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Abstract

In a transferable utility context, Choo and Siow (2006) introduced
a competitive model of the marriage market with gumbel distributed
stochastic part, and derived its equilibrium output, a marriage match-
ing function. The marriage matching function defines the gains generated
by a marriage between agents of prescribed types in terms of the observed
frequency of such marriages within the population, relative to the number
of unmarried individuals of the same types. Left open in their work is the
issue of existence and uniqueness of equilibrium. We resolve this question
in the affirmative, assuming the norm of the gains matrix (viewed as an
operator) to be less than two. Our method adapts a strategy called the
continuity method,more commonly used to solve elliptic partial differen-
tial equations, to the new setting of isolating positive roots of polynomial
systems. Finally, the data estimated in [4] falls within the scope of our
results.
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1 Introduction

In ’Who Marries Whom and Why?’ [4], Choo and Siow propose a model of the
marriage market in which agents have deterministic preferences with respect
to observable characteristics and stochastic preferences respect to unobserv-
able characteristics. The randomness is McFadden[11] type, and spreads the
preferences of agents on one side of the marriage market over the entire type-
distribution of agents on the other. Some agents of every type will experience
extreme draws from the random variable and prefer agents on the other side far
away from the mean preferences of their own agent-type. The result is that equi-
librium output of the model, if it exists, is not positive assortative, even when
attributes of agents are one-dimensional. This is consistent with empirical data.

Until now, it is not been clear whether the equilibrium output exists, or,
taking existence for granted, whether it is unique. This question is of interest
from an econometric, theoretical and demographic point of view; it will be called
the Choo-Siow Inverse Problem. It is resolved affirmatively below, provided the
operator norm of the matrix whose ijth entry is the systematic gain to an (i, j)
marriage is strictly bounded by 2.

1.1 Related literature, background, and motivation

A marriage matching function specifies the marital output in a society, taking
as inputs population vectors, which are the distributions of different types of
men and women in the population under study, and exogenous parameters. It
is a production function of marital matches.

Given population data and exogenous parameters, a marriage matching func-
tion generates a marriage distribution which is a bivariate distribution of mar-
riage matches by spousal type, and of unmarried individuals by type.

A thirty year old research agenda involves the search for non-parametric
marriage matching functions which are econometrically identified and also allow
for substitution effects as in Pollak [12], and Pollard [13]. Choo and Siow [4]
proposed such a marriage matching function using a transferable utility model
of the marriage market. This model has been used to study the effects of the
legalization of abortion on marital behavior in the United States (Choo-Siow
[4]), the decomposition of marital behavior of famine born cohorts in China into
quantity versus quality effects (Brandt, Siow and Vogel [2]), changes in marital
matching in the United States in recent decades (Chiappori, Selanie and Weiss,
[3]), and to test Becker’s model of positive assortative matching (Siow [14]).
Siow [16] surveys other applications.

Given any observed population vectors and marriage distribution, the pa-
rameters of the non-parametric Choo-Siow inverse marriage matching function
are point identified. What is unknown is whether any admissible set of param-
eters and population vectors generates a unique marriage distribution. This is
the Choo-Siow inverse problem. The question of uniqueness is important for
several reasons. First, if the Choo-Siow inverse problem has a unique solution,
the estimated parameters are an alternative characterizaion of the observed
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marriage distribution. The recharacterization is useful because the parameters
of the Choo-Siow model have a behavioral interpretation.

Second, the Choo-Siow marriage matching function is the equilibrium out-
come of a competitive market. There are few, if any, realistic environments with
finitely many agent types and many commodities which are known to generate
unique competitive equilibria. That a competitive marriage matching environ-
ment does so is a relevant contribution. Moreover in the Choo-Siow model,
individuals are assumed to have McFadden [11] random utility functions over
spousal choices. This logit class of discrete choice utility functions is the cur-
rent standard in equilibrium discrete choice modeling as in Berry and Reiss
[1]. So uniqueness of equilibrium in the Choo-Siow model has potentially wider
applicability.

