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Given distributions p of production and v of consumption on the line, the Monge—
Kantorovich problem is to decide which producer should supply each consumer in
order to minimize the total transportation costs. Here cost will be assumed to be a
strictly concave function of the distance, which translates into an economy of scale
for longer trips and may encourage cross-hauling. The resulting solutions display a
hierarchical structure that reflects a striking separation into local and global scales
also found in the real world. Moreover, this structure can be exploited to reduce the
infinite-dimensional linear problem to a convex minimization in m variables, where
2m+2 counts the number of times that p—v changes sign. A combinatorial algorithm
is then derived which yields exact solutions by optimizing a certain finite sequence
of convex, separable network flows.

Keywords: Monge—Kantorovich; spatial economics; trnsportation; optimal map;
network flow optimization; convex programming; hierarchical structure

1. Introduction

In the classical transportation problem, one is given a distribution p of iron mines
throughout the countryside, and a distribution v of factories that require iron ore, and
asked to decide which mines should supply ore to each factory in order to minimize
the total transportation costs. The cost per ton of ore transported from the mine at
x to the factory at y is given by a function ¢(x,y), so the problem can be formulated
as a linear program. Indeed, the question helped to motivate the development of
duality theory by Kantorovich (1942) and Koopmans (1949), though its origins date
much further back to Monge (1781). The present paper concerns itself with the
solution to this problem in the special case of mines and factories that are distributed
continuously along the line, with a cost ¢(x, y) = h(|x—y]|) given by a strictly concave
function h > 0 of the distance.

Although somewhat idealized, the setting just described provides a reasonable
model for applications in which shipping occurs along a single route: a railway line
or highway, or along one coast of North America. Concavity of h reflects a shipping
tariff that increases with the distance, even while the cost per mile shipped goes down.
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1342 R. J. McCann

Despite its economic relevance, transportation with concave costs has received much
less attention than the same problem for convex costs. The latter enjoys a sizable
literature and, at least in one dimension, has been completely understood (see Tchen
(1980) or Rachev (1984, §2.3) for reviews). For concave costs on the other hand, it
was only recently observed by Gangbo & McCann (1996) that the solutions

will not be smooth, but display an intricate structure which—for us—
was unexpected; it seems equally fascinating from the mathematical and
the economic point of view. ... To describe one effect in economic terms:
the concavity of the cost function favours a long trip and a short trip
over two trips of average length; as a result, it can be efficient for two
trucks carrying the same commodity to pass each other travelling opposite
directions on the highway: one truck must be a local supplier, the other
on a longer haul. In optimal solutions, such ‘pathologies’ may nest on
many scales, leading to a natural hierarchy among the regions of supply
[where p > v] and of demand [where p < v].

Our purpose here is to expose the nature of this hierarchy, exploring its theoretical
and computational implications. Its very existence suggests a simple explanation for
the emergence of spatial price and distribution patterns on diverse scales. Specific
features of these patterns are predicted that are not sensitive to the details of the
cost, and could therefore be tested against observations. Finally, the local/global
structure of the hierarchy is exploited to reduce the infinite-dimensional optimization
problem—with its continuously distributed production excess—to a minimization in
finitely many (say m) variables; here 2m + 2 counts the number of times that the
density of u — v changes sign along the line. This finite-dimensional problem can
in turn be solved by a combinatorial sequence of optimizations of convex, separable
network flows.

To formulate the problem mathematically, take the distributions p and v of produc-
tion and consumption along the line to belong to M4 (R), the space of non-negative
(Borel) measures with finite total mass. Equality of net supply with net demand is
enforced by taking pu[R] = v[R], and the problem is then to minimize the transport
cost,

c)= | ela) iz (11)

among non-negative measures vy on the plane that have p and v for marginals:
u[U] =~[U x R] and 7[R x U] = v[U] for every (Borel) set U C R. The collection of
such « is a convex subset of M (R?), which will be denoted here by I'(u, v).

It is well known that the linear functional C(v) attains its minimum on I'(u,v)
as long as ¢ : R?2 — [0,00] is lower semi-continuous (see, for example, Kellerer
1984, thm 2.19). We therefore say a measure vy is optimal when its transport cost
is a minimum among all measures in M (R?) with the same marginals as v. To
avoid trivialities, we also insist C(y) < oo if 7 is called optimal. For us the object of
geometrical interest will be the support spty of the optimal measure, meaning the
smallest closed subset of R? carrying full mass for . For example, strictly convex
costs ¢(z,y) = ¢(xr — y) imply sptvy is non-decreasing in the plane: i.e. the left-
most mines supply the left-most factories (Appendix A). More generally, when = is
optimal, (z,y) € spt~y means it is efficient to transport from the mine at = to the
factory at y.
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Figure 1. Optimal map and shadow prices for a sinusoidal distribution of mass.

For heuristic purposes, it is useful to understand two of the main results of Gangbo
& McCann (1996): as long as p concentrates no mass on any single point z € R, nor
on spt v, then for costs c(z,y) = h(|x — y|) given by strictly concave functions h > 0
it remains true that (i) the optimal measure « is unique in I'(u,v); and (ii) there
is a mapping s : R — R whose graph, {(z, s(z))}, carries full mass for . In other
words, it is optimal for almost every mine = to ship its output to a single factory:
spty can be thought of as a map from p to v. This map s is uniquely determined
p-almost everywhere, and contains enough information to reconstruct the optimal
measure v from the formula v[2] = p[{z | (z,s(x)) € 2}] which holds for 2 C R%.
It will be called the optimal map between p and v. An example serves to illustrate.

Example 1.1 (Local and global supply). Distribute excess production p =
1 — v sinusoidally over —10 to 10: dp(z) = sin(7z) dz. For the cost

c(z,y) == /2| —y,
the optimal map between p = p4 and v = p_ is given by figure 1:
—x — 10, where —9 <z < —1,
s(x) =< —m, where |z| < 1 or |z] > 9, (1.2)
—x + 10, where 1 <z < 9.
The same map is represented schematically in figure 2 by semi-circular arcs con-
necting each x € spt u to its destination s(x) € sptv. Our key observation about

the structure of this map, which holds for any pair of measures and strictly con-
cave cost functions on the line, is that two arcs never cross (compare the patterns
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Figure 2. The no-crossing rule: I supplies locally relative to Io.

(@)

(b)

x’ y Xy R
Figure 3. Forbidden patterns: mine x will not supply factory y if mine " supplies factory y’;
(a) violates the no-crossing rule; (b) violates the rule of three.

in figure 2 with those excluded by figure 3a). The optimal map is piecewise non-
increasing as one consequence, while the hierarchy illustrated by figure 2, where
I := 0, 5] seems to supply locally with respect to I := [—10, —5], is another. From
this no-crossing rule, one also infers that each arc joining z to s(x) encircles zero net
mass: p[[z, s(z)]] = 0. The only decisions left to make are where the jump increases
in s occur; in our example these discontinuities are selected by the equation

c(1, 1) + ¢(=9,9) = ¢(1,9) + (=9, —1). (1.3)

More generally, when a finite union, U?io I;, of intervals contains the full mass of
4 but no mass of v, then the maps that do not have crossings can be parametrized
by m variables: essentially the fractions ¢; € [0,1] of mass to be transported to
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Figure 4. (a) An uncrossed network G. (b) The dual network G*.

Figure 5. All three uncrossed networks on six nodes (m = 2).
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Figure 6. The 12 uncrossed network on eight nodes (m = 3) are given by this diagram in four
orientations together with eight orientations of figure 4a.

the left from each interval I; C R of supply. This parametrization is introduced in
§ 3, where it is also pointed out that certain combinatorial data beyond these mass
fractions are required to reconstruct a unique map: one needs to know which intervals
I; supply ‘locally’ with respect to the others. These combinatorial data are visualized
by identifying the m + 1 intervals, numbered from left to right along the line, with
the odd vertices of a regular (2m + 2)-sided polygon G. The even vertices represent
the intervals separating I; from I;;q; these complementary intervals are denoted
here by J;. The combinatorial freedom is then accounted for by introducing enough
additional edges between existing vertices to subdivide the polygon’s interior into
quadrilaterals, as in figure 4a. Since no two edges may cross each other, this division
can be achieved in d,, = (3m choose m)/(2m + 1) wayst. After such a division is
specified, one searches for the optimal mapping s : |JI; — R\ |J I;, which is free
from crossings and compatible with the network G, in the sense that no mass is
transported from I; to J; unless G includes an arc connecting those vertices.

In §4 we show such maps to be parametrized by a convex polytope @4 C R™.
Surprisingly, in the mass coordinates (¢1,...,%m) € @, the transport cost (1.1)
turns out to be a convex function of the form

Ca(o1,...,Om) = Zci<¢i)' (1.4)

Thus, the minimization of C(vy) on I'(u,v) is reduced to solving d,, optimal-flow
problems on a special set of networks G. Each variable ¢; controls the location of the
spatial boundary between two regions in the local/global hierarchy. In example 1.1,
where m = 1, the equilibrium equation dCs/d¢; = 0 turns out to be equivalent
to (1.3). More generally, separability (1.4) of the cost Cg affords efficient computations
(see Rockafellar 1984).

1 For m = 2 and m = 3 the possibilities are enumerated in figures 5 and 6, while the formula for d,,
is due to Erdélyi & Etherington (1940).
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A final section probes the relationship between the different networks G. For opti-
mality, it proves to be enough that a map or measure minimizes the transport cost
only on those networks with which it is compatible. Equilibrium with respect to
perturbations of (¢1, ..., ¢n) is therefore sufficient to assure global stability. Veri-
fying optimality then becomes a finite calculation, while finding a global minimum
need not require consideration of all (3m choose m)/(2m + 1) possible networks G.
This theorem hints at the presence of some underlying convexity, not only within
each network problem, but among the different networks G. Its proof hinges on a
remarkable observation, stated here as proposition 5.5. This proposition provides a
consistency condition for gluing together optimal maps sy : I — [ and sy : [ — I
defined on complementary intervals to obtain an optimal map throughout the line:
namely, that it suffices for s; to agree with sy at the boundary points separating
I from I : =R\ I. As long as this matching condition is satisfied, the interval I is
decoupled from the rest of the line. At least in one dimension, this confirms the
intuition that efficient distribution may be achieved by optimizing independently on
different scales, e.g. local, regional, national, before allowing competition to adjust
the boundaries between scales. Whether such a hierarchy persists in more than one
dimension remains purely speculative; perhaps the trace of such a structure is sug-
gested by Gangbo & McCann (1996, fig. 2d).

(a) References to related works

The transportation problem was first studied by Monge (1781): his formulation is
in terms of volume-preserving maps s : U — V between two subsets U,V C R? of
equal volume, and he measured optimality of these maps against Euclidean distance
c(z,y) = | — y|. The formulation we have used, in terms of joint measures with
given marginals, is due to Kantorovich (1942), who also discovered the existence of
a dual problem when g and v measure an abstract space metrized by c(x,y); this
dual problem involves potentials that play the role of the shadow prices introduced
by Koopmans (1949). One year earlier, Hitchcock (1941) had outlined an algorithm,
akin to the simplex method of Dantzig (1951), for optimizing transportation between
finitely many mines and factories. A variation of the problem in which revenue, u,
must be determined for two competitors z,z’ € R offering goods to a market, v,
spread out along the line had been studied by Hotelling (1929), who offered many
interesting interpretations for location.

A continuous-flow model for transportation in two dimensions was proposed by
Beckmann (1952), and subsequently developed by Beckmann & Puu (1985). While
this model offers much flexibility, the solution concept differs markedly from the
present one: instead of a mapping from the plane to itself, a solution is given by a
vector field representing continuous flow of ore from mines to factories. This flow
has a definite direction and velocity at each point, so the cross-hauling illustrated
by the arrows in figure 2 is precluded from their formulation: the Beckmann & Puu
(1985) model predicts only the average flow through each point on the plane without
distinguishing individual shipment origins or destinations. An advantage of their
model is that transport costs may be nonlinear in quantity shipped, and distances
non-Euclidean, though they are limited to costs depending linearly on the distance.
The central result of their theory, as of the Kantorovich and Koopmans work, is that
optimal flow is determined by the existence of a consistent shadow pricing scheme.

