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Abstract. In this paper, we will show that the cost − cosh ◦dHn is
a regular cost, meaning that minimizing this cost on hyperbolic space
yields a smooth optimal map between two given distributions of mass
which satisfies suitable hypotheses. We show this by proving this cost
satisfies Ma-Trudinger-Wang’s conditions and by investigating notions
of convexity under this cost.

1. Introduction

Let M+ and M− be Borel subsets of compact separable metric spaces
that are equipped with Borel probability measures ρ+ and ρ−. Let c :
cl(M+ ×M−)→ R∪ {+∞} be a lower semicontinuous transport cost. The
Kantorovich problem [1] is to find measure γ ≥ 0 on M+×M− whose total
cost is minimal among Γ(ρ+, ρ−). Here total cost is∫

M+×M−
c(x, y)dγ(x, y)

and Γ(ρ+, ρ−) denotes the set of joint probability measures having the same
left and right marginals as ρ+ ⊗ ρ−. It can be shown that such a minimizer
exists; such γ is called optimal.

The Monge problem of optimal transport is to find a Borel map F :
M+ →M− and optimal measure γ vanishing outside Graph(F ) = {(x, y) ∈
M+×M− : y = F (x)}. If such F exists, it is called an optimal map. When
M+ and M− are subsets of a smooth manifold and ρ+ vanishes on Lipshitz
submanifolds of lower dimension and the cost function c(x, y) satisfies the
twist condition (see (A1) below), an optimal map F exists and is unique; see
Gangbo [3] or Levin [4]. Then one can study the regularity of the optimal
map F and how it is influenced by the choice of the cost function. Caffarelli
[5] [6] [7] studied the smoothness of optimal map under the cost of Euclidean
distance squared c(x, y) = |x − y|2/2. This cost is also studied by Delanöe
[8] in the case of R2 and Urbas [9] in higher dimensions. Ma, Trudinger and
Wang [10] used analytic methods in partial differential equations to give a
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sufficent condition (known as Ma-Trudinger-Wang’s conditions) on the cost
function and the domain for its optimal map to be smooth, that is,

Theorem 1.1. If ρ+ and ρ− are smooth densities that have positive upper
and lower bounds on bounded subsets M+ and M− in Rn respectively, and
c ∈ C4(M+ × M−) with (A1)-(A3) satisfied, then the optimal map F is
smooth.

(A1) (Twist condition):

x ∈M+ ↪→ −Dyc(x, y0) ∈ T ∗y0
M−

y ∈M− ↪→ −Dxc(x0, y) ∈ T ∗x0
M+

are smooth embeddings for all x0 ∈M+ and y0 ∈M−.

(A2) (Convexity condition):
−Dyc(M+, y0) ⊂ T ∗y0

M− and −Dxc(x0,M
−) ⊂ T ∗x0

M+ are convex for all
x0 ∈M+ and y0 ∈M−.

(A3): There exists C0 ≥ 0 such that for p, q ∈ Rn, picijq
j = 0,

(ck,lcij,kcl,st − cij,st)pipjqsqt ≥ C0|p|2|q|2,
where cij,st denotes Dxixjysytc, and ck,l denotes the k, l entry of the inverse
matrix of Dxyc.

The above condition was first linked to curvature by Loeper [13], who
observed that when it is satisfied by the Riemannian distance square c :=
d2

g/2 on M+ = M−, then the underlying manifold must have non-negative
sectional curvature. Subsequently Kim and McCann [11] gave a geometric
interpretation by putting a pseudo-Riemannian metric induced by the cost
on M+ × M−, and then (A2) turns into geodesic convexity condition of
the product manifold, and (A3) into positivity condition of certain sectional
curvature on M+ ×M−.

Definition 1.2. We call a smooth cost function which satisfies (A1) and
(A3) regular.

As for example of weakly regular cost functions, Loeper [13] has shown
the Riemannian distance squared on sphere is regular. Riemannian distance
squared on other positively curved manifolds were studied by Delonöne and
Ge [14], Figalli and Rifford [15], Loeper and Villani [16], and Kim [17]. Lee
and McCann [18] have found examples that arise from mechanics. However,
in [13], Loeper showed that Riemannian distance squared is not regular for
manifold that is negatively curved somewhere. Consequently, for a while
the negatively curved spaces were considered incompatible with regularity.
However, it could be the case that Riemannian distance squared is not always
the most appropriate cost to consider; for more general spaces, we need to
study more general cost functions.
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The main purpose of this paper is to show

Theorem 1.3. − cosh ◦dHn on hyperbolic space is regular.

The proof is provided in section 2. In section 3 we discuss (A2) condition
with respect to this cost.

Acknowledgement: I would like to thank Robert McCann for introducing
this problem to me, helping me to improve the method of the main proof,
and patiently reading the draft of this paper. Without his generous and
insightful suggestions, this thesis could not have been completed.

2. Hyperbolic space viewed as a graph

In this section we prove Theorem 1.3. By Lemma 4.4 of [12] and the
fact that the hyperbolic space has no cut locus, we conclude cosh ◦dHn sat-
isfies (A1) twist condition. Then it follows that − cosh ◦dHn satisfies (A1).
Therefore it suffices to show − cosh ◦dHn satisfies condition (A3).