Finally, an affirmative solution to the Choo-Siow inverse problem means
that the point estimated parameters implicity define a single valued marriage
matching function. Researchers are often interested in predicting changes in
the marriage distribution in response to changes in marriage market conditions.
A single valued marriage matching function allows a unique prediction to be
made.

1.2 The Choo-Siow marriage matching model

We begin by reviewing the Choo-Siow model. Consider an observation space
that consists of M men and F women. The space can be partitioned into non-
empty subsets according to the types of its constituents. There are I types
of men, and J types of women. The number of men of type i is denoted
mi, and the number of women of type j is denoted fj . The vector whose ith

component is mi, and whose (I + j)th component is fj , is denoted by ν. It
has (I + J) components and is called the population vector. In the observation
space, some individuals are married, and others are single. Let µij be the
number of marriages of type i men to type j women. Let µi0 be the number of
unmarried men of type i and µ0j be the number of unmarried women of type j. A
specification of µij ,µi0,µ0j for all i and j is called a marital arrangement. The
following population constraints must be satisfied by all marital arrangements,
and are a consequence of the definitions:

µi0 +

J∑
j=1

µij = mi, (1)

µ0j +

I∑
i=1

µij = fj . (2)

The relative systematic gains (also called payoff or welfare) of a marriage of a
type i man to a type j woman is denoted Πij , and is defined — apart from a
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logarithm irrelevant to the discussion below — by the equation

Πij =
µij√
µi0µ0j

. (3)

Note that division by zero causes some values of Πij to be undefined, unless —
as we henceforth assume — the sample set is large enough that there remain
a positive number of unmarried men and unmarried women of each type. The
I × J matrix of gains will be denoted by Π = (Πij). It is a function on the
space of marital arrangements; a marital arrangement is said to generate gains
Π. We can now precisely formulate the Choo-Siow Inverse Problem:

Problem 1 (Choo-Siow inverse problem). Given a gains matrix Π = (Πij) and
a population vector ν = (m, f), does there exist a unique marital arrangement
generating Π? In other words, assuming the entries Πij to be non-negative and
mi and fj to be strictly positive, does exactly one matrix (µij) with non-negative
entries exist which satisfies (1)–(3)?

One might also be interested in whether the entries µij of the solution, when
they exist, turn out to be integers. This question is not addressed here.

Remark 1 (Interpretation of the gains matrix). Choo and Siow show that
equation (3) is the equilibrium outcome of a transferable utility model of a
competitive marriage market. Choo and Siow call Πij , which are exogenous
parameters, the systematic gains to an {i, j} marriage relative to them not
marrying. Πij has an intuitive interpretation. If it is larger, there will be more
{i, j} marriages and or less i type men or j type women remaining unmarried.
Given an observed marriage distribution, Πij can be estimated. So a researcher
can learn which marital matches generate larger systematic gains than others.
Even if one does not fully subscribe to the interpretation of the Choo-Siow
model, Πij is an alternative characterization of the marriage distribution if the
Choo-Siow inverse problem has a unique solution.

Remark 2 (Special structure for ordered types). Many of the types commonly
available to the researcher can be ordered. These include income, age, and years
of education. In the ordinal case, the I types of men and J types of women
can be considered as points on the real line, specified only up to order. Given a
type i we let i+ 1 denote the next type. In the presence of ordering, a general
identity for our problem,

log

(
µ(i′, j′)µ(i, j)

µ(i′, j)µ(i, j′)

)
= log Π(i′, j′) + log Π(i, j)− log Π(i, j′)− log Π(i′, j) (4)

as mentioned in [14], acquires special interpretation. Indeed, taking i′ = i + 1
and j′ = j + 1, the right hand side of equation (4) becomes a finite difference

representation of the mixed partial derivative
∂2 log Π

∂i∂j
. Galichon [6] realized
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that taking the continuum limit of the lattice of types on R2, Π and µ may
become smooth functions1 satisfying the partial differential equation:

∂2 log Π

∂i∂j
− ∂2 logµ

∂i∂j
=

(
∂2

∂t2
− ∂2

∂x2

)
(log Π− logµ) = 0 (5)

where (t, x) = (i + j, i − j)/
√

2. Equation (5) recasts the unique expression of
marriage statistics (3) in terms of unmarried statistics as the unique solution
of an inhomogeneous wave equation on the quadrant |x| < t. This reduction to
boundary data is a continuum analog of Melino’s observation (6). Determining
the correct boundary data from Π and from ν is the question resolved below in
the discrete setting.

