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In this thesis we prove several results on the structure of solutions to optimal transporta-

tion problems.

The second chapter represents joint work with Robert McCann and Micah Warren; the

main result is that, under a non-degeneracy condition on the cost function, the optimal

is concentrated on a n-dimensional Lipschitz submanifold of the product space. As a

consequence, we provide a simple, new proof that the optimal map satisfies a Jacobian

equation almost everywhere. In the third chapter, we prove an analogous result for the

multi-marginal optimal transportation problem; in this context, the dimension of the

support of the solution depends on the signatures of a 2m−1 vertex convex polytope of

semi-Riemannian metrics on the product space, induce by the cost function. In the fourth

chapter, we identify sufficient conditions under which the solution to the multi-marginal

problem is concentrated on the graph of a function over one of the marginals. In the fifth

chapter, we investigate the regularity of the optimal map when the dimensions of the two

spaces fail to coincide. We prove that a regularity theory can be developed only for very

special cost functions, in which case a quotient construction can be used to reduce the

problem to an optimal transport problem between spaces of equal dimension. The final

chapter applies the results of chapter 5 to the principal-agent problem in mathematical

economics when the space of types and the space of available goods differ. When the

dimension of the space of types exceeds the dimension of the space of goods, we show if
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the problem can be formulated as a maximization over a convex set, a quotient procedure

can reduce the problem to one where the two dimensions coincide. Analogous conditions

are investigated when the dimension of the space of goods exceeds that of the space of

types.
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Chapter 1

Introduction

1.1 Background on optimal transportation

The optimal transportation problem asks what is the most efficient way to transform

one distribution of mass to another relative to a given cost function. The problem was

originally posed by Monge in 1781 [59]. In 1942, Kantorovich proposed a relaxed version

of the problem [41]; roughly speaking, he allowed a piece of mass to be split between two

or more target points. Since then, these problems have been studied extensively by many

authors and have found applications in such diverse fields as geometry, fluid mechanics,

statistics, economics, shape recognition, inequalities and meteorology.

Much of this thesis focuses on a multi-marginal generalization of the above; how do

we align m distributions of mass with maximal efficiency, again relative to a prescribed

cost function. Precisely, given Borel probability measures µi on smooth manifolds Mi of

respective dimensions ni, for i = 1, 2...,m and a continuous cost function c : M1 ×M2 ×

....×Mm → R, the multi-marginal version of Monge’s optimal transportation problem is

to minimize:

C(G2, G3, ..., Gm) :=

∫
M1

c(x1, G2(x1), G3(x1), ..., Gm(x1))dµ1 (M)

among all (m − 1)-tuples of measurable maps (G2, G3, ..., Gm), where Gi : M1 → Mi

1



Chapter 1. Introduction 2

pushes µ1 forward to µi, G#µ1 = µi, for all i = 2, 3, ...,m. The Kantorovich formulation

of the multi-marginal optimal transportation problem is to minimize

C(µ) =

∫
M1×M2...×Mm

c(x1, x2, ..., xm)dµ (K)

among all measures µ on M1 ×M2...×Mm which project to the µi under the canonical

projections; that is, for any Borel subset A ⊂Mi,

µ(M1 ×M2 × ....×Mi−1 × A×Mi+1....×Mm) = µi(A).

For any (m − 1)-tuple (G2, G3, ..., Gm) such that Gi#µ1 = µi for all i = 2, 3, ...,m,

we can define the measure µ = (Id,G2, G3, ..GM)#µ1 on M1 × M2 × ... × Mm, where

Id : M1 →M1 is the identity map. Then µ projects to µi for all i and C(G2, G3, ..., Gm) =

C(µ); therefore, K can be interpreted as a relaxed version of M. Roughly speaking,

the difference between the two formulations is that in M almost every point x1 ∈ M1

is coupled with exactly one point xi ∈ Mi for each i = 2, 3, ...,m, whereas in K an

element of mass at xi is allowed to be split between two or more target points in Mi for

i = 2, 3, ...,m. When m = 2, these are precisely the Monge and Kantorovich formulations

of the classical optimal transportation problem.

Under mild conditions, a minimizer µ for K will exist. Over the past two decades, a

great deal of research has been devoted to understanding the structure of these solutions.

When m = 2, under a regularity condition on µ1 and a twist condition on c, which we

will define subsequently, Levin showed that this solution is concentrated on the graph

of a function over x1, building on results of Gangbo [35], Gangbo and McCann [36] and

Caffarelli [14]. It is then straightforward to show that this function solves M and to

establish uniqueness results for both M and K. More recently, in the case where n1 = n2,

understanding the regularity, or smoothness, of the optimal map, has grown into an ac-

tive and exciting area of research, due to a major breakthrough by Ma, Trudinger and

Wang [52]. They identified a fourth order differential condition on c (called (A3s) in the

literature) which implies the smoothness of the optimizer, provided the marginals µ and
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ν are smooth. Subsequent investigations by Trudinger and Wang [71, 70] revealed that

these results actually hold under a slight weakening of this condition, called (A3w), en-

compassing earlier results of Caffarelli [16][15][17], Urbas [72] and Delanoe [25, 26] when

c is the distance squared on either Rn or certain Riemannian manifolds, and Wang for an-

other special cost function [73]. Loeper [49] then verified that (A3w) is in fact necessary

for the solution to be continuous for arbitrary smooth marginals µ and ν. Loeper also

proved that, under (A3s), the optimizer is Holder continuous even for rougher marginals;

this result was subsequently improved by Liu [48], who found a sharp Holder exponent.

Since then, many interesting results about the regularity of optimal transportation have

been established [43][44][50][51][32][34][33][29][30].

A striking development in the theory of optimal transportation over the last 15 years

has been its interplay with geometry. Recently, the insight that intrinsic properties of

the solution µ, such as the regularity of Monge solutions, should not depend on the

coordinates used to represent the spaces has been very fruitful. The natural conclusion

is that understanding these properties is related to tensors, or coordinate independent

quantities. The relevant tensors encode information about the way that the cost function

and the manifolds interact. For example, Kim and McCann [43] introduced a pseudo-

Riemannian form on the product space, derived from the mixed second order partial

derivatives of the cost, whose sectional curvature is related to the regularity of Monge

solutions; they also noted that smooth solutions must be timelike for this form.

Whereas the two marginal problem is relatively well understood, results concerning

the structure of these optimal measures have thus far been elusive for m > 2. Much of the

progress to date has been in the special case where the Mi’s are all Euclidean domains of

common dimension n and the cost function is given by c(x1, x2, ..., xm) =
∑

i 6=j |xi−xj|2,

or equivalently c(x1, x2, ..., xm) = −|(
∑

i xi)|2. When n = 3, partial results for this cost

were obtained by Olkin and Rachev [62], Knott and Smith [45] and Rüschendorf and

Uckelmann [66], before Gangbo and Świȩch proved that for a general m, under a mild
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regularity condition on the first marginal, there is unique solution to the Kantorovich

problem and it is concentrated on the graph of a function over x1, hence inducing a

solution to a Monge type problem [37]; an alternate proof of Gangbo and Świȩch’s theo-

rem was subsequently found by Rüschendorf and Uckelmann [67]. This result was then

extended by Heinich to cost functions of the form c(x1, x2, ..., xm) = h(
∑

i xi) where h

is strictly concave [39] and, in the case when the domains Mi are all 1-dimensional, by

Carlier [19] to cost functions satisfying a strict 2-monotonicity condition. More recently,

Carlier and Nazaret [21] studied the related problem of maximizing the determinant (or

its absolute value) of the matrix whose columns are the elements x1, x2, ..., xn ∈ Rn; un-

like the results in [37],[39] and [19], the solution in this problem may not be concentrated

on the graph of a function over one of the xi’s and may not be unique. The proofs of

many of these results exploit a duality theorem, proved in the multi-marginal setting by

Kellerer [42]. Although this theorem holds for general cost functions, it alone says little

about the structure of the optimal measure; the proofs of each of the aforementioned

results rely heavily on the special forms of the cost.

The final chapter of this thesis focuses on the application of optimal transportation to

the principal-agent problem in economics. Problems of this type frequently in a variety

of different contexts in mathematical economic theory. The following formulation can be

found in Wilson [74], Armstrong [7] and Rochet and Chone [64]. A monopolist wants to

sell goods to a distribution of buyers. Knowing only the preference b(x, y) that a buyer

of type x ∈ X has for a good of type y ∈ Y , the density dµ(x) of the buyer types and

the cost c(y) to produce the good y, the monopolist must decide which goods to produce

and how much to charge for them in order to maximize her profits.

When the distribution of buyer types X and the available goods Y are either discrete

or 1-dimensional, this problem is well understood [69][58][61][8]. However, it is typically

more realistic to distinguish between both consumer types and goods by more than

one characteristic. An illuminating illustration of this is outlined by Figalli, Kim and
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McCann [31]: consumers buying automobiles may differ by, for instance, their income

and the length of their daily commute, while the vehicles themselves may vary according

to their fuel efficiency, safety, comfort and engine power, for example. It is desirable,

then, to study models where the respective dimensions n1 and n2 of X and Y are greater

than 1 [53][63][65]. This multi-dimensional screening problem is much more difficult and

relatively little is known about it; for a review and an extensive list of references, see the

book by Basov [10].

When n1 = n2 and the preference function b(x, y) := x ·f(y) is linear in types, Rochet

and Chone [64]developed an algorithm for studying this problem. A key element in their

analysis is that, in this case, the problem may be formulated mathematically as an

optimization problem over the set of convex functions, which is itself a convex set. They

were then able to deduce the existence and uniqueness of an optimal pricing strategy, as

well as several interesting economic characteristics of it. Basov then analyzed the case

where b is linear in types but n1 6= n2 [9]. When n1 < n2, he was able to essentially reduce

the n2-dimensional space Y to an n1-dimensional space of artificial goods and then apply

the machinery of Rochet and Chone. When n1 > n2, no such reduction is possible in

general. Under additional hypotheses, however, he showed that the solution actually

coincides with the solution to a similar problem where both spaces are n1-dimensional.

For more general preference functions, Carlier, using tools from the theory of optimal

transportation, was able to formulate the problem as the maximization of a functional

P over a certain set of functions Ub,φ (a subset of the so called b-convex functions, which

will be defined below) [18]. He was then able to assert the existence of a solution to this

problem; that is, the existence of an optimal pricing schedule; an equivalent result is also

proven in [60]. However, for general functions b, the set of b-convex functions may not be

convex and so characterizing the solution using either computational or theoretical tools

is an extremely imposing task. Very little progress had been made in this direction until

recently, when Figalli, Kim and McCann [31] found necessary and sufficient conditions
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on b for Ub,φ to be convex, assuming n1 = n2. Assuming in addition that the cost c is

b convex, they then demonstrated that the functional P is concave and from here were

able to prove uniqueness of the solution and demonstrate that some of the interesting

economic features observed by Rochet and Chone persist in this setting. Surprisingly, the

tools they use are also adapted from an optimal transportation context; their necessary

and sufficient condition is derived from a condition developed by Ma, Trudinger and

Wang [52], governing the regularity of optimal maps.

1.2 Overview of Results

This thesis consists of 6 chapters, including the introduction. The second chapter rep-

resents joint work with Robert McCann and Micah Warren and focuses on the case two

marginal problem when n1 = n2 := n. We study what can be said about the solution

under a certain non-degeneracy condition on the cost function, which was originally in-

troduced in an economic context by McAfee and McMillan [53] and later rediscovered

by Ma, Trudinger and Wang [52]; in the terminology of Ma, Trudinger and Wang, it is

also known as the (A2) condition. The main result is that, under this non-degeneracy

condition, the optimal measure concentrates on an n-dimensional, Lipschitz submanifold

of M1 ×M2 (see Theorem 2.0.2).

The proof of this theorem is based on an idea of Minty [57], which was also used by

Alberti and Ambrosio to show that the graph of any monotone function T : Rn → Rn is

contained in a Lipschitz graph over the diagonal ∆ = {u = x+y√
2

: (x, y) ∈ Rn × Rn} [4].

The non-degeneracy condition can be viewed as a linearized version of the twist

condition, which asserts that the mapping y ∈ M− 7−→ Dxc(x, y) is injective. Under

suitable regularity conditions on the marginals, Levin [46] showed that the twist condition

ensures that the solution to the Kantorovich problem is concentrated on the graph of a

function and is therefore unique; see also Gangbo [35].



Chapter 1. Introduction 7

In one dimension, non-degeneracy implies twistedness, as was noted by many authors,

including Spence [69] and Mirrlees [58], in the economics literature; see also [56]. In

higher dimensions, this is no longer true; the non-degeneracy condition will imply that

the map y ∈ M− 7−→ Dxc(x, y) is injective locally but not necessarily globally. Non-

degeneracy was a hypothesis in the smoothness proof in [52], but does not seem to have

received much attention in higher dimensions before then. While our result demonstrates

that the non-degeneracy condition is enough to ensure that solutions still have certain

regularity properties, we will show by example that the uniqueness result that follows

from twistedness can fail for non-degenerate costs which are not twisted. The twist

condition is asymmetric in x and y; that is, there are cost functions for which the map

y ∈ M− 7−→ Dxc(x, y) is injective but x ∈ M+ 7−→ Dyc(x, y) is not. However, since

(D2
xyc)

T = D2
yxc the non-degeneracy condition is certainly symmetric in x and y. In view

of this, it is not surprising that the twist condition can only be used to show solutions are

concentrated on the graphs of functions of y over x whereas the non-degeneracy condition

implies solution are concentrated on n-dimensional submanifolds, a result that does not

favour either variable over the other.

Smooth optimal maps solve certain Monge-Ampère type equations. Typically, an

optimal map will be differentiable almost everywhere, but may not be smooth. It has

proven useful to know when non-smooth optimal maps solve the corresponding equa-

tions almost everywhere. Formally, the link between optimal transportation and these

equations was observed by Brenier [12], then Gangbo and McCann [36], and they were

studied in detail by Ma, Trudinger and Wang [52]. An important step in showing that

an optimal map solves a Monge-Ampère type equation is first showing that it solves the

Jacobian — or change of variables — equation. An injective Lipschitz function satisfies

the change of variables formula almost everywhere, so some sort of Lipschitz rectifiability

for the graphs of optimal maps is a useful tool in resolving this question. As an applica-

tion of Theorem 2.0.2, we provide a simple proof that optimal maps satisfy the change
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of variables formula almost everywhere.

This work is related to another interesting line of research. A measure µ on the

product M+×M− is called simplicial if it is extremal among the convex set of all measures

which share its marginals. There are a number of results describing simplicial measures

and their supports [28][47][11][40][3]. One consequence is that the support of simplicial

measures are in some sense small; in particular, the support of a simplicial measure

on [0, 1] × [0, 1] must have two-dimensional Lebesgue measure zero [47][40]. Although

any measure supported on the graph of a function is simplicial, it is known that there

exist functions whose graphs have Hausdorff measure 2 − ε, for any ε > 0 [1]. For any

cost, the Kantorovich functional is linear and is hence minimized by some simplicial

measure. Conversely, any simplicial measure is the solution to a Kantorovich problem

for some continuous cost function, and so by the remarks above there are continuous cost

functions whose optimizers are supported on sets of Hausdorff dimension 2 − ε. On the

other hand, an immediate consequence of our result is that the support of optimizers of

Kantorovich problems with non-degenerate C2 costs have Hausdorff dimension at most

n, ie, at most one in this case.

The result of Ma, Trudinger and Wang proving smoothness of the optimal map under

certain conditions immediately implies that the support of the optimizer has Hausdorff

dimension n; however, the proof of this result requires that the marginals be C2 smooth.

Under the same assumptions on the cost functions but weaker regularity conditions on

the marginals, Loeper [49] and Liu [48] have demonstrated that the optimal map is

Hölder continuous for some Hölder constant 0 < α < 1. It is worth noting that there are

examples of functions on Rn [1] which are Hölder continuous with exponent α but whose

graphs have Hausdorff dimension n + 1 − α, so the latter results do not imply that the

Hausdorff dimension of the optimizer must be n.

The third chapter applies similar techniques to the multi-marginal problem. Precisely,

we establish an upper bound on dim(spt(µ)). This bound depends on the cost function;
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however, it will always be greater than or equal to the largest of the ni’s. In the case

when the ni’s are equal to some common value n, we identify conditions on c that ensure

our bound will be n and we show by example that when these conditions are violated,

the solution may be supported on a higher dimensional submanifold and may not be

unique. In fact, the costs in these examples satisfy naive multi-marginal extensions of

both the twist and non-degeneracy conditions; given the aforementioned results in the

two marginal case, we found it surprising that higher dimensional solutions can exist for

twisted, non-degenerate costs. On the other hand, if the support of at least one of the

measures µi has Hausdorff dimension n, the remarks above imply that spt(µ) must be

at least n dimensional; therefore, in cases where our upper bound is n, the support is

exactly n-dimensional, in which case we show it is actually n-rectifiable.

Unlike the results of Gangbo and Świȩch, Heinich and Carlier, this contribution does

not rely on a dual formulation of the Kantorovich problem; instead, our method uses an

intuitive c-monotonicity condition to establish a geometrical framework for the problem.

The question about the dimension of spt(µ) should certainly have a coordinate indepen-

dent answer. Indeed, inspired partially by Kim and McCann, our condition is related

to a family of semi-Riemannian metrics1; heuristically, spt(µ) must be timelike for these

metrics and so their signatures control its dimension. From this perspective, the major

difference from the m = 2 case is that with two marginals, the metric of Kim and Mc-

Cann always has signature (n, n). In the multi-marginal case, there is an entire convex

family of relevant metrics, generated by 2m−1 − 1 extreme points, and their signatures

may vary depending on the cost.

Like the results in chapter 2 and in contrast to the results of Gangbo and Świȩch [37],

Heinich [39], and Carlier [19], the results in chapter 3 only concern the local structure of

the optimizer µ and cannot be easily used to assert uniqueness of µ or the existence of a

1For the purposes of this paper, the term semi-Riemannian metric will refer to a symmetric, covariant
2-tensor (which is not necessarily non-degenerate). The term pseudo-Riemannian metric will be reserved
for semi-Riemannian metrics which are also non-degenerate.
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solution to M. On the other hand, we do explicitly exhibit fairly innocuous looking cost

functions which have high dimensional and non-unique solutions and so it is apparent

that these questions cannot be resolved in the affirmative without imposing stronger

conditions on c.

Question about Monge solutions and uniqueness are addressed in the fourth chapter.

We identify general conditions on c under which both K and M admit unique solutions,

generalizing the results of Gangbo and Swiech [37] and Heinich [39]. With one excep-

tion, the conditions we impose will look similar to standard conditions which arise when

studying the two marginal problem. Our lone novel hypothesis is that a certain covariant

2-tensor on the product space M2×M2× ...×Mm−1 should be negative definite. Whereas

the question about the dimension of the support of a solution µ to K is purely local,

showing that µ gives rise to a solution to M is a global issue: for almost all x1 ∈ M1

we must show that there is exactly one (x2, x3, ..., xm) ∈ M2 ×M3×, ...,Mm which get

coupled to x1 by µ. Our tensor here is designed to capture this global aspect of the

problem.

The fifth chapter focuses on the regularity theory of optimal maps when m = 2 but

n1 6= n2. A serious obstacle arises immediately; the regularity theory of Ma, Trudinger,

and Wang requires invertibility of the matrix of mixed second order partials ( ∂2c
∂xi∂yj

)ij, and

its inverse appears explicitly in their formulations of (A3w) and (A3s). When m and n

fail to coincide, however, ( ∂2c
∂xi∂yj

)ij clearly cannot be invertible. Alternate formulations

of the (A3w) and (A3s) that do not explicitly use this invertibility are known; however,

they rely instead on local surjectivity of the map y 7→ Dxc(x, y), which cannot hold in

our setting either.

Nonetheless, there is a certain class of costs for which our problem can easily be solved

using the results from the equal dimensional setting. Suppose

c(x, y) = b(Q(x), y), (1.1)

where Q : X → Z is smooth and Z is a smooth manifold of dimension n2. In this case,
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it is not hard to show that the optimal map takes every point in each level set of Q to

a common y and studying its regularity amounts to studying an optimal transportation

problem on the n2-dimensional spaces Z and Y . We will show that costs of this form

are essentially the only costs on X × Y for which we can hope for regularity results

for arbitrary smooth marginals µ and ν. Indeed, for the quadratic cost on Euclidean

domains, the regularity theory of Caffarelli requires convexity of the target Y [16][15]

and, for general costs, it became apparent in the work of Ma, Trudinger and Wang [52]

that continuity of the optimizer cannot hold for arbitrary smooth marginals unless Y

satisfies an appropriate, generalized notion of convexity. Due to its dependence on the

cost function, this condition is referred to as c-convexity; when n1 > n2, we will show

that c-convexity necessarily fails unless the cost function is of the form alluded to above.

Given the preceding discussion, it is apparent that for cost functions that are not

of the special form (1.1), there are smooth marginals for which the optimal map is

discontinuous. However, as the condition (1.1) is so restrictive, it is natural to ask about

regularity for costs which are not of this form; any result in this direction will require

stronger conditions on the marginals than smoothness. In the final section of chapter 5,

we address this problem when n1 = 2 and n2 = 1.

In the sixth and final chapter, we turn our attention to the principal-agent problem.

Although the result of Figalli, Kim and McCann [31] represents major progress on this

problem, it is limited in that they had to assume that the spaces of types and products

were of the same dimension. There are many interesting and relevant economic models

in which these spaces have different dimensions, as in outlined in, for example, Basov

[10]. Our primary goal here is to study how the results in [31] extend to the case when

n1 6= n2; in particular, we want to determine under what conditions the set of b-convex

functions is convex for general values of n1 and n2. Our first contribution is to establish

a necessary condition for the convexity of this set. This condition, known as b-convexity

of Y , was a hypothesis in [31]; prior to that, to the best of my knowledge, it had not
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been explored in the principal-agent context, although it is well known in the optimal

transportation literature since the work of Ma, Trudinger and Wang [52].