One particular example discussed by Ma, Trudinger and Wang [10] cor-
responds to the cost function determined by the distance squared between
points on graphs of functions over Rn. In this case, a simple sufficient con-
dition for (A3) is found. Here we view hyperbolic space as the graph of
hyperbola in Minkowski space, and derive a similar result in this setting.

Minkowski space Mn+1 is the space of Rn+1 equipped with inner product

〈(x, xn+1), (y, yn+1)〉m =
n∑

i=1

xiyi − xn+1yn+1

In the hyperboloid model, hyperbolic space can be viewed as the graph
of hyperbola: Hn = {u ∈ Mn+1 : ‖u‖2m = −1, un+1 > 0} = {(x,

√
1 + |x|2) :

x ∈ Rn}, with its metric induced from Minkowski space. Even though
the Minkowski metric is not positive definite, its restriction to Hn is, which
makes hyperbolic space a Riemannian manifold. Also there is a nice relation
between hyperbolic distance and (ambient) Minkowski inner product, that
is: − cosh(dHn(u, v)) = 〈u, v〉m. (For this identity, see [19].)

Proof of Theorem 1.3. We start with a general case. Let M+ = {(x, f(x)) :
x ∈ Ω+ ⊂ Rn}, M− = {(y, g(y)) : y ∈ Ω− ⊂ Rn} be two graphs in Mn+1.
Consider the cost function determined by the Minkowski inner product

c(x, y) := 〈(x, f(x)), (y, g(y))〉m = x · y − f(x)g(y).
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We can carry out a direct computation similar to that of page 22 of [10]:

ci,j = δi,j − figj ,

ci,j = δi,j +
figj

1−∇f · ∇g
if ∇f · ∇g 6= 1,

cij,k = −fijgk,

cl,st = −flgst,

cij,st = −fijgst,∑
k,l

ck,lcij,kcl,st − cij,st =
fijgst

1−∇f · ∇g
.

Hence if f and g are convex, with gradients satisfying ∇f · ∇g < 1, then
c will satify (A3).

In the problem of optimal transportation on hyperbolic space, f(x) =
g(x) =

√
1 + |x|2 and c(x, y) = x · y −

√
1 + |x|2

√
1 + |y|2. Since the hy-

perbola is a strongly convex function, fij is positive definite. Also it can
be easily checked by using Cauchy-Schwartz inequality that 1−∇f · ∇g =
1− x·y√

1+|x|2
√

1+|y|2
> 0. Therefore − cosh ◦dHn is regular. �

3. Notion of convexity

In this section we investigate the convexity requirement (A2) for the com-
pact domains M+ and M−.

Definition 3.1 (cost exponential). For cost functions satisfying (A1), the
map x ∈ M+ ↪→ −Dyc(x, y0) ∈ T ∗y0

M− is a smooth embedding. We call
its inverse the c-exponential map based at y0 and denote it by c-expy0

. If
U ⊂ M+ is the image of a convex set in T ∗y0

M− under c-expy0
, then U is

said to be c-convex with respect to y0. Notions of c-expx0
and c-convex with

respect to x0 can be defined similarly.

Remark 3.2. The convexity condition (A2) requires M+ and M− to be c-
convex with respect to every y0 in M− and every x0 in M+ respectively.
To understand (A2) condition geometrically, it is enough to understand the
image of c-exponential map of a half space in the cotangent space of x0, i.e,
{p ∈ T ∗x0

Hn : a ·p ≥ b}, because every convex set in T ∗x0
Hn is the intersection

of half spaces.

We identify (x,
√

1 + |x|2) ∈ Hn with its coordinate x. In local coordi-
nates, the cost function c = − cosh ◦dHn is c(x, y) = x·y−

√
1 + |x|2

√
1 + |y|2.

The inverse of c-expx0
is

−∂xic(x0, y) = −yi +

√
1 + |y|2√
1 + |x0|2

(x0)i.

Fix a hyperplane P = {p ⊂ T ∗x0
Hn : a · p = b} of T ∗x0

Hn. Then its image
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c-expx0
(P ) = {(y,

√
1 + |y|2) : p = −y +

√
1 + |y|2√
1 + |x0|2

x0, a · p = b}

= {(y,
√

1 + |y|2) : a · y − a · x0√
1 + |x0|2

√
1 + |y|2 = −b}

= {(y,
√

1 + |y|2) : a · y − a · x0√
1 + |x0|2

yn+1 = −b}

= Hn ∩ P̄ ,

where P̄ is the hyperplane {(y, yn+1) : a · y − a·x0√
1+|x0|2

yn+1 = −b} in the

Minkowski space.
It is not hard too see how P ⊂ T ∗x0

Hn and x0 geometrically determines
P̄ ⊂ Mn+1. First of all, P̄ ∩ {xn+1 = 0} = {(x, 0) : a · x = −b}, which is
the reflection of P . Secondly, the normal of P̄ is (a,− a·x0√

1+|x0|2
) and it is

perpendicular to (x0,
√

1 + |x0|2), so (x0,
√

1 + |x0|2) is parallel to P̄ . These
two features determine the hyperplane P̄ .

Therefore, if U is a convex set in T ∗x0
Hn, then

c-expx0
(U) = {(−U, 0) + t(x0,

√
1 + |x0|2) : t ∈ R} ∩Hn,

which is a convex solid cylinder intersecting the hyperbolic space.

Figure 1. A c-convex set in H2 with respect to (0, 0, 1)
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