The apparent simplification gained by working with ordinal or cardinal types
comes at the cost of assuming more structure than is natural in certain settings.
Types may be comprised of multiple parameters or include properties like reli-
gion and race have which no canonical ordering. In either case, there is no linear
ordering of these types with respect to which we would expect an individual to
have continuous marital preferences. This problem is eliminated if types are
viewed abstractly.

1.3 Preliminaries

Our approach addresses types which are abstract and discrete. Let us begin
with a reformulation of the problem; Siow [15] attributes this reformulation
to Angelo Melino. Let α2

ij = µij . In this new notation, the gains matrix and
population constraints (1)–(3) take the form:

αi0α0jΠij = α2
ij (6)

α2
i0 +

J∑
j=1

α2
ij = mi (7)

α2
0j +

I∑
i=1

α2
ij = fj . (8)

Borrowing terminology from quantum physics, we call any collection of αij ’s
which solve (6)–(8) amplitudes corresponding to Π. By substituting (6) into (7)
and (8), we can eliminate all variables but those that correspond to unmarried
men and women. This yields a system of (I + J) quadratic polynomials in the
(I + J) variables {αi0}Ii=1, {α0j}Jj=1 :

α2
i0 +

∑J
j=1 αi0α0jΠij = mi, 1 ≤ i ≤ I

α2
0j +

∑I
i=1 αi0α0jΠij = fj , 1 ≤ j ≤ J.

(9)

1The discrete values of µ are determined from the data. Taking the continuum limit will
involve smoothing the discrete data, or fitting it to a parameterized family of functions.
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A solution to this system of equations is a vector of amplitudes α that has
(I+J) components. In principle its components can be real, complex, or both.
The Choo-Siow Inverse Problem is equivalent to showing that the polynomial
system (9) has a unique solution with real positive amplitudes for all gains
matrices Π with non-negative entries and all population vectors ν = (m, f)
with positive components. Our strategy is a proof by the continuity method, a
technique used in the study of nonlinear elliptic partial differential equations [7].
We fix ν, and show that there is a unique non-negative solution when Π = 0.
Then we show that uniqueness is preserved when Π is perturbed slightly. We
iterate this process until we reach the desired Π or encounter an obstruction.

Take {αi0,α0j}0<i≤I,0<j≤J to be coordinates in RI+J . The I+J coordinate
plans defined by setting each of these variables to zero bound 2I+J open regions
in RI+J . In analogy with the case I = J = 1, we call these regions quadrants.

Let ΠT denote the transpose of Π, and λmax(ΠTΠ) the largest eigenvalue of
ΠTΠ. Then ‖Π‖op := |λmax(ΠTΠ)| defines a norm, called the operator norm
of the matrix Π. It is related the Euclidean (or Hilbert-Schmidt) norm ‖Π‖ =

trace(ΠTΠ) of this I × J matrix by the well-known estimates
‖Π‖√
J
≤ ‖Π‖op ≤

‖Π‖. The main result of this paper is the following theorem.

Theorem 1 (Sufficient conditions for unique equilibrium). If the entries of
Π = (Πij) are non-negative, and those of (mi)1≤i≤I , (fj)1≤j≤J are positive,
and ‖Π‖op < 2, then precisely one solution α of (9) lies in the positive quadrant
of RI+J .

Since each matrix (µij) with non-negative entries solving (1)–(3) corresponds
to a solution α of (9) having positive amplitudes αi0 =

√
µi0 and α0j =

√
µ0j ,

this theorem gives the sought characterization of (µij) by Π — thus solving the
Choo-Siow inverse problem provided ‖Π‖op < 2.