We then study separately the cases n1 > n2 and n1 < n2. The analysis here parallels

the work in chapter 5 on the regularity of optimal transportation between spaces whose

dimensions differ. When n1 > n2, we show that the b-convexity of Y implies that the

dimensions cannot differ in a meaningful way. That is, although b may appear to depend

on an n1 dimensional variable, there is a natural disintegration of X into smooth sub-

manifolds of dimension n1− n2 such that, no matter how the monopolist sets her prices,

types in the same sub-manifold always choose the same good. Therefore, types in the

same set are indistinguishable, and rather than working in an n1 dimensional space, we

may as well identify the types in a single sub-manifold and work instead in the resulting

n2 dimensional quotient space.

When n2 > n1, consumers’ marginal utilities cannot uniquely determine which prod-

uct they buy, making the problem largely intractable. In this case, given a price schedule,

a certain buyer’s surplus may be maximized by many different goods, making him in-

different between those goods. The monopolist’s profits will be very different, however,

depending on which good the buyer chooses. A naive possible solution would be to

only produce from the indifference set the good which maximizes the monopolist’s profit;

however, in doing this a good may be excluded which would maximize her profit from

another buyer. It turns out that the b-convexity on X (which was also an assumption

in [31]) precludes this from happening; under this condition, we can again reduce the

problem to one where the two spaces share the same dimension. A special case of this

result where b(x, y) = x · v(y) for a function v : Y 7→ Rn1 was established by Basov [9].



Chapter 2

Rectifiability when m = 2 and

n1 = n2.

This chapter represents joint work with Robert McCann and Micah Warren. We focus

on the two marginal problem when the dimensions n1 = n2 := n are equal and study the

local structure of the solution µ, assuming a non-degeneracy condition on c, which we

define below. For simplicity, throughout this chapter we will denote variables in M1 and

M2 by x and y, respectively, rather than x1 and x2.

In what follows, D2
xyc(x0, y0) will denote the n by n matrix of mixed second order

partial derivatives of the function c at the point (x0, y0) ∈ M1 ×M2; its (i, j)th entry is

d2c
dxidyj

(x0, y0).

Definition 2.0.1. Assume c ∈ C2(M1×M2). We say that c is non-degenerate at a point

(x0, y0) ∈M1 ×M2 if D2
xyc(x0, y0) is nonsingular; that is if det(D2

xyc(x0, y0)) 6= 0.

For a probability measure µ on M1 ×M2 we will denote by spt(µ) the support of µ;

that is, the smallest closed set S ⊆M1 ×M2 such that µ(S) = 1.

Our main result is:

Theorem 2.0.2. Suppose c ∈ C2(M1 × M2) and µ1 and µ2 are compactly supported;

let µ be a solution of the Kantorovich problem. Suppose (x0, y0) ∈ spt(µ) and c is non-

13
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degenerate at (x0, y0). Then there is a neighbourhood N of (x0, y0) such that N ∩ spt(µ)

is contained in an n-dimensional Lipschitz submanifold. In particular, if D2
xyc is nonsin-

gular everywhere, spt(µ) is contained in an n-dimensional Lipschitz submanifold.

In the first section, we prove Theorem 2.0.2, while section 2.2 is devoted to discussion

and examples. In the final section we use Theorem 2.0.2 to provide a simple proof that

optimal maps satisfy a presrcribed Jacobian equation almost everywhere.

2.1 Lipschitz rectifiability of optimal transportation

plans

We now prove Theorem 2.0.2. Note that µ minimizes the Kantorovich functional if and

only if it maximizes the corresponding functional for b(x, y) = −c(x, y). To simplify the

computation, we consider µ that maximizes b.

Our proof relies on the b-monotonicity of the supports of optimal measures:

Definition 2.1.1. A subset S of M1×M2 is b-monotone if all (x0, y0), (x1, y1) ∈ S satisfy

b(x0, y0) + b(x1, y1) ≥ b(x0, y1) + b(x1, y0).

It is well known that the support of any optimizer is b-monotone [68], provided that

the cost is continuous and the marginals are compactly supported. The reason for this

is intuitively clear; if b(x0, y0) + b(x1, y1) < b(x0, y1) + b(x1, y0) then we could move some

mass from (x0, y0) and (x1, y1) to (x0, y1) and (x1, y0) without changing the marginals of

µ and thus increase the integral of b.

The strategy of our proof is to change coordinates so that locally b(x, y) = x·y, modulo

a small perturbation. We then switch to diagonal coordinates u = x + y, v = x− y and

show that the monotonicity condition becomes a Lipschitz condition for v as a function

of u. This trick dates back to Minty who used it to study monotone operators on Hilbert
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spaces [57]; more recently, Alberti and Ambrosio used it to investigate the fine properties

of monotone functions on Rn [4].

We are now ready to prove Theorem 2.0.2:

Proof. Choose (x0, y0) in the support of µ. Fix local coordinates for M2 in a neighbour-

hood of y0 and set A := D2
xyb(x0, y0). Then make the local change of coordinates y → Ay.

In these new coordinates, we have D2
xyb(x0, y0) = I. We then have b(x, y) = x·y+G(x, y),

where D2
xyG → 0 as (x, y) → (x0, y0). Set u

√
2 = x + y and v

√
2 = y − x. Given ε > 0,

choose a convex neighbourhood N of (x0, y0) such that ||D2
xyG|| ≤ ε on N . We will

show that µ ∩ N is contained in a Lipschitz graph of v over u; hence, u and v serve as

local coordinates for our submanifold. Take (x, y) and (x′, y′) ∈ N ∩ sptµ. Then, by

b-monotonicity, we have b(x, y) + b(x′, y′) ≥ b(x, y′) + b(x′, y), hence

x · y +G(x, y) + x′ · y′ +G(x′, y′)

≥ x · y′ +G(x, y′) + x′ · y +G(x′, y).

Setting ∆x = x′ − x, ∆y = y′ − y, ∆u = u′ − u, ∆v = v′ − v, and rewriting yields

(∆x) · (∆y) + (∆x) ·
∫ 1

0

∫ 1

0

D2
xyG[x+ s∆x, y + t∆y](∆y)dsdt ≥ 0 (2.1)

which simplifies to: ∆x ·∆y ≥ −ε|∆x||∆y|.

Observe that ∆y
√

2 = ∆u+ ∆v and ∆x
√

2 = ∆u−∆v. Now,

|∆u|2 − |∆v|2 = 2(∆x) · (∆y)

≥ −2ε|∆x||∆y|

= −ε|∆u−∆v||∆u+ ∆v|

≥ −ε[|∆u|2 + |∆v|2]

The last inequality follows by squaring the absolute values of each side and expanding

the first term. Rearranging yields (1 + ε)|∆u|2 ≥ (1− ε)|∆v|2, the desired result.
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Note that v may not be everywhere defined; that is, for certain values of u there

may be no corresponding v in spt(µ). However, the function v(u) can be extended by

Kirzbraun’s theorem and hence we can conclude that spt(µ) is contained in the graph of

a Lipschitz function of v over u.

Remark 2.1.1. Note that the only property of optimal transportation plans used in the

proof is b-monotonicity, so we have actually proven that any b-monotone subset of M1×

M2 is contained in an n-dimensional Lipschitz submanifold, provided b is non-degenerate.

2.2 Discussion and examples

For twisted costs, one can show that spt(µ) is concentrated on the graph of a function,

provided the marginal µ1 does not charge sets whose dimension is less than or equal to

n−1[35] [46] [52] [3] [55] [36]1; however, this can fail if µ1 charges small sets. On the other

hand, notice that our proof did not require any regularity hypotheses on the marginals.

In the example below, we exhibit a non-degenerate cost which is not twisted. We use

this example to illustrate how, in this setting, solutions may be supported on submani-

folds which are are not necessarily graphs. In addition, we show that these solutions may

not be unique. We can view this example as expressing an optimal transportation prob-

lem on a right circular cylinder via its universal cover, which is R2. The non-twistedness

of the cost and non-uniqueness of the solution arise because different points in the univer-

sal cover correspond to the same point in the cylinder and are therefore indistinguishable

by our cost function. In fact, if we expressed the problem on the cylinder, we would have

a twisted cost function and therefore a unique solution.

Example 2.2.1. Let M1 = M2 = R2 and c(x, y) = ex
1+y1cos(x2− y2) + e2x

1

2
+ e2y

1

2
. Then

Dxc(x, y) = (ex
1+y1cos(x2 − y2) + e2x

1
,−ex1+y1sin(x2 − y2)), so y ∈ M2 7−→ Dxc(x, y) is

1In fact, this condition on the regularity of µ1 has recently been sharpened [38].
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not injective and c is not twisted. However, note that D2
xyc(x, y) = ex

1+y1cos(x2 − y2) ex
1+y1sin(x2 − y2)

−ex1+y1sin(x2 − y2) ex
1+y1cos(x2 − y2)


Therefore, detD2

xyc(x, y) = e2(x
1+y1) > 0 for all (x, y), so c is non-degenerate. Optimal

measures for c, then, must be supported on 2-dimensional Lipschitz submanifolds, but we

will now exhibit an optimal measure whose support is not contained in the graph of a

function.

Now let M be the union of the three graphs:

G1 : y1 = x1, y2 = x2 + π (2.2)

G2 : y1 = x1, y2 = x2 + 3π (2.3)

G3 : y1 = x1, y2 = x2 + 5π (2.4)

Clearly, M is a smooth 2-d submanifold but not a graph. However, c(x, y) ≥ −ex1+y1 +

e2x
1

2
+ e2y

1

2
≥ (ex

1−ey1 )2
2

and we have equality on M . Therefore, any probability measure

whose support is concentrated on M is optimal for its marginals.

We now show that optimal measures supported on M may not be unique. Let

S = {((x1, x2), (y1, y2))|0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 4π}

Note that

M ∩ S = (G1 ∩ S) ∪ (G2 ∩ S) ∪ (G3 ∩ S).

consists of 3, flat 2-d regions. Let µ be uniform measure on these regions. Now, let µ1

be uniform measure on the the first half of G1 ∩ S; that is, on

G1 ∩ {((x1, x2), (y1, y2))|0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 2π}.

Let µ3 be uniform measure on the the second half of G3 ∩ S, or

G3 ∩ {((x1, x2), (y1, y2))|0 ≤ x1 ≤ 1, 2π ≤ x2 ≤ 4π}.
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Take µ2 to be twice uniform measure on G2 ∩ S and set µ = µ1+µ2+µ3. Then µ and

µ share the same marginals and are both optimal measures. Furthermore, any convex

combination tµ+ (1− t)µ will also share the same marginals and will be optimal as well.

The next example is similar in that the cost function is non-degenerate but not

twisted. However, this cost would be twisted if we exchanged the roles of x and y.

This demonstrates that, unlike non-degeneracy, the twist condition is not symmetric in

x and y. For this cost function, solutions will be unique as long as the second marginal

does not charge small sets.

Example 2.2.2. Let M1 = M2 = R2 and

c(x, y) = −(x1 cos(y1) + x2 sin(y1))ey
2

+
e2y

2

2
+

(x1)2 + (x2)2

2
.

Note that detD2
xyc(x, y) = −e2y2 < 0, so c is non-degenerate. However, Dxc(x, y) =

(−cos(y1)ey
2

+ x1,−sin(y1)ey
2

+ x2), so y ∈ M2 7−→ Dxc(x, y) is not injective and c is

not twisted. On the other hand, Dyc(x, y) = ((x1sin(y1) + x2cos(y1))ey
2
,−(x1cos(y1) +

x2sin(y1))ey
2
+e2y

2
) and so x ∈M1 7−→ Dyc(x, y) is injective. This implies that solutions

are supported on graphs of x over y but that these graphs are not necessarily invertible.

In fact, c(x, y) ≥ (((x1)2+(x2)2)
1
2−ey2 )2

2
≥ 0, where equality holds if and only if cos(y1) =

x1

((x1)2+(x2)2)
1
2

, sin(y1) = x2

((x1)2+(x2)2)
1
2

, and ((x1)2 + (x2)2)
1
2 = ey

2
. This set of equality is a

non-invertible graph of x over y; any measure whose support is contained in this graph is

optimal for its marginals. Note that as any minimizer for this problem must be supported

on this graph, the solution is unique [3].

Remark 2.2.3. For twisted costs with regular marginals, any solution is concentrated on

the graph of a particular function [52]. It is not hard to show that at most one measure

with prescribed marginals can be supported on such a graph; hence, uniqueness of the

optimizer follows immediately.

While our result asserts that for non-degenerate costs the solution concentrates on

some n-dimensional Lipschitz submanifold, the proof says little more about the subman-
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ifold itself. In contrast to the twisted setting, then, our result cannot be used to deduce

a uniqueness argument. Furthermore, as Example 5.3.4 shows, even if we do know the

support of the optimizer explicitly, solutions may not be unique if this support is not

concentrated on the graph of a function.

Theorem 2.0.2 also says something about problems where D2
xyc is allowed to be sin-

gular, but where the gradient of its determinant is non-zero at the singular points. In

this case, the implicit function theorem implies that the set where D2
xyc is singular has

Hausdorff dimension 2n−1. Theorem 2.0.2 is valid wherever D2
xyc is nonsingular, so that

the optimal measure is concentrated on the union of a smooth 2n − 1 dimensional set

and an n dimensional Lipschitz submanifold. For example, when n = 1, this shows that

the support of the optimal measure is 1-dimensional.

2.3 A Jacobian equation

We now provide a simple proof that an optimal map satisfies a prescribed Jacobian equa-

tion almost everywhere. This result was originally proven for the quadratic cost in Rn by

McCann [54], and for the quadratic cost on a Riemannian manifold by Cordero-Erasquin,

McCann and Schmuckenschläger [24]. Cordero-Erasquin generalized this approach to deal

with strictly convex costs on Rn [23]; see also [2]. It was observed by Ambrosio, Gigli

and Savare that this can be deduced from results in [5] and [6] when the optimal map is

approximately differentiable, which is true even for some non-smooth costs. Our method

works only when the cost is C2 and non-degenerate, but has the advantage of a simpler

proof, relying only on the area/coarea formula for Lipschitz functions.

For a Jacobian equation to make sense, the solution must be concentrated on the

graph of a function, and that function must be differentiable in some sense, at least

almost everywhere. A twisted cost suffices to ensure the first condition. The second

follows from the smoothness and non-degeneracy of c. Recall that for a twisted cost
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the optimal map has the form T (x) = c-expx(Du(x)); as c-expx(·) is the inverse of

y 7−→ Dxc(x, y), its differentabiliy follows from the non-degeneracy of c and the inverse

function theorem. The almost everywhere differentiability of Du(x) (or, equivalently, the

almost everywhere twice differentiability of u) follows from C2 smoothness of c; u takes

the form u(x) =infy(c(x, y) − v(y)) for some function v(y) and is hence semi-concave

[36]. In the present context, we need only the weaker condition that the optimal map is

continuous almost everywhere; its differentiability will follow from Theorem 2.0.2.

Proposition 2.3.1. Assume that the cost is non-degenerate and that an optimizer µ

is supported on the graph of some function T : dom(T ) → M2 which is injective and

continuous when restricted to a set dom(T ) ⊆M1 of full Lebesgue measure. Suppose that

the marginals are absolutely continuous with respect to volume; set dµ1 = f+(x)dx and

dµ2 = f−(y)dy. Then, for almost every x, f+(x) = |detDT (x)|f−(T (x)).

Proof. Choose a point x where T is continuous and a neighbourhood U− of T (x) such

that for U+ = T−1(U−), the part of the optimal graph contained in U+ × U− lies in

a Lipschitz graph v = G(u) over the diagonal ∆ = {u = x+y√
2

: (x, y) ∈ U+ × U−},

after a change of coordinates. Now x = u+v√
2

and y = u−v√
2

, so the optimal measure is sup-

ported on the graph of the Lipschitz function (x, y) = (F+(u), F−(u)) := (u+G(u)√
2
, u−G(u)√

2
).

By projecting onto the diagonal, we obtain a measure ν on ∆ that pushes forward to

µ1|U+ and µ2|U− under the Lipschitz mappings F+ and F−, respectively. Now, as F+ is

Lipschitz, the image of any zero volume set must also have zero volume; as µ1|U+ is abso-

lutely continuous with respect to Lebesgue, ν must be as well; we will write ν = h(u)du.

Now, for almost every x ∈ U+ there is a unique y = T (x) such that (x, y) ∈ spt(µ)

and hence a unique u = x+y√
2

on the diagonal such that x = F+(u). It follows that

the map F+ is one to one almost everywhere and so for every set A ⊆ ∆ we have∫
A
h(u)du =

∫
F+(A)

f+(x)dx. But the right hand side is
∫
A
f+(F+(u))|detDF+(u)|du by

the area formula; as A was arbitrary, this means h(u) = f+(F+(u))|detDF+(u)| almost
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everywhere. Similarly, h(u) = f−(F−(u))|detDF−(u)| almost everywhere, hence

f+(F+(u))|detDF+(u)| = f−(F−(u))|detDF−(u)|

almost everywhere. As the image under F+ of a negligible set must itself be negligible,

we have

f+(x)|detDF+((F+)−1(x))| = f−(F−((F+)−1(x)))|detDF−((F+)−1(x))| (2.5)

for almost all x. Note that as F+ is one to one almost everywhere and F+({u ∈

∆ :detDF+(u) = 0}) has measure zero by the area formula, (F+)−1 is differentiable

almost everywhere. As T ◦ F+ = F−, it follows that T is differentiable almost every-

where and

detDT (F+(u))detDF+(u) = detDF−(u)

whenever F+ and F− are differentiable at u and T is differentiable at F+(u). Hence,

detDT (x)detDF+((F+)−1(x)) = detDF−((F+)−1(x)) (2.6)

for all x such that T is differentiable at x and F+ and F− are differentiable at (F+)−1(x).

T is differentiable for almost every x , F+ and F− are differentiable for almost every u

and F+ is Lipschitz; it follows that the above holds almost everywhere. Now, combining

(6) and (7) we obtain f+(x) = |detDT (x)|f−(T (x)) for almost every x.

Remark 2.3.1. Note that the preceding proposition does not require that continuity of T

extend outside dom(T ). Thus it applies to T = Du, for example, where u is an arbitrary

convex function and dom(T ) is its domain of differentiability.



Chapter 3

Quantified rectifiability for

multi-marginal problems

In this chapter, we prove an upper bound on the Hausdorff dimension of spt(µ) without

any restriction on m.

For a general m, there is an immediate lower bound on the Hausdorff dimension of

spt(µ); as spt(µ) projects to spt(µi) for all i, dim(spt(µ)) ≥ maxi(dim(spt(µi))). In the

present chapter, we establish an upper bound on dim(spt(µ)). This bound depends on

the cost function; however, it will always be greater than the largest of the ni’s. In

the case when the ni’s are equal to some common value n, we identify conditions on c

that ensure our bound will be n and we show by example that when these conditions

are violated, the solution may be supported on a higher dimensional submanifold and

may not be unique. In fact, the costs in these examples satisfy naive multi-marginal

extensions of both the twist and non-degeneracy conditions; given Theorem 2.0.2 and

the results in [46][35][36] and [14] outlined in the introduction, we found it surprising

that higher dimensional solutions can exist for twisted, non-degenerate costs. On the

other hand, if the support of at least one of the measures µi has Hausdorff dimension n,

the remarks above imply that spt(µ) must be at least n dimensional; therefore, in cases

22
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where our upper bound is n, the support is exactly n-dimensional, in which case we show

it is actually n-rectifiable.

The chapter is organized as follows: in section 3.1, we state and prove our main result.

In section 3.2 we apply this result to several example cost functions. These include the

costs studied in [37][39] and [21] and we discuss how they fit into our framework. In

section 3.3, we discuss conditions that ensure the relevant metrics have only n timelike

directions, which will ensure spt(µ) is at most n-dimensional. In section 3.4, we discuss

some applications of our main result to the two marginal problem and in the final section

we take a closer look at the case when the marginals all have one dimensional support.

3.1 Dimension of the support

Before stating our main result, we must introduce some notation. Suppose that c ∈

C2(M1 ×M2 × ... ×Mm). Consider the set P of all partitions of the set {1, 2, 3, ...,m}

into 2 disjoint, nonempty subsets; note that P has 2m−1 − 1 elements. For any partition

p ∈ P , label the corresponding subsets p+ and p−; thus, p+ ∪ p− = {1, 2, 3, ...,m} and

p+ ∩ p− is empty. For each p ∈ P , define the following symmetric, bi-linear form on

M1 ×M2...×Mm

gp =
∑

j∈p+,k∈p−

∂2c

∂x
αj
j ∂x

αk
k

(dx
αj
j ⊗ dx

αk
k + dxαkk ⊗ dx

αj
j ) (3.1)

where, in accordance with the Einstein summation convention, summation on the αk

and αj is implicit. Here, the index αk ranges from 1 through nk and represents local

coordinates on Mk. Explicitly, given vectors v =
⊕m

j=1 v
αj
j

∂

∂x
αj
j

and w =
⊕m

j=1w
αj
j

∂

∂x
αj
j

we have

gp(v, w) =
∑

j∈p+,k∈p−

∂2c

∂x
αj
j ∂x

αk
k

(v
αj
j w

αk
k + vαkk w

αj
j )

Further details on this notation can be found in Appendix A.
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Definition 3.1.1. We will say that a subset S of M1 ×M2 × ... ×Mm is c-monotone

with respect to a partition p if for all y = (y1, y2, ..., ym) and ỹ = (ỹ1, ỹ2, ..., ỹm) in S we

have

c(y) + c(ỹ) ≤ c(z) + c(z̃),

where

zi = yi and z̃i = ỹi, if i ∈ p+,

zi = ỹi and z̃i = yi, if i ∈ p−,

The following lemma, which is well known when m = 2, provides the link between

c-monotonicity and optimal transportation.