Proc. R. Soc. Lond. A (1999)
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Although duality is not the focus of the present study, the shadow price ¥ (z) along
the line may be determined from the optimal map through the equations

V@) =~ 5w s@) [eae] and v) = 6T W) ael.  (19)

Thus, up to an overall constant, the equilibrium prices in example 1.1 are given by
translates and shifts of a fixed function reproduced on various intervals (figure 1)

|z +5/~"2(x+5) 1, where —9 <z < —1,
Y(z) == { +|z| Y2, where |z| > 9 or |z| < 1,
|z — 5|72z —5)+1, wherel <z <09,

the price difference between the head and tail of every arc in figure 2 agreeing with
the transport cost: ¥(s(x)) = ¥ (z) + ¢(x, s(x)).

A history of the Monge—Kantorovich problem and its applications to statistics
is outlined in Rachev (1984), where many references may also be found. Sources
for more recent developments include the articles of Riischendorf (1991), Evans &
Gangbo (1999) and Gangbo & McCann (1996). The former gives a characterization of
optimality that applies to abstract costs and measure spaces, while the latter estab-
lish existence and uniqueness of optimal maps for convex or concave cost functions
of Euclidean distance on R”.

Particularly germane to our concerns will be a theorem due to Smith & Knott
(1992) that characterizes optimal measures via c-cyclical monotonicity of their sup-
port (see theorem 5.3). Originally derived by them from the duality based work of
Riischendorf (1991), this characterization appears with hindsight as a natural exten-
sion of the necessary condition (2.1) observed by Monge. It is interesting to note
that c-cyclical monotonicity was discovered earlier (and independently) in a differ-
ent economic context: it was introduced by Rochet (1987) to characterize incentive
contracts offered to agents by a principal. Indeed, the mathematical structure of
the principal-agent problem is closely intertwined with that of mass transport (a
connection currently being pursued in joint work with Ivar Ekeland).

On the line, the transportation problem has been studied by many authors: the
contributions of Gini, Hoeffding, Salvemini, Fréchet, Dall’Aglio, Cambanis, Simons,
and Stout are outlined in Tchen (1980) and Rachev (1984, §2.3). For costs c(z,y) =
|x — y|P with p > 1, the results summarized in Appendix A were stated by Dall’Aglio
(1956), though special cases were anticipated by Hoeffding, Salvemini and Fréchet.
The corresponding rearrangement inequalities go back at least as far (see Lorentz
1953), though conditions for strict inequality (and hence uniqueness) came much
later (Lieb 1977). In the meanwhile, Bertino (1966) studied costs given by strictly
concave functions of the distance, and pointed out that the non-decreasing map
could not be optimal. Uniqueness of solution, though conjectured in the abstract,
failed to be addressed in the text; under suitable hypotheses it was affirmed in
Gangbo & McCann (1996). Finally, we have learned that in work concurrent with but
independent of the present paper, Uckelmann (1997) has obtained exact solutions
exhibiting singularities similar to those of figure 1. His method is an outgrowth of
the work of Riischendorf; it requires less structure from the cost but is restricted
to measures p and v distributed uniformly throughout two given intervals. At the
same time, Bagdasarov (1998) explored the maximization problem dual to (1.1) in
connection with the Kolmogorov—Landau inequalities for functions f(z) on the line.

Proc. R. Soc. Lond. A (1999)
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He exposed many properties of the optimal price ¥ (z) that have analogues in our
theory, using them to characterize sharp bounds on intermediate derivatives of f.
His concave modulus of continuity w takes the place of our cost function c.

It may be interesting to close by noting that the structure of uncrossed sets and
measures introduced in §§2 and 3 share similarities with the ‘earthquakes’ used by
Thurston (1986) to represent hyperbolic structures on the plane.

2. The no-crossing rule for concave costs

The primary goal of this section is to establish the no-crossing rule implied by con-
cave costs for optimal maps, together with a constraint on nesting transportation in
opposite directions, which we refer to as the rule of three. We then introduce more
terminology, and proceed by exploring implications of these transport rules. In par-
ticular, the no-crossing rule is shown to determine the optimal measure v € I'(u,v)
uniquely when the density of u — v changes sign at most twice along the line. Apart
from technicalities, 7 is selected by insisting that the optimal map s, and its inverse
571 be simultaneously approximated by an orientation reversing homeomorphism of
the circle S' ~ R := RU {o0}.

Both the no-crossing rule and ‘rule of three’ hinge on a fact originally observed by
Monge (1781): for (z,y) and (2’,y’) from spt v, optimality of v implies

c(z,y) + (e’ y') < clz,y') + c(@', y); (2.1)

otherwise, it would be more efficient to pair z with 3’ and 2’ with y. For ¢(z,y) =
l(x — y) with £ strictly convex, (2.1) is exactly the inequality that implies spt -y
non-decreasing (as in Appendix A). Note as well the relationship between Monge’s
inequality and the equilibrium condition (1.3) of example 1.1.

Here, we are interested in the implications of (2.1) for costs c(z,y) := h(|z — y|)
given by strictly concave functions h > 0 of the distance. Therefore, associate to
z,y € R the smallest circle O(z,y) in the plane that crosses the horizontal axis at
both (z,0) and (y,0). The no-crossing rule implied by (2.1) asserts that O(x,y) does
not cross O(2’,y’), precluding the pattern shown in figure 3a. Furthermore, suppose
the circle O(z, y) is enclosed by O(a’,y’), but the signs of y —z and y' —z’ are not the
same. We have described this situation which occurs in figure 2 (the arrows above
the origin indicate direction of transport) and figure 3b as two trucks passing in
opposite directions. The second part of the lemmna states the rule of three: namely
that a concentric circle three times as large as O(z,y) is also enclosed by O(z',y’).
This quantitative conclusion is independent of the choice of concave cost; it could be
tested against empirical data to see how the predictions of our simple model compare
with transportation problems solved by the market in the real world.

Lemma 2.1. Let c(z,y) := h(|x — y|) with h : [0,00) — R U {—o0} strictly
concave and increasing. If x,y,x',y’ € R satisfy c(z,y)+c(z’,y") < c(z,y') +c(z',y),
then:

(i) the circles O(z,y) and O(z',y") C R? do not intersect unless x =z’ or y = y';

(ii) if the circle O(z’,y’) encloses O(z,y) but (y — x)(y' — x’) < 0, then it encloses
(without touching) a concentric circle O(2z — y,2y — x) three times as large.
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Proof. (i) Interchanging = with y or (z,y) <> (2’,vy’) if necessary, one assumes x
greater than or equal to the remaining three numbers y, 2’, 3" without losing gen-
erality. To produce a contradiction, assume the circles O(z,y) and O(2',y’) inter-
sect though z # 2z’ and y # 3. The only orderings consistent with these assump-
tions are (a) z > 2’ > y > ¢'; and (b) z > v > y > 2’. The second possibility
(b) is easy to exclude: strict monotonicity of h would imply c¢(z,y) > c(z,y’) and
c(z',y") > c(2’,y), two inequalities whose sum contradicts (2.1).

We therefore turn our attention to the ordering (a) z > 2’ > y > y’ opposite to
figure 3a. Express

z-y=Q0-t)(z-y)+t" -y
as a convex combination of the larger and smaller quantities z — ¢ > '’ —y > 0.
The ordering (a) gives 0 < t < 1 while summing shows

=y =tlx—y)+ 1 -t)" —y).
Applying strict concavity of h yields
c(z,y) > (1 —t)e(z,y) + te(z’, y),
C(Ilv yl) > tC(f, y/) + (1 o t)C(.ﬁL‘/, y)a
two inequalities whose sum again contradicts (2.1). Therefore, (2.1) must prevent
crossings of the circles O(zx,y) and O(z',y’).

(ii) Assume in addition to (2.1), that the circle O(z,y) is enclosed by O(z',y’)
and (y — z)(y’ — 2’) < 0. The only orderings consistent with these hypotheses are
' <y <z <y orthe reverse ' > y > x > ' (figure 3b). Since x lies halfway
between y and 2x—y one has ¢(z,y) = ¢(z, 2x—y). The ordering makes it clear that z’

is closer to y than to 2x —y, so strict monotonicity of h yields e(z’,y) < e(2’, 2z —y).
From (2.1),

c(x,2x —y) +c(2',y) < c(z,y) + (2, 22 — y). (2.2)

The no-crossing rule (i) then implies that the circle O(x,2z — y) does not touch
O(2',y"), precluding figure 3b; one cannot have 2z —y = y’ since (2.2) is strict. Thus,
both x and 2z — y lie strictly between z’ and y’. On the other hand, the hypotheses
are symmetrical in xs and ys, so 2y — x also lies between 7' and z’. One therefore
concludes that the circle O(2z — y, 2y — x) is strictly enclosed by O(z',y’). [ |

Since the no-crossing rule plays a central role throughout the paper, we extend
consideration to all costs for which this rule is satisfied, by introducing the costs of
concave type. A differential characterization of these costs is given in Appendix B.

Definition 2.2. A function ¢ : R2 — R U {—oc} is said to be of concave type if
inequality (2.1) implies that the circles O(z,y) and O(z’,y’) do not intersect unless
z=1a ory=vy.

After two more definitions, we state a theorem which combines our lemma with
Monge’s observation.

Definition 2.3. A subset £2 C R? of the plane has no crossings if (z,v), (z',y') €
2 implies the circles O(z,y) and O(z’,y") do not intersect except perhaps tangen-
tially. If the same hypotheses yield conclusion (i) of lemma 2.1, we say {2 has the
strict no-crossing property; if they yield conclusion (ii), then §2 satisfies the rule of
three.

Proc. R. Soc. Lond. A (1999)
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If a set 2 C R? has no crossings, then neither will its reflection through the
origin or through the line = y. Nor will its closure £2: one cannot obtain a pair
of circles that intersect non-tangentially as a limit of a sequence of circles O(z,,, yn)
and O(z],,y,,) that do not.

Definition 2.4. A measure v € M (R?) may be said to have property X (e.g.
have no crossings, satisfy the rule of three), if spty C R? has property X.

Theorem 2.5. For continuous costs ¢ > 0 of concave type, optimal measures
v € My (R?) have the strict no-crossing property. If c(x,y) = h(|x —y|), they satisfy
the rule of three.

Proof. Let vy € M4 (R?) be optimal. For (z,y) and (z/,y’) from spt v, (2.1) is a par-
ticular consequence of Smith & Knott’s (1992) characterization of optimal measures,
stated here as theorem 5.3. The assumption that the cost be of concave type allows
one to conclude that O(z,y) and O(z’,y’) do not intersect unless x = 2’ or y = v/'.
Thus, the measure « has the strict no-crossing property. For costs c¢(x,y) = h(|z —y|)
of concave type, lemma B4 (in Appendix B) guarantees h to be strictly concave
increasing. Applying lemma 2.1(ii) then yields the conclusion that ~ satisfies the
rule of three. |

In view of this theorem, the balance of our efforts here will be devoted to analysing
measures v with the strict no-crossing propertyt. To begin, one should observe that
if x # y and y # z, one cannot have both (x,y) and (y, 2) in spt~: the circles O(z, y)
and O(y,z) will intersect. Thus for v € I'(u,v), the strict no-crossing property
implies that any mass common to p and v will be concentrated along the diagonal
D :={(z,z) | z € R} by the measure v (see, for example, Gangbo & McCann (1996,
proof of prop. 2.9)). For optimal v this comes as no surprise: the costs of concave
type satisfy a strict triangle inequality (B 1), so one’s first choice should always be to
supply a factory from an on-site mine. Any geographically overlapping production
and consumption can therefore be subtracted from the problem a priori, and one
assumes p and v mutually singular without loss. It is then convenient to encode the
distribution of mines and factories as a single measure p = p— v, from which p = py
and v = p_ can be recovered as its positive and negative parts. This signed measure p
represents excess production; it lies in the space My(R) of neutral measures p[R] = 0
with finite total variation.

To understand the structure of sets and measures without crossings, it is helpful to
convert the real line into a circle R := RU {oo} by adding a point at infinity (joining
+00 to —00). Any three distinct points x1, 29, x3 € R traverse this circle S ~ R in
a definite direction—either clockwise or counterclockwise—depending on the sign of
(1 — x9)(x2 — x3)(x3 — 21). A key property of sets without crossings turns out to
be that they decompose into orientation reversing components.

Definition 2.6. A subset 2 € R2 of the plane (or of the torus R x R) is ori-
entation reversing if the triples x1,x2, 23 and yi, 2, y3 traverse the circle §' ~ R
in opposite directions whenever (z;,y;) € 2 for i = 1,2, 3. Here opposite directions
mean

(z1 — 22)(22 — 23) (23 — 1) (Y1 — Y2) (2 — ¥3)(y3 — 1) < 0. (2.3)

1 The support of one such measure is depicted by the solid lines in figure 1. Being optimal, this
measure also satisfies the rule of three.
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Example 2.7. The function H(z) = 1/x extends to an orientation reversing
homeomorphism of the circle R which fixes the points z = £1. Its graph (z,1/x) is
an orientation reversing subset of the plane.