It turns out that when the operator norm of the gains matrix is bounded by
1, more can be said about the solutions to (9):

Theorem 2 (Sufficient conditions for separated real solutions). If the entries of
Π = (Πij) are non-negative, and those of (mi)1≤i≤I , (fj)1≤j≤J are positive, and
‖Π‖op < 1, then exactly 2I+J vectors (α10, . . . , αI0, α01, . . . , α0J) solve (9) in
CI+J , their coefficients are real and non-vanishing, and precisely one solution
lies in each quadrant of RI+J .

The non-positive solutions to (9) are superfluous from the economic point of
view. However, the technique used in its proof has potentially wider applicability
to solving inverse problems of this type. The proof of both theorems can be
viewed as an application of the continuity method more commonly used in the
study of elliptic partial differential equations [7].

A second virtue of Theorem 2 is that the stated hypothesis ‖Π‖op < 1 is
sharp for its conclusion:

Remark 3 (Sharpness of Theorem 2). When there is a single type I = 1 = J
of each sex, the Choo-Siow inverse problem reduces to solving a system of two
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quadratic equations in two unknowns. In this case we see the spurious solutions
with α1α2 < 0 diverge as Π = Π11 ↗ 1. In this sense the hypothesis ‖Π‖op < 1
is sharp for the conclusions of Theorem 1 to be true. On the other hand, the
relevant solutions α1α2 > 0 remain bounded as Π11 → 1, and the Choo-Siow
Inverse Problem turns out to have an affirmative answer for all Π11 ≥ 0 in
this case. Whether or not this affirmative answer extends to all componentwise
non-negative Π for some IJ ≥ 2 remains an interesting open question.

We prove Theorem 1 and Theorem 2 in two separate sections below.
First, we develop a compact notation that makes the dependence of the poly-

nomial equations (9) on various parameters of interest more explicit. Recalling
ν = (m, f), we see the quadratic system of equations (9) is equivalent to the
following system:

diag

[(
IdI sΠ
sΠT IdJ

)
ααT

]
= ν (10)

with parameter value s = 1. Here IdJ denotes the J × J identity matrix, and
ααT denotes the rank-one matrix which gives a scaled projection of RI+J onto
the vector of amplitudes α.

The strategy of our proof of both Theorem 1 and Theorem 2 is the following:
when s = 0 the theorems are obviously true, since then αi0 = ±√mi and

α0j = ±
√
fj give the only solutions to (10). If we can show, for a fixed Π that

satisfies the prescribed operator norm bound, that the set of s ∈ [0, 1] for which
the conclusions of each theorem hold true is both open and closed, then it must
amount to the entire interval [0, 1].

2 Proof of Theorem 1

2.1 Separation of solutions, a priori boundedness, struc-
ture of the implicit derivative

A simple but crucial observation that facilitates the proof of Theorem 1 by
continuity (or deformation) method is the following:

Lemma 3 (Separation lemma). For every positive ν = (m, f) and Π = (Πij),
no complex component of any amplitude α solving (9) vanishes.

Proof. Suppose α is a vector of amplitudes, and αi0 = 0. Since mi > 0,the ith

equation in the polynomial system (9) is violated. Similarly, if α0j = 0, since
fj > 0, the I + jth equation in (9) is violated.

We shall use this lemma as follows: when s = 0 we have already remarked
that the only positive solution is given by α0 = (

√
mi,

√
fj).

As s ∈ [0, 1] evolves, solutions may continue to be real, or may become
complex. By the Separation Lemma, solutions that remain real but non-positive
can be bounded away from the positive quadrant. This line of reasoning will be
repeatedly useful in what follows.
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Proof of Theorem 1. Fix ν = (m, f) with positive components and Π = (Πij)
with non-negative entries, having ‖Π‖op < 2. Let S ⊂ [0, 1] denote the set of
parameter values s for which there is a unique positive solution α to (10). We
have already remarked that S contains 0, hence is non-empty. If S ⊂ [0, 1] can
be shown to be both open and closed, it must contain s = 1.

To show S is open, we first need to verify the following claims, which will
enable us to employ the continuity method.

Claim 4 (A priori bound on positive solutions). Suppose α solves (10) for some
s ∈ [0, 1], and let αi0 > 0 and α0j > 0 for all i, and for all j. Then αi0 ≤

√
mi,

and α0j ≤
√
fj.