Lemma 3.1.2. Suppose µ is an optimizer and C(µ) < ∞. Then the support of µ is

c-monotone with respect to every partition p ∈ P .

Proof. Define Mp+ = ⊗i∈p+Mi and Mp− = ⊗i∈p−Mi. Note that we can identify M1 ×

M2 × ... ×Mm with Mp+ ×Mp− and let µp+ and µp− be the projections of µ onto Mp+

and Mp− respectively. Consider the two marginal problem

inf

∫
Mp+×Mp−

c(x1, x2, ..., xm)dλ,

where the infinum is taken over all measures λ whose projections onto Mp+ and Mp− are

µp+ and µp− , respectively. Then µ is optimal for this problem and, as c is continuous, the

result follows from c-monotonicity for two marginal problems; see for example [68].

We will say a vector v ∈ T(x1,x2,...,xm)M1 ×M2 × ... ×Mm is spacelike (respectively

timelike or lightlike) for a semi-Riemannian metric g if g(v, v) ≥ 0 (respectively g(v, v) ≤

0 or g(v, v) = 0). We will say a subspace V ⊆ T(x1,x2,...,xm)M1 × M2 × ... × Mm is

spacelike (respectively timelike or lightlike) for g if every non-zero v ∈ V is spacelike

(respectively timelike or lightlike) for g. We will say V is strictly spacelike (respectively
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strictly timelike) for g if no nonzero v ∈ V is timelike (respectively spacelike). We will

say a submanifold of T(x1,x2,...,xm)M1 ×M2 × ...×Mm is spacelike (respectively timelike,

lightlike, strictly spacelike or strictly timelike) at (x1, x2, ..., xm) if its tangent space at

(x1, x2, ..., xm) is spacelike (respectively timelike, lightlike, strictly spacelike or strictly

timelike).

We are now ready to state our main result:

Theorem 3.1.3. Let g be a convex combination of the gp’s defined in equation (3.1);

that is g =
∑

p∈P tpgp where tp ≥ 0 for all p ∈ P and
∑

p∈P tp = 1. Suppose µ is an

optimizer and C(µ) <∞; choose a point (x1, x2, ..., xm) ∈M1×M2× ...×Mm. Let N =∑m
i=1 ni. Suppose the (+,−, 0) signature of g at (x1, x2, ..., xm) is (q+, q−, N − q+ − q−)

(ie, the corresponding matrix has q+ positive eigenvalues, q− negative eigenvalues and

a zero eigenvalue with multiplicity N − q+ − q−). Then there is a neighbourhood O of

(x1, x2, ..., xm) such that the intersection of the support of µ with O is contained in a

Lipschitz submanifold of dimension N − q+. Wherever the support is differentiable, it is

timelike for g.

Before we prove Theorem 3.1.3, a few remarks are in order. The theorem roughly says

that the dimension of spt(µ) is controlled by the signature of any convex combinations

of the gp’s; as these metrics may have very different signatures for different choices of

the tp’s, we are free to pick the one with the fewest timelike directions to give us the

best upper bound on the dimension of spt(µ) for a particular cost. When m = 2,

there is only one partition in P and consequently there is only one relevant metric,

∂2c
∂x
α1
1 ∂x

α2
2

(dxα1
1 ⊗ dxα2

2 + dxα2
2 ⊗ dxα1

1 ) in local coordinates. The matrix corresponding to

this metric is the block matrix studied by Kim and McCann [43]:

G =

 0 D2
x1x2

c

D2
x2x1

c 0

 .
Here D2

xjxk
c is the nj by nk matrix whose (αj, αk)th entry is ∂2c

∂x
αj
j ∂x

αk
k

.
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For m > 2, in the remainder of this paper we will focus primarily on the special case

when tp = 1
2m−1−1 for all p ∈ P . To distinguish it from the metrics obtained by other

convex combinations of the gp’s, we will denote the corresponding metric by g. Note that

the matrix of g in local coordinates is the block matrix given by

G =
2m−2

2m−1 − 1



0 D2
x1x2

c D2
x1x3

c ... D2
x1xm

c

D2
x2x1

c 0 D2
x2x3

c ... D2
x2xm

c

D2
x3x1

c D2
x3x2

c 0 ... D2
x3xm

c

... ... ... ... ...,

D2
xmx1

c D2
xmx2

c D2
xmx3

c ... 0


.

Let us note, however, that other choices of the tp’s can give new and useful informa-

tion. For example, suppose we take tp to be 1 for a particular p and 0 for all others.

As in the proof of Lemma 2.2, we can identify M1 ×M2...×Mm = Mp+ ×Mp− , where

Mp± = ⊗j∈p±Mj and c(x1, x2, ..., xm) = c(xp+ , xp−) where xp± ∈ Mp± . In this case, G

will take the form:

G =

 0 D2
xp+xp−

c

D2
xp−xp+

c 0

 .
The signature of this g is (r, r,N − 2r) where r is the rank of the matrix D2

xp+xp−
c.

Letting np± =
∑

j∈p± nj be the dimension of Mp± , we will have r ≤ min(np+ , np−). If it

is possible to choose a partition so that np+ = np− = N
2

and D2
xp+xp−

c has full rank, we

can conclude that spt(µ) is at most N
2

dimensional. As we will see later, the number of

timelike directions for g may be very large and so this bound may in fact be better.

Our proof is an adaptation of our argument in chapter 2. When m = 2, after

choosing appropriate coordinates, we rotated the coordinate system and showed that

c-monotonicity implied that the solution was concentrated on a Lipschitz graph over

the diagonal, a trick dating back to Minty [57]. When passing to the multi-marginal

setting, however, it is not immediately clear how to choose coordinates that make an
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analogous rotation possible; unlike in the two marginal case, it is not possible in general

to choose coordinates around a point (x1, x2, ..., xm) such that D2
xixj

c(x1, x2, ..., xm) = I

for all i 6= j. The key to resolving this difficulty is the observation that Minty’s trick

amounts to diagonalizing the pseudo-metric of Kim and McCann and that this approach

generalizes to m ≥ 3.

Proof. Choose a point x = (x1, x2, ..., xm) ∈M1×M2×...×Mm . Choose local coordinates

around xi on each Mi and set Aij = D2
xixj

c(x1, x2, ..., xm). For any ε > 0, there is a

neighbourhood O of (x1, x2, ..., xm) which is convex in these coordinates such that for all

(y1, y2, ..., ym) ∈ O we have ||Aij −D2
xixj

c(y1, y2, ..., ym)|| ≤ ε, for all i 6= j.

Let G be the matrix of g at x in our chosen coordinates. There exists some invertible

N by N matrix U such that

UGUT = H :=


I 0 0

0 −I 0

0 0 0

 ,
where the diagonal I, −I and 0 blocks have sizes determined by the signature of g.

Define new coordinates in O by u := Uy, where y = (y1, y2, ..., ym) and let u =

(u1, u2, u3) be the obvious decomposition. We will show that the optimizer is locally

contained in a Lipschitz graph in these coordinates.

Choose y = (y1, y2, ..., ym) and ỹ = (ỹ1, ỹ2, ..., ỹm) in the intersection of spt(µ) and O.

Set ∆y = y − ỹ. Set z = (z1, z2, ...zm) where

zi =


yi if i ∈ p+,

ỹi if i ∈ p−.

Similarly, set z̃ = (z̃1, z̃2, ..., z̃m) where

z̃i =


yi if i ∈ p−,

ỹi if i ∈ p+.
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Lemma 3.1.2 then implies

c(y) + c(ỹ) ≤ c(z) + c(z̃)

or ∫ 1

0

∫ 1

0

∑
j∈p+,i∈p−

(∆yi)
TD2

xixj
c(y(s, t))∆yjdtds ≤ 0,

where

yi(s, t) =


yi + s(∆yi) if i ∈ p+,

yi + t(∆yi) if i ∈ p−.

This implies that ∑
j∈p+,i∈p−

(∆yi)
TAij∆yj ≤ ε

∑
j∈p+,i∈p−

|∆yi||∆yj|.

Hence, ∑
p∈P

tp
∑

j∈p+,i∈p−

(∆yi)
TAij∆yj ≤ ε

∑
p∈P

tp
∑

j∈p+,i∈p−

|∆yi||∆yj|.

But this means

(∆y)TG∆y ≤ ε
∑
p∈P

tp
∑

j∈p+,i∈p−

|∆yi||∆yj|. (3.2)

With ∆u = U∆y and ∆u = (∆u1,∆u2,∆u3) being the obvious decomposition, this

becomes:

|∆u1|2 − |∆u2|2 = (∆u)TH∆u = (∆y)TG∆y

≤ ε
∑
p∈P

tp
∑

j∈p+,i∈p−

|∆yi||∆yj|

≤ εm2||U−1||2
3∑
i

|∆ui|2,

where the last line follows because for each i and j we have

|∆yi||∆yj| ≤ |∆y|2

≤ ||U−1||2|∆u|2

= ||U−1||2
3∑
i=1

|∆ui|2.
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Choosing ε sufficiently small, we have

|∆u1|2 − |∆u2|2 ≤
1

2

3∑
i

|∆ui|2.

Rearranging yields

1

2
|∆u1|2 ≤

3

2
|∆u2|2 +

1

2
|∆u3|2.

Together with Kirzbraun’s theorem, the above inequality implies that the support of µ

is locally contained in a Lipschitz graph of u1 over u2 and u3.

If spt(µ) is differentiable at x, the non-spacelike implication follows from taking y = x

in (3.2), then noting that we can take ε→ 0 as ỹ → x.

3.2 Examples

In this section we apply Theorem 3.1.3 to several cost functions. Throughout this section,

we restrict our attention to the special semi-Riemannian metric g defined in the last

section.

3.2.1 Functions of the sum: c(x1, x2, ..., xm) = h(
∑m

i=1 xi)

We first consider the case where Mi = Rn for all i and that c(x1, x2, ..., xm) = h(
∑m

i=1 xi).

Proposition 3.2.1.1. Suppose Mi = Rn for all i and that c(x1, x2, ..., xm) = h(
∑m

i=1 xi).

Denote the signature of D2h by (q+, q−, n − q+ − q−); then the signature of g is
(
q+ +

(m− 1)(q−), q− + (m− 1)q+,m(n− q+ − q−)
)
.
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Proof. Up to a positive, multiplicative constant, the matrix corresponding to g is

G =



0 D2h D2h ... D2h

D2h 0 D2h ... D2h

D2h D2h 0 ... D2h

... ... ... ... ...,

D2h D2h D2h ... 0


.

If v is an eigenvector of D2h with eigenvalue λ, then

[v, v, v, v...v, v]T

is an eigenvector of G with eigenvalue (m− 1)λ and

[v,−v, 0, 0, ..., 0]T , [v, 0,−v, 0, ..., 0]T , ..........................., [v, 0, 0, 0, ...,−v]T

are linearly independent eigenvectors with eigenvalue −λ. The result now follows easily.

Remark 3.2.1.2. When D2h is negative definite (corresponding to a uniformly concave

h), the signature of g reduces to ((m − 1)n, n, 0); combined with Theorem 3.1.3, this

implies that the support of any opimal measure µ is contained in an n-dimensional sub-

manifold. This is consistent with the results of Gangbo and Świȩch[37] and Heinich[39],

who show that if the first marginal assigns measure zero to every set of Hausdorff dimen-

sion n− 1, then spt(µ) is contained in the graph of a function over x1.

On the other hand, when D2h is not negative definite, the signature of g has more than

n timelike directions. In this case, Theorem 3.1.3 does not preclude optimal measures

with higher dimensional supports. The next two results verify that this can in fact occur.

First we consider the extreme case, where h is uniformly convex; the signature of g

is then (n, (m− 1)n, 0).
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Proposition 3.2.1.3. Suppose c(x1, x2, ..., xm) = h(
∑m

i=1 xi), with D2h > 0. Then any

measure supported on the n(m− 1)- dimensional surface

S = {(x1, x2, ..., xm)|
m∑
i=1

xi = y},

where y ∈ Rn is any constant, is optimal for its marginals.

It should be noted that when m = 2, this surface is n dimensional.

Proof. Adding a function of the form
∑m

i=1 ui(xi) to the cost c shifts the functional C(µ)

by an amount
∑m

i=1

∫
Mi
ui(xi)dµi for each µ but does not change its minimizers. In

particular, minimizing the cost c is equivalent to minimizing

c′(x1, x2, ..., xm) := c(x1, x2, ..., xm)−
m∑
i=1

xi ·Dh(y) = f(
m∑
i=1

xi),

where f(z) := h(z) − z · Dh(y). Then f is a strictly convex function whose gradient

vanishes at z = y; it follows that y is the unique minimum of f . Hence, c′(x1, x2, ..., xm) ≤

f(y) with equality only when
∑m

i=1 xi = y. It follows that any measure supported on S

is optimal for its marginals.

We now turn to the intermediate case where h has both concave and convex directions.

We show that there exist optimal measures whose supports have the maximal dimension

allowed by Theorem 3.1.3.

Proposition 3.2.1.4. Let c(x1, x2, ..., xm) = h(
∑m

i=1 xi), where the signature of D2h is

(q, n − q, 0). Then there exist optimal measures whose support has dimension (n − q +

q(m− 1)).

Proof. At a fixed point p, we can add an affine function of (x1 + x2 + ... + xm) so that

Dh(p) = 0 and choose variables so that

D2h(p) =

I 0

0 −I

 ,
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where the top left hand corner block is q by q and the bottom left hand corner block is

n− q by n− q. Then define the q-dimensional variables yi = (x1i , x
2
i , ..., x

q
i ) and the n− q

dimensional variables zi = (xq+1
i , xq+2

i , ..., xni ), so that h(
∑m

i=1 xi) = h(
∑m

i=1 yi,
∑m

i=1 zi).

Now, near p, the implicit function theorem implies that for fixed zi, i = 1, 2, ...,m there

is a unique K = K(
∑m

i=1 zi)), such that

Dyh(K(
m∑
i=1

zi),
m∑
i=1

zi) = 0

and K is smooth as a function of
∑m

i=1 zi. As h is convex in it’s first slot near p,

h(K(
m∑
i=1

zi),
m∑
i=1

zi) ≤ h(
m∑
i=1

yi,

m∑
i=1

zi)

for all nearby yi. Now, if we f(
∑m

i=1 zi) = h(K(
∑m

i=1 zi),
∑m

i=1 zi) then f is a concave

function of
∑m

i=1 zi. If we consider an optimal transportation problem for the zi with

cost f , the solution must be concentrated on a Lipschitz n− k dimensional submanifold.

Choose an n − q dimensional set S which supports an optimizer for this problem; by

considering a dual problem as in Gangbo and Świȩch [37], we can find functions ui(zi)

such that f(
∑m

i=1 zi) −
∑m

i=1 ui(zi) ≥ 0 with equality if and only if (z1, z2, ...zm) ∈ S.

Therefore,

h(
m∑
i=1

yi,
m∑
i=1

zi))−
m∑
i=1

ui(zi) ≥ h(K(
m∑
i=1

zi),
m∑
i=1

zi)−
m∑
i=1

ui(zi) ≥ 0

and we have equality only when (z1, z2, ...zm) ∈ S and
∑m

i=1 yi = K(
∑m

i=1 zi), which is a

n− q + (m− 1)q dimensional set. It follows that this set is the support of an optimizer

for appropriate marginals.

Finally, we show that when the dimension of spt(µ) is larger than n, the solution may

not be unique.

Proposition 3.2.1.5. Set m = 4 and c(x, y, z, w) = h(x + y + z + w) for h strictly

convex. Suppose all four marginals µi are Lebesgue measure on the unit cube In in Rn.

Then the optimal measure is not unique.
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Proof. Let S1 be the surface y = −w + (1, 1, 1, ..., 1), z = −x + (1, 1, 1, ..., 1) and take µ

be uniform measure on the intersection of S1 with In × In × In × In. This projects to

µi for i = 1, 2, 3 and 4 and by the argument in Proposition 3.2.1.3, it must be optimal.

Now, if we take S2 to be the surface y = −x+ (1, 1, 1, ..., 1), z = −w + (1, 1, 1, ..., 1) and

µ to be uniform measure on the intersection of S2 with In × In × In × In, we obtain a

second optimal measure.

It is worth noting that this cost is twisted: the maps xi 7→ Dxjc(x1, x2, ..xm) are

injective for all i 6= j where xk is held fixed for all k 6= i. In the two marginal case,

the twist condition and mild regularity on the µ1 suffices to imply the uniqueness of the

solution µ [46]; this example demonstrates that this is no longer true for m ≥ 3.

3.2.2 Hedonic pricing costs

Our next example has an economic motivation. Chiappori, McCann and Nesheim [22] and

Carlier and Ekeland [20] introduced a hedonic pricing model based on a multi-marginal

optimal transportation problem with cost functions of the form

c(x1, x2, ..., xm) = inf
y∈Y

m∑
i=1

fi(xi, y)

Combined with Theorem 3.1.3, the following result demonstrates that, assuming all the

dimensions ni = n are equal, the support of the opimizer is at most n-dimensional.

Proposition 3.2.3. Suppose ni = n for all i and let c(x1, x2, ..., xm) = infy∈Y
∑m

i=1 fi(xi, y),

where y belongs to a C2, n-dimensional manifold Y . Assume the following conditions:

1. For all i, fi is C2 and the n × n off-diagonal block D2
xiy
fi of mixed, second order

partial derivatives is everywhere non-singular.

2. For each (x1, x2, ..., xm) the infinum is attained by a unique y(x1, x2, ..., xm) ∈ Y .

3. The sum
∑m

i=1D
2
yyfi(xi, y(x1, x2, ..., xm)) of n× n diagonal blocks is non-singular.
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Then the signature of g is ((m− 1)n, n, 0).

Proof. Fixing (x1, x2, ..., xm), we can choose coordinates so that

D2
xiy
fi(xi, y(x1, x2, ..., xm)) = I

for all i. Now,
∑m

i=1Dyfi(xi, y(x1, x2, ..., xm)) = 0. SetM =
∑m

i=1D
2
yyfi(xi, y(x1, x2, ..., xm))

and note that as M is non-singular by assumption we must have M > 0.. The implicit

function theorem now implies that y is differentiable with respect to each xj and:

m∑
i=1

D2
yyfi(xi, y(x1, x2, ..., xm))Dxjy(x1, x2, ..., xm) +D2

yxj
fj(xi, y(x1, x2, ..., xm)) = 0.

So Dxjy(x1, x2, ..., xm) = −M−1. Now, as c(x1, x2, ..., xm) ≤
∑m

i=1 fi(xi, y)) with equality

when y = y(x1, x2, ..., xm) we have

Dxic(x1, x2, ..., xm) = Dxif(xi, y(x1, x2, ..., xm)).

Differentiating with respect to xj yields

D2
xixj

c(x1, x2, ..., xm) = Dxiyf(xi, y(x1, x2, ..., xm))Dxjy(x1, x2, ..., xm) = −M−1

for all i 6= j. The result now follows by the same argument as in Proposition 3.2.1.

3.2.4 The determinant cost function

Here we consider a problem studied by Carlier and Nazaret in [21], where the cost function

is −1 times the determinant; ie, for x1, x2, , ..., xn ∈ Rn, c(x1, x2, ..., xn) is −1 times the

determinant of the n by n matrix whose ith column is the vector xi. When n = 3, they

exhibit a specific example where the solution has 4-dimensional support; specifically, it’s

support is the set

S = {(x1, x2, x3) : |x1| = |x2| = |x3| and (x1, x2, x3)

forms a direct, orthogonal basis for R3}.

Although the signature of g varies for this cost, we show that on S it is (5, 4, 0).
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Proposition 3.2.5. Assume c(x1, x2, x3) = −det(x1x2x3) and suppose (x1, x2, x3) forms

a direct, orthogonal basis for R3. Then the signature of g is (5, 4, 0).

Proof. Choose (x1, x2, x3) in the support; after applying a rotation we may assume x1 =

(|x1|, 0, 0), x2 = (0, |x1|, 0) and x3 = (0, 0, |x1|). A straightforward calculation then yields:

G = |x1|



0 0 0 0 −1 0 0 0 −1

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

−1 0 0 0 −1 0 0 0 0



.

There are 5 eigenvectors with eigenvalue 1:

[010100000]T , [001000100]T , [000001010]T , [1000-10000]T , [10000000-1]T .

There are 3 eigenvectors with eigenvalue -1:

[010-100000]T , [001000-100]T , [0000010-10]T .

Finally, there is a single eigenvector with eignenvalue -2:

[100010001]T

3.3 The Signature of g

This section is devoted to developing some results about the signature of the semi-metric

g =
∑

p∈P tpgp at some point x = (x1, x2, ..., xm). Studying the signature at a point
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reduces to understanding the matrix

g → G =



0 G12 G23 ... G1m

G21 0 G23 ... G2m

G31 G32 0 ... G3m

... ... ... ... ...,

Gm1 Gm2 Gm3 ... 0


. (3.3)

Here, for i 6= j,Gij = aijD
2
xixj

c where aij =
∑
tp and the sum is over all partitions

p ∈ P that separate i and j; that is, i ∈ p+ and j ∈ p− or i ∈ p− and j ∈ p+. Although

G is an N × N matrix, where N =
∑m

i=1 ni, its signature can often be computed from

lower dimensional data, because of its special form. To illustrate this point, suppose

momentarily that the n′is are all equal to some common n and Gij’s are non-singular.