If the set without crossings lies in a product I x J of disjoint intervals, then it
consists of a single orientation reversing component. Indeed, 2 C R? together with
its reflection 2f in the line y = = will be orientation reversing. This follows from the
next lemma, which also characterizes this geometry in terms of monotonicity.

Definition 2.8. A set £2 C R? is non-decreasing if (x,y) and (2/,%') in 2 imply
(@ —2)(y' —y) > 0.

The lemma is easiest to see by transforming our perspective (i.e. figures 2 and 3)
from the upper half-plane H = {z = z +1iy | y > 0} to the unit disk D = {|w| < 1}.
This may be accomplished, for example, by a change of variables in the complex
plane:

i—z
we) =

the Mobius transformation sending (0, 1,00) to (1,i,—1). The homeomorphism w :
H — D preserves angles and circles (up to the boundary where w maps the real
line onto the unit circle dD). Thus two circles cross in the upper half-plane precisely
when the image circles cross in the unit disk. Hereafter, w is tacitly used to switch
between these two models: we tend to say z,y € R When we are thinking about the
upper half-plane, as opposed to z,y € R or € S* when thinking about the disk. By
interval we always mean a Connected subset I of a one-dimensional manifold, though
this highlights a difference between the circle and the line: the complement of I in
R will also be an interval, though its complement in R need not. After the following
lemma, our intervals will typically lie on the circle R (as in figure 4a).

(2.4)

Lemma 2.9. Let I C R be an interval and .J := R\ I its complement. Suppose
H :R — R is an orientation reversing homeomorphism of the circle that fixes both
end-points of I. For {2 C I x J, the following conditions are equivalent:

(A) £2 has no crossings;
(B) 22U 021 is orientation reversing, where 27 := {(z,y) | (y,z) € 2}; and
(C) {(x,H(y)) | (z,y) € 2} is a non-decreasing subset of the plane.

Proof of lemma 2.9. Assume that neither I nor J consists of a single point; oth-
erwise (A) I x J has no crossings, (B) (I x J)U (J x I) is orientation reversing and
(C) I x H(J) is non-decreasing, so the lemma follows trivially. Fix a set 2 C I x .J
in the plane. We shall show (A) = (C) = (B) = (A).

(A) = (C). To show the contrapositive, assume (C) fails. Then there exist points
(z1,y1) and (z2,y2) in 2 C I x J satisfying

(2 — x1)(H(y2) — H(y1)) <O0. (2.5)

Interchanging (z1,y1) < (z2,y2), if necessary, yields z1 < xo and H(y2) < H(y1).
Here y1,y2 € J =R\ I. Since H is an orientation reversing homeomorphism of the
circle, it swaps the interiors of I and R\ 1. Thus, all four points z1, z2, H(y), H(ys) €
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R lie in the closure of I C R. It follows that the triples x1, z2, 00 and H(y2), H(y1), 00
are both ordered counterclockwise on the circle. Since the y; lie outside I D {x1, 22}
while H reverses orientations, x1, 2, y1, y2 are distinct and ordered counterclockwise
around the circle. This shows that O(z1,y;1) intersects O(xs,y2) non-tangentially,
precluding the possibility (A) that 2 has no crossings and establishing the first
implication.

(C) = (B). Assume (C), and choose three points (z1,y1), (z2,y2) and (z3,ys)
from 2 U Q7. Take the x; to be distinct, since otherwise (2.3) holds trivially, and
similarly, with the y;. Of the six coordinates z1, x2, x3, y1, y2, Y3, exactly three must
lie in I while the other three lie in J. Henceforth, we shall suppose that in I the z; are
outnumbered by y; either (i) zero to three; or (ii) one to two; (the other two cases are
handled by the same argument but with xs replacing ys). Renumbering if necessary,
in case (i) we assume y; < y2 < ys, while in case (ii) we assume y; < y2 in I. Since
(y1,21), (Y2, z2) € £2, it follows from (C) and y1 < yo that H(z1) < H(z2). Similarly,
(C) implies H(z2) < H(z3) in case (i). In case (ii) on the other hand, we know that
y1 < y2 and H(zq1) < H(z2) both lie in the closure of I C R, while y3 and H(x3)
lie in the closure of R\ I. In either case, both y1,y2,ys and H(z1), H(z2), H(x3) are
ordered counterclockwise around the circle. Since H reverses orientations, x1, Ts, X3
must be ordered clockwise. This establishes (B) that £2U 2 is orientation reversing,
hence the second implication is proved.

(B) = (A). Finally, assume that £2U £2' is orientation reversing and select (z1,y1)
and (xg,y2) from 2. If the circles O(x1,y1) and O(z2,y2) were to intersect non-
tangentially, then the four points x1, zs9,y1,y2 would be distinct and ordered either

clockwise or counterclockwise around the circle. Defining (x3,y3) := (y1,21) € 21,
this would contradict the assumption that x1, x2,x3 = y1 and y1, ys, y3 = x1 traverse
the circle in opposite directions. Thus (A) {2 has no crossings. |

Now suppose the density of p € My(R) changes sign only twice along the line. A
characterization for the measures v € I'(p4, p_) with no crossings follows immedi-
ately.

Corollary 2.10. Given an interval I C R with complement J := R \ I, suppose
the measure v € M, (R?) assigns full mass to I x J. Define its reflection v by
Y[82] := ~[$21] for Borel 2t = {(y,z) € R? | (x,y) € £2}. Then ~ has no crossings if
and only if v+~ is orientation reversing.

Proof of corollary 2.10. The set {2 :=spty N (I x J) has full mass for v, while
U N1 has full mass for v +~F. If ¥ has no crossings, then neither will £2 C spt~;
lemma 2.9 implies that 2 U 221 is orientation reversing, as is its closure spt[y + ] in
view of (2.3). Conversely, if 2 U 27 C spty + ~] is orientation reversing, the same
lemma shows {2 will have no crossings. Neither will its closure spt . |

Combined with theorem 2.5, this characterization makes it clear that if p — v €
M (R) changes signs only twice along the line, then the optimal measure v in I'(u, v)
has orientation reversing support. This is analogous but exactly opposite to the result
for strictly convex costs, where optimality selects the unique measure with non-
decreasing support. By contrast, when the supports of 1 and v lie on opposite sides
of some point a, then the reflection H(x) = 2a — z in lemma 2.9 shows spt+y is non-
increasing. Nonetheless, the orientation reversing geometry provides enough rigidity
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to select v uniquely. This is the content of the next proposition. It is derived from
the convex case using a standard fact of measure theory: any map 7 : X — Y on
a measure space (X, ) induces an image measure Zz\ on Y, defined for U C Y by

ZyNU] == AZ =1 (U); (2.6)

here Z and U are assumed measurable with respect to given g-algebras in X and Y.
A measurable function f : Y — R can be integrated against this image measure
using the change of variables formula

| 1waz30) = [ (z@) dr) (2.7)

Proposition 2.11. Fix measures p,v € My (R). Suppose v vanishes on some
interval I C R while p vanishes on its complement J :=R\ I. Then only one joint
measure, v € I'(u, V), has no crossings.

Proof of proposition 2.11. Assume some 7 € I'(u,v) has no crossings, since oth-
erwise the proposition holds vacuously; in particular, 4 and v must have the same
total mass y[R?]. We need to show that v is specified uniquely by p and v.

Interchange p with v if necessary to assume oc € J. Choose an orientation reversing
homeomorphism H : R — R of the circle that fixes both end- points of I; for
example, H(y) = z+ 12/(y — z) works nicely when these end-points z & r arecﬁnlge
and distinct. Extend H to a homeomorphism Z(z,y) = (2, H(y)) of the torus R x R.
This homeomorphism induces a bijection, v <> Z47, given by (2.6) between the two
collections of measures I'(u,v) and I'(u, Hyv).

Now (2 = sptyN I x J has no crossings and carries full mass for 7. By lemma 2.9
its image Z({2) is non-decreasing in the plane, as is the closure of this image:
spt Zygy C R2. Thus Zxy must be the unique measure with non-decreasing sup-
port in I'(p, Hyxv); its uniqueness is well known, though a direct proof is provided
in Appendix A by proposition A 2. Since Z4 acts bijectively on My(R), v too is
uniquely determined by p and v. |

Thus when p — v € M(R) changes signs only twice along the line, the optimal
measure v in I'(u, v) is cost-independent among all costs of concave type: it is deter-
mined uniquely by the requirement that its support has no crossings. In the next
section, we proceed to analyse the complications that arise when p—v oscillates more
than twice along the line. For this purpose, it is useful to have an explicit formula
for the unique measure of proposition 2.11.

Recall that any measure p € M4 (R) on the line can be represented by a non-
decreasing function X : [0,¢] — RU{4o00}; here ¢ := u[R] denotes total mass, while
X can be defined by X (0) := sup{z | p[(—o0,z)] < 8}. Then p = X4\ is recovered
by pushing the Lebesgue measure A forward through the mapping 6 — X () using
(2.6). If there is ambiguity about the domain of X (0), the restriction of Lebesgue to
the interval [0,¢] may be denoted A 4.

For intervals I C R, we adopt the notation (—oo,I) C R to denote any connected
component of R\ I that extends to infinity in the negative direction.

Proposition 2.12. Let p,v € Mo(R) have the same total masst = pu[R]. Assume
v vanishes on some interval I C R while p vanishes on its complement J := R\ I.
Represent = Xy and v = YxA 4 by non-decreasing X and Y : [0,t] — R,
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and extend Y (0) =Y (0 +t) periodically. Set ¢ :=v[(—oo,I)] if I CR, and ¢ :=
u[(—o0, J)] otherwise. Then the curve Z(6) := (X(0),Y (¢ —0)) on 0 < 0 < t, sup-
ports a measure y := Zu oy in I'(p,v) with no crossings.

Proof of proposition 2.12. First define an orientation reversing homeomorphism
H : R — R that fixes the end-points of I, and assume that oo € J. Then v has
mass ¢ to the left of I C R and mass t — ¢ to its right, so Y (¢ — 0) moves clockwise
from one end of J to the other as 6 increases from 0 to t. Because H is orientation
reversing and exchanges the interiors of J and I, it follows that H(Y (¢ —#)) is non-
decreasing on 0 < 6 < t. Thus the curve (X(0), H(Y (¢ — 6))) is non-decreasing in
the plane. By lemma 2.9, the original curve Z(6) in I x J will not have crossings.
This curve contains the full mass of Z4v, so neither its closure nor spt[Zxy] can
have crossings. Since Zxv has marginals Xy Ao = p and Yy = v, it must be
the (unique) measure in I'(p, ) with no crossings.

Now suppose oo € I. Extending X (0) = X (0 + t) periodically, it is shown above
that the curve Z1(0) := (Y (), X(¢é — 6)) on 0 < 0 < t has no crossings. Noting that
Z1(¢ —0) € J x I represents the reflection of Z(#) in the line x = y, it follows that
neither Z(0) nor v = ZyAjy—¢¢) € I'(1,v) will have crossings. [ |

Remark 2.13. Let I C R be an interval with end-points a and b. A restatement
of the same result asserts that if X (#) moves counterclockwise through I while Y ()
moves clockwise through R\ 7 from X (0) = Y (0) = a to X(t) = Y (t) = b, then the
curve Z(0) = (X(0),Y(0)) on 0 < 6 <t and measure Zx [y, have no crossings.

3. Networks and the transportation hierarchy

This section is devoted to developing a change of variables that simplifies the trans-
portation problem when the density of u — v changes sign finitely often, say 2m + 2
times, along the line. For m = 0, we have already seen that the no-crossing rule selects
a unique measure v € I'(u, v), simultaneously optimal for all costs of concave type.
When m > 0, it is no longer true that only one measure in I'(i, v) has no crossings.
What does remain true is that measures without crossings form a finite-dimensional
subset of the infinite-dimensional space I'(i, ). In the new variables, this set can be
described as a finite union of convex polytopes, each having dimension no greater
than m. There are (3m choose m)/(2m + 1) of these polytopes, corresponding to
different choices for which intervals of positive mass will supply locally with respect
to the others, i.e. to what one might call the local-global hierarchy among intervals
of supply. In the present section, we develop this finite-dimensional parametrization
of measures without crossings, summarized by the bijection of theorem 3.11. Two
ingredients that enter the discussion will be the language of networks (i.e. directed
graphs) and the duality theory for planar graphs summarized in Rockafellar (1984).