Proof. When Π = 0, αi0 =
√
mi, and α0j =

√
fj . When Π > 0, the square-free

coefficients of s in the system (9), being non-negative and real, contribute non-
negatively to the left hand side. Since the right-hand side is a fixed vector ν,
the amplitudes must be no larger than they are when Π = 0.

We denote by Idk the identity operator id : Rk → Rk in the standard basis
of Rk. Further, if x ∈ Rk has all of its components positive, we write x > 0.

Claim 5 (Implicit function hypothesis for real solutions). Let

F (α, s) = diag((IdI+J + sW∞)ααT )− ν

denote the difference between the two sides of (10), so that F : (α, s) ∈ RI+J ×
[0, 1] → RI+J and W∞ is defined as in Lemma 9. Fix s ∈ [0, 1] and recall the
components of ν = (m, f) are all positive.

If α is any solution to F (α, s) = 0, and if ‖Π‖op ≤ 1, the matrix DαF (α, s) =
(∂Fk/∂α`)1≤k,`≤I+J is invertible.

Alternately, if F (α, s) = 0 for some α > 0, then if ‖Π‖op ≤ 2 the same
conclusion holds: the matrix DαF (α, s) = (∂Fk/∂α`)1≤k,`≤I+J is invertible.

Proof. We first compute DαF (α, s), and then apply the a priori bound on pos-
itive solutions.

The map DαF (α, s) =

(
∆I sΠI

sΠT
J ∆J

)
is an (I + J)× (I + J) matrix that is

conveniently partitioned into four submatrices: an I × I diagonal matrix ∆I ;
an I × J matrix ΠI ; a J × I matrix ΠT

J ; and a J × J diagonal matrix ∆J . We
shall verify the determinant of DαF (α, s) is non-vanishing.

The submatrices have the form:

(∆I)ii = 2αi0 +

J∑
j=1

Πijα0j = αi0 +mi/αi0,

(∆J)jj = 2α0j +

I∑
i=1

Πijαi0 = α0j + fj/α0j ,

(ΠI)ij = Πijαi0 = αI •Π,

(ΠT
J ) ij = Πijα0j = αJ •ΠT ,
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where we have used the equality F (α, s) = 0 to simplify the diagonal terms.
Here • denotes row-wise scalar multiplication by the entries of αI , given by
(αI)i = (αi0).

Because α0j and αi0 are non-zero by hypothesis, we can divide each row
of ΠT

J and Π I by some α0j and αi0 respectively, without changing the zeroes
of the determinant. This process transforms DαF into a matrix of the form(

∆̃I Π

ΠT ∆̃J

)
, where ∆̃I , and ∆̃J are diagonal and have entries all larger than

one, namely (∆̃I)ii = 1 +mi/α
2
i0, and (∆̃J)jj = 1 + fj/α

2
0j .

There is a determinant formula for block matrices which asserts [8] that

det

(
∆̃I Π

ΠT ∆̃J

)
= det(∆̃I) det(∆̃J) det(IdJ − ∆̃J

−1
ΠT ∆̃I

−1
Π). (11)

The preceding discussion shows ∆̃I

−1
and ∆̃J

−1
to be diagonal matrices

whose entries are bounded between 0 and 1. It is immediate that if ‖Π‖op ≤ 1,
DαF (α, s) is invertible.

To verify the second part of the claim, we apply the a priori bound on
positive solutions derived in Claim 4, and observe that the entries of these

diagonal matrices ∆̃I

−1
and ∆̃J

−1
lie between 0 and 1

2 : since αi0 ≤
√
mi, and

α0j ≤
√
fj , it follows that

α2
i0

α2
i0 +mi

≤ 1
2 , and

α2
0j

α2
0j + fj

≤ 1
2 . Thus the largest

eigenvalue of ∆J
−1 and of ∆I

−1 is less than
1

2
.