In this case, when m = 2 the signature of G will always be (n, n, 0) and, as we will see,

when m = 3 it is enough to calculate the signature of an appropriate n× n matrix.

One observation about the signature of the matrix G is immediate; as G has zero

blocks on the diagonal, it is possible to construct a lightlike subspace of dimension nmax =

maxi{ni}. This in turn implies that the number of spacelike directions can be no greater

than N − nmax; otherwise, it would be possible to construct a spacelike subspace of

dimension N−nmax+1, which would have to intersect non trivially with the null subspace.

Therefore, the best possible bound on the dimension of spt(µ) that Theorem 3.1.3 can

provide is nmax. This result is not too surprising. We have already noted that for suitable

marginals, the Hausdorff dimension of spt(µ) must be at least nmax; the discussion above

verifies that this is consistent with Theorem 3.1.3.

The first proposition gives an upper and lower bound for the number of timelike

directions.

Proposition 3.3.1. Let G be as in equation (3.3) and suppose rank(Gij) = r for some

i 6= j. Then the number of positive eigenvalues and the number of negative eigenvalues
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of G are both at least r.

In particular, if ni = n for all i and Gij is invertible for some i 6= j, Theorem 3.1.3

implies that the support of any optimizer µ is at most (m− 1)n dimensional.

Proof. On the subspace TxiMi × TxjMj G restricts to 0 Gij

Gij 0

 .N
Note that (v, u) is a null vector if and only if u is in the null space of Gij and v is in

the nullspace of Gji. As these spaces are respectively ni − r and nj − r dimensional, the

nullspace of this matrix is ni + nj − 2r) dimensional.

As has been noted by Kim and McCann [43], the nonzero eigenvalues of this matrix

come in pairs of the form λ,−λ, with corresponding eigenvectors (v, u) and (v,−u),

respectively, where we take λ ≥ 0. Therefore, there are
1

2
(ni + nj − (ni + nj − 2r)) = r

positive eigenvalues and as many negative ones.

We can now construct a r dimensional timelike subspace for g. If q+ < r, then we

could construct a non-timelike subspace of dimension N − q+ > N − r (for example,

take the space spanned by all negative and null eigenvalues of G). These two spaces

would have to intersect non-trivially as their dimensions add to more than N , which is a

contradiction. An analagous argument applies to q−.

Next, we describe the signature in the m = 3 case:

Lemma 3.3.2. Suppose m = 3, for all i and that G23 in equation (3.3) is invertible. Set

A = G12(G32)
−1G31; suppose A + AT has signature (r+, r−, n1 − r+ − r−). Then G has

signature (q+, q−,
∑3

i=1 ni − q+ − q−) = (n2 + r−, n2 + r+, n1 − r+ − r−).

Proof. Note that the invertibility of G23 implies that n2 = n3. Consider the subspace

S = {(0, p, q) : p ∈ Tx2M2, q ∈ Tx3M3}.
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By Proposition 3.3.1 we can find an orthonormal basis for this subspace consisting of n2

spacelike and n2 timelike directions. To determine the signature of g then, it suffices to

consider the restriction of g to the orthogonal complement (relative to g) S⊥ of S; any

orthonormal basis of S⊥ can be concatenated with a basis for S to form an orthonormal

basis for Tx1M1 × Tx2M2 × Tx3M3.

A simple calculation yields that S⊥ = {(v,−ATv,−Av) : v ∈ Tx1M1} and

(v,−ATv,−Av)TG(v,−ATv,−Av)) = −(A+ AT )(v, v),

which yields the desired result.

In particular, when ni = n for i = 1, 2, 3 and A is negative definite, g has signature

(2n, n, 0) and the support of any minimizer has dimension at most n.

A brief remark about Lemma 3.3.2 is in order. We mentioned in section 2 that, while

there is only one interesting pseudo metric when m = 2, there is an entire family of

metrics in the m ≥ 3 setting which may give new information about the behaviour of

spt(µ). However, when m = 3, ni = n for all i, D2
xixj

c is non-singular for all i 6= j,

and the coefficients aij are all non zero, the signature of G is determined entirely by

A = G12(G32)
−1G31 =

a12a31
a32

D2
x1x2

c(D2
x3x2

c)−1D2
x3x1

c. Choosing a different g simply

changes the aij’s, which does not effect the signature of A+AT . If one of the aij’s is zero,

it is easy to check that the signature of g must be (n, n, n); this yields a bound of 2n on

the dimension of spt(µ) which is no better than the bound obtained when all the aij’s

are non-zero. Thus, the only information about the dimension of spt(µ) which can be

provided by Theorem 3.1.3 is encoded in the bi-linear form D2
x1x2

c(D2
x3x2

c)−1D2
x3x1

c(x)

on Tx1M1 × Tx1M1.

When m > 3, Lemma 3.3.2 easily yields the following necessary condition for the

signature of G to be ((m− 1)n, n, 0):

Corollary 3.3.3. Suppose ni = n for all i and the signature of G is ((m − 1)n, n, 0).
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Then

D2
xixj

c(D2
xkxj

c)−1D2
xkxi

c < 0

for all distinct i, j and k.

Proof. Note that the Gij’s must be invertible (and hence D2
xixj

c must be invertible and

aij > 0) ; otherwise, the argument in Proposition 3.3.1 implies the existence of a non-

spacelike subspace of TxiMi × TxjMj whose dimension is greater than n. The signature

of G ensures the existence of a (m − 1)n dimensional spacelike subspace, however, and

so these two spaces would have to intersect non-trivially, a contradiction.

Similarly, if D2
xixj

c(D2
xkxj

c)−1D2
xkxi

c was not negative definite, we could use Lemma

3.3.2 to construct a non-timelike subspace of TxiMi×TxjMj×TxkMk of dimension greater

that n; this, in turn, would have to intersect our (m−1)n dimensional timelike subspace,

which is again a contradiction.

The method in the proof of 3.3.2 can be extended to give us a method to explicitly

calculate the signature of G for larger m when a certain set of matrices are invertible.

Let G̃ be the lower right hand corner
∑m

i=2 ni ×
∑m

i=2 ni block of G and G1 be the

upper right hand corner n1 ×
∑m

i=2 ni block of G; that is,

G =

 0 G1

GT
1 G̃

 . (3.4)

Lemma 3.3.4. Suppose G̃ in equation (3.4) has signature (q,
∑m

i=2 ni − q, 0) Let G̃−1

be inverse of G̃ and consider the symmetric n1 × n1 matrix G1G̃
−1GT

1 . Suppose this

matrix has signature (r+, r−, n1− r+− r−). Then the signature of G in equation (3.3) is

(q + r−,
∑m

i=2 ni − q + r+, n1 − r+ − r−).

For an algorithm to calculate the signature in the general case, start with the lower

right hand two by two block, which has signature (n, n, 0). Use Lemma 3.3.4, or equiv-

alently Lemma 3.3.2 to find the signature of the lower right hand three by three block.
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Then use Lemma 3.3.4 again to determine the signature of the lower right hand four by

four block and so on. After m− 1 applications of Lemma 3.3.4 we obtain the signature

of G.

3.4 Applications to the two marginal problem

We showed in chapter 2 that any solution to the two marginal problem was supported

on an n-dimensional Lipschitz submanifold, provided the marginals both live on smooth

n-dimensional manifolds and the cost is non-degenerate; that is, D2
x1x2

c(x1, x2) seen as

a map from Tx1M1 to T ∗x2M2 is injective. Kim and McCann noted that in this case, the

signature of g is (n, n, 0) [43], so Theorem 3.1.3 immediately implies this result. In fact,

our analysis here is applicable to a larger class of two marginal problems, as in Theorem

3.1.3 we assumed neither non-degeneracy nor equality of the dimensions n1 and n2. If r is

the rank of the map D2
x1x2

c(x1, x2), then the signature of g at (x1, x2) is (r, r, n1+n2−2r)

and so Theorem 3.1.3 yields the following corollary.

Corollary 1. Let m = 2 and r = rank(D2
xixj

c) at some point (x1, x2). Then, near

(x1, x2), the support of any optimizer is contained in a Lipschitz manifold of dimension

n1 + n2 − r

It is worth noting that, even when n1 = n2, the topology of many important manifolds

prohibits the non-degeneracy condition from holding everywhere. Suppose, for example,

that M1 = M2 = S1, the unit circle. Then periodicity in x1 of ∂c
∂x2

(x1, x2) implies

∫
S1

∂2c

∂x1∂x2
(x1, x2)dx1 = 0.

It follows that for every x2 there is at least one x1 such that ∂2c
∂x1∂x2

(x1, x2) = 0. In chapter

2, we noted that under certain conditions the set where non-degeneracy fails is at most

(2n−1)-dimensional, which yields an immediate upper bound on the dimension of spt(µ).
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Corollary 3.4 yields an improved bound; spt(µ) is at most 2n− r dimensional. A global

lower bound on r immediately yields an upper bound for the dimension of spt(µ).

Next we consider a two marginal problem where the dimensions of the spaces fail to

coincide; this type of problem has received very little attention in the literature. Suppose

n2 ≤ n1. If D2
x1x2

c has full rank, ie, if r = n2 then this reduces to (n2, n2, n1−n2) and the

solution may have as many as n1 dimensions (in fact, if the support of the first marginal

has Hausdorff dimension n1, then the Hausdorff dimension of spt(µ) must be exactly n1).

This result has a nice heuristic explanation. To solve the problem, one would first solve

its dual problem, yielding two potential functions u1(x1) and u2(x2), and the solutions

lies in the set where the first order condition Du2(x2) = Dx2c(x1, x2) is satisfied. For a

fixed x2, this is a level set of the function x1 7→ Dx2c(x1, x2), which is generically n1−n2

dimensional. Fixing x2 and moving along this level set corresponds exactly to moving

along the null directions of g. On the other hand, as x2 varies, x1 must vary in such a

way so that the resulting tangent vectors are timelike. Hence, the solution may contain

all the lightlike directions of g, which correspond to fixing x2 and varying x1, plus n2

timelike directions, which correspond to varying x2 and with it x1.

3.5 The 1-dimensional case: coordinate independence

and a new proof of Carlier’s result

In [19], Carlier studied a multi-marginal problem where all the measures were supported

on the real line and proved that under a 2-monotonicity condition on the cost, the solution

must be one dimensional. To the best of our knowledge, this is the only result about the

multi-marginal problem proved to date that deals with a general class of cost functions.

The purpose of this section is to expose the relationship between 2-monotonicity and

the geometric framework developed in this paper. We will find an invariant form of this

condition and provide a new and simpler proof of Carlier’s result.
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We begin with a definition:

Definition 3.5.1. We say c : Rm → R is i, j strictly 2-monotone with sign ±1 and write

sgn(c)ij = ±1 if for all x = (x1, x2, ..., xm) ∈ Rm and s, t > 0 we have

±[c(x) + c(x+ tei + sej)] < ±[c(x+ tei) + c(x+ sej)]

where (e1, e2, ...em) is the canonical basis for Rm.

In this notation, Carlier’s 2-monotonicity condition is that sgn(c)ij = −1 for all

i 6= j. This is not invariant under smooth changes of coordinates, however; the change

of coordinates xi 7→ −xi takes a cost with sgn(c)ij = −1 and transforms it to one with

sgn(c)ij = 1. However, it is easy to check that the following condition is coordinate

independent.

Definition 3.5.2. We say c is compatible if, for all distinct i, j, k we have

sgn(c)ijsgn(c)jk
sgn(c)ik

= −1.

It is also easy to check that c is compatible if and only if there exist smooth changes

of coordinates xi 7→ yi = fi(xi) for i = 1, 2, ...,m which transform c to a 2-monotone cost.

Combined with Carlier’s result, this observation implies that compatibility is sufficient

to ensure that the support of any optimizer is 1-dimensional.

If the cost is C2, the condition d2c
dxidxj

< 0 is sufficient to ensure sgn(c)ij = −1; likewise,

d2c
dxidxj

( d2c
dxkdxj

)−1 d2c
dxidxk

< 0 ensures that c is compatible. We can think of the condition on

the threefold products D2
x1x2

c(D2
x3x2

c)−1D2
x3x1

c in Lemma 3.3.2 as a multi-dimensional,

coordinate independent version of Carlier’s condition. Corollary 3.3.3 demonstrates that

this condition is necessary for g to have signature ((m − 1)n, n, 0) and, when m = 3,

Lemma 3.3.2 shows that it is also sufficient. For m > 3, however, it is not sufficient even

in one dimension. As a counterexample, consider the cost function

c(x1, x2, x3, x4) = −x1x2 − x1x3 − x1x4 − x2x3 − x2x4 − 5x3x4.
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For this cost,

G = −



0 1 1 1

1 0 1 1

1 1 0 5

1 0 5 0


,

which has signature (2, 2, 0)

Thus, Theorem 3.1.3 implies neither Carlier’s result nor the generalization above ,

at least if we restrict our attention to the special metric g. Below, we reconcile this by

providing a new proof of Carlier’s result, with the slightly stronger assumption d2c
dxidxj

< 0

in place of 2-monotonicity.

We call a set S ⊆ R2 non-decreasing if (x− x)(y− y) ≥ 0 whenever (x, y), (x, y) ⊆ S.

The crux of Carlier’s argument is the following result:

Theorem 3.5.3. Suppose d2c
dxidxj

< 0 for all i 6= j . Then the projections of the support

of the optimizer onto the planes spanned by x1 and xj are non-decreasing subsets for all

j.

In view of the preceding remarks, this implies that when the cost has negative three-

fold products d2c
dxidxj

( d2c
dxkdxj

)−1 d2c
dxidxk

, the support is 1-dimensional.

Carlier’s proof relies heavily on duality. He shows that he can reduce the problem to a

series of two marginal problems with costs derived from the solution to the dual problem.

He then shows that these cost inherit monotonicity from c and hence their solutions

are concentrated on monotone sets. We provide a simple proof that uses only the c-

monotonicity of the support. In addition, our proof does not require any compactness

assumptions on the supports of the measures. However, after establishing this result, it

is not hard to show that, if the first measure is nonatomic, the support is concentrated

on the graph of a function over x1.

Morally, our proof applies the non-spacelike conclusion of Theorem 3.1.3 to a well

chosen semi-metric; however, because we don’t know a priori that the optimizer is smooth
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we will prove the theorem directly from c-monotonicity.

Proof. Suppose (x1, ..., xm) and (y1, ..., ym) belong to the support of the optimizer. We

want to show (x1 − y1)(xi − yi) ≥ 0 for all i. If not, we may assume without loss of

generality that for some 2 ≤ k ≤ m we have (x1 − y1)(xi − yi) ≥ 0 for all i < k and

(x1− y1)(xi− yi) < 0 for i ≥ k. Hence, (xj − yj)(xi− yi) ≤ 0 for all j < k and i ≥ k. By

c-monotonicity, we have

c(x1, ..., xm) + c(y1, ..., ym) ≤ c(y1, ..., yk−1, xk, ..., xm) + c(x1, ..., xk−1, yk, ..., ym).

Hence,

k−1∑
i=1

m∑
j=k

(xi − yi)(xj − yj)
∫ 1

0

∫ 1

0

d2c

dxidxj
(y1(t), y2(t), ..., yk−1(t), yk(s), ..., ym(s))dtds

≤ 0

where yi(t) = yi + t(xi − yi) for i = 1, 2, ..k − 1 and yj(s) = yj + s(xj − yj) for j =

k, k + 1, ...,m. But, as d2

dxidxj
c(y1(t), y2(t), ..., yk − 1(t), yk(s), ..., ym(s)) < 0, and (xi −

yi)(xj − yj) ≤ 0 for all i < k and j ≥ k, every term in the sum is nonnegative. As

(x1 − y1)(xj − yj) < 0 for j ≥ k, the sum must be positive, a contradiction.



Chapter 4

Monge solutions and uniqueness for

m ≥ 3

Our aim in this chapter is to establish necessary conditions on c under which M admits

a solution; this amounts to showing that the solution µ to K is concentrated on the

graph of a function over x1. We will then demonstrate that, under these conditions, the

solutions to M and K are both unique.

In the first section we formulate the conditions we will need. In section 4.2 we state

and prove our main result and in the third section we exhibit several examples of cost

functions which satisfy the criteria of our main theorem.

Throughout this chaper, we will assume the dimensions ni are all equal and denote

their common value by n.

4.1 Preliminaries and definitions

We will assume that each Mi can be smoothly embedded in some larger manifold in

which its closure Mi is compact and that the cost c ∈ C2(M1 × M2 × ... × Mm). In

addition, we will assume that Mi is a Riemannian manifold for i = 2, 3, ..m− 1 and that

45
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any two points can be joined by a smooth, length minimizing geodesic1, although no such

assumptions will be needed on M1 or Mm. The requirement of a Riemannian structure is

related to the global nature of M that we alluded to in the introduction; a Riemannian

metric gives us a natural way to connect any pair of points, namely geodesics.

We will denote by Dxic(x1, x2, ..., xm) the differential of c with respect to xi. For i 6= j,

we recall the bi-linear form D2
xixj

c(x1, x2, ..., xm) on TxiMi×TxjMj, originally introduced

in [43] and employed in the previous chapter; in local coordinates, it is defined by

D2
xixj

c〈 ∂

∂xαii
,
∂

∂x
αj
j

〉 =
∂2c

∂xαii ∂x
αj
j

.

As Mi is Riemannian for i = 2, ...,m − 1, Hessians or unmixed, second order partial

derivatives with respect to these coordinates make sense and we will denote them by

Hessxic(x1, x2, ..., xm); note, however, that no Riemannian structure is necessary to en-

sure the tensoriality of the mixed second order partials D2
xixj

c(x1, x2, ..., xm), as was

observed in [43].

The dual problem to K is to maximize

m∑
i=1

∫
Mi

ui(xi)dµi (D)

among all m-tuples (u1, u2, ..., um) of functions ui ∈ L1(µi) for which
∑m

i=1 ui(xi) ≤

c(x1, ..., xm) for all (x1, ..., xm) ∈M1 ×M2 × ...×Mm.

There is a special class of functions satisfying the constraint in D that will be of

particular interest to us:

Definition 4.1.1. We say that an m-tuple of functions (u1, u2, ..um) is c-conjugate if for

all i

ui(xi) = inf
xj∈Mj

j 6=i

(
c(x1, x2, ..., xm)−

∑
j 6=i

uj(xj)
)

1Note that we do not assume Mi is complete, however, as we do not wish to exclude, for example,
bounded, convex domains in Rn.
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Whenever (u1, u2, ..um) is c-conjugate, the ui are semi-concave and hence have super

differentials ∂ui(xi) at each point xi ∈ Mi. By compactness, for each xi ∈ Mi we can

find xj ∈ Mj for all j 6= i such that u(xi) = c(x1, x2, ..., xm)−
∑

j 6=i uj(xj); furthermore,

as long as |ui(xi)| <∞ for at least one xi, ui is locally Lipschitz [54].

The following theorem makes explicit the link between the Kantorovich problem and

its dual.

Theorem 4.1.1. There exists a solution µ to the Kantorovich problem and a c-conjugate

solution (u1, u2, ..., um) to its dual. Furthermore, the maximum value in D coincides with

the minimum value in K. Finally, for any solution µ to K, any c-conjugate solution

(u1, u2, ..., um) to D and any (x1, ..., xm) ∈ spt(µ) we have
∑m

i=1 ui(xi) = c(x1, ..., xm).

This result is well known in the two marginal case; for m ≥ 3, the existence of

solutions to K and D as well as the equality of their extremal values was proved in [42].

The remaining conclusions were proved for a special cost by Gangbo and Świȩch [37]

and for a general, continuous cost when each Mi = Rn by Carlier and Nazaret [21]. The

same proof applies for more general spaces Mi; we reproduce it below in the interest of

completeness.

Proof. As mentioned above, a proof of the existence of solutions µ to K and (v1, v2, ..., vm)

to D as well as the equality:

m∑
i=1

∫
Mi

vi(xi)dµi =

∫
M1×M2....×Mm

c(x1, x2, x3, ..., xm)dµ (4.1)

can be found in [42]. We use a convexification trick, also found in [37] and [21], to build

a c-conjugate solution to D.

Define

u1(x1) = inf
xj∈Mj

j≥2

(
c(x1, x2, ..., xm)−

m∑
j=2

vj(xj)
)

and ui inductively by

ui(xi) = inf
xj∈Mj

j 6=i

(
c(x1, x2, ..., xm)−

i−1∑
j=1

uj(xj)−
m∑

j=i+1

vj(xj)
)
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As

um(xm) = inf
xj∈Mj

j 6=i

(
c(x1, x2, ..., xm)−

m−1∑
j=1

uj(xj)
)
,

we immediately obtain

ui(xi) ≤ inf
xj∈Mj

j 6=i

(
c(x1, x2, ..., xm)−

∑
j 6=i

uj(xj)
)
. (4.2)

The definition of ui−1 implies that for all (x1, x2, ...xm)

vi(xi) ≤ c(x1, x2, ..., xm)−
i−1∑
j=1

uj(xj)−
m∑

j=i+1

vj(xj)

Therefore, vi(xi) ≤ ui(xi). It then follows that

ui(xi) = inf
xj∈Mj

j 6=i

(
c(x1, x2, ..., xm)−

i−1∑
j=1

uj(xj)−
m∑

j=i+1

vj(xj)
)

≥ inf
xj∈Mj

j 6=i

(
c(x1, x2, ..., xm)−

∑
j 6=i

uj(xj)
)
,

which, together with (4.2), implies that (u1, u2, ..., um) is c-conjugate. Now, we have

m∑
i=1

∫
Mi

vi(xi)dµi ≤
m∑
i=1

∫
Mi

ui(xi)dµi

=
m∑
i=1

∫
M1×M2....×Mm

ui(xi)dµ

≤
∫
M1×M2....×Mm

c(x1, x2, x3, ..., xm)dµ

and so by (4.1) we must have

m∑
i=1

∫
Mi

ui(xi)dµi =
m∑
i=1

∫
M1×M2....×Mm

ui(xi)dµ =

∫
M1×M2....×Mm

c(x1, x2, x3, ..., xm)dµ

But because
∑m

i=1 ui(xi) ≤ c(x1, x2, x3, ..., xm), we must have equality µ almost ev-

erywhere. Continuity then implies equality holds on spt(µ).
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As a corollary to the duality theorem, we now prove a uniqueness result for the

solution to D. When m = 2, this result, under the weak conditions on c stated below, is

due to Chiappori, McCann and Nesheim [22]; for certain special, multi-marginal costs,

it was proven by Gangbo and Świȩch [37] and Carlier and Nazaret [21]. Although this

result is tangential to the main goals of this chapter, we prove it here to emphasize that,

whereas uniqueness in K requires certain structure conditions on the cost, uniqueness in

D depends only on the differentiability of c.