Given a signed measure p € Mo(R), an interval of supply refers to a maximal inter-
val I C R on which p_ vanishes while p4[I] > 0. We use the notation p € M{*(R) to
indicate that the full mass of py is contained in m + 1 intervals of supply, in which
case we say that p changes sign 2m + 2 times along the line; here m > 0 is an integer.
Maximality ensures that intervals of supply must be disjoint. For p € M{*(R), these

intervals Iy, ..., I can be numbered counterclockwise around the circle. The com-
plement R\ (JI; also consists of m + 1 intervals Jy,. .., Jp, on which p; vanishes

though p_ does not, to be called intervals of demand.
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Now suppose that v € I'(p4, p—) is a competitor in the problem of transporting p4
onto p_. Then the full mass of v lies in |J;" j—o1i x Jj. Moreover, if v is optimal and
m > 1, the no-crossing rule of the precedmg section Wlll force v to vanish on some of
the rectangles I; x J;. To keep track of such implications, it is helpful to introduce
the following graph—theoretic structure on the intervals of supply and demand, or
equivalently (and hereafter tacitly) on 2m+2 representative points chosen arbitrarily
from these intervals, so that x9;41 € I; and 29,49 € J; for i =0,...,m.

Definition 3.1. An uncrossed network refers to a finite graph G satisfying (i)-
(iv). Its vertices and edges are denoted by node(G) and arc(G) C node(G) xnode(G).

(i) The vertices of G consist of an even number of distinct points on the unit circle:
node(G) = {x1,...,Tom42} C R, enumerated counterclockwise.

(ii) If (x;,z;) € arc(G), then ¢ must be odd and j must be even.
(iii) arc(G) C R? has no crossings.
(iv) No further arcs (x;,z;) could be added to arc(G) without violating (i) or (iii).

The nodes {z1,...,Zom42} of such a network form the vertices of a polygon P
inscribed in the unit circle. Representing the arcs of G by straight lines, from (iv)
it follows that these lines include all edges of this polygon and subdivide its interior
into smaller convex regions (figure 4a). Each of these interior regions F' will be a
quadrilateral: F' must have an even number of vertices since the network is bipartite
(ii), and their number cannot exceed four by the maximality condition (iv). There
are m quadrilaterals in total. Together with the 2m + 2 domains lying between the
edges of our polygon and the unit circle, they constitute the set face(G) of faces of
(; the quadrilaterals may be referred to as interior faces and the remaining domains
as boundary faces. In the well-known duality theory for planar graphs, the faces
of G correspond to nodes of the dual network G* to G (see figure 4b). The arcs
(L, R) € arc(G*) are defined to consist of those pairs of faces L, R € face(G) that
share a side (I,J) € arc(G), with L lying to the left of an arrow joining I to J and
R lying to its right; thus the arcs of G* are in a one-to-one correspondence with
the arcs of G. Just as the Catalan numbers count divisions of P into triangles, the
number d,, of uncrossed networks can be computed recursively. Fixing m and the
x;, the computation is a special case of a result of Erdélyi & Etherington (1940):

solving the recursion

m m

dm = Z Z di—1dj_idm—j,

i=1 j=i
with dy = 1, they find d,, = (3m choose m)/(2m + 1). The ds = 3 possibilities for
m = 2 are shown in figure 5.

Functions on the nodes, arcs and faces of an uncrossed network G will be referred

to as densities, flows and potentials, respectively. Each flow s : arc(G) — R induces
a density p : node(G) — R, denoted p = div s, which measures the net flux

divs(I) := Z s(I,J)— Z s(J, 1) (3.1)
(I,J)€arc(G) (J,I)earc(G)

out of I € node(G). Similarly, each potential ¢ : face(G) — R induces a flow
s = curl¢ on arc(G), defined by curlp(a) := ¢(R) — ¢(L), where L, R € face(G)
denote the faces lying immediately to the left and right of a € arc(G) (see figure 6).
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Definition 3.2. Fix p € M{*(R) and an uncrossed network G on its intervals of
supply and demand. A measure v € M (R?) is said to be compatible with G if  has
no crossings and y[I x J] = 0 whenever (I,J) € node(G)? is not an arc of G.

The set of measures v compatible with G and having marginals p and v will be
denoted by I'c(u,v).

Fix p € M{'(R) and an uncrossed network G on its intervals of supply and demand.
In the next lemma and following, we tacitly identify the nodes of G with intervals
I C R of supply or demand, while identifying the measure p € MJ*(R) with the
density p(I) := p[I] that it induces on I € node(G).

Lemma 3.3. Fix p € MJ(R). If v € I'(p4, p—) has no crossings, then ~y is com-
patible with some uncrossed network G on p’s intervals of supply and demand.

Proof. Choose p € My*(R) and v € I'(p4, p—). Let node(G) denote the intervals
of supply and demand for p (or to be pedantic choose representative points z; € S!
from each of these 2m + 2 intervals). Include in arc(G) all pairs of intervals (I,J) €
node(G) x node(G) with [ x J] > 0. For an interval I of supply, v[R x I] = p_[I]
vanishes by definition; moreover, the intervals of supply for p € MJ*(R) are assumed
to contain the full mass of py, so 4[J x R] vanishes whenever J is an interval of
demand. Thus (I,J) € arc(G) forces I to be an interval of supply and J to be
an interval of demand. Since intervals of supply alternate with intervals of demand
around the circle S, conditions (i) and (ii) of definition 3.1 follow easily.

To verify (iii), suppose (1o, Jo) and (I1,J1) € arc(G) and denote their representa-
tive points by z; € I; and y; € J;. We need to know that the circle O(xg,yo) does
not cross O(x1,41) C R?; to derive a contradiction, assume these circles intersect
non-tangentially. Then the four points xg, z1,y0,y1 must be distinct, and ordered
either clockwise or counterclockwise around the circle; suppose clockwise without
loss. The intervals Iy, I, Jo, J1 that they represent must also be distinct—therefore
disjoint—and occur in the same order on the circle. Since y[I; x J;] > 0, there
exist (xf,y;) € (I; x J;) Nspty for @ = 0,1. The points x(, 2}, y),y; come from
disjoint intervals in clockwise order on the circle, so O(z(),y;) intersects O(z}, y})
non-tangentially. But this contradicts the assumption that v has no crossings. Thus
we conclude (iii) that O(zg,yo) does not cross O(z1,y1).

Although the maximality condition (iv) may not yet be satisfied, we can add
additional pairs (I,J) from node(G) x node(G) to arc(G), as long as the addition
of each new pair does not violate (ii) or (iii). By finiteness of node(G), this process

terminates. The construction ensures compatibility of v with the resulting uncrossed
network G. ]

In a network G, a path refers to a sequence Iy, I, ..., I, € node(G), each node
linked to the next either by a forward arc, (I;—1,I;) € arc(G), or a backward arc,
(I;,I;—1) € arc(G), i = 2,...,n. When I,, = I, the path is said to be a circuit, while
if a path uses each arc at most once either forward or backward, but not both it
is said to be elementary. For the network G to be path connected means that any
two nodes can be joined by a path. A path-connected network with no elementary
circuits is known as a tree.

The next lemma asserts that the dual network G* to an uncrossed network G
will be a tree (an example is shown in figure 4b). Since the interior faces of G' are
quadrilaterals with supply nodes and demand nodes at diagonally opposite vertices,
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each interior node, F € node(G*), of the dual graph has two incoming arcs and two
outgoing arcs connecting it to four adjacent nodes in G*. The boundary nodes of
G* are connected to a single adjacent node by one arc, either incoming or outgoing.
These boundary nodes are ordered around the circle R ~ §'; such a boundary node
B € node(G*) is said to be a root of G* if B and both of its neighbours on the circle
are all connected to the same interior node (by single forward or backward arcs);
thus F4 and F; form the two roots in figure 4b.

Lemma 3.4. The planar dual G* of an uncrossed network G will be a tree. If G*
has more than two nodes, then at least two of them are roots.

Proof. Recall that G can be represented as a convex polygon P inscribed in the
unit disk D C R?, and subdivided into m quadrilaterals sharing their vertices with
P (see figure 4). These quadrilaterals represent the interior nodes of G*, while the
2m + 2 components of the complement D \ P correspond to boundary nodes of G*.
The proof that G* is a tree will proceed by induction on m.

When m = 0, the polygon P degenerates to a line segment and G* consists of two
(boundary) nodes connected by a single arc: so G* is a tree. Now suppose the lemma
has also been established for all smaller values of m > 0. Choose an interior face
Q@ € node(G*), such as the face Fy of figure 4a. The quadrilateral @ has its vertices
on the unit circle. If the interior of ) is removed from the polygon P, it leaves behind
four smaller (or possibly degenerate) convex polygons, each inscribed in the unit
circle and subdivided into a total of m — 1 quadrilaterals. The four corresponding
networks G; are uncrossed, 7 = 1, 2, 3,4, while their duals G} are disjoint except that
Q@ acts as a boundary node for each of them. By the inductive hypothesis, each G
is a (path-connected) tree. Thus there is a path from @ € node(G}) to any other
node in G, so node(G*) = U?=1 node(G}) must also be path connected. If G* failed
to be a tree, that would imply the existence of an elementary circuit not contained
entirely in any of the trees G7f. Such a circuit must include @ as a node, followed by
some adjacent node, say F' € node(G7). Since the circuit must leave and re-enter G
through the arc (F, Q) or (Q, F'), it uses the same arc both forwards and backwards.
But this violates the definition of an elementary circuit, proving that G* is a tree.

To show that G* has two roots, consider three cases: either (i) all four sub-networks
G} consist of a single arc; or (ii) three of the four sub-networks consist of a single
arc; or (iii) at least two of the G} have more than one arc. In the first case, @ is
connected directly to all four boundary nodes of G*, each of which is a root of G*.
Turning to case (ii), three of the arcs that begin or end at @ are connected directly
to boundary nodes; the middle of these is a root of G*. The fourth arc connects @Q to
a sub-network G consisting of more than two nodes. But the inductive hypothesis
implies that G} contains at least two roots, which may also be roots of G* depending
on their positions relative to Q. Let L, R € node(G}) denote the boundary nodes
of G to the immediate left and right of Q. Apart from @, all boundary nodes of G}
are also boundary nodes of G*. Thus any root of G}, save for L, Q) or R, will also be a
root of G*. If G} has only one root among L, () and R, then its second root provides
a second root for G*. If two roots of G} occur among L, Q) and R, then m = 2 and
the fourth boundary node of G} will be a root of G* as well as of G. This concludes
case (ii). In the final case (iii), at least two sub-networks—say G5 and G}—have two
roots each by the inductive hypothesis. The above argument shows that both G5 and
G} contribute a root to G*, thus concluding the proof of the lemma. |
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Since only one elementary path connects each pair of nodes in a tree, this lemma
yields the following corollary.

Corollary 3.5. Every flow s on an uncrossed network G can be expressed as
s = curl¢ for some ¢ : face(G) — R. This potential ¢ is unique up to additive
constant. It satisfies (div s)(I) = ¢(B)—¢(A) when A, B € face(G) are the boundary
faces adjacent to I € node(G), with A, I, B ordered counterclockwise.

Proof. Since there is a one-to-one correspondence between arcs of G* and of G,
s :arc(G) — R can be viewed equally well as a flow on the tree G*. As there are no
non-zero circulations in a tree, Rockafellar (1984, §§ 4F and 1I) asserts that every flow
s :arc(G*) — R can be expressed as the gradient of a potential ¢ : node(G*) — R,

s(L, R) = ¢(R) — ¢(L), (3.2)
for (L, R) € arc(G*). Indeed, we can define ¢(F') at any F' € node(G*) by summing
the flow s over a path from L to F. The terms in this sum are signed according to
whether each arc is traversed forward or backwards, so ¢(F) — ¢(L) is well defined
precisely because G* is a tree: there is only one elementary path between L and F'.

Now the faces L, R € face(G) lie to the left and right of the corresponding arc
(I,J) of G as depicted in figure 6, so s(I,J) = curl¢(I, J) follows from (3.2), the
identification face(G) = node(G*) and our definition of curl¢. For the zero flow
s = 0 in (3.2), connectedness of G* forces ¢ to be a constant throughout G*. For
more general flows, linearity of curl guarantees uniqueness up to constant of the
corresponding ¢.

Finally, let A, B € face(G) be the boundary faces adjacent to I € node(G). Now
(div s)(I) measures the net flow out of the node I, or equivalently the net flux crossing
the path through G* from A to B: namely ¢(B) — ¢(A). |

A further uniqueness property of measures without crossings is derived from propo-
sition 2.11.