Therefore, if operator norm of ΠT and of Π are both less than 2, the argument
of the Jacobian matrix as computed above is positive definite, and so the final
determinant in (11) is positive. Thus the product of the three determinants
is non-vanishing as desired. However ‖Π‖op = ‖ΠT ‖op, so we merely require
‖Π‖op < 2.

2.2 Implementation of the continuity method

We are now equipped to show that the set S defined above is both open and
closed.

Claim 6 (Openness). The set S ⊂ [0, 1] of parameter values s for which the
conclusions of Theorem 1 hold true is open.

Proof. If s0 ∈ S, let α0 be the unique real solution with positive components to
the equation F (α, s0) = 0. By hypothesis ‖Π‖op < 2, we can apply the implicit
function theorem at the point (α0, s0). This follows from Claim 5. The theorem
provides an open interval U ⊂ R centered at s0, and an open neighbourhood
V ⊂ RI+J centered at α0, such that on V × U , all zeroes of F lie on a smooth
curve (α(s), s) (with domain U), such that α(s0) = α0.
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Consider the set B = {s ∈ U | ∃α′s 6= α(s) such that F (α′s, s) = 0}. Our goal
is to show that B is empty. Suppose otherwise. Define D(s) = |s − s0|. Let s̃
be such that D(s̃) = infs∈B {D(s)}.

This choice of s̃ ∈ U guarantees some sequence si → s̃ with si ∈ B. To each
si correspond the distinct amplitudes α(si), and α′si . We consider separately
the sequences α(si), and α′si .

By Claim 4, which provides an a priori bound on positive solutions, the
sequence α′si has a convergent subsequence, whose limit we denote by α′∞.
Smoothness of α(s) implies the convergence of limi→∞ α(si) to α∞ := α(s̃)
also. These limits both lie in the positive real quadrant, for by Lemma 3
no solution may lie on its boundary. It follows from continuity of F that
F (s0, α

′
∞) = 0 = F (s0, α∞).

There are now two cases to consider. First, suppose α′∞ = α∞. Then
arbitrarily close to (α∞, s̃) are solutions (α′i, si) ∈ V × U which lie outside the
curve s ∈ U 7−→ (α(s), s), contradicting the discussion above.

Thus it must be the case that α′∞ 6= α(s̃), and therefore s̃ ∈ B. Then we may
apply the implicit function theorem to (s̃, α′∞). In doing so, we obtain a smooth
curve defined in a neighbourhood of s̃ ∈ U the images of which is separated by
a positive distance from the curve α(s) at the point s̃. By continuity of these
curves, there is some small ball about s̃ on which the image of the curves are
separated by a positive distance. This violates the minimality of s̃. Hence S is
open.

Claim 7 (Closedness). S is closed.

Proof. Let si be a sequence of points in S such that si → s∞. We show that
s∞ ∈ S.

Given the sequence (si, αi) we may apply the a priori bound established
in Claim 4 to the positive solutions αi, and extract a convergent subsequence
(si(k), αi(k)) → (s∞, α∞). By continuity, F (s∞, α∞) = 0. By Claim 3, the
vector α∞ lies in the positive real quadrant, for it may not lie on the boundary.
We apply the implicit function theorem to (s∞, α∞), and obtain a smooth,
unique local solution to F (α, s) = 0, which we denote (α(s), s).

Arbitrarily close to s∞ are members of S. Within some neighborhood of s∞
these points, and the amplitudes that correspond to them, must lie on (α(s), s).
Suppose there were an additional solution, (α̃, s∞), with α̃ 6= α(s∞) Then we
apply the implicit function theorem at this point, to get a contradiction to the
fact that si(k) ∈ S for k large has a unique solution α(si(k)) far from α̃. Hence
S is closed.
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3 Proof of Theorem 2

3.1 Counting the number of complex solutions, spectral
structure of the welfare matrix

In this section we use the continuity method to provide a proof of Theorem 2.
As is always the case, the method relies on the implicit function theorem to
prove the set of parameters s ∈ S for which the hypothesis of Theorem 2 are
true form an open subset of [0, 1], and a priori bounds on solutions to prove
that the same set is closed.