Corollary 4.1.1. Suppose the domains Mi are all connected, that c is continuously dif-

ferentiable and that each µi is absolutely continuous with respect to local coordinates with

a strictly positive density. If (v1, v2, ..., vm) and (v1, v2, ..., vm) solve D, then there exist

constants ti for i = 1, 2., , ,m such that
∑m

i=1 ti = 0 and vi = vi+ti, µi almost everywhere,

for all i.

Proof. Using the convexification trick in the proof of Theorem 4.1.1, we can find c-

conjugate solutions (u1, u2, ..., um) and (u1, u2, ..., um) to D such that vi(xi) ≤ ui(xi) and

vi(xi) ≤ ui(xi) for all xi ∈Mi. Now, as

m∑
i=1

∫
Mi

vi(xi)dµi =
m∑
i=1

∫
Mi

ui(xi)dµi

we must have vi = ui, µi almost everywhere. Similarly, vi = ui, µi almost everywhere.

Now, choose xi ∈Mi where ui and ui are differentiable. Then there exists xj for all j 6= i

such that

(x1, x2, ..., xi−1, xi, xi+1..., xm) ∈ spt(µ);

Theorem 4.1.1 then yields

ui(xi)− c(x1, x2, ..., xi−1, xi, xi+1..., xm) = −
∑
j 6=i

uj(xj).

Because

ui(zi)− c(x1, x2, ..., xi−1, zi, xi+1..., xm) ≤ −
∑
j 6=i

uj(xj)



Chapter 4. Monge solutions and uniqueness for m ≥ 3 50

for all other zi ∈Mi we must have

Dui(xi) = Dxic(x1, x2, ..., xi−1, xi, xi+1..., xm).

Similarly,

Dui(xi) = Dxic(x1, x2, ..., xi−1, xi, xi+1..., xm),

hence Dui(xi) = Dui(xi). As this equality holds for almost all xi we conclude ui(xi) =

ui(xi) + ti for some constant ti. Choosing any (x1, x2, ..., xm) ∈ spt(µ) and noting that

m∑
i=1

ui(xi) = c(x1, x2, ..., xm) =
m∑
i=1

ui(xi),

we obtain
∑m

i=1 ti = 0.

The next two definitions are straightforward generalizations of concepts borrowed

from the two marginal setting.

Definition 4.1.2. For i 6= j, we say that c is (i, j)-twisted if the map xj ∈ Mj 7→

Dxic(x1, x2, ..., xm) ∈ T ∗xiMi is injective, for all fixed xk, k 6= j.

Definition 4.1.3. We say that c is (i, j)-non-degenerate if D2
xixj

c(x1, x2, ..., xm), consid-

ered as a map from TxjMj to T ∗xiMi, is injective for all (x1, x2, ..., xm).

In local coordinates, non-degeneracy simply means that the corresponding matrix of

mixed, second order partial derivatives has a non-zero determinant. When this condition

holds, the inverse map T ∗xiMi → TxjMj will be denoted by (D2
xixj

c)−1(x1, x2, ..., xm).

When m = 2, the non-degeneracy condition is not needed to ensure the existence of an

optimal map (although it plays an important role in studying the regularity of that map).

On the other hand, the twist condition plays an essential role in showing that Monge’s

problem has a solution; it ensures that a first order, differential condition arising from

the duality theorem can be solved uniquely for one variable as a function of the other [46]

(see also [12], [36] and [14]). In light of this, one might expect that, for m ≥ 3, if c is (i, j)-

twisted for all i 6= j, then the Kantorovich solution µ induces a Monge solution. This



Chapter 4. Monge solutions and uniqueness for m ≥ 3 51

is not true, as our examples in chapter 3 demonstrate; see Propositions 3.2.1.3, 3.2.1.4

and 3.2.1.5. In the multi-marginal problem, duality yields m first order conditions; our

strategy in this paper is to show that if we fix the first variable, these equations can be

uniquely solved for the other m − 1 variables. In the problems considered by Gangbo

and Świȩch [37] and Heinich [39], these equations turn out to have a particularly simple

form and can be solved explicitly. For more general cost functions, this becomes a much

more subtle issue. Our proof will combine a second order, differential condition with

tools from convex analysis and will require that the tensor T , defined below, is negative

definite.

Definition 4.1.4. Suppose c is (1,m)-non-degenerate. Let ~y = (y1, y2, ..., ym) ∈ M1 ×

M2× ...×Mm. For each i := 2, 3, ...,m−1 choose a point ~y(i) = (y1(i), y2(i), ..., ym(i)) ∈

M1 × M2 × ... × Mm such that yi(i) = y(i). Define the following bi-linear maps on

Ty2M2 × Ty3M3 × ...× Tym−1Mm−1:

S~y = −
m−1∑
j=2

m−1∑
i=2
i 6=j

D2
xixj

c(~y) +
m−1∑
i,j=2

(D2
xixm

c(D2
x1xm

c)−1D2
x1xj

c)(~y)

H~y,~y(2),~y(3),...,~y(m−1) =
m−1∑
i=2

(Hessxic(~y(i))−Hessxic(~y))

T~y,~y(2),~y(3),...,~y(m−1) = S~y +H~y,~y(2),~y(3),...,~y(m−1)

Note that D2
xixj

c(x1, x2, ..., xm), Hessxic(x1, x2, ..., xm) and the composition

(
Dxixmc(D

2
x1xm

c)−1D2
x1xj

c
)
(x1, x2, ..., xm)

are actually bi-linear maps on the spaces TxiMi×TxjMj, TxiMi×TxiMi and TxiMi×TxjMj,

respectively, but we can extend them to maps on the product space (Tx2M2 × Tx3M3 ×

...×Txm−1Mm−1)
2 by considering only the appropriate components of the tangent vectors.
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Though T looks complicated, it appears naturally in our argument. The condition

T < 0 is in one sense analogous to the twist and non-degeneracy conditions that are so

important in the two marginal problem. Like the non-degeneracy condition, negativity

of S is an inherently local property on M1 ×M2 × ... ×Mm; under this condition, one

can show that our system of equations is locally uniquely solvable. To show that the

solution is actually globally unique requires something more; in the two marginal case,

this is the twist condition, which can be seen as a global extension of non-degeneracy.

In our setting, requiring that the sum T = S +H < 0 turns out to be enough to ensure

that the locally unique solution is in fact globally unique.

4.2 Monge solutions

We are now in a position to precisely state our main theorem:

Theorem 4.2.1. Suppose that:

1. c is (1,m)-non-degenerate.

2. c is (1,m)-twisted.

3. For all choices of ~y = (y1, y2, ..., ym) ∈ M1 × M2 × ... × Mm and of ~y(i) =

(y1(i), y2(i), ..., ym(i)) ∈M1×M2× ...×Mm such that yi(i) = yi for i = 2, ...,m−1,

we have

T~y,~y(2),~y(3),...,~y(m−1) < 0. (4.3)

4. The first marginal µ1 does not charge sets of Hausdorff dimension less than or equal

to n− 1.



Chapter 4. Monge solutions and uniqueness for m ≥ 3 53

Then any solution µ to the Kantorovich problem is concentrated on the graph of a func-

tion; that is, there exist functions Gi : M1 →Mi such that

graph(~G) = {(x1, G2(x1), G3(x1), ..., Gm(x1))}

satisfies µ(graph(~G)) = 1

Proof. Let ui be a c-conjugate solution to the dual problem. Now, u1 is semi-concave and

hence differentiable off a set of Hausdorff dimension n − 1; as µ1 vanishes on every set

of Hausdorff dimension less than or equal to n− 1, by Theorem 4.1.1 it suffices to show

that for every x1 ∈ M1 where u1 is differentiable, there is at most one (x2, x3, ..., xm) ∈

M2×M3× ...×Mm such that
∑m

i=1 ui(xi) = c(x1, x2, x3, ..., xm). Note that this equality

implies that Dxic(x1, x2, ..., xm) ∈ ∂ui(xi) for all i = 1, 2...,m; in particular, as u1 is

differentiable at x1, Du1(x1) = Dx1c(x1, x2, ..., xm). Our strategy will be to show that

these inclusions can hold for at most one (x2, x3, ..., xm).

Fix a point x1 where u1 is differentiable. Twistedness implies that the equation

Du1(x1) = Dx1c(x1, x2, ..., xm) defines xm as a function xm = Fx1(x2, ..., xm−1) of the

variables x2, x3, ..., xm−1; non-degeneracy and the implicit function theorem then imply

that Fx1 is continuously differentiable with respect to x2, x3, ..., xm−1 and

DxiFx1(x2, ..., xm−1) = −
(
(D2

x1xm
c)−1D2

x1xi
c)(x1, x2, ..., Fx1(x2, ..., xm−1)

)
for i = 2, ...,m− 1. We will show that there exists at most one point (x2, x3, ..., xm−1) ∈

M2 ×M3 × ...×Mm−1 such that

Dxic(x1, x2, ..., Fx1(x2, ..xm−1)) ∈ ∂ui(xi)

for all i = 2, ...,m− 1.

The proof is by contradiction; suppose there are two such points, (x2, x3, ..., xm−1)

and (x2, x3, ..., xm−1). For i = 2, ...,m − 1, we can choose Riemannian geodesics γi(t)

in Mi such that γi(0) = xi and γi(1) = xi. Take a measurable selection of covectors
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Vi(t) ∈ ∂ui(γi(t)). We will show that f(1) < f(0), where

f(t) :=
m−1∑
i=2

[Vi(t)−Dxic(x1, ~γ(t)]〈dγi
dt
〉

and we have used (x1, ~γ(t)) as a shorthand for

(x1, γ2(t), ..., γm−1(t), Fx1(γ2(t), ..., γm−1(t)))

and a < b > to denote denote the duality pairing between a 1-form a and a vector b.

This will clearly imply the desired result.

For each t and each i = 2, ...,m− 1, by c-conjugacy of ui and the compactness of Mj,

we have

ui(γi(t)) = min
xj∈Mj

j 6=i

(
c(x1, x2, ..., xm)−

∑
j 6=i

uj(xj)
)

For j 6= i, choose points yj(i; t) ∈ Mj where the minimum above is attained. Set

yi(i; t) = γi(t) and denote ~y(i; t) = (y1(i; t), y2(i; t), ..., ym(i : t)) ∈ M1 ×M2 × ... ×Mm.

We then have
m∑
j=1

uj(yj(i; t)) = c(y1(i; t), y2(i; t), ..., ym(i; t))

Note that Vi(t)〈dγidt 〉 supports the semi-concave function T ∈ [0, 1] 7→ ui(γi(t)). But

ui(γi(t)) is twice differentiable almost everywhere and hence we have Vi(t)〈dγidt 〉 = d(ui(γi(t)))
dt

for almost all t and, by semi-concavity, Vi(1)〈dγi
dt
〉 − Vi(0)〈dγi

dt
〉 ≤

∫ 1

0
d2(ui(γi(t)))

dt2
dt. Now,

for any t, s ∈ [0, 1]

ui(γi(t)) ≤ c(y1(i; s), y2(i; s), ..., yi−1(i; s), γi(t), yi+1(i; s)..., ym(i; s))−
∑
j 6=i

uj(yj(i; s))

and we have equality when t = s, as γi(s) = yi(i; s). Hence, whenever d2(ui(γi(t)))
dt2

exists,

we have

d2(ui(γi(t)))

dt2

∣∣∣∣∣
t=s

≤ d2(c(y1(i; s), y2(i; s), ..., yi−1(i; s), γi(t), yi+1(i; s)..., ym(i; s)))

dt2

∣∣∣∣∣
t=s

= Hessxic(y1(i; s), y2(i; s), ..., ym(i; s))〈dγi
ds
,
dγi
ds
〉
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We conclude that

Vi(1)〈dγi
dt
〉 − Vi(0)〈dγi

dt
〉 ≤

∫ 1

0

Hessxic(y1(i; t), y2(i; t), ..., ym(i; t))〈dγi
dt
,
dγi
dt
〉dt (4.4)

Turning now to the other term in f(1)− f(0), we have

Dxic(x1,
~γ(1))〈dγi

dt
〉 −Dxic(x1,

~γ(0))〈dγi
dt
〉

=

∫ 1

0

d

dt

(
Dxic(x1, ~γ(t))〈dγi

dt
〉
)
dt

=

∫ 1

0

(
m−1∑
j=2
j 6=i

(
D2
xixj

c(x1, ~γ(t))
)
〈dγi
dt
,
dγj
dt
〉 +Hessxic(x1, ~γ(t))〈dγi

dt
,
dγi
dt
〉

+
m−1∑
j=2

(
D2
xixm

c(x1, ~γ(t))DxjFx1(~γ(t))
)
〈dγi
dt
,
dγj
dt
〉

)
dt

=

∫ 1

0

(
m−1∑
j=2
j 6=i

(
D2
xixj

c(x1, ~γ(t))
)
〈dγi
dt
,
dγj
dt
〉+Hessxic(x1, ~γ(t))〈dγi

dt
,
dγi
dt
〉

−
m−1∑
j=2

(
(D2

xixm
c(D2

x1xm
c)−1D2

x1xj
c)(x1, ~γ(t))

)
〈dγi
dt
,
dγj
dt
〉

)
dt (4.5)

Combining (4.4) and (4.5) yields

f(1)− f(0) ≤
∫ 1

0
T(

x1,~γ(t)
)
,~y(2;t),~y(3;t),...,~y(m−1;t)

〈d~γ
dt
, d~γ
dt
〉dt

< 0

Corollary 4.2.2. Under the same conditions as Theorem 1, the Monge problem M

admits a unique solution and the solution to the Kantorovich problem K is unique.

Proof. We first show that the Gi defined in Theorem 4.2.1 push µ1 to µi for all i =

2, 3, ..m. Pick a Borel set B ∈Mi. We have
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µi(B) = µ(M1 ×M2 × ...×Mi−1 ×B ×Mi+1 × ...×Mm)

= µ
(

(M1 ×M2 × ...×Mi−1 ×B ×Mi+1 × ...×Mm) ∩ graph(~G)
)

= µ
(
{(x1, G2(x1), ..., Gm(x1)|Gi(x1) ∈ B}

)
= µ

(
(G−1i (B)×M2 × ...×Mm) ∩ graph(~G)

)
= µ(G−1i (B)×M2 × ...×Mm)

= µ1(G
−1
i (B))

This implies that (G2, G3, ..., Gm) solves M. To prove uniqueness of µ, note that any

other optimizer µ must also be concentrated on graph(~G), which in turn implies µ =

(Id, G2, ..., Gm)#µ1 = µ. Uniqueness of (G2, G3, ..Gm) now follows immediately; if (G2, G3, ..., Gm)

is another solution to M then (Id, G2, G3, ..., Gm)#µ1 is another solution to K, which must

then be concentrated on graph(~G). This means that Gi = Gi, µ1 almost everywhere.

4.3 Examples

In this section, we discuss several types of cost functions to which Theorem 4.2.1 applies.

In these examples, the complicated tensor T simplifies considerably.

Example 4.3.1. (Perturbations of concave functions of the sum) Gangbo and Świȩch [37]

and Heinich [39] treated cost functions defined on (Rn)m by c(x1, x2, ..., xm) = h(
∑m

k=1 xk)

where h : Rn → R is strictly concave. Here, we make the slightly stronger assumption

that h is C2 with D2h < 0. Assuming each µi is compactly supported, we can take each

Mi to be a bounded, convex domain in Rn. Now, Dxic(x1, x2, ..., xm) = Dh(
∑m

k=1 xk) and

D2
xixj

c(x1, x2, ..., xm)) = D2h(
∑m

k=1 xk), where we have made the obvious identification

between tangent spaces at different points. c is then clearly (1,m)-twisted and (1,m)-non-

degenerate. Furthermore, the bi-linear map S~y on (Rn)m−2 is block diagonal, and each of
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its diagonal blocks is

D2h(
m∑
k=1

yk).

Similarly, as Hessxic(~y(i)) = D2h(
∑m

k=1 yk(i)) and Hessxic(~y) = D2h(
∑m

k=1 yk), H~y,~y(2),~y(3),...,~y(m−1)

is block diagonal and its ith diagonal block is

D2h(
m∑
k=1

yk(i))−D2h(
m∑
k=1

yk).

Therefore, T~y,~y(2),~y(3),...,~y(m−1) is block diagonal and its ith diagonal block is

D2h(
m∑
k=1

yk(i)).

This is clearly negative definite. Furthermore, C2 perturbations of this cost function will

also satisfy T~y,~y(2),~y(3),...,~y(m−1) < 0; this shows that the results of Gangbo and Świȩch and

Heinich are robust with respect to perturbations of the cost function.

Example 4.3.2. (Bi-linear costs) We now turn to bi-linear costs; suppose c : (Rn)m → R

is given by c(x1, x2, ..., xm) =
∑

i 6=j(xi)
TAijxj for n by n matrices Aij. If A1m is non-

singular, c is (1,m)-twisted and (1,m)-non-degenerate. Now, the Hessian terms in T

vanish and so the condition T < 0 becomes a condition on the Aij. For example, when

m = 3, we have T = A21(A31)
−1A32; T < 0 is the same condition that ensures the

solution to K is contained in an n dimensional submanifold in the preceding chapter; see

Theorem 3.1.3 and Lemma 3.3.2.

Note that after changing coordinates in x2 and x3, we can assume any bi-linear three-

marginal cost is of the form

c(x1, x2, x3) = x1 · x2 + x1 · x3 + xT2Ax3

In these coordinates, the threefold product A21(A31)
−1A32 = AT . Applying the linear

change of coordinates

x1 7→ U1x1

x2 7→ U2x2

x3 7→ U3x3
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yields

c(x1, x2, x3) = xT1U
T
1 U2x2 + xT1U

T
1 U3x3 + xT2U

T
2 AU3x3

If A is negative definite and symmetric, then we can choose U3 = U2 such that UT
2 AU3 =

−I and U1 = −(UT
2 )−1 to obtain

c(x1, x2, x3) = −xT1 x2 − xT1 x3 − xT2 x3

which is equivalent 2 to the cost of Gangbo and Świȩch. As the symmetry of D2
x2x1

c(D2
x3x1

c)−1D2
x3x2

c

is independent of our choice of coordinates, we conclude that c is equivalent to Gangbo

and Świȩch’s cost if and only if A21(A31)
−1A32 is symmetric and negative definite. Thus,

when m = 3 our result restricted to bi-linear costs generalizes Gangbo and Świȩch’s the-

orem from costs for which A21(A31)
−1A32 is symmetric and negative definite to ones for

which it is only negative definite.

Example 4.3.3. There is another class of three marginal problems which Theorem 4.2.1

applies to: on Rn × Rn × Rn, set

c(x1, x2, x3) = g(x1, x3) +
|x1 − x2|2

2
+
|x3 − x2|2

2
.

If g(x1, x3) = |x1−x3|2
2

, this is equivalent to the cost of Gangbo and Świȩch. More generally,

if g is (1, 3)-twisted and non-degenerate, then c is as well. Moreover, if we make the usual

identification between tangent spaces at different points in Rn, we have

T~y,~y(2) =
(
D2
x1x3

g(y1, y3)
)−1

.

Hence, if D2
x1x3

g(y1, y3) < 0, we have T~y,~y(2) < 0. This will be the case if, for example,

g(x1, x3) = h(x1 − x3) for h uniformly convex or g(x1, x3) = h(x1 + x3) for h uniformly

concave.

2We say cost functions c and c are equivalent if c(x1, x2, ..., xm) = c(x1, x2, ..., xm) +
∑m

i=1 gi(xi).
As the effect of the gi’s is to shift the functionals C(G2, G3, ..., Gm) and C(µ) by the constant∑m

i=1

∫
Mi
gi(xi)dµi, studying c is essentially equivalent to studying c.
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Example 4.3.4. (Hedonic Pricing) As was outlined in chapter 3, Chiappori, McCann

and Nesheim [22] and Carlier and Ekeland [20] showed that finding equilibrium in a cer-

tain hedonic pricing model is equivalent to solving a multi-marginal optimal transportation

problem with a cost function of the form c(x1, x2, ..., xm) = infz∈Z
∑m

i=1 fi(xi, z). Let us

assume:

1. Z is a C2 smooth n-dimensional manifold.

2. For all i, fi is C2 and non-degenerate.

3. For each (x1, x2, ..., xm) the infinum is attained by a unique z(x1, x2, ..., xm) ∈ Z

and

4.
∑m

i=1D
2
zzfi(xi, z(x1, x2, ..., xm)) is non-singular.