Lemma 3.6. Fix p € My (R) and an uncrossed network G on its intervals of
supply and demand. Let v € M (R?) be compatible with G, and denote its marginals
by p and v. If the intervals I, J € node() share an end-point, then the restriction
Y|1x.s is uniquely determined by p, v and the total flow, t :== ~v[I x J], from I to J.

Proof. Let a denote the common end-point of I and J, and suppose without loss
that ¢ > 0 while I, a and J are ordered clockwise around the circle. Let X (6) map
6 € [0, u(1)] into the interval I of supply, pushing the Lebesgue measure forward to
plr = XgAjo,ur)); this map is determined uniquely a.e. by assuming X (0) € R to
move counterclockwise from one end of I to the other. Similarly, let Y : [0,v(J)] — J
be the clockwise map pushing the Lebesgue measure forward to the restriction v|; of
v to J. Remark 2.13 shows that neither the curve Z(0) = (X(6),Y(0)) on 0 < 0 < t,
nor the measure Zx (o4, will have crossings. The construction of this measure used
I, J, u,v and t, but not ~. If we can show that the restriction 4! := 7|7x s of v to I x J
has the same marginals as Zx (g 4, then v = Z 4o,y follows from proposition 2.11.
This would prove the lemma.

Define 4% = v —~!, and denote the marginals of v! by u! and v*. We need to show
pt and v! coincide with Xy A and Yy . It is enough to prove the inequalities
pt = Xudpy and v' > Yudpy since the total masses p'[R] = ¢t = v'[R] are the
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same. For simplicity, assume initially that p does not include a point mass at X (t).
Then Xy Ao represents the restriction of u to the (relatively closed) interval U C I
whose end-points are a and X (t). Failure of the inequality u! > X4 A0, means
that p! does not vanish on I\ U while 4 does not vanish on U x R. It would then
be possible to find (x,y) € (I \U) x J in spty! and (2/,y’) € U x J' in spty?,
where J' # J € node(G) is some other interval of demand. Since z, 2/, y and 3y’ are
distinct points ordered clockwise around R, the circles O(z,y) and O(a’,y’) intersect
non-tangentially. This violates compatibility of v with G, whence pu' > Xy A0,4-

If u' includes a point mass at X (t) the same argument adapts easily: as long as u!
does not vanish on 7'\ U, no changes are necessary. The only other way for the desired
equality to fail is if ' concentrates more mass than X4 Ao, at X(t). But this is also
precluded by the preceding argument, provided we redefine U C I to be relatively
open by excluding the end-point X (¢). A similar proof establishes v > Y4 Ajo,q to
conclude the lemma. |

This lemma fuels an inductive proof, that each measure v € I';(p4, p—) is uniquely
determined by the flow it induces on G.

Proposition 3.7. Fix p € M{'(R) and an uncrossed network G on its intervals
of supply and demand. Each measure v € M, (R?) compatible with G defines a flow
sy(I,J) :=~[I x J] on G satisfying s, > 0 and div s, = 1 — v. Here the marginals
p and v of v are evaluated on node(G). If 4 € I'c(u,v) and s5 = s then ¥ =~.

Proof. Let v € M4 (R?) be compatible with G and set sy(I,J) := y[I x J] >
0 for (I,J) € arc(G). This defines a non-negative flow s, on G. Recalling that
compatibility means y[I x J] = 0 whenever (I, J) € node(G) x node(G) is not an arc
of G, we recover from (3.1):

divs,(I)= > Al xJ]—~[J x1]
J€Enode(G)

— [T x R] = y[R x 1]
— 1)~ v1),

where p and v are the marginals of . The second equality reflects the fact that the
circle R decomposes disjointly into intervals of supply and demand.

The proof that p, v and s, determine v € I'g(u,v) uniquely will proceed by
induction on m > 0. If m = 0, then node(G) decomposes R into a single interval
I of supply and one interval J of demand. Compatibility of v with G means that
~ vanishes outside I x J. Since I and J share an end-point, lemma 3.6 specifies
v = ¥|rxs uniquely in terms of x, v and s, (1, J).

Therefore, take m > 0 and assume that the proposition has been established for
all uncrossed networks with fewer than 2m + 2 nodes. Invoking lemma 3.4 yields
a boundary face B € face(G) corresponding to a root of the dual tree G*. Now B
shares a side (I,J) € arc(G) with an interior face @ € face(G), whose four vertices
may be labelled I, J, I’ and J’. The fact that B is a root of G* simply means that Q
shares two other sides, namely (I, J’) and (I', J) € arc(G), with boundary faces of G.
In other words, @ is exposed on three sides like the faces Fy or F3 in figure 4a, so
the intervals J’, I, J and I’ C R lie adjacent to each other on the circle.
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Let v € I'(u, v) be compatible with G, and decompose it as v =% + 1 +42 ++3
where 7!, 42 and 72 denote the respective restrictions of vy to I x J’, I x J and
I'x J. For i =1,2,3, lemma 3.6 expresses 7' in terms of u, v and 5. Denoting the
marginals of v¢ by p? and v¢, it follows that u® = u — p' — p? — 3 and similarly
0 are also determined by p, v and the flow. Now B was a root, so I and .J are not
connected to any other nodes of G except through I’ and .J’. Thus A° is compatible
with the sub-network G obtained from G by eliminating the nodes I and J together
with all incident arcs. This corresponds to deleting the exposed quadrilateral @
from the polygon P, so the remaining network G, will itself be uncrossed. Since
7°[K x L] = sy (K, L) for each arc (K, L) € Gy, the inductive hypothesis asserts that
7° can be recovered from p°, v° and s.,. Thus,

3
v=Y 4 €Ta(uv)
i=0
is determined uniquely by s, concluding the proof. |

Definition 3.8. Fix p € My (R) and an uncrossed network, G, on its intervals
of supply and demand. A potential ¢ : face(G) — R, is called feasible if the flow,
curl ¢ > 0, is non-negative and the 2m + 2 boundary conditions, ¢(B) = p[(—o0, I)],
are satisfied; here B € face(G) denotes the boundary face just clockwise from I €

node(G).

Remark 3.9. For intervals whose interior lies on the line, the notation (—oo, I') is
used to denote any connected component of R\ I that is unbounded in the negative
direction; in the same vein (—oo,I] := (—oo,I) U I. This definition is extended to
intervals whose interior includes oo by adding the following convention: when RN [
is a union of two intervals, one, I_, unbounded below and the other, I, unbounded
above, then (—oo, I') := R\ I; while (—oo, I] := I_. For neutral measures p € My(R),
these conventions ensure

pl(—o0, IN] = pl(—o0, I)] + plI] = p[(—o0, J)], (3.3)
when J is a disjoint interval lying adjacent to I in the counterclockwise direction.

The present section culminates in the next theorem. The bijection established
there parametrizes the measures v € I'q(p4, p—) without crossings using the feasible
potentials ¢ on G. A preliminary lemma paves the way. The boundary conditions for
feasibility merely ensure that the flow s := curl ¢ satisfies divs = p while making a
choice for the additive constant.

Lemma 3.10. Fix p € M7 (R) and an uncrossed network G on its intervals of
supply and demand. Let X,Y : [0,t] — R be the non-decreasing maps giving
p+ = Xy, and p— = Yy o4, extended periodically with period t = p, [R].

Suppose F € face(G) has a vertex at I € node(G) and set p = py[(—o0,1)],
n = p_[(—=oc,I]], r = p—n, a = min{r,r + p[I]} and b = max{r,r + p[I]}. Then
feasibility of ¢ implies ¢(F') € [a,b]. Moreover, § € (a,b) implies X(n +0) € I or
Y(p — 0) € I, depending on whether I is an interval of supply or of demand.

Proof. Assume that ¢ is feasible, and recall that G' may be visualized as a convex
polygon subdivided into quadrilaterals. The face F' must belong to a sequence of
adjacent faces sharing the corner I, beginning and ending with the boundary faces
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A, B € face(G) to either side of the given node I. For example, if the given node
were Iy in figure 4a, the sequence of faces would be A = Fjs, F3, F5, F1, Fs = B.
The arcs between these faces all point in the same direction relative to I: toward
or away, depending on the sign of p[I]. The condition curl¢ > 0 implies the values
of ¢ vary monotonically along this sequence, so taking ¢(A) < ¢(B) yields ¢(F) €
[¢(A), (B)]. Noting (3.3), feasibility of ¢ prescribes these boundary values to be
?(A) = a and ¢(B) = b.

Furthermore, suppose I is an interval of supply so that a = p — n while b =
p—n+ py[I]. Then a < < b means that n + € lies strictly between p = p[(c0, I)]
and p+ p4[I], which yields X (n+60) € I. Alternatively, if I is an interval of demand,
then @ = p —n — p_[I] while b = p — n. In this case —b < —0 < —a forces p — 0
strictly between n = p_[(—o0, I)] and n + p_[I], which yields Y(p — ) € I. |

Theorem 3.11. Fix p € M{*(R) and an uncrossed network G on its intervals
of supply and demand. The measures v € I'(py, p_) compatible with G correspond
bijectively to the feasible potentials ¢ on G. This bijection is encoded by the formula

curlp(1,J) =~[L x J] on arc(G). (3.4)

More explicitly, the restriction 7|« .; has X#)\[n+¢(L)7n+¢(R)] and Y#A[p—¢(R),p—¢(L)]
for marginals, where X,Y : [0,t] — R are the non-decreasing maps giving py =
Xy and p_ = YuAf. Here n = p_[(—o0,I)], p = p4[(—00,J)] and t = p, [R], while
L, R € face(G) represent the faces to the left and right of (I, J) € arc(G).

Proof. Given v € Ig(py,p_), proposition 3.7 shows that s(I,J) = ~[I x J]
defines a flow s > 0 on arc(G) satisfying div s = p. Corollary 3.5 provides a potential
¢ : face(G) — R with curl¢ = s to verify (3.4). Adding a suitable constant ensures
feasibility of ¢. This correspondence between  and ¢ is one-to-one: if ¥ € I'g(py,p_)
also satisfies curl ¢(I,J) = F[I x J] on arc(G), then proposition 3.7 combines with
(3.4) to yield 4 = ~.

Conversely, given a feasible potential ¢ it remains to construct v € I'c(p+,p-)
that verifies (3.4). We define

vi= Y Al (3.5)

(I,J)earc(G)

where v|rx; is the measure constructed in proposition 2.12 to have no crossings
and with marginals X#)\[n—{-gb(L),n—',-d)(R)] and Y#)‘[p—¢>(R),p—d>(L)}' We first need to
verify that Xy A1 ¢r),n+é(r) and YA ,_o(Rr) p—g(r)) assign their full masses to the
disjoint intervals I and J. This not only ensures that |7« is well defined, but also
that it coincides with the restriction of (3.5) to I x J. (Recall that the nodes of
G decompose R into disjoint intervals.) The mass of this restriction is given by its
marginals to be ¢(R) — ¢(L) = curl ¢(1, J), so ~ verifies (3.4).

To see that Xy 4(L),n+¢(r)) assigns full mass to I, observe ¢(L) < ¢(R) follows
from the feasibility condition curl ¢ > 0. Since the interval I of supply forms a corner
of L and of R, lemma 3.10 yields X (n+6) € I whenever ¢(L) < 6 < ¢(R). This proves
that Xy Ajqe(L),nte(r) assigns its full mass to I. The same lemma applies equally
well to the interval J, which must therefore carry the full mass of Y \(,_4(R) p—a(L)]-

t Extended to 6 € R periodically: X (0 +t) = X(0) and Y (0 +t) = Y (0).
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Before proceeding to discuss compatibility of v with G, we also verify that the
marginals p and v of v satisfy p = py and v = p_. Since I € node(G) is an
interval of supply, it is connected by arcs (I,.J;) € arc(G) to 7 < m + 1 intervals
of demand Ji,...,J;, enumerated clockwise around the circle starting and ending
adjacent to I. The two adjacent intervals of demand share arcs with I because
of maximality of G: definition 3.1(iv). If the faces to the left and right of (I,.J;)
are denoted by L;, R; € face(G), then the interior faces, R; = L;y1, coincide for
t=1,2,...,7 — 1, while Ly is the boundary face between I and J; and R; is the
boundary face between I and J;. Feasibility ensures that the value of ¢ is non-
decreasing as one passes from each face to the next one with a corner at I, starting
with L; and ending with R;. Now the restriction of y to I must be given by the sum
of Xy Alnyg(Li)n+e(Ri) Over @ =1,...,7. Since

A(R;) = ¢(Liv1) < d(Riy1),
this yields
11 = XpAnto (L) nto (1)) -

The boundary values

n+¢(L1) = pi[(—o0, I)] and  @(R;) — ¢(L1) = p[]],

give p|; = p|r as desired. Now I was an arbitrary interval of supply, so u = py is
satisfied; v = p_ can be proved in the same way.