Like in the proof of the previous theorem, Lemma 3 is crucial. We shall
use it as follows: when s = 0 we have already remarked that the complete list
of solutions is given by α0 = (±√mi,±

√
fj). There are 2I+J complex solu-

tions, each consists of real amplitudes, and each resides in a distinct quadrant
of RI+J . If each solution αs remains real as s ∈ [0, 1] evolves, by the Separation
Lemma, these solutions remain in distinct quadrants. As long as no new solu-
tions emerge from complex space, it is guaranteed that there is a unique solution
with real amplitudes in each quadrant. As it turns out, we need not worry about
additional complex solutions: they are all accounted for by Bezout’s Theorem
[17]:

Theorem 8 (Bezout’s theorem). Given n polynomials in n variables, with de-
grees d1, ... ,dn, the maximum number of isolated complex solutions is

∏n
i=1 di.

Since (10) consists of (I+J) equations in (I+J) variables, and each polyno-
mial is a quadratic, there can be no more than 2I+J complex solutions. Thus as
long as we can extend the 2I+J real solutions corresponding from s = 0 through
s > 0 to s = 1, uniqueness of equilibrium is guaranteed.

To understand whether this extension can be accomplished, it is useful to
know whether the matrix

W =

(
IdI Π
ΠT IdJ

)
(12)

governing the solutions to (10) is positive-definite. The following lemma and its
corollary answer this question. In it, Π∗ denotes the adjoint — the transpose
of the complex conjugate of Π. The same lemma has applications in statistical
physics and quantum chemistry; there Πij governs the rate at which a quantum
particle in state i makes a transition into state j. It has been exploited in those
contexts in [10] and the references there.

Lemma 9 (Diagonalization of the welfare matrix). Given an I × J matrix Π

with complex coefficients, let W∞ =

(
0 Π

Π∗ 0

)
. If (e, f) is an eigenvector of W∞

with eigenvalue λ 6= 0, then (e,−f) is an eigenvector of W∞ with eigenvalue
−λ, e is an eigenvector of ΠΠ∗ with eigenvalue λ2, and f is an eigenvector
of Π∗Π with eigenvalue λ2. Conversely, if f is an eigenvector of Π∗Π with
eigenvalue λ2 > 0, then (Πf/λ, f) is an eigenvector of W∞ with eigenvalue λ.
As a consequence, W∞ has at least |J − I| zero eigenvalues.
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Proof. Since W∞ is self-adjoint, it has real eigenvalues and a complete set of
orthogonal eigenvectors. Moreover, the special structure of W∞ implies that for
(e, f) to be an eigenvector with eigenvalue λ means Πf = λe and Π∗e = λf .
If λ 6= 0, this forces both f 6= 0 and e 6= 0. Apart from its final assertion,
the lemma follows immediately. Since every pair of eigenvalues ±λ 6= 0 of the
matrix W∞ leads to one of the I eigenvalues of the matrix ΠΠ∗, and one of
the J eigenvalues of the matrix Π∗Π, it follows that W∞ has at most min{I, J}
non-zero eigenvalue pairs (counted always with multiplicity). On the other hand
W∞ has I + J eigenvalues total, so at least |J − I| of them must vanish.

Corollary 10 (Positive-definiteness of the welfare matrix). . The matrix W
defined by (12) is positive definite if and only if ‖Π‖op < 1.

Proof. Since the coefficients of Π are real, the preceding lemma shows the eigen-

values of W = W∞ + IdI+J =

(
IdI Π
ΠT IdJ

)
take the form λ = 1 (with multi-

plicity greater than |J − I|), and λi = 1±
√
δi, where δi ≥ 0 are the eigenvalues

of the non-negative definite symmetric J × J matrix ΠTΠ. Hence W has all
positive eigenvalues if and only if δi < 1 for all i, if and only if ‖Π‖op < 1.