In chapter 3, we showed that these conditions implied that c is C2 and (i, j)-non-degenerate

for all i 6= j; we then showed that the support of any optimizer is contained in an n-

dimensional Lipschitz submanifold of the product M1 ×M2 × ...Mm. Here we examine

conditions on the fi that ensure the hypotheses of Theorem 4.2.1 are satisfied. If, for

fixed i 6= j, we assume in addition that:

5. fi is xi, z twisted (that is, z 7→ Dxifi(xi, z) is injective) and

6. fj is z, xj twisted.

then c is (i, j)-twisted. Indeed, note that c(x1, x2, ..., xm) ≤
∑m

i=1 fi(xi, z)) with equality

when z = z(x1, x2, ..., xm); therefore,

Dxic(x1, x2, ..., xm) = Dxif(xi, z(x1, x2, ..., xm)) (4.6)

Therefore, for fixed xk for all k 6= j, the map xj 7→ Dxic(x1, x2, ..., xm) is the composition

of the maps xj 7→ z(x1, x2, ..., xm) and z 7→ Dxif(xi, z). The later map is injective by

assumption. Now, note that

m∑
k=1

Dzfi(xi, z(x1, x2, ..., xm)) = 0;
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hence,

Dzfj(xj, z(x1, x2, ..., xm)) = −
∑
k 6=j

Dzfk(xk, z(x1, x2, ..., xm)).

Twistedness of fj now immediately implies injectivity of the first map.

We now investigate the form of the tensor T .

As A(x1, x2, ..., xm) :=
∑m

i=1D
2
zzfi(xi, z(x1, x2, ..., xm)) is non-singular by assumption,

the implicit function theorem implies that z(x1, x2, ..., xm) is differentiable and

Dxiz(x1, x2, ..., xm) = −
(
A(x1, x2, ..., xm)

)−1
D2
zxi
fi(xi, z(x1, x2, ..., xm))

Furthermore, note that as A is positive semi-definite by the minimality of z 7→
∑m

i=1 fi(xi, z))

at z(x1, x2, ..., xm), the non-singular assumption implies that it is in fact positive definite.

Differentiating (4.6) with respect to xi for i = 2, 3, ..m− 1 yields:

Hessxic = −(D2
xiz
fi)Dxiz +Hessxifi = −(D2

xiz
fi)A

−1(D2
zxi
fi) +Hessxifi.

where we have suppressed the arguments x1, x2, ..xm and z(x1, x2, ..., xm). A similar cal-

culation yields, for all i 6= j,

D2
xixj

c = (D2
xiz
fi)Dxjz = −(D2

xiz
fi)A

−1(D2
zxj
fi)

Thus, for all i 6= j, a straightforward calculation yields

D2
xixm

c(D2
x1xm

c)−1D2
x1xj

c = −(D2
xiz
fi)A

−1(D2
zxj
fi) = D2

xixj
c,

Hence, S~y is block diagonal. Furthermore, another simple calculation implies that its ith

diagonal block is[
D2
xixm

c(D2
x1xm

c)−1D2
x1xi

c
](
~y
)

= −
[
(D2

xiz
fi)A

−1(D2
zxi
fi)
](
~y, z(~y)

)
.

In addition, H~y,~y(2),~y(3),...,~y(m−1) is block diagonal and its ith block is

−
[
(D2

xiz
fi)A

−1(D2
zxi
fi)
](
~y(i), z

(
~y(i)

))
+Hessxifi

(
yi, z

(
~y(i)

))
+
[
(D2

xiz
fi)A

−1(D2
zxi
fi)
](
~y, z(~y)

)
−Hessxifi

(
yi, z(~y)

)
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Hence, T~y,~y(2),~y(3),...,~y(m−1) is block diagonal and its ith block is

−
[
(Dxizfi)A

−1(D2
zxi
fi)
](
~y(i), z

(
~y(i)

))
+Hessxifi

(
yi, z

(
~y(i)

))
−Hessxifi

(
yi, z(~y)

)
(4.7)

Therefore, T~y,~y(2),~y(3),...,~y(m−1) is negative definite if and only if each of its diagonal blocks

is. Now, A is symmetric and positive definite; therefore A−1 is as well. The first term

in the ith block of (4.7) is therefore negative definite; the entire block will be negative

definite if this term dominates the difference of the Hessian terms. This is the case if,

for example, Mi = Rn and fi takes the form fi(xi, z) = xiαi(z) + βi(xi) + λi(z) for all

i = 2, 3, ...,m− 1, in which case Hessxifi

(
yi, z

(
~y(i)

))
= Hessxifi

(
yi, z(~y)

)
.



Chapter 5

Regularity of optimal maps when

m = 2 and n1 6= n2.

In this chapter, we study how the regularity theory for two marginals developed by Ma,

Trudinger and Wang [52] and Loeper [49] extends to the case when the dimensions are

uneven, n1 > n2.

Explicity, we use a counter example of Ma, Trudinger and Wang to show that unless

c takes the form in equation (1.1), there are smooth densities µ1 and µ2, bounded above

and below, for which the optimal map is discontinuous.

In the first section, we will introduce preliminary concepts from the regularity theory

of optimal transportation, suitably adapted for general values of n1 ≥ n2. In the sec-

ond section, we prove that c-convexity (a necessary condition for regularity) implies the

existence of a quotient map Q as in equation (1.1). We then show that the properties

on Z which are necessary for the optimal map to be continuous follow from analogous

properties on M1.

For cost functions that are not of the special form (1.1), there are smooth marginals

for which the optimal map is discontinuous. However, as the condition equation (1.1) is

so restrictive, it is natural to ask about regularity for costs which are not of this form; any
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result in this direction will require stronger conditions on the marginals than smoothness.

In the final section of this chapter, we address this problem when n1 = 2 and n2 = 1.

As in chapter 2, we will denote variables in M1 and M2 by x and y, respectively.

5.1 Conditions and definitions

Here we develop several definitions and conditions which we will require in the following

sections; many of them are similar to the definitions found in the preceding chapters.

We begin with some basic notation. In what follows, we will assume that M1 and M2

may be smoothly embedded in larger manifolds, in which their closures, M1 and M2, are

compact. If c is differentiable, we will denote by Dxc(x, y) its differential with respect to

x. If c is twice differentiable, D2
xyc(x, y) will denote the map from the tangent space of

M2 at y, TyM2, to the cotangent space of M1 at x, T ∗xM1, defined in local coordinates by

∂

∂yi
7→ ∂2c(x, y)

∂yi∂xj
dxj

where summation on j is implicit, in accordance with the Einstein summation convention.

Dyc(x, y) and D2
yxc(x, y) are defined analogously.

A function u : M1 → R is called c-concave if u(x) = infy∈M2 c(x, y) − uc(y), where

uc(y) := infx∈M1 c(x, y)− u(x).

Next, we introduce the concept of c-convexity, which first appeared in Ma, Trudinger

and Wang.

Definition 5.1.1. We say domain M2 looks c-convex from x ∈ M1 if Dxc(x,M2) =

{D2
xc(x, y)|y ∈ M2} is a convex subset of TxM1. We say M2 is c-convex with respect to

M1 if it looks c-convex from every x ∈M1.

Our next definition is novel, as it is completely irrelevant when n1 = n2. It will,

however, play a vital role in the present setting.
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Definition 5.1.2. We say domain M2 looks c-linear from x ∈ M1 if Dxc(x,M2) is

contained in a shifted n2-dimensional, linear subspace of TxM1. We say M2 is c-linear

with respect to M1 if it looks c-linear from every x ∈M1.

When n1 = n2, c-linearity is automatically satisfied. When n1 > n2, this is no longer

true, although c-convexity clearly implies c-linearity.

We will also have reason to consider the level set of x 7→ Dyc(x, y) passing through

x, Lx(y) := {x ∈M1 : Dyc(x, y) = Dyc(x, y)}.

Let us now state the first three regularity conditions introduced by Ma, Trudinger

and Wang:

(A0): The function c ∈ C4(M1 ×M2).

(A1): (Twist) For all x ∈M1, the map y 7→ Dxc(x, y) is injective on M2.

(A2): (Non-degeneracy) For all x ∈M1 and y ∈M2, the map D2
xyc(x, y) : TyM2 → T ∗xM1

is injective.

Remark 5.1.3. When n1 = n2, a bi-twist hypothesis is required to prove regularity of

the optimal map; in addition to (A1), one must assume x 7→ Dyc(x, y) is injective on

M1 for all y ∈ M2. Clearly, such a condition cannot hold if n1 > n2; in fact, the non-

degeneracy condition and the implicit function theorem imply that the level sets Lx(y) of

this mapping are smooth n1 − n2 dimensional hypersurfaces. Later, we will assume that

the these level sets are connected. When n1 = n2, non-degeneracy implies that each Lx(y)

consists of finitely many isolated points, in which case connectedness implies that it is in

fact a singleton, or, equivalently, that x 7→ Dyc(x, y) is injective.

The statements of (A3w) and (A3s), the most important regularity conditions,

require a little more machinery. For a twisted cost, the mapping y 7→ Dxc(x, y) is

invertible on its range. We define the c-exponential map at x, denoted by c-expx(·), to

be its inverse; that is, Dxc(x, c-expx(p)) = p for all p ∈ Dxc(x,M2).

Definition 5.1.4. Let x ∈ M1 and y ∈ M2. Choose tangent vectors u ∈ TxM1 and
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v ∈ TyM2. Set p = Dxc(x, y) ∈ T ∗xM1 and q = (D2
xyc(x, y)) · v ∈ T ∗xM1; note that if M2

looks c-linear at x, p + tq ∈ Dxc(x,M2) for small t. For any smooth curve β(s) in M1

with β(0) = x and dβ
ds

(0) = u, we define the Ma, Trudinger Wang curvature at x and y

in the directions u and v by:

MTWxy〈u, v〉 := −3

2

∂4c

∂s2∂t2
c(β(s), c-expx(p + tq))

We are now ready to state the final conditions of Ma, Trudinger and Wang. Because

they are designed to deal with the general case n1 ≥ n2, our formulations look somewhat

different from those found in [52]; when n1 = n2, they reduce to the standard conditions.

(A3w): For all x ∈M1, y ∈M2, u ∈ TxM1 and v ∈ TyM2 such that u ·D2
xyc(x, y) ·v = 0,

MTWxy〈u,v〉 ≥ 0.

(A3s): For all x ∈M1, y ∈M2, u ∈ TxM1 and v ∈ TyM2 such that u·(D2
xyc(x, y))·v = 0,

u · (D2
xyc(x, y)) 6= 0 and v 6= 0 we have MTWxy〈u,v〉 > 0.

If n1 = n2, non-degeneracy implies that the condition u·(D2
xyc(x, y)) 6= 0 is equivalent

to u 6= 0.

5.2 Regularity of optimal maps

The following theorem asserts the existence of an optimal map. It is due to Levin [46]

in the case where M1 is a bounded domain in Rn1 and µ1 is absolutely continuous with

respect to Lebesgue measure. The following version can be proved in the same way; see

also Brenier [12], Gangbo [35], Gangbo and McCann [36] and Caffarelli [14].

Theorem 5.2.1. Suppose c is twisted and µ1(A) = 0 for all Borel sets A ⊆ M1 of

Hausdorff dimension less than or equal to n1 − 1. Then the Monge problem admits a

unique solution F of the form F (x) = c-exp(x,Du(x)) for some c-concave function u.

The following example confirms the necessity of c-convexity to regularity. It is due

to Ma, Trudinger and Wang [52] in the case where n1 = n2; their proof applies to the

n1 ≥ n2 case as well.
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Theorem 5.2.2. Suppose there exists some x ∈M1 such that M2 does not look c-convex

from x. Then there exist smooth measures µ1 and µ2 for which the optimal map is

discontinuous.

As c-convexity implies c-linearity, this example verifies that we cannot hope to develop

a regularity theory in the absence of c-linearity. The following lemma demonstrates that,

under the c-linearity hypothesis, the level sets Lx(y) are the same for each y, yielding a

canonical foliation of the space M1.

Lemma 5.2.3. (i) M2 looks c-linear from x ∈M1 if and only if Tx(Lx(y)) is independent

of y; that is Tx(Lx(y0)) = Tx(Lx(y1)) for all y0, y1 ∈M2.

(ii) If the level sets Lx(y) are all connected, then M2 is c-linear with respect to M1 if and

only if Lx(y) is independent of y for all x

Proof. We first prove (i). The tangent space to Lx(y) at x is the null space of the map

D2
yxc(x, y) : TxM1 7→ T ∗yM2, which, in turn, is the orthogonal complement of the range

of D2
xyc(x, y) : TyM2 7→ T ∗xM1. Therefore, Tx(Lx(y)) is independent of y if and only if

the range of D2
xyc(x, y) is independent of y. But D2

xyc(x, y) is the differential of the map

y 7→ Dxc(x, y) (making the obvious identification between T ∗xM1 and its tangent space

at a point) and so its range is independent of y if and only if the image of this map is

linear.

To see (ii), note that (i) implies M2 is c-linear with respect to M1 if and only if

Tx(Lx(y0)) = Tx(Lx(y1)) for all x ∈M1 and all y0, y1 ∈M2. But Tx(Lx(y0)) = Tx(Lx(y1))

for all x is equivalent to Lx(y0) = Lx(y1) for all x; this immediately yields (ii).

For the remainder of this section, we will assume that Lx(y) is connected and indepen-

dent of y for all x and we will denote it simply by Lx. In this case, we will demonstrate

now that points in the same level set are indistinguishable from an optimal transporta-

tion perspective. The Lx’s define a canonical foliation of M1 and our problem will be

reduced to an optimal transportation problem between M2 and the space of leaves of this
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foliation. More precisely, we define an equivalence relation on M1 by x ∼ x if x ∈ Lx.

We then define the quotient space Z = M1/ ∼ and the quotient map Q : M1 → Z. Note

that, for any fixed y0 ∈ M2, the map x 7→ Dyc(x, y0) ∈ Ty0M2 has the same level sets

as Q (namely the Lx’s) and is smooth by assumption. Furthermore, the non-degeneracy

condition implies that this map is open and hence a quotient map. We can therefore

identify Z ≈ Dyc(M1, y0) with a subse! t of the cotangent space T ∗y0M2. In particular, Z

has a smooth structure, and, if c satisfies (A0), Q is C3.

Our strategy now will be to show that if F : M1 → M2 is the optimal map, then

F factors through Q; F = T ◦ Q. As Q is smooth, this will imply that treating the

smoothness of F reduces to studying the smoothness of T . To this end, we will show

that T itself solves an optimal transportation problem with marginals α = Q#µ1 on Z

and µ2 on M2 relative to the cost function b(z, y) defined uniquely by:

Dyb(z, y) = Dyc(x, y), for x ∈ Q−1(z)

b(z, y0) = 0

As Z and M2 share the same dimension, the regularity theory of Ma, Trudinger and

Wang will apply in this context.

We first obtain a useful formula for the cost function b.

Proposition 5.2.4. For any z ∈ Z, y ∈M2 and x ∈ Q−1(z), we have b(z, y) = c(x, y)−

c(x, y0).

Proof. For y = y0 the result follows immediately from the definition of h. As Dyb(z, y) =

Dyc(x, y) for all y, the formula holds everywhere.

Note that this implies c(x, y) = b(Q(x), y) + c(x, y0), which is equivalent to b(Q(x), y)

for optimal transportation purposes.

Lemma 5.2.5. For any x0, x1 ∈ Lx, y ∈M2 and c-concave u we have u(x0) = c(x0, y)−

uc(y) if and only if u(x1) = c(x1, y)− uc(y).
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Proof. First note that as Dyc(x0, y) − Dyc(x1, y) = 0 for all y ∈ M2, the difference

c(x0, y)− c(x1, y) is independent of y. Now, suppose u(x0) = c(x0, y)− uc(y). Then

u(x1) = inf
y∈M2

c(x1, y)− uc(y)

= inf
y∈M2

(
c(x1, y)− c(x0, y) + c(x0, y)− uc(y)

)
= c(x1, y)− c(x0, y) + inf

y∈M2

(
c(x0, y)− uc(y)

)
= c(x1, y)− c(x0, y) + u(x0)

= c(x1, y)− uc(y)

The proof of the converse is identical.

Proposition 5.2.6. Suppose c is twisted and µ1 doesn’t charge sets of Hausdorff dimen-

sion n1− 1. Let F : M1 →M2 be the optimal map. Then there exists a map T : Z →M2

such that F = T ◦Q, µ1 almost everywhere. Moreover, T solves the optimal transportation

problem on Z ×M2 with cost function b and marginals α and µ2.

Proof. It is well known that there exists a c-concave functions u(x) such that, for µ1

almost every x, there is a unique y ∈ M2 such that u(x) = c(x, y) − uc(y); in this case,

F (x) = y.

For α almost every z ∈ Z, Lemma 5.2.5 now implies that there is a unique y ∈ M2

such that u(x) = c(x, y) − uc(y) for all x ∈ Q−1(z); define T (z) to be this y. In then

follows immediately that F = T ◦Q, µ1 almost everywhere, and that T pushes α to µ2.

Now, suppose G : Z → M2 is another map pushing α to µ2. Then G ◦ Q pushes µ1

to µ2 and because of the optimality of F = Q ◦ T we have

∫
M1

c(x, T ◦Q(x))dµ1 ≤
∫
M1

c(x,G ◦Q(x))dµ1. (5.1)
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Now, using Proposition 5.2.4 we have∫
M1

c(x, T ◦Q(x))dµ1 =

∫
M1

b(Q(x), T ◦Q(x)) + c(x, y0)dµ1

=

∫
Z

b(z, T (z))dα +

∫
M1

c(x, y0)dµ1

Similarly, ∫
M1

c(x,G ◦Q(x))dµ1 =

∫
Z

b(z,G(z))dα +

∫
M1

c(x, y0)dµ1

and so (5.1) becomes ∫
Z

b(z, T (z))dα ≤
∫
Z

c(z,G(z))dα

Hence, T is optimal.

Having established that the optimal map F from M1 to M2 factors through Z via the

quotient Q and the optimal map T from Z to M2, we will now study how the regularity

conditions (A1)-(A3s) for c translate to b.

Proposition 5.2.4 also allows us to understand the derivatives of b with respect to

z. Pick a point z0 ∈ Z and select x0 ∈ Q−1(z0). Now, let S be an n2-dimensional

surface passing though x0 which intersects Lx0 transversely. As the null space of the

map D2
yxc(x, y0) : TxM1 → T ∗yM2 is precisely TxLx for any y, it is invertible when

restricted to TxS; by the inverse function theorem, the map Dyc(·, y0) restricts to a

local diffeomorphism on S. For all z near z0, there is a unique x ∈ S ∩ Q−1(z) and

we have b(z, y) = c(x, y) − c(x, y0); we can now identify Dzb(z, y) ≈ Dxc|S×M2(x, y) −

Dxc|S×M2(x, y0) and D2
zyb(z, y) ≈ D2

xyc|S×M2(x, y). We use this observation to prove the

following result.

Theorem 5.2.7. (i) If c is twisted, b is bi-twisted.

(ii) If c is non-degenerate, b is non-degenerate.

(iii)If M2 is c-convex, it is also b-convex.

Proof. The injectivity of z 7→ Dyb(z, y) follows immediately from the the definition of b.

Injectivity of y 7→ Dzb(z, y) and non-degeneracy follow from the preceding identification.
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Note that transversality implies T ∗xM1 = T ∗xLx⊕T ∗xS. Our local identification between

Z and S identifies the projection of the range Dxc(x,M2) onto T ∗xS with Dzb(z,M2). As

the projection of a convex set is convex, the b-convexity of M2 now follows from its

c-convexity.

Theorem 5.2.8. The following are equivalent:

1. b satisfies (A3w).

2. c satisfies (A3w).

3. c satisfies (A3w) when restricted to any smooth surface S ⊆ M1 of dimension n2

which is transverse to each Lx that it intersects.

Proof. The equivalence of (1) and (3) follow immediately from our identification. Clearly,

(2) implies (3); to see that (3) implies (2) it suffices to show MTWxy〈u,v〉 = 0 when

u ∈ TxLx, as MTWxy is linear in u. Choosing a curve β(s) ∈ Lx such that β(0) = x and

dβ
ds

(0) = u and p,q as in the definition, we have

dβ

ds
(s) ∈ Tβ(s)Lβ(s) = null

(
D2
xyc(β(s), c-expx(p + tq))

)
.

for all s and t, yielding

d2

dsdt
c(β(s), c-expx(p + tq)) =

dβ

ds
·D2

xyc
(
β(s), c-expx(p + tq)

)
· d(c-exp(p + tq))

dt
= 0

Hence, MTWxy〈u,v〉 = 0

Theorem 5.2.9. The following are equivalent:

1. b satisfies (A3s).

2. c satisfies (A3s).

3. c satisfies (A3s) when restricted to any smooth surface S ⊆ M1 of dimension m

which is transverse to each Lx that it intersects.
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Proof. The equivalence follows immediately from the identification, after observing that

the v · (D2
xyc(x, y)) 6= 0 condition in the definition of (A3s) excludes the non-transverse

directions.

Various regularity results for T (and therefore F ) now follow from the regularity

results of Ma, Trudinger and Wang [52], Loeper [49] and Liu [48]. Note, however, that

these results all require certain regularity hypotheses on the marginals; to apply them

in the present context, we must check these conditions on α, rather than µ1. A brief

discussion on whether the relevant regularity conditions on µ1 translate to α therefore

seems in order.

First, suppose M1 is a bounded domain in Rn and µ1 = f(x)dx is absolutely contin-

uous with respect to m-dimensional Lebesgue measure. Then α is absolutely continuous

with respect to n-dimensional Lebesgue measure with density h(z) given by the coarea

formula:

h(z) :=

∫
Q−1(z)

f(x)

JQ(x)
dHm−n(x)

where JQ is the Jacobian of the map Q, restricted to the orthogonal complement of

TxLx.