Compatibility of v with G amounts to verifying definition 3.2. Since v[I x J] =0
for (I,J) € node(G)? \ arc(G) is manifest in (3.5), only the no-crossing property of
spty need be addressed. This property respects the operation of set closure, so it
suffices to show that O(z,y) and O(z’,y’) do not intersect non-tangentially for any
pair of points in the set 2 := Uupe(y (I X J)Nspt |1« 5 of full mass. Therefore, choose
(z,y) and (2/,y') from 2, say (x,y) € I x J and (2',y") € I' x J' with (I, J) and
(I',J") in arc(G).

To derive a contradiction, suppose O(z,y) and O(z’,y’) intersect non-tangentially.
Then the points z, z’, y, 7’ must be distinct and ordered either clockwise or counter-
clockwise around the circle; assume clockwise without loss. Clearly (I,J) # (I, J’),
for otherwise both (z,y) and (2’,%y’) would belong to the set spt-~y|;x.s, which, by
construction, has no crossings. If all four intervals I, I’, J, J' were distinct, then
they too would be ordered clockwise on the circle; but since (I,.J) and (I’,J’) are
arcs of G this contradicts the assumption that the network G be uncrossed. The
only remaining possibilities are I = I’ but J # J' (and the case I # I’ but J = J’,
which can be handled similarly). Let L’ and R’ € face(G) denote the faces to the left
and right of (I, J’). Since I, J, J" are ordered clockwise on the circle, the considera-
tions above show that ¢(R) < ¢(L’). Thus one proceeds counterclockwise in I from
T € spt Xy A[nye(L),nte(r) through X(n+ ¢(R)) to 2’ € spt Xpt A nto(L)),nt+ (R
This contradicts the clockwise ordering supposed for z, z’,y, v, thereby establishing
the theorem. |

Corollary 3.12. Take p, G, v and ¢ from theorem 3.11 and c(z,y) Borel on R?.
Adopting the same notation as in the theorem, curl ¢ =~ implies

#(R)
/ cdy = / (X (n+6),Y(p— 0)) o, (3.6)
IxJ #(L)
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Proof. The restriction of v to I x J has marginals u := X4A1(L),n+4(r)] and
v = Yyup_g(Rr),p—¢(r) Dy theorem 3.11. When m > 0, it is clear that X (n + 0)
moves counterclockwise around the circle as 6 is increased, sweeping through I from
one end to the other as  moves from ¢(L) to ¢(R). At the same time, Y(p — 0)
sweeps clockwise through J. (When m = 0, these same facts follow directly from
feasibility, which implies ¢(L) = p4[(—00,I)] —n while ¢(R) = p— p_[(—o0, J)].) In
both cases, remark 2.13 shows that the curve Z(0) := (X(n +0),Y (p — 0)) defined
on ¢(L) < 0 < ¢(R) has no crossings. Neither will the measure Zy\ 41 4(r) in
I'(p,v).

Now 7|7« has no crossings by compatibility of v with G, and its marginals p and v
are supported on disjoint intervals. The uniqueness assertion of proposition 2.11
forces ZyAp(1),6(r)] = V|rxs. Finally, (3.6) follows from the change of variables
formula (2.7): if either integral makes sense, they both exist and coincide. |

4. Convex separable flow optimizations

In the preceding section, a parametrization was developed for measures v without
crossings in terms of flows (or equivalently potentials ¢ : face(G) — R) on uncrossed
networks G. Here we take up the theme of its final corollary: exploring the properties
of the transport cost associated with v as a function of the values of ¢.

Given an uncrossed network G on the supply and demand intervals of p € M{*(R),
our first lemma shows that the feasible potentials ¢ form a compact convex polytope.
Theorem 4.4 goes on to assert that the transport cost C(y) associated with ¢ must
be convex and separable (1.4) as a function of the variables ¢(F') with F' € face(G).
Thus, for costs of concave type, the transportation problem reduces to the opti-
mization of several convex separable network flows: the infinite-dimensional linear
problem is replaced by (3m choose m)/(2m + 1) convex minimizations, each in m
dimensions. Because of separability, excellent algorithms exist for computing the
optimal flows (see Rockafellar 1984). Small examples can be solved explicitly.

Lemma 4.1. Fix p € M{(R) and an uncrossed network G on its intervals of sup-
ply and demand. Then the feasible potentials ¢ form a compact convex set: enumerat-
ing interior faces Fi,..., Fy, € face(G), the map (¢1,...,¢m) = (¢(F1),...,¢(Fn))
defines a bijection from the feasible potentials onto a convex polytope @ C R™.

Proof. Define &g := {(¢(F1),...,¢(Fy,,)) € R™ | ¢ is a feasible potential on G}.
The feasible potentials ¢ : face(G) — R correspond bijectively with the points of @
because their values on boundary faces of G are prescribed by p in definition 3.8. The
only other requirement for feasibility is non-negativity of the flow curl ¢, meaning
¢(L) < ¢(R) holds whenever the faces L and R lie adjacent to the left and the right of
an arc in G. Thus, @¢ is defined by finitely many linear inequalities—one for each of
the 3m + 1 arcs in G—making it a convex polytope. Since @« is closed, compactness
is implied by lemma 3.10, which asserts that the maximum and minimum values of
¢ are attained on boundary faces of G. ]

Now fix an interior face F' € face(G) and consider how the transport cost depends
on ¢(F). Since F' is bounded by four arcs of G, this value of the potential occurs
in four terms (3.6) contributing to C(y); two increase with ¢(F') while two decrease.
Remarkably, the assumption that c¢(z,y) be of concave type precisely ensures that
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X,(6)

Y (6)

Y, (6)

X,(6)

Figure 7. Dependence of the transport cost on ¢(F;) is probed by varying 6.

o0

Figure 8. Concave type: means c(z,-) — c(z’, ) increase as - slides from z toward z’.

they combine to make the transport cost a convex function of ¢(F'). This is proved
in theorem 4.4, essentially by differentiating the transport cost with respect to ¢(F).
A proposition first establishes monotonicity of the putative derivative, which, as
figure 7 suggests, is given by (4.1). Lemma B 1 (figure 8) provides a key ingredient.

Proposition 4.2. Fix p € M (R), an uncrossed network, G, on its intervals of
supply and demand and a cost of concave type, c(z,y). If F € face(G) is an interior
face, two of its four boundary arcs run clockwise: call them (I, Jy) and (I, J3) €
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arc(G). A non-decreasing function, f : (a,b) — R, is defined by

f(0) = c(X(n1+0),Y(p1 — 0)) +c(X(n2+0),Y(p2 — 0))
—c(X(n1+0),Y(pa —0)) —c(X(ngy+0),Y(p1 — 0)); (4.1)

here
a = rnjax{p[(—oo, Ij)]v p[(—OO, J]H}a b= Injin{p[(—oo, Ij”a p[(—OO, JJ)]}a
n; = p_[(—o0,1;)] and pj;:=pi[(—00,J;)], forj=1,2,

while X and Y : [0,t] — R are the non-decreasing maps with p; = Xz and p_ =
YuA, extended periodically X (0) = X(0+t) and Y (0) =Y (0 +t) with period t =
p+[R].

Moreover, f increases strictly unless py has point masses at both X(n; + ),
j = 1,2, while p_ has point masses at both locations Y (p; —6) for the same 0 € (a,b).

Proof. Assume a < b, since otherwise the proposition is vacuous. Before going
further, we observe from lemma 3.10 that a < 6 < b implies X (n; + 0) € I; and
Y(p; —0) € J; for j =1,2.

Now consider the cross-difference

A(z1,y1,72,y2) = (@1, Y1) + (T2, y2) — c(x1,y2) — (T2, Y1), (4.2)

defined on I; x Jy X I3 x Ja. Since the arcs (I, J;) run clockwise around the boundary
of F', the four disjoint intervals Iy, Ji, I and J2 are ordered clockwise on the circle
R ~ S 1. Remark 4.3 notwithstanding, (4.2) takes only real values for costs of concave
type since the remark before lemma B1 (in Appendix B) shows c¢(z,y) > —oo if
x # y. Fixing any three variables (say z1, y1 and x3), corollary B3 shows (4.2) to
be strictly monotone in the fourth variable (in this case yo € J3). More specifically,
the ordering implies that A(xy,y1, 22, y2) is increased when either y; or yo is moved
clockwise, or when x1 or x5 moves counterclockwise. Monotonicity of X and Y makes
it clear that increasing 6 moves y; = Y (p; — 6) clockwise through J; and z; =
X(n; +6) € I; counterclockwise, as indicated in figure 7. Now fix a < 0 < ¢ < b
and set y; = Y (p; —0') and 2, = X(n; +¢'). The difference

COR (9) A

ro ror
$1,y1,$2,y2 (xlaylaIQayQ
/

( ) = )
A(z1,y1, 25, Y) — A(@1, Y1, 75, Y5)
A1, y1, w9, 45) — A1, Y1, T2, 3)

+ A(Il, Y1: T2, y5) — A(T1, Y1, T2, Y2)
is expressed as a sum of four non-negative quantities, verifying f non-decreasing on
(a,b). Moreover, f(6') > f(6) unless all four terms vanish, in which case X (n;+6") =

X(nj+0) and Y(p; —0') =Y (p; — 0). Thus f increases strictly, unless mass 6’ — 0
is concentrated by p at both z1 and z2, and by p_ at both y; and ys. |

Remark 4.3. Technically, it is possible that X (6) or Y () is infinite at § = 0
and t. Should oo also lie in the interval I; or Jj;, j = 1,2, then (4.1) may fail to be
well defined for one value of 6 in (a,b). The convex function (4.3), however, remains
well defined.
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To each interior face F; € face(G), proposition 4.2 associates a non-decreasing
function f; : (a;,b;) — R through (4.1). A convex function C;(s) is then defined on
[aia bz] by

cis) = [ (o). (4.3)

Here z; := 3(a; + b;) is chosen to be the centre of [a;,b;], so that C;(s) takes finite
real values except perhaps at s = a; and s = b;.

Since we also want the transport cost C(y) to take finite values on I'(p4, p_), it is
convenient to assume the excess production p satisfies the ‘moment conditions’

/ c(z,q)dps(z) < oo and / c(g,y) dp—(y) < oo, (4.4)

for some (and hence all) g € R.

Theorem 4.4. Fix p € M{*(R), an uncrossed network G on its intervals of supply
and demand, and a Borel cost of concave type c(x,y) > 0 satisfying (4.4). To each
feasible potential ¢ associate the transport cost Ca(¢) := C(v), where curl ¢ = ~y for
v € I'c(p+, p—). Enumerate the interior faces Fi,. .., Fy, € face(G). Then for some
constant Cy € R,

Ca(p) = Co+ Z Ci(o(F3)), (4.5)

where C;(s) denotes the convex function (4.3) corresponding to the face F;.

Proof. Define p(I) := py[(—o0,I)] and n(I) := p_[(—o0, I)] to be the total posi-
tive and negative mass (respectively) of p that lies between —oco and I € node(G).
Let X,Y :[0,t] — R denote the non-decreasing maps pushing the Lebesgue mea-
sure forward to pi = XgAjp and p— = YyA[py, extended periodically to the line
with period ¢t = p4[R]. Then use

+1, if (I, J) runs clockwise along the boundary of the face Fj,
6(1,J) = 0, if (I,.J) is not a boundary arc of the face Fj,
-1, if (I, J) runs counterclockwise along the boundary of Fj,
(4.6)

to define the function

m ¢i
Konon)i=>. Y (L) [ dX(ul)+0).Y(p()) - 0)do, (47
i=1 (I,J)Earc(G) 0
on the rectangle IT := [a1,b1] X -++ X [am,bm]. Here a; and b; are chosen so that
[a;, b;] = (conv{p(I) — n(I),p(I) — n(I) + p[I]}, the intersection being over the
four corners I € node(G) of the quadrilateral F;; conv K denotes the convex hull of
K CcR.

Our first observation is that the rectangle IT contains the feasible set @5 C R™;
ie. if ¢ : face(G) — R is feasible, then ¢(F;) € [a;, b;] for i = 1,...,m. This follows
directly from the definition of [a;, b;] and lemma 3.10.

