class of potentials admits a useful recursive criterion:

Proposition A.2 (Recursive criterion to be k-welled). Fix k ≥ 2. If the second
derivative of f ∈ C2k−2(R) is (k− 1)-welled, then f is k-welled.

Proof. We first show that the set N := {t| f ′′(t) ≤ 0}may have at most k− 1
connected components. This is because f ′′ is continuous, and hence the Ex-
treme Value Theorem guarantees a local maximum of f ′′ between any two
connected components of N. Thus, were there k connected components,
f ′′ would have k− 1 local maxima, whereas (k− 1)-welled potentials may
have at most k− 2 local maxima.

Moreover, f has at most one critical point (and hence local maximum)
per connected component of N: were there to be two critical points, say
t0 < t1, on the same connected component of N then we would have
that 0 = f ′(t1)− f ′(t0) =

∫ t1
t0

f ′′(t)dt. Hence, as f ′′ ≤ 0 on [t0, t1] and it
integrates to 0 over this interval, f ′′ would have to be be identically zero
on [t0, t1], a contradiction to the fact that (k− 1)-welled functions can only
have finitely many critical points. Given that any local maximum of f must
occur on N, f has at most k− 1 local maxima - at most one on each of the
at most k− 1 connected components of N.

To show that f has at most k other critical points, we assume by way of
contradiction that it has k + 1 non-maximal critical points, with, say ` of
them local minima. Since the remaining k− `+ 1 critical points of f are
not local minima, they must lie in N. On the other hand, the presence of
` local minima implies the existence of `− 1 local maxima on f which,
again, must lie in N. Thus, f has k − `+ 1 non-maximal critical points
on N and `− 1 maxima on N, for a grand total of k critical points on N.
However, our earlier argument again shows that f may have at most one
critical point per connected component of N, and that there are at most
k− 1 connected components of N, allowing us to draw a contradiction.

Finally, if f has k − 1 local maxima and k other critical points, our
previous argument demonstrates that each local maximum must be the
only critical point on a connected component of N. Thus, all other critical
points must occur on R \ N = {t| f ′′(t) > 0}, and hence must be non-
degenerate local minima of f .

In addition, in the case that k = 2, we may prove an alternative version
of Proposition A.2, wherein we replace the condition that f ′′ is (k− 1)-
welled, with the condition that f ′′ is convex. Moreover, in this case, we may
relax the requirement that f ∈ C2(R) and replace it with the requirement
that f ∈ C2

loc(R).
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Lemma A.3. If f ∈ C2
loc(R) has a strictly convex second derivative, then f is

2−welled.

The proof of Lemma A.3 proceeds in an identical manner to that of
Proposition A.2, and hence we omit it. The following corollary is an
immediate consequence of applying Lemma A.3 once and Proposition A.2
k− 2 times:

Corollary A.4 (Convexity criterion to be k-welled). For k ≥ 2, if f ∈
C2k−2

loc (R) has a strictly convex (2k− 2)-th derivative, then f is k-welled.

a.3 multi-welled potentials in general dimension

We now take some first steps to generalize the theory of k-welled potentials
to higher dimensions. In light of Corollary A.4, and the emphasis it places
on convexity, it is natural to look at functions whose restriction to any
given line is k-welled. More precisely:

Definition A.5 (k-welled Restrictions). We say that the function f : Rn →
R∪ {∞} is said to have k-welled restrictions if, for every line ` : R→ Rn,
thought of as a parametrized curve, the function f ◦ ` : R→ R∪ {∞} is
k-welled.

The class of potentials which have k-welled restrictions is significantly
more general than the class of power-law potentials - for example, it is
clear that power-law potentials are 2-welled, and that any finite linear
combination of power-law potentials is k-welled for some k. Moreover, this
class is clearly quite robust under smooth perturbations — heuristically,
along any line, a perturbation can only add a finite number of wells. As
such, while there have not yet been any significant results proven for
k-welled potentials, such results will be considerably more general than
those discussed in the preceding chapters of the present thesis.
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