Lemma 5.2.10. Suppose f ∈ Lp(M1) (with respect to Lebesgue measure on M1) for

some p ∈ [1,∞]. Then h ∈ Lp(Z).

Proof. We have hp(z) = (
∫
Q−1(z)

f(x)
JQ(x)

dHm−n(x))p. Normalizing and applying Jensen’s

inequality yields:

hp(z)

Cp(z)
≤

∫
Q−1(z)

fp(x)

(JQ(x))pC(z)
dHm−n(x)

≤
∫
Q−1(z)

fp(x)

JQ(x)C(z)Kp−1dH
m−n(x)

where C(z) is the (m−n)-dimensional Hausdorff measure of Q−1(z) and K > 0 is a global

lower bound on JQ(x). Letting C be a global upper bound on C(z) and integrating over

z implies:
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∫
hp(z)dz ≤

∫ ∫
Q−1(z)

fp(x)Cp−1(z)

JQ(x)pKp−1 dH
n1−n2(x)dz

≤ Cp−1

Kp−1

∫ ∫
Q−1(z)

fp(x)

JQ(x)p
dHn1−n2(x)dz

=
Cp−1

Kp−1

∫
fp(x)dx <∞

where we have again used the coarea formula in the last step.

Let us note, however, that an analogous result does not hold for the weaker condition

introduced by Loeper [49], which requires that for all x ∈M1 and ε > 0

µ1(Bε(x)) ≤ Kεn(1−
1
p
)

for some p > n2 and K > 0. Indeed, if n1 − n2 ≥ n2, we can take µ1 to be (n1 − n2)-

dimensional Hausdorff measure on a single level set Lx. Then µ1 will satisfy the above

condition for any p, but α will consist of a single Dirac mass.

The preceding lemma allows use to immediately translate the regularity results of

Loeper [49] and Liu [48] to the present setting.

Corollary 5.2.11. Suppose that M2 is c-convex with connected level sets Lx(y) for all

x ∈ M1 and y ∈ M2, and that (A0), (A1), (A2) and (A3s) hold. Suppose that

f ∈ Lp(M1) for some p > n2+1
2

. Then the optimal map is Holder continuous with Holder

exponent β(n2+1)

2n2
2+β(n2−1) , where β = 1− n2+1

2p
.

The higher regularity results of Ma, Trudinger and Wang require C2 smoothness of

the density h. As the following example demonstrates, however, smoothness of f does

not even imply continuity of h.

Example 5.2.12. Let

M1 = {x = (x1, x2) : −1 < x1 < 1,−1 < x2 < φ(x1)} ⊆ R2
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where φ : (−1, 1) → (−1, 1) is a C∞ function such that φ(x1) = 0 for all −1 < x1 < 0,

φ(1) = 1 and φ is strictly increasing on (0, 1). Let M2 = (0, 1) ⊆ R and c(x, y) = x2y.

Then M2 is c-convex and c satisfies (A0)-(A3s). The level sets Lx are simply the curves

{x : x2 = c} for constant values of c ∈ (−1, 1) and Z = (−1, 1). Set f(x) = k, where k

is a constant chosen so that µ1 has total mass 1. The density h is then easy to compute;

it is simply the length of the line segment Q−1(z). For z < 0, h(z) = 2k; however, for

z > 0, h(z) = k(1− φ−1(z)) < k. 1

On the other hand, we should note that is possible for α to be smooth even when

µ1 is singular. This will be the case if, for example, µ1 is n2-dimensional Hausdorff

measure concentrated on some smooth n2-dimensional surface S which intersects the

Lx’s transversely.

Finally, we exploit Loeper’s counterexample, which shows that, when n1 = n2 and

(A3w) fails, there are smooth densities for which the optimal map is not continuous.

Corollary 5.2.13. Suppose that M2 is c-convex and that the level sets Lx(y) are con-

nected for all x ∈ M1 and y ∈ M2. Assume (A0), (A1), and (A2) hold but (A3w)

fails. Then there are smooth marginals µ1 on M1 and µ2 on M2 such that the optimal

map is discontinuous.

Proof. Using Proposition 5.2.4, it is easy to check that u : M1 → R is c-concave if and

only it u(x) = v(Q(x)) + c(x, y0) for some b-concave v : Z → R. By [49], we know

that if (A3w) fails, then the set of C1, b-concave functions is not dense in the set of all

b-concave functions in the L∞(Z) topology. From this it follows easily that the set of

C1, c-concave functions is not dense in the set of all c-concave functions in the L∞(M1)

topology. The argument in [49] now implies the desired result.

1It should be noted that the while the boundary of M1 is not smooth here, this is not the reason
for the discontinuity in h; the corners of the boundary can be mollified and the density will still be
discontinuous at 0.
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5.3 Regularity for non c-convex targets

The counterexamples of Ma, Trudinger and Wang, combined with the results in the

previous section imply that we cannot hope that the optimizer is continuous for arbitrary

smooth data if the level sets Lx(y) are not independent of y. It is then natural to ask for

which marginals can we expect the optimal map to smooth? In this section, we study

this question in the special case when n1 = 2 and n2 = 1. We identify conditions on the

interaction between the marginals and the cost that allow us to find an explicit formula

for the optimal map and prove that it is continuous.

We will assume M2 = (a, b) ⊂ R is an open interval and that M1 is a bounded domain

in R2. We will also assume that c ∈ C2(M1 ×M2) satisfies (A2), which in this setting

simply means that the gradient Ox(
∂c
∂y

) never vanishes. Therefore, the level sets Lx(y)

will all be C1 curves. We define the following set:

P =
{
x̃ ∈M1 : ∀ y0 < y1 ∈M2, x ∈ Lx̃(y0), we have

∂c(x̃, y1)

∂y
≤ ∂c(x, y1)

∂y

}
When the level sets Lx(y) are independent of y, P is the entire domain M1. If not, P

consists of points x̃ for which the level sets Lx̃(y) evolve with y in a monotonic way.

Lx̃(y1) divides the region M1 into two subregions: {x : ∂c(x̃,y1)
∂y

> ∂c(x,y1)
∂y
} and {x :

∂c(x̃,y1)
∂y

≤ ∂c(x,y1)
∂y
}. x̃ ∈ P ensures that for y0 < y1, the set Lx̃(y0) will lie entirely in the

latter region. For interior points, the curves Lx̃(y0) and Lx̃(y1) will generically intersect

transversely and so Lx̃(y0) will interect both of these regions; therefore, P will typically

consist only of boundary points. At each boundary point x̃, we can heuristically view the

level curves Lx̃(y) as rotating about the point x̃; P consists of those points which rotate

in a particular fixed direction.

In what follows, µ will be a solution to the Kantorovich problem. Recall that the

support of µ, or spt(µ), is the smallest closed subset of M1 ×M2 of full mass.
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Lemma 5.3.1. Suppose x̃ ∈ P, x ∈ M1, y0, y1 ∈ M2 and (x̃, y1), (x, y0) ∈ spt(µ). Then

∂c(x,y1)
∂y

≤ ∂c(x̃,y1)
∂y

if y0 < y1 and ∂c(x,y1)
∂y

≥ ∂c(x̃,y1)
∂y

if y0 > y1.

Proof. The support of µ is c-monotone (see [68] for a proof); this means that c(x̃, y1) +

c(x, y0) ≤ c(x̃, y0) + c(x, y1). If y0 < y1, this implies∫ y1

y0

∂c(x̃, y)

∂y
dy ≤

∫ y1

y0

∂c(x, y)

∂y
dy. (5.2)

Assume ∂c(x̃,y1)
∂y

> ∂c(x,y1)
∂y

. We claim that this implies ∂c(x̃,y)
∂y

> ∂c(x,y)
∂y

for all y ∈ [y0, y1],

which contradicts (5.2). To see this, suppose that there is some y ∈ [y0, y1] such that

∂c(x̃,y)
∂y

≤ ∂c(x,y)
∂y

; the Intermediate Value Theorem then implies the existence of a y ∈

[y, y1) such that ∂c(x̃,y)
∂y

= ∂c(x,y)
∂y

, or x ∈ Lx̃(y). This, together with our assumption

∂c(x̃,y1)
∂y

> ∂c(x,y1)
∂y

, violates the condition x̃ ∈ P .

A similar argument shows ∂c(x̃,y1)
∂y

≥ ∂c(x,y1)
∂y

if y0 > y1.

Definition 5.3.2. We say y splits the mass at x if

µ1

(
{x :

∂c(x, y)

∂y
<
∂c(x, y)

∂y
}
)

= µ2([0, y))

If µ1 and µ2 are absolutely continuous with respect to Lebesgue measure, this is equivalent

to

µ1

(
{x :

∂c(x, y)

∂y
>
∂c(x, y)

∂y
}
)

= µ2([y, 1])

Lemma 5.3.1 immediately implies the following.

Lemma 5.3.3. Suppose µ1 and µ2 are absolutely continuous with respect to Lebesgue

measure. Then if x̃ ∈ P, y ∈M2 and (x̃, y) ∈ spt(µ), y splits the mass at x̃.

Lemma 5.3.4. Suppose µ and µ2 are absolutely continuous with respect to Lebesgue.

Then, for each x ∈M1 there is a y ∈M2 that splits the mass at x.

Proof. The function y 7→ fx(y) := µ1

(
{x : ∂c(x,y)

∂y
< ∂c(x,y)

∂y
}
)
− µ2

(
[0, y)

)
is continuous.

Observe that fx(0) ≥ 0 and fx(1) ≤ 0; the result now follows from the Intermediate

Value Theorem.



Chapter 5. Regularity of optimal maps when m = 2 and n1 6= n2. 76

Similarly, it is straightforward to prove the following lemma.

Lemma 5.3.1. Suppose µ1 and µ2 are absolutely continuous with respect to Lebesgue.

Then, for each y ∈M2 there is an x ∈M1 such that y splits the mass at x if and only if

M1 ∈ Lx(y).

Definition 5.3.2. Let x̃ ∈ P . We say x̃ satisfies the mass comparison property (MCP)

if for all y0 < y1 ∈M2 we have

µ1

( ⋃
y∈[y0,y1]

Lx̃(y)
)
< µ2

(
[y0, y1]

)
In the case when the level sets Lx(y) are independent of y, the MCP is satisfied for

all x ∈ P = M1 as long as µ1 assigns zero mass to every Lx(y) and µ2 assigns non-zero

mass to every open interval. Alternatively, in view of the previous section, we know that

in this case the cost has the form c(Q(x), y), where Q : M1 → Z and Z = [z0, z1] ⊆ R

is an interval; the MCP boils down to the assumption that α assigns zero mass to all

singletons and µ2 assigns non-zero mass to every open interval.

Lemma 5.3.3. Suppose µ1 and µ2 are absolutely continuous with respect to Lebesgue

measure and that x̃ ∈ P satisfies the MCP. Then there is a unique y ∈M2 that splits the

mass at x̃.

Proof. Existence follows from Lemma 5.3.4; we must only show uniqueness. Suppose

y0 < y1 ∈ M2 both split the mass at x̃. For any x such that ∂c(x,y0)
∂y

> ∂c(x̃,y0)
∂y

and

∂c(x,y1)
∂y

< ∂c(x̃,y1)
∂y

the Intermediate Value Theorem yields a y ∈ [y0, y1] such that x ∈ Lx̃(y);

hence,

{
x :

∂c(x, y0)

∂y
>
∂c(x̃, y0)

∂y

} ⋂ {
x :

∂c(x, y1)

∂y
<
∂c(x̃, y1)

∂y

}
⊆

⋃
y∈[y0,y1]

Lx̃(y)
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Therefore

µ1

({
x :

∂c(x, y0)

∂y
>
∂c(x̃, y0)

∂y

} ⋂ {
x :

∂c(x, y1)

∂y
<
∂c(x̃, y1)

∂y

})
≤ µ1

( ⋃
y∈[y0,y1]

Lx̃(y)
)

(5.3)

Now, absolute continuity of µ1 and µ2 together with the assumption that y0 and y1 split

the mass at x̃ yield

µ1

({
x :

∂c(x, y0)

∂y
>
∂c(x̃, y0)

∂y

} ⋂ {
x :

∂c(x̃, y1)

∂y
<
∂c(x̃, y1)

∂y

})
= µ2

(
[y0, y1]

)
(5.4)

Combining (5.3) and (5.4) and the MCP now yields a contradiction.

We are now ready to prove the main result of this section.

Theorem 5.3.5. Suppose µ1 and µ2 are absolutely continuous with respect to Lebesgue.

Suppose that for all x, y ∈ M1 × M2 such that y splits the mass at x there exists an

x̃ ∈ P ∩ Lx(y) satisfying the MCP. Then for each x ∈M1 there is a unique y ∈M2 that

splits the mass at x. Moreover, (x, y) ∈ spt(µ) and (x, y) /∈ spt(µ) for all other y ∈ M2.

Therefore, the optimal map is well defined everywhere.

Proof. For each x ∈M1, by Lemma 5.3.4 we can choose y ∈M2 that splits the mass at x;

the hypothesis then implies the existence of x̃ ∈ P ∩ Lx(y) satisfying the MCP. Lemmas

5.3.3 and 5.3.3 imply that (x̃, y) ∈ spt(µ).

We now show that

(x, y′) /∈ spt(µ) for all y′ 6= y. (5.5)

The proof is by contradiction; to this end, assume (x, y′) ∈ spt(µ) for some y′ 6= y.

Suppose y′ > y; choose y ∈ (y, y′). By Lemma 5.3.1, we can choose x such that y splits

the mass at x. Now use the hypothesis of the theorem again to find ˜̃x ∈ P ∩ Lx(y)

satisfying the MCP and note that (˜̃x, y) ∈ spt(µ). By Lemma 5.3.3, x̃ /∈ L˜̃x(y), and so

Lemma 5.3.1 implies ∂c(x̃,y)
∂y

< ∂c(˜̃x,y)
∂y

.
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Therefore,

∂c(x, y)

∂y
≤ ∂c(x̃, y)

∂y

<
∂c(˜̃x, y)

∂y

But now (x, y′), (˜̃x, y) ∈ spt(µ) and y′ > y contradicts Lemma 5.3.1. An analogous

argument implies that we cannot have (x, y′) ∈ spt(µ) for y′ < y, completing the proof

of (5.5).

Now, note that we must have (x, y) ∈ spt(µ) for some y ∈ M2 and so the preceding

argument implies (x, y) ∈ spt(µ).

Finally, we must show that there is no other y′ ∈M2 which splits the mass at x; this

follows immediately, as if there were such a y′, an argument analogous to the preceding

one would imply that (x, y′) ∈ spt(µ), contradicting (5.5).

Note that we can use Theorem 5.3.5 to derive a formula for the optimal map:

F (x) := sup
y

{
y : µ1

(
{x :

∂c(x, y)

∂y
<
∂c(x, y)

∂y
}
)
> µ2([0, y))

}
Corollary 5.3.6. Under the assumptions of the preceding theorem, the optimal map is

continuous on M1.

Proof. Choose xk → x ∈ M1 and set yk = F (xk); we need to show yk → F (x). Set

y = lim supk→∞ yk ∈ M2; by passing to a subsequence we can assume yk → y. As

spt(µ) is closed by definition, we must have (x, y) ∈ spt(µ) and so Theorem 5.3.5 implies

y = F (x). A similar argument implies lim infk→∞ yk = F (x), completing the proof.

The following example illustrates the implications of the preceding Corollary.

Example 5.3.7. Let M1 be the quarter disk:

M1 =
{

(x1, x2) : x1 > 0, x2 > 0, (x1)2 + (x2)2 < 1
}
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Let M2 = (0, π
2
) and take µ1 and µ2 to be uniform measures on M1 and M2, respectively,

scaled so that both have total mass 1. Let c(x, y) = −x1 cos(y)−x2 sin(y); this is equivalent

to the Euclidean distance between x and the point on the unit circle parametrized by the

polar angle y. We claim that the optimal map takes the form F (x) = arctan(x
2

x1
); that is,

each point x is mapped to the point x
|x| on the unit circle. Indeed, note that

c(x, y) ≥ −
√

(x1)2 + (x2)2 (5.6)

with equality if and only if y = F (x), and that uniform measure on the graph (x, F (x))

projects to µ1 and µ1, implying the desired result. Now observe that F is discontinuous

at (0, 0); in fact, ((0, 0), y) satisfies (5.6) for all y ∈M2 so the optimal measure pairs the

origin with every point. Note that the conditions of Theorem 5.3.5 fail in this case, as

every y ∈M2 splits the mass at (0, 0) ∈M1.

Now suppose instead that µ2 is uniform measure on [0, π
4
], rescaled to have total mass

1. It is not hard to check that (0, x2) is in P and satisfies the MCP for all x2. Now, for

all (x, y) ∈ M2 such that y splits the mass at x, it is straightforward to verify that we

have some (0, x2) ∈ Lx(y); hence, Corollary 5.6 implies continuity of the optimizer.



Chapter 6

An application to the

principal-agent problem

In this chapter we apply the techniques from chapter 5 to the principal-agent problem

of mathematical economics outlined in the introduction. After formulating the problem

in the first, we show that b-convexity of the space of products is necessary for the set of

b-convex functions to be convex in section 6.2. In sections 6.3 and 6.4 we study the cases

n1 > n2 and n1 < n2, respectively. When n1 > n2, we show that if the space of products

is b-convex, then the problem can be reduced to an equal dimensional problem; in this

case, the extra dimensions in the space of types do not encode independent economic

information. When n1 < n2, we show that if the space of types is b-convex, the problem

can again be reduced to an equal dimensional problem; we establish that it is always

optimal for the principal to only offer goods from a certain, n1-dimensional submanifold

of Y .

6.1 Assumptions and mathematical formulation

We will assume that the space of types X ⊆ Rn1 and the space of goods Y ⊆ Rn2 are

open and bounded.

80
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Before formulating the problem mathematically, we recall the conditions on b imposed

by Figalli, Kim and McCann [31], which are also reminiscent of the conditions (A0)-

(A3s) introduced by Ma, Trudinger and Wang [52] and reformulated in the last chapter.

Our formulations will appear slightly different than those in [31], as they must apply to

the more general case n1 6= n2; when n1 = n2 they coincide exactly with the conditions

in [31].

(B0): The function b ∈ C4(X × Y ).

(B1): (bi-twist) For all x0 ∈ X and y0 ∈ Y , the level sets of the maps y 7→ Dxc(x0, y) and

x 7→ Dyc(x, y0) are connected and the matrix of mixed, second order, partial derivatives,

D2
xyc(x0, y0) has full rank.

(B2): For all x0 ∈ X and y0 ∈ Y , the images Dxb(x0, Y ) and Dyb(X, y0) are convex. If

Dxb(x0, Y ) is convex for all x0, we say that Y is b-convex, while if Dyb(X, y0) is convex

for all y0 we say that X is b-convex.

(B3): For all x0 ∈ X and y0 ∈ Y , we have

∂4

∂t2∂s2
b(x(s), y(t))

∣∣∣
(s,t)=(0,0)

≥ 0,

whenever the curves s ∈ [−1, 1] 7→ Dyb(x(s), y0) and t ∈ [−1, 1] 7→ Dxb(x0, y(t)) form

affinely parameterized line segments.

(B3u): (B3) holds and, whenever ẋ(0) ·D2
xyb(x0, y0) 6= 0 and D2

xyb(x0, y0) · ẏ(0) 6= 0, the

inequality is strict.

As was emphasized by Figalli, Kim and McCann, these conditions are invariant under

reparameterizations of X and Y . This means that they are in some sense economically

natural; they do not depend on the coordinates used to parametrize the problem [31].

Let us take a moment to explain the meaning of condition (B1). Assume momentarily

that n1 ≥ n2. Then the full rank condition implies that y 7→ Dxc(x0, y) is locally injective

and so connectedness of its level sets implies its global injectivity. Hence, we recover

the generalized Spence-Mirrlees, or generalized single crossing, condition found in, for
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example, Basov [10] (more precisely, we obtain the strengthened version in [31]). On the

other hand, if n1 < n2, the generalized Spence-Mirrlees condition cannot hold; however,

as we will establish, in certain cases (B1) is a suitable replacement.

Much of our attention here will be devoted to (B2). For a bilinear b, this condition

coincides with the usual notion of convexity of the sets X and Y ; for more general b,

it implies convexity of X and Y after an appropriate change of coordinates [31]. We

will see in the next section that the convexity of Dxb(x0, Y ) is a necessary condition for

the monopolist’s problem to be a convex program; in section 5, we will show that when

n1 < n2 the convexity of Dyb(X, y0) reduces the problem to a more tractable problem in

equal dimensions.

The relevance of (B3) and (B3u) to economic problems was established in [31].

They are, respectively, strengthenings of the conditions (A3w) and (A3s), which are

well known in optimal transportation due to their intimate connection with the regularity

of optimal maps [52] [49].

We are now ready to review the mathematical formulation of the principal-agent

problem. Suppose that the monopolist sets a price schedule v(y); v(y) is the price she

charges for good y. Buyer x chooses to buy the good that maximizes b(x, y)− v(y). We

therefore define the utility for buyer x to be

vb(x) = sup
y∈Y

b(x, y)− v(y)

Functions of this type are called b-convex functions; we will denote by Ub the set of

all such functions.

We assume the existence of a yφ ∈ Y that the monopolist must offer at cost; that is,

for any price schedule v

v(yφ) = c(yφ) (6.1)

If both sides in equation (6.1) are equal to zero, we can interpret yφ as the null good,

and the this condition represents the consumers’ option not to purchase any product (and
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the monopolist’s obligation not to charge them should they exercise this option). Note

that the restriction v(yφ) = c(yφ) immediately implies vb(x) ≥ uφ(x) := b(x, yφ)− c(yφ).