Our next step is to verify that the transport cost Cg(¢) coincides with the restric-
tion of K to ®@¢: given a feasible potential ¢ : face(G) — R, or the measure

Proc. R. Soc. Lond. A (1999)



1368 R. J. McCann

v € I'g(py, p—) with curl¢ = v from theorem 3.11, the claim to be established is
that C(y) = K(¢(Fy),. .., ¢(Fy)). From the moment conditions (4.4) and lemma B 6,
the integrals defining K converge and the order of the sums can be interchanged in
(4.7). Associate to (I, J) € arc(G) the indices R(I,J) and L([, J) of the faces Fr(;, s
and F(; ) that lie immediately to the right and left of the arc (7, .J). The observa-
tion that €;(I,J) is positive for i = R(I,J) and negative for i = L(I,J), vanishing

otherwise, allows us to compute the sum over i =1,...,m in (4.7):
PR(I,T)
Kb, 6u) = [ X 0, Y () - o) a6, (48)
dL(1,7)

(1, J)earc(G)

Recalling that v € I'g(u,v) vanishes outside of the disjoint union J (1. yearcc) L X
comparing (4.8) with (3.6) yields IC(¢(F1), ..., ¢(Fn)) = C().

Having shown that Cq(¢) = K(¢(F1),. .., ¢(Fy,)), what remains to be verified is
that K(¢1,...,0m) — Y ie; Ci(¢;) takes a constant value throughout the rectangle
IT. Interchanging the order of the sum and the integral in (4.7) yields

m bi
KmWWM:Z/ﬂ@M (4.9)
i=1"0
where the integrands f;(0) are defined for 6 € R by

[i0):= Y all, e(X(n(1) +0),Y (p(J) = 0)). (4.10)

(I,J)€arc(@)

Fix i € {1,...,m}, and let I, Jq, I3, Jo denote the four nodes at the corners of
the face F;, labelled clockwise around the circle starting with an interval of supply.
Evaluating f;(0) from (4.10) and the definition (4.6) of €;(I, J) yields

fi(0) = (X (n(11) +0),Y (p(J1) - 0)) + (X (n(l2) + 6),Y (p(J2) — 0))
— (X (n(L) +0),Y (p(J2) = 0)) — (X (n(l2) +0),Y(p(J1) = 0)).  (4.11)

Comparison with (4.1) makes it clear that the functions f;(#) appearing in (4.9) and
(4.3) are the same, at least on [a;, b;] where both are defined. Thus

]C(d)la ce 7¢m) = CO + Z Cz(@)a
i=1
holds with the constant
%FZ/ﬁ@M
i=170

These integrals converge by lemma B 6 again. |
To summarize, the last two sections imply that minimizing the transport cost C(v)

among measures v € I'(p4, p_) compatible with G is equivalent to minimizing the
convex function

Ca(b1,-- s bm) =Y Cil i), (4.12)
i=1
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on a convex polytope @ C R™. The left and right partial derivatives of C may be
computed from (4.3) to be

0Cq

%(%, ey ) = 91—13;1? fi(0), (4.13)

where the non-decreasing function f;(¢;) associated with the face F; is given by (4.1).
Geometrically, it is the spatial variables rather than the mass variables ¢; that play
the central role: they represent the four points z; = X(n; +¢;) and y; = Y (p; — ¢4),
j = 1,2, at which the measure v = curl ¢ divides the flow of mass from the interval
of supply I; into the intervals of demand J; and Jo (compare theorem 3.11 with
figure 7). The stationarity condition for the cost pits the cross-difference f;(¢;) of
the four points x1, y1, x2 and yo against the feasibility constraints. At last, this puts
us in a position to verify example 1.1 as follows.

Example 1.1 (revisited) Let p be distributed sinusoidally over —10 to 10: dp(z) =
sin(rxz/5) dz. Then m = 1, yielding a unique uncrossed network G: a square with
vertices in the intervals I := [-10,—5] = —J; and I = [0,5] = —J2. The bound-
ary values of ¢ for feasibility are 0,(10/7),0, (10/7), while ¢(Fy) must lie in &g =

[0, (10/7)]. To minimize the convex cost Cg(¢1) on @g, use the symmetries
XO0)+10=X(na+6)=-Y(p1 —0)=10—-Y (p2 — 0),
to compute its derivative from (4.1) and (4.13)
dCq
Qb c(x — 10,10 — x) + ¢(z, —z) — ¢(z — 10, —z) — ¢(x, 10 — z), (4.14)

in terms of x = X((10/7) + ¢1). For the concave cost c(z,y) = /2| —y|, the
minimum of Cg occurs at = 1 when (4.14) vanishes. Since the optimal measure
v € I'(p4, p—) must be compatible with G (theorem 2.5 and lemma 3.3), this confirms
the description (1.2)—(1.3) of the optimal map s(x) and measure ~.

5. Global optimization and separation of scales

This fifth and final section is devoted to a characterization of optimal measures that
shows the sufficiency of three necessary conditions as follows.

Theorem 5.1. Fix p € M{*(R) and a continuous cost c(x,y) > 0 of concave type.
A measure vy € I'(p4, p—) is optimal provided:

(i) v has no crossings;
(ii) C(y) < oo; and

(iii) C(y) < C(¥) whenever v and ¥ € I'(p4, p—) are both compatible with the same
uncrossed network G on p’s intervals of supply and demand.

The beauty of this result is that it combines with the preceding sections to yield a
powerful algorithm for computing and verifying exact solutions of the transportation
problem. Indeed, optimality of an uncrossed measure v can now be verified with a
finite computation. The present theorem asserts that v is optimal if and only if its
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cost is a minimum among all ¥ € I'c(p4, p—) and uncrossed networks G compatible
with 7. Parametrizing I'c(p+, p—) in the coordinates of the preceding section, the
transport cost is given by a (separable) convex function Cg(¢1,...,¢m) on a poly-
tope @ C R™. Convexity ensures that any critical point will be a minimum of Cg
on @c. Thus the conditions guaranteeing optimality are local in ¢: «y is optimal if
and only if the corresponding point (¢1, .. ., ¢, ) satisfies the Kuhn—Tucker equations
for a critical point on each uncrossed network G compatible with . There are only
finitely many such networks to check, while the explicit form of the equations may
be recovered from (4.1), (4.13) and the constraints of definition 3.8.

Similarly, to find an optimal measure, choose any v € I'(u, v) having no crossings.
Unless « is optimal, it is compatible with some uncrossed network G on which the
transport cost can be lowered. Minimize the restriction Cg(¢1, ..., ¢n) of this cost
to &¢ ~ IG(py,p—) using one of the network flow algorithms referred to in §4.
Replace « by the minimizing measure 4 ~ d*¢, and repeat this procedure to obtain
an optimal measure in no more than d,, iterations. As with the simplex algorithm,
one may hope that the required iterations number far fewer than d,,, since one need
not check networks G with which v is incompatible.

The idea underlying theorem 5.1 is that optimality of « can be established by
testing independently on m different size scales, as long as each pair of neighbouring
scales is consistent. Viability of this approach is hinted at by the hierarchical struc-
ture of uncrossed networks as well as by the rule of three. Before delving into the
argument, we recall (without proof) a characterization of optimal measures based
on inequalities related to (2.1). First derived by Smith & Knott (1992) from duality-
based work of Riischendorf (1991), a direct demonstration of necessity is given in
Gangbo & McCann (1996, thm 2.3); sufficiency can then be inferred from unique-
ness.

Definition 5.2. A subset 2 C R? is called c-cyclically monotone if, for every
finite collection of points (z;,y;) € 2,1 =1,...,n, setting y,+1 = y1 yields
n n

> (@i y) < cl@i yiga)- (5.1)

i=1 i=1

Theorem 5.3 (Smith & Knott). Let c(z,y) > 0 be continuous, v € M (R?)
and C(7) < co. Then # is optimal if and only if spt+y is c-cyclically monotone.

As the next proposition shows, c-cyclical monotonicity can be used to deduce a con-
sistency condition matching optimal solutions on different domains. Before proving
the proposition, we state a lemma that demonstrates that any set without crossings
is contained in complementary squares on the torus R x R ~ St x S1.

Lemma 5.4. Suppose T C R? has no crossings. Choose (a,b) € T, and let I C
R denote the compact interval with end-points a and b; denote the closure of its
complement by I := closure(R\ I). Then T C (I x I)U (I x I).

Proof. Let (x,y) € T. Then either 2 € I or z € I. If both are true, i.e. z = a or b,
then certainly (z,y) € (I x I)U (I x I). On the other hand, since the circle O(z, y)
does not cross a circle O(a, b) through the end-points of I, an interior point = € I
forces y € I; similarly = & I forces y € I. Either way, (z,y) € I x T or I x I. |
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Proposition 5.5. Choose a cost c(x,y) of concave type and a compact interval
I C R with end-points a and b. Let S C R? be contained in the square I x I, while
T C R? is disjoint from this square. Then c-cyclical monotonicity of SU{(a,b)} and
T U{(a,b)} implies the same for their union SUT.

Proof. Assume (a,b) € S without loss of generality. Also assume a < b; the other
case is handled by observing ¢(z,y) := ¢(—z,—y) to be of concave type, while the
reflections of S and T through the origin are ¢é-cyclically monotone sets. Finally,
observe c-cyclical monotonicity precludes crossings in 7'U {(a,b)}, by the two-point
n = 2 inequality (5.1) and the definition of concave type. Thus, lemma 5.4 yields
TcIxI , where I denotes the closure of the complement of I C R.

To any finite sequence of points (z1,41),- .-, (Tn,¥n) € SUT, associate an integer
s < %n that counts the number of switches: that is, the number of ¢ = 1,...,n
for which (z;,y;) € S but (2,(:),Ys(s)) € T; here 0 = (12...n) denotes the cyclic
permutation on n letters. We shall establish (5.1) by induction on s.

When s = 0 the complete sequence of points is contained either in S or T', so (5.1)
follows from c-cyclical monotonicity of S or of T. If s > 0 the sequence labels can
be permuted cyclically to ensure (z,,,y,) € S but (z1,y1) € T without affecting the
veracity of (5.1). Now let j < n denote the smallest index for which (z;,y;) € T
but (x;41,yj4+1) € S. An analysis of cases is required depending on the sign of the
cross-difference

A(Z5, Yo (5)s Tns Yo(n)) = (X1 Yo(j)) T (Tns Yo(n)) — (5, Yo(n)) = (Tn,s Yorj))-
(5.2)
Case (A) A<xj7 Yo(j): Tn; ycr(n)) > 0 implies
n J n n

Z (i, Yo (i) = Z c(xs, Yr(s)) + Z (i, Yn(i)) = Z (s, yi)-

1 1 j+1 1

Here 7 = (12...j) and 7 = (j+1 j + 2...n) are cyclic permutations of two disjoint
subsequences and the second inequality follows from the inductive hypothesis: the
subsequence of length j has zero switches since its elements lie entirely in T, while
the subsequence of length n — j begins and ends in S so has s — 1 switches by
construction.

Case (B) A(zj,Yo(j): Tn:Yo(n)) < 0 precludes any intersection of the circles
O(z5,Yo(s)) apd O(p, Yo(n)) since the cost c(z,y) is qf concave type. Rfecalling S C
I'x I, our choices of j and n ensure that y,(;) and x, lie in I = [a, b], while y4(,,) and
T he outside of the interval (a, b). Thus the counterclockwise order of points around
the circle R may be taken to be either (B1) Yo(n)s @, Tns Yo(s), b, x4, or (B2) x5, a,
Yo(j)s Tns Oy Yo(n)-

As long as the ordering (B1) is respected, corollary B 3 shows the cross-difference
(5.2) to increase with z,, and decrease with y,(;. Thus,

Az, b,0,Yo(n)) < A2, b, Tn, Yon)) < A5, Yo()s Tns Yo(n))- (5.3)
Identifying (zo, yo) := (a,b), the sequence (zo, o), .- ., (xj,y;) lies in T U {(a,b)}, so
c-cyclical monotonicity with 7 = (012...5) yields

J J
Zc(mivyl ZC IzayT( ) (54)
0 0
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The sequence (Zj41,Yj+1),- -, (Tn,Yn) has s—1 switches, so, as before, the inductive
hypothesis yields
ZC(Iiayi) < Zc(‘riayﬂ'(i))’ (55)
Jj+1 j+1
where 7 = (5 4+ 1 j +2...n). Summing (5.3)—(5.5) gives the desired conclusion, i.e.
(5.1).
Similarly, if the ordering (B2) is respected, then corollary B3 shows (5.2) to
increase with y5(,) and decrease with x; in R. Thus,

A(avya(j)vxnab) < A(xjvya(j)vxnaya'(n))' (56)
Identifying
(Tnt1,Yn+1) := (a,b) € S,

the inductive hypothesis yields c-cyclical monotonicity of the sequence

(xlayl)a teey (xjv y]):
and also of
(Ij+17 yj+1)7 oy (Tng1, Yngr)s

the first sequence has zero switches, while the second sequence has s — 1. Replacing
the lower limits in (5.4) by ¢ = 1 and the upper limits in (5.5) by ¢ = n+ 1, summing
(5.4)-(5.6) with 7= (12...j) and 7= (j+1 j+2...n+1) yields (5.1) to complete
the proof. [ |

After a preliminary lemma, one more inductive argument will complete the proof
of theorem 5.1.