Proof of Theorem 2. Fix ν = (m, f) with positive components and Π = (Πij)
with non-negative entries, having ‖Π‖op < 1. Let S ⊂ [0, 1] denote the set of
parameter values s for which there are (at least) 2I+J solutions α to (10), one
in each quadrant of RI+J . We have already remarked that S contains 0, hence
is non-empty. If S ⊂ [0, 1] can be shown to be both open and closed, it must
contain s = 1. Since there are at most 2I+J solutions by Bezout’s theorem, all
solutions will have been accounted for and the theorem established. To show S
is open, we will invoke the first part of Claim 5, which will enable us to apply
the implicit function theorem. We also require an a priori bound on positive
solutions when ‖Π‖op < 1.

Claim 11 (A priori bound on solutions). Let W − λII+J be non-negative

definite, where W =

(
IdI Π
ΠT IdJ

)
and λ > 0. If s ∈ [0, 1] and the compo-

nents of ν = (m, f) are non-negative, then all solutions to F (α, s) = 0 satisfy
|α|2 ≤ (I + J)1/2|ν|/λ.

Proof of claim. Given ν ∈ RI+J , set |ν|p := (
∑I+J
k=1 |νk|p)1/p and recall the

elementary inequalities (I + J)−1/2|ν|1 ≤ |ν|2 ≤ |ν|1. Since any solution to (9)
satisfies ν = diag(WααT ), the matrix WααT has non-negative entries on its
diagonal. Thus |ν|1 = trace(WααT ) ≥ λ|α|22, which concludes the lemma in
case s = 1.

In case s ∈ [0, 1], Lemma 9 implies that the eigenvalues ofW (s) :=

(
IdI sΠ
sΠT IdJ

)
range from 1− s

√
δ1 to 1 + s

√
δ1, where δ1 ≥ δ2 ≥ · · · ≥ δJ are the eigenvalues

of ΠTΠ. Non-negative definiteness of W − λIdI+J therefore implies the same
for W (s)− λIdI+J , and the claim follows by applying the preceding paragraph
to W (s).
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3.2 Implementation of the continuity method for sepa-
rated solutions

We can now show that the set S is open and closed, completing the proof of
Theorem 2 by the continuity method.

Claim 12 (Openness). S ⊂ [0, 1] is open.

Proof. Suppose s0 ∈ S. That means there are 2I+J vectors α0 satisfying
F (α0, s0) = 0; one in each of the open quadrants of RI+J . For any one of
these solutions α0, the implicit function theorem provides a small neighbour-
hood around s0 within which F (α, s) = 0 admits a solution α in the same
quadrant as α0, provided the matrix DαF (s0, α) of partial derivatives of F with
respect to α is invertible. This invertibility was verified in Claim 5. The in-
tersection of these 2I+J neighborhoods yields an open interval in S containing
s0.

Claim 13 (Closedness). S is closed.

Proof. We must show that if si −→ s∞, and each si ∈ S, then s∞ ∈ S. For
each si there are 2I+J vectors αki (1 ≤ k ≤ 2I+J) such that F (αki , si) vanishes
— one in each quadrant of RI+J . Since Corollary 10 implies the matrix W
is positive-definite, Claim 11 asserts all the sequences {αki } are contained in
a sufficiently large closed ball. Hence for each k some subsequence {αki(j) }
converges to αk∞. Continuity of F implies F

(
αk∞, s∞

)
= 0. Moreover αk∞ must

lie in the k-th quadrant, and not on its boundary, according to Lemma 3. This
shows the 2I+J solutions αk∞ are distinct, hence s∞ ∈ S as desired.

4 Discussion

The gains matrix Π has no clear economic interpretation as a linear transfor-
mation. It was introduced as a convenient way of arranging the various gains
functions Πij . In our method of proof it takes on a geometric significance. We
showed that the Choo-Siow Inverse problem is solved in the affirmative when
‖Π‖op < 2. Moreover, when Π is a strict contraction we are able to account for

the sign of all 2I+J complex solutions. It would be interesting to find an inter-
pretation of Π as a linear operator — perhaps it governs some related dynamics
— which leads to a deeper understanding of these results.

Finally our result has application to the existing empirical literature. In [4],
Choo and Siow estimate Π, dividing the male and female population into seven
age bins in the period 1971/1972. Hence, Π is a square matrix of dimension
7. It satisfies the bound ‖Π‖op < 0.25, and so falls within the scope of our
theorems.
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