Let yvb(x) ∈ argmaxy∈Y (b(x, y)− v(y)). Assuming that a buyer of type x chooses to

buy good yvb(x) 1, the monopolist’s profits from this buyer is then v(yvb(x))−c(yvb(x)) =

b(x, yvb(x))− vb(x)− c(yvb(x)) and her total profits are:

P (vb) :=

∫
x

b(x, yvb(x)− vb(x)− c(yvb(x))dµ(x)

The monopolist’s goal, of course, is to maximize her profits. That is, to maximize

P (vb) over the set Ub,φ of b-convex functions which are everywhere greater than uφ (and,

if the generalized Spence-Mirrlees condition fails to hold, over all functions yvb(x) ∈

argmaxy∈Y (b(x, y)− v(y))).

The main result of [31] is that when n1 = n2, under hypotheses (B0)-(B2) convexity

of the of the set Ub,φ is equivalent to (B3).

6.2 b-convexity of the space of products

This section establishes the following result, which is novel even when n1 = n2.

Proposition 6.2.1. If Y is not b-convex at some point x ∈ X, the set Ub,φ is not convex.

Proof. Suppose Y is not b-convex at x ∈ X. Then there exist y0, y1 ∈ Y and a t ∈ (0, 1)

such that (1− t) ·Dxb(x, y0) + t ·Dxb(x, y1) /∈ Dxb(x, Y ).

Now, choose b-convex functions vb0, v
b
1 ≥ uφ such that vbi is differentiable at x and

Dvbi (x) = Dxb(x, yi), for i = 0, 1. Define vbt = (1− t) · vb0 + t · vb1; we will show that vbt is

1The generalized Spence-Mirrlees condition implies that for almost all x, there is exactly one y
maximizing b(x, y)− v(y), and so under this condition, the function yvb is uniquely determined from vb

almost everywhere.
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not b-convex. Now,

Dvbt (x) = (1− t) ·Dvb0(x) + t ·Dvb1(x)

= (1− t) ·Dxb(x, y0) + t ·Dxb(x, y1) /∈ Dxb(x, Y ) (6.2)

Now, assume vbt is b-convex; then

vbt (x) = sup
y∈Y

b(x, y)− vt(y) (6.3)

for some price schedule vt. Without loss of generality, we may assume vt is b-convex:

vt(x) = supx∈X b(x, y)−vbt (x), which implies that vt(x) is continuous [36]. By compactness

of Y and continuity of y 7→ b(x, y) − vt(y), the supremum in 6.3 is attained by some

yt ∈ Y , vbt (x) = b(x, yt) − vb(yt). Now, for all x ∈ X, we have vbt (x) ≥ b(x, yt) − ub(yt)

and so the function x 7→ vbt (x) − b(x, yt) is minimized at x = x. It now follows that

Dvbt (x) = Dxb(x, yt) ∈ Dxb(x, Y ), contradicting (6.2). We conclude that vbt cannot be

b-convex. As vbt is a convex combination of b-convex functions, this yields the desired

result.

Remark 6.2.2. This result can be seen as a slight strengthening of the result of Figalli,

Kim and McCann [31]; assuming n1 = n2, (B0), (B1) and the b-convexity of X, the

main result of [31] combines with Proposition 6.2.1 to imply that the convexity of Ub,φ is

equivalent to the b-convexity of Y and (B3). We will see in the next section that this

extends nominally to the case n1 > n2, although it should be stressed that in that case

Y cannot be b-convex unless all the economic information encoded to X can actually be

encoded in an n2-dimensional space.

The following elementary example shows that when b-convexity of Y fails, the prin-

cipal’s optimal strategy may not be unique.

Example 6.2.3. Let X = [0, 1] be the unit interval and Y = {0, 1} be a set of two points,

including the null good 0. Take b(x, y) = xy + y to be bilinear and c(y) = y2. Let the
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density of consumer types be f(x) = 60x2 − 80x + 29. To make a profit, the price v the

principal sets for her good must be between 1 and 2; a straightforward calculation shows

that her profits are (v − 3
2
)2 − 20(v − 3

2
)4 + 1 which is maximized at v = 3

2
± 1

2
√
10

.

The profit functional, written in terms of the utility functions vb(x) = supy∈Y xy +

y − v(y) is ∫ 1

0

x
dvb

dx
+
dvb

dx
− vb − (

dvb

dx
)2dx

which is strictly concave. However, the only allowable utility functions are of the form

vb(x) = max{0, x − v + 1} for some constant v ∈ [1, 2]. The convex interpolant of two

functions of this form fails to have the same form; that is, the set of allowable utilities

is not convex, precisely because the space Y is not convex (recall that convexity and b-

convexity are equivalent for bilinear preferences). Hence, uniqueness fails. If the principal

had access to a convex set of goods (for example, the whole space [0, 1]) she could construct

a more sophisticated pricing strategy which would earn her a higher profit than either of

the maxima exhibited in this example.

6.3 n1 > n2

In this section we focus on the case where n1 > n2. We will show that the b-convexity of

the space of products implies that X can be reduced to an n-dimensional space without

losing any economic information. The analysis in this section strongly parallels the work

in the last chapter.

First we recall the definition of b-linearity

Definition 6.3.1. We say the domain Y looks b-linear from x ∈ X if Dxb(x, Y ) is

contained in a shifted n2-dimensional, linear subspace of TxX. We say Y is b-linear with

respect to X if it looks b-linear from every x ∈ X.

As in chapter 5, Lx(y) will denote the level set of x 7→ Dyb(x, y) passing through x,

Lx(y) := {x ∈ X : Dyb(x, y) = Dyb(x, y)}.
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We also recall the following lemma, expressing the relationship between b-linearity

and the sets Lx(y). The proof can be found in chapter 5 (Lemma 5.2.3).

Lemma 6.3.2. (i) Y looks b-linear from x ∈ X if and only if Tx(Lx(y)) is independent

of y; that is Tx(Lx(y0)) = Tx(Lx(y1)) for all y0, y1 ∈ Y .

(ii) If the level sets Lx(y) are all connected, then Y is b-linear with respect to X if and

only if Lx(y) is independent of y for all x

For the rest of this section, we will assume that the sets Lx(y) are in fact independent

of y (as otherwise Proposition 6.2.1 implies that the principal’s program cannot be con-

vex); we will henceforth denote them simply by Lx. We will show next that, no matter

what pricing schedule the principal chooses, consumers in the same Lx will always choose

the same good and so, at least for the purposes of this problem, different points in the

same Lx do not really represent different types.

We can now reformulate the monopolist’s problem as a problem between two n-

dimensional spaces. To do this, we define an effective space of types, by essentially

identifying all consumer types in a single Lx as a single effective type.

Fix some y0 ∈ Y and define the space of effective types Z := Dyb(X, y0) ⊆ Rn and

the map Q : X → Z via Q(x) := Dyb(x, y0). We define an effective preference function:

h : Z × Y → R via

h(z, y) = b(x, y)− b(x, y0),

where x ∈ Q−1(z). We must check that h is well defined, that is

b(x, y)− b(x, y0) = b(x, y)− b(x, y0),

or equivalently

B(x, x, y, y0) := b(x, y)− b(x, y0)− b(x, y) + b(x, y0) = 0,



Chapter 6. An application to the principal-agent problem 87

for all x ∈ Lx and y ∈ Y . This is easily verified; the identity clearly holds at y = y0 and

as DyB(x, x, y, y0) vanishes, it must hold for all y.

Given a price schedule v(y), the corresponding effective utility is,

vh(z) = sup
y∈Y

h(z, y)− v(y)

= sup
y∈Y

b(x, y)− b(x, y0)− v(y)

= −b(x, y0) + sup
y∈Y

b(x, y)− v(y)

= −b(x, y0) + vb(x)

for any x ∈ Q−1(z). An effective consumer of type z chooses the product at which this

supremum is attained; we define this product to be yvh(z). It is clear from the preceding

calculation that, for every x ∈ Q−1(z) we have yvb(x) = yvh(z). Define ν = Q#µ to be

the distribution of effective consumer types. Hence, if we define the monopolist’s effective

profits to be

Peff (v
h) =

∫
Z

(h(z, yvh(z))− vh(z)− c(yvh(z)))dν(z)

we have

P (vb) =

∫
X

(b(x, yvb(x))− vb(x)− c(yvb(x)))dµ(x)

=

∫
X

(b(x, yvh(Q(x)))− vh(Q(x))− b(x, y0)− c(yvh(Q(x))))dµ(x)

=

∫
X

(h(Q(x), yvh(Q(x)))− vh(Q(x))− c(yvh(Q(x))))dµ(x)

=

∫
Z

(h(z, yvh(z))− vh(z)− c(yvh(z)))dν(x)

= Peff (v
h)

Therefore, maximizing the monopolist’s effective profits is equivalent to maximizing

her profits.

According to Figalli, Kim and McCann [31], this new, equal dimensional problem is

a maximization over a convex set, provided that the conditions (B0)-(B3) hold for h,
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Z and Y ; meanwhile, to ensure convexity of the functional Peff and uniqueness of the

optimizer, one needs (B3u) and the h-convexity of c. It is therefore desirable to be able

to test these properties using only the information present in the original problem; that

is, using b and X rather than h and Z.

The proof the following theorem is identical to the proof of Theorem 5.2.7.

Theorem 6.3.3. (i) If b satisfies (B1) on X × Y , then h satisfies (B1) on Z × Y .

(ii) If b satisfies (B2) on X × Y , then h satisfies (B2) on Z × Y .

(iii) If b satisfies (B3) on X × Y , then h satisfies (B3) on Z × Y .

(iv) If b satisfies (B3u) on X × Y , then h satisfies (B3u) on Z × Y .

Finally, we verify that the b-convexity of c implies its h-convexity.

Proposition 6.3.4. If c is b-convex it is h-convex.

Proof. If c is b-convex we have:

c(y) = sup
x∈X

b(x, y)− cb(x)

= sup
x∈X

b(x, y)− b(x, y0) + b(x, y0)− cb(x)

= sup
x∈X

h(Q(x), y)− ch(Q(x))

= sup
z∈Z

h(z, y)− ch(z)

Under these conditions, economic phenomena such as uniqueness of the optimal pric-

ing strategy, bunching and the desirability of exclusion follow from the results in [31]. In

particular, let us say a few words about bunching, or the phenomenon that sees different

types choose the same good. Of course, in this setting one naturally expects bunching

because, as was noted by Basov [9], the n1 > n2 condition precludes the full separation

of types. When X is b-convex, the bunching that occurs as a result of the difference in
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dimensions corresponds to identifying all types in a single level set Lx. The results of

this section imply that these are not genuinely different types; that is, that they can be

treated as a single type z without any loss of pertinent information. However, genuine

bunching occurs when types in different level sets opt for the same good. This occurs

under (B3), according to the results in [31].

Remark 6.3.5. In light of the previous section, these results mean that the monopolist’s

problem cannot be reduced to a maximization over a convex space when n1 > n2 (at least

as long as the extra dimensions encode real, economic information); this means that this

class of problems is especially daunting. However, in certain special cases these problems

can be treated without relying on convexity. Basov, for example, treats the case where Y

is a convex graph embedded in Rn2 and b(x, y) = x · y [9]. He then uses the techniques of

Rochet and Chone [64] to solve the monopolists problem in the epigraph (a convex, n1-

dimensional set) and shows that it is actually optimal to sell each consumer a product in

the original graph. The case (n1, n2) = (2, 1) with a general preference function is treated

by Deneckere and Severinov [27], again in the absence of a b-convex space of products.

6.4 n2 > n1

When n2 > n1, the generalized Spence Mirrlees condition cannot hold; that is, y 7→

Dxb(x, y) cannot be injective. Therefore, when faced with a pricing schedule, a con-

sumer’s utility will typically be maximized by a continuum of products. The principal

has the ability to offer only the good which will maximize her profits from that consumer;

however, in doing so, she may exclude products that maximize her profits from another

consumer. One way around this difficulty is to assume a tie-breaking rule as in Buttazzo

and Carlier [13]; that is, assume that the principal can persuade each consumer to select

the product that maximizes her profits (among those which maximize that consumer’s

utility function). This is in fact inherent in Carlier’s formulation of the problem and
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proof of existence [18]. 2

As we show in this section, this difficulty can be avoided by assuming b-convexity of

X. Much like in the last section, this condition will allow us to reduce to a problem

where the dimensions of the two spaces are the same. Intuitively, given a price schedule

v(y), a consumer x will see the space of goods disintegrate into sub-manifolds. If the

price schedule is b-convex, then the consumer’s preference b(x, y) − v(y) for good y will

be maximized at every point in (at least) one of these submanifolds. The b-convexity of

X will ensure that this disintegration will be the same for each x ∈ X. The principal

can then choose to offer only the good in each of these submanifolds which will maximize

her profits from consumers whose preferences are maximized one that sub-manifold; the

resulting space will be m dimensional. A special case of this structure was exploited by

Basov to prove a similar result for bilinear preference functions [9].

The motivation behind the the b-convexity of X is not as clear the motivation behind

as the b-convexity of Y , which we saw in section 6.2 was necessary for the convexity of

Ub. It is, however, a fairly standard hypothesis in the fairly limited literature on multi-

dimensional screening. It is present in the work of Rochet and Chone [64] and Basov [9]

on bilinear preference functions (where it reduces to ordinary convexity) as well as that

of Figalli, Kim and McCann [31]. In the latter work, it is noted that b-convexity of X

implies ordinary convexity after a change of coordinates, which is essential in their proof

of the genericity of exclusion modeled on the work of Armstrong [7].

Using the method from the previous section, we note that if X is b-convex, then the

level sets Ly(x) := {y ∈ X : Dxb(y, x) = Dxb(x, y)} are independent of x and so we will

denote them simply by Ly. Letting Z be the image of y 7→ Dxb(x0, y) := Q(y), for any

fixed x0, the new preference function defined by h(x, z) = b(x, y) − b(x0, y), where y is

2In [18], no extended Spence Mirrlees condition is assumed and so the function yvb(x) ∈
argmax b(x, y) − vb(x) need not be uniquely determined by the b-convex vb(x). If vb and yvb maxi-
mize P , then yvb must satisfy a tie-breaking rule; that is, yvb(x) must be chosen among elements in
argmax b(x, y)− vb(x) so as to maximize the profits v(yvb(x))− c(yvb(x)).
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such that Q(y) = z, is well defined. We then define a new, effective cost function by

g(z) = inf
{y:Q(y)=z}

c(y)− b(x0, y).

Proposition 6.4.1. Given a price schedule v(y) and corresponding utility vb(x), let y ∈

Y be such that vb(x) + v(y) = b(x, y); equality then holds as well for ỹ ∈ L(y). The

maximal profit the monopolist can make by selling a consumer of type x a good ỹ ∈ Ly is

h(x,Q(y))− vb(x) + g(Q(y)).

The interpretation of this result is that, in order to maximize her profits, the monop-

olist should only offer those goods which maximize y 7→ b(x0, y)− c(y) over over the set

Q−1(z) for some z. Any utility function vb can be implemented by offering only these

goods, and by doing this for a given vb, the monopolist forces each consumer to buy the

good which offers her the highest possible profit.

Proof. The fact that vb(x) + v(ỹ) = b(x, ỹ) if and only if ỹ ∈ L(y) follows exactly as in

the last section.

We must now show that the maximum of v(ỹ)− c(ỹ) over the set Ly = Q−1(Q(y)) is

equal to h(x, z(y))− u(x) + g(z(y)). We have

sup
ỹ∈Ly

v(y)− c(y) = sup
ỹ∈Ly

b(x, y)− u(x)− c(y)

= sup
ỹ∈Ly

h(x, z) + b(x0, y)− u(x)− c(y)

= sup
ỹ∈Ly

h(x, z) + b(x0, y)− u(x)− c(y)

= h(x, z)− u(x) + sup
ỹ∈Ly

b(x0, y)− c(y)

= h(x, z)− u(x)− inf
ỹ∈Ly

c(y)− b(x0, y)

The uniqueness argument in [31] relies on the b-convexity of c; we verify below that

this convexity carries over when we reduce to an equal dimensional problem.
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Proposition 6.4.2. If c is b-convex, g is h convex.

Proof. We have

g(z) = inf
{y:Dxb(x0,y)=z}

c(y)− b(x0, y)

= inf
{y:Dxb(x0,y)=z}

sup
x∈X

b(x, y)− cb(x)− b(x0, y)

= inf
{y:Dxb(x0,y)=z}

sup
x∈X

h(x, z)− cb(x)

= sup
x∈X

h(x, z)− cb(x)

It now follows that, under these conditions, rather than solving the principal-agent

problem on X × Y with preference function b and cost c we can solve it on X × Z

with preference function h and cost g. Computing the conditions (B0)-(B3u) on Z

is equivalent to computing them on Y , or alternatively on any smooth n2 dimensional

surface which intersects the Ly transversely; the proof of this is nearly identical to the

proof of the analogous results proven in the last section.

6.5 Conclusions

We have shown that, nominally, the result of Figalli, Kim and McCann holds for any

n1 and n2: assuming (B0)-(B2), Ub,φ is convex if and only if (B3) holds. However, we

should bear in mind that (B2) is a very strong condition when n1 6= n2; it effectively

reduces the problem to a new screening problem where both spaces have dimension

min(n1, n2). We have also shown that the b-convexity of Y is necessary for the convexity

of Ub,φ and so in problems where n1 > n2 and this reduction is not possible, Ub,φ cannot

be convex.

Economic consequences can then be deduced as in [31] under condition (B3).



Appendix A

Differential topology notation

In this appendix, we explain in detail the notational conventions used in Chapter 3. We

begin by reviewing some basic notation from differential topology.

Given a manifold Mn and a point x ∈ M , recall that the tangent space of M at x,

denoted by TxM consists of all derivations (or tangent vectors) at x. That is, all linear

maps v : C∞(M)→ R satisfying the product rule: for all f, g ∈ C∞(M), we have

v(fg) = v(f)g(x) + v(g)f(x)

Fix local coordinates (x1, x2, ..., xn) on M . We denote by ∂
∂xα

the derivation that

sends the function f to ∂f
∂xα

(x). The set { ∂
∂x1
, ∂
∂x2
, ..., ∂

∂xn
} forms a basis for TxM . We

will use the Einstein summation convention; given a tangent vector v =
∑n

α=1 v
α ∂
∂xα

, we

write v = vα ∂
∂xα

; the summation on the repeated index α is implicit.

A covector at x is a linear functional on TxM ; that is, a linear mapping F : TxM → R.

The cotangent space T ∗xM of M at x is the vector space of all covectors at x. Given local

coordinates (x1, x2, ..., xn) on M , we will denote by dxα the unique covector that maps

∂
∂xα

to 1 and ∂
∂xβ

to 0 for all β 6= α. The set {dx1, dx2, ..., dxn} forms a basis for T ∗xM .

The tensor product F ⊗ G of covectors F and G is a bilinear map on TxM × TxM ; it

maps the ordered pair of vectors (v, w) to the product F (v)G(w).
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In this thesis, we often work with the product of several manifolds. Given such a

product Mn1
1 ×Mn2

2 × ...×Mnm
m , we will use Latin indices to indicate which manifold we

are in and Greek indices (indexed themselves by the appropriate Latin index), as before,

to indicate local coordinates within each manifold. That is, xi will denote a point in

Mi, for i = 1, 2, ...,m and we will use the index αi to denote local coordinates within

Mi; a vector vi in TxiMi will be represented in local coordinates as vi = vαii
∂

∂x
αi
i

, where

the summation on the repeated index αi is implicit. Generally, summation on repeated

Greek indices will be implicit, as these indices represent local coordinates in a particular

manifold, whereas summation on Latin indices, indicating which manifold we are working

in, will not be implicit.

The tangent space Tx(M1 ×M2 × ... ×Mm) at a point x = (x1, x2, ..., xm) ∈ M1 ×

M2× ...×Mm is naturally isomorphic to the product Tx1M1× Tx2M2× ...× TxmMm and

the cotangent space T ∗x (M1 ×M2 × ... ×Mm) at x is naturally isomorphic to T ∗x1M1 ×

T ∗x2M2× ...×T ∗xmMm. We will represent vectors v ∈ Tx(M1×M2× ...×Mm) using direct

sum notation; that is, v =
⊕m

i=0 vi, where vi ∈ TxiMi. We will extend covectors Fi on Mi

to the product M1×M2× ...×Mm in the obvious way; that is, Fi(v1, v2, ..., vm) = Fi(vi).

In particular, note that dxαii ⊗ dx
αj
j represents a bilinear map on

Tx(M1 ×M2 × ...×Mm)× Tx(M1 ×M2 × ...×Mm)

which maps (v, w) = (
⊕m

k=0 vk,
⊕m

k=0wk) to dxαii (vi)dx
αj
j (vj) = vαii w

αj
j .

We will often deal with a C2 function c : M1×M2× ...×Mm → R. We are especially

interested in bilinear maps of the form ∂2c

∂x
αj
j ∂x

αk
k

(dx
αj
j ⊗ dx

αk
k + dxαkk ⊗ dx

αj
j ), which takes

(v, w) = (
⊕m

k=0 vk,
⊕m

k=0wk) to ∂2c

∂x
αj
j ∂x

αk
k

(v
αj
j w

αk
k + vαkk w

αj
j ). In particular, the bilinear

map gp in (3.1) takes (v, w) to

gp(v, w) =
∑

j∈p+,k∈p−

∂2c

∂x
αj
j ∂x

αk
k

(v
αj
j w

αk
k + vαkk w

αj
j )
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