Lemma 5.6. Suppose v € M4 (R?) has no crossings, and its mass lies on the
product of two disjoint intervals I,J C R. For some compact interval K C R, with
complement K and end-points a € I and b € J, v = 7”4+ 4! decomposes into
non-negative measures with spty! C K x K and spt7” C closure(K x K), but
(a,b) € spty” Nspt L.

Proof. For any (a,b) € sptn, if 4! is defined as the restriction of v to K x K,
then lemma 5.4 will guarantee spt7° C closure(K x K). However, to ensure (a,b) €
spt v? N spt ! requires a brief argument.

Corollary 2.12 represents v = ZxA[g4 as the image of a Lebesgue measure on
a curve Z(0) = (X(0),Y(¢p —0)), where X and Y are non-decreasing functions on
0<f<t=~[R], and Y(0) :=Y (0 +1t) extends periodically. The monotone func-
tions, X and Y, have only countably many discontinuities, so for the rest of the
proof fix a point 6 € (0,¢), at which the curve Z is continuous. Let K C R be the
compact interval with end-points a := X (6) and b := Y (¢ — 0). Clearly a # b, since
a € I, while b € J. If B denotes a small open ball centred at (a,b), then

Q1:=BnN(K xK) and Qp:=Bnclosure(K x K)

will be, respectively, the upper-left and lower-right quadrants of B. Since Z is mono-
tone non-increasing in a neighbourhood of Z(8) = (a,b), the continuity of Z at 6
ensures y[Q;] > 0 for i = 0, 1. Let m > 0 denote the mass that - assigns to the single
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point Qo N Q1 = {(a,b)}, and define y' := 7|k x k —M(qp)/2 and 7° := v — 4. Obvi-
ously, spt v c K x K, while lemma 5.4 yields spt 7° C closure(f(xf(). When m > 0,
both 7? and 4! include a Dirac mass at (a,b) so certainly (a,b) € spty” N spt~y?.
Otherwise m = 0, in which case v¢[Q;] = 7[Q;] > 0. Since the ball B can be taken
as being arbltrarlly small, one must have (a,b) € spty® for i =0, 1. |

Proof of theorem 5.1. Let ¢(z,y), p € M (R) and v € I'(p4, p—) satisfy hypothe-
ses (i)—(iii) of theorem 5.1. To conclude that +y is optimal, we consider two cases: either
I x J] > 0 for some pair of non-adjacent intervals I of supply and J of demand, or
no such pair I, J C R of intervals exists. The latter case is easily resolved: v would
be compatible with every uncrossed network on p’s intervals of supply and demand
because definition 3.1(iv) ensures that any such network includes all arcs between
adjacent nodes. Moreover, the transport cost (1.1) is known to be minimized by some
optimal measure ¥ € I'(p4, p—) with C(3) < C() < oo. Since 4 has no crossings in
view of theorem 2.5, it is compatible with an uncrossed network G by lemma 3.3.
Hypothesis (iii) yields C(y) < C(¥) whence v is optimal.

We therefore return to the case in which «[I x J] > 0 for some non-adjacent
intervals I of supply and J of demand. Since I would lie adjacent to J if m < 1, in
those cases there is nothing to prove. What remains to be shown is that optimality
of v for m > 1 follows by induction on m.

Therefore, assume the theorem has been established for all smaller values of m > 1.
Since 4 has no crossings, neither does its restriction 1 := |7« to I x J. Applying
lemma 5.6 to 1 yields a compact interval K C R with end-points @ € I and b € J and
a decomposition n = n° +n! with (a,b) € sptn° Nsptn', where sptn' C K x K and
sptn’ C closure(f( x K ). In view of lemma, 5.4, the decomposition of v = v94+! given
by vt =0t + (v — )|k x K inherits the same properties. We shall use the inductive
hypothesis to derive optimality of 4° and 7 with respect to the cost function c(x y)

Denote the left and right marginals of 'y by p% and p* for ¢ = 0,1. Define p
ply — p*. From spty' C K x K and spt+° C closure(K x K) it is Clear that p' van-
ishes outside K while p° vanishes inside K. Thus p' is the restriction of p to K,
and p° its restriction to K, except that any Dirac mass concentrated on the end-
points a € sptp’, and b € spt p°. may be divided between p° and p'. Recall that
p € Mg'(R) means m + 1 intervals of supply are required to contain the full mass of
P+, where interval of supply refers to a maximal interval L C R satisfying p_[L] = 0
but p4[L] > 0. Label these intervals Iy, I3, ..., I, around the circle R, starting from
Iy := I and continuing through K toward J. Thc interval J of demand lies between
some pair I; and Ij;1, where 1 < j < m — 1 since J does not lie adjacent to I.
Thus the j 1nte1vals Iy,...,I; in the interior of K, plus one interval containing Iy,
represent the intervals of supply for p'. Similarly, the m — j intervals outside of K
plus one interval containing Iy represent the intervals of supply for p°. Since the full
mass of p’, is contained in m (or fewer) intervals of supply, the inductive hypoth-
esis will apply provided ~¢ satisfies (i)—(iii). The first two conditions are met since
spty? C spty and C(v%) < C(y) < oo. The third requires a more involved check.

Suppose v is compatible with an uncrossed network G, on the intervals of supply
Io, I1,...,I; and demand for p'. Similarly, let v be compatible with an uncrossed
network G on the intervals of supply 11, ..., Im, Iy and demand for p%. (Such net-
works always exist in view of lemma 3.3). If the demand node for p! between I; and I,
is identified with the demand node for p between Iy and I 1, then p will be com-
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patible with the uncrossed network G whose arcs are given by arc(G) := arc(Gg) U
arc(G1). Now suppose 3 € I'q,(p%, p°) and 3* € I'z, (pL, p1). Then 3° + 5! belongs
to I'g(py,p_), so its transport cost can be compared to that of 7 = +% + ! using
(iil): C(v* +~') < C(3° + 4') or equivalently
C(Y’) +C(v') <C(3) +C(FY.

Choosing 41 =% = 4!=% and observing (ii) yields (iii) C(7*) < C(5%) when i = 0, and
similarly when ¢ = 1. The inductive hypothesis can at last be applied to conclude
optimality of v and ~!.

Finally, Smith and Knott’s criterion (theorem 5.3) shows sptv* to be c-cyclical
monotone for i = 0,1. Both supports include the point (a,b) € R?, so applying
proposition 5.5 to S := spty! and T := spt y°\ (K x K) yields c-cyclical monotonicity
of SUT. Since S has full measure for 4! while T'U {(a, b)} has full measure for 4,
the union S U T has full measure for v = 7% + ~!. Because c(z,y) is continuous,
taking closures of sets preserves c-cyclical monotonicity. In particular, the support
of v is contained in the closure of S U T and therefore c-cyclically monotone. One
last application of theorem 5.3 confirms that v must be optimal. |

6. Conclusions

The classical transportation result is the duality theorem that characterizes opti-
mal distribution plans by the existence of a consistent shadow pricing scheme. The
present study has had a different flavour, exploring the spatio-geometric implications
of concave transportation costs (with respect to the distance). Concavity translates
into an economy of scale for longer trips, which in certain situations will encourage
cross-hauling. This tendency was shown to lead to the formation of a hierarchical
structure in which price and distribution patterns repeat on different spatial scales.
Specific predictions concerning qualitative and quantitative aspects of this structure
were made that did not depend on details of the cost (e.g. the no-crossing rule and
the rule of three), and therefore offer ready tests of the theory against empirical data.
The structure of the line was then exploited to show that, in one dimension, a
complete solution to the problem does not require knowledge of the shadow prices
everywhere, but merely the location of a few points where differentiability of this
price must fail. These act like watersheds to separate different regions of the hier-
archy, and can be located by an algorithmic sequence of finite-dimensional convex
programs in standard form, each of which was represented as a network graphically.
This reduction from an infinite-dimensional problem with its continuous distribu-
tion of excess production to a handful of small network flow problems—required the
sacrifice of linearity for convexity. It is nonetheless remarkable, and suggests that effi-
cient distribution can generally be achieved by optimizing independently on different
scales, and then allowing competition to adjust the boundaries between scales.
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Appendix A. Non-decreasing maps and convex costs

For comparison’s sake, we briefly recall the salient features of the transportation
problem with strictly convex costs ¢(z,y) = ¢(x — y) on the line: namely, that the
optimal measure v € I'(u,v) must have non-decreasing support (definition 2.8), a
restriction that characterizes this measure completely. These facts are well known
and can be generalized to smooth costs satisfying the condition §%¢/dxdy < 0 used
by Lorentz (1953), Spence and Mirrlees in the theories of rearrangements, signalling
and optimal taxation (see Rochet (1987, §3) for references).

Proposition A 1. Let ¢(x,y) = ¢(x —y) with £ > 0 strictly convex on the line. If
v € M, (R?) is optimal then spty C R? must be non-decreasing.

Proof. To produce a contradiction, suppose v € M (R?) is optimal yet fails
to have non-decreasing support. Then there exist (z,y) and (2’,y’) in spty such
that (z' — z)(y’ — y) < 0. Taking x < 2’ costs no generality and forces y’ < .
Thus both z — 3" and 2’ — y must lie in the interval (z — y,z’ — y'). Expressing
r—y =0—-t)(z—y) +t(x' —y) yields 2’ —y =t(x —y) + (1 — t)(z' —y') with
t € (0,1). Strict convexity of £ then gives

C(i, y/) < (1 - t)c(a:, y) + tC(I/, y/)a
C(Ilay) < tc(m,y) + (1 - t)c(mlay/)‘

But the sum of these two inequalities contradicts (2.1) and also theorem 5.3. |

Proposition A 2. Given measures p,v € My (R) with the same total mass
u[R] = v[R], there is a unique joint measure vy € I'(u,v) that has non-decreasing
support.

Proof. Existence of v is simple: let X, Y : [0,¢] — R be the non-decreasing maps
defined on the interval of length ¢ := p[R] so that p = Xz and v = Yud(gy-
Setting Z(0) := (X (0),Y(0)), the measure Z4\jp, has the correct marginals while
its full mass lies on the non-decreasing curve Z(6).

To address uniqueness, assume v € I'(p, ) has non-decreasing support. We shall
show the values of v to be completely determined by its marginals p and v. Since all
Borel sets are generated by products I; x J; of semi-infinite intervals Iy = [a, +00)
and J; = [b, +00), it is enough to express y[I; X Ji] in terms of p and v.

Adopt the notation Iy := R\ Iy and Jy := R\ J; for the complementary intervals,
and define the two-by-two matrix ~;; := y[I; x J;]. Its column sums and row sums
are prescribed to be p; := p[l;] and v; := [J;], for 4,5 € {0,1}. These provide three
independent constraints on the matrix 7;; in terms of o, vg and t = po+p1 = vo+v1.
There is a fourth constraint also: since spt v is non-decreasing, either 7y; or y19 must
vanish. This leaves two possibilities only:

Yo Y1\ _ (0 t—w or [Ho—vo t—po) (A1)
Yoo V10 Mo Vo — Mo 0 0
But one of these matrices has a negative entry, except in the special case pg = vp;

either way, (A1) selects 7;; > 0 uniquely depending on u[ly] and v[lp]. Since the
intervals I; and Jy were arbitrary, v € I'(u, v) is also unique. |
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Appendix B. Costs of concave type

This appendix explores some basic properties of the class of costs to which our results
apply: the costs that we called concave type in definition 2.2. It begins with several
alternative characterizations for this class of costs—sometimes subject to additional
restrictions of smoothness or symmetry and ends by bounding the transport cost
C() on I'(p4, p—), unless this cost turns out to be identically infinity.

The first lemma and its corollaries give a characterization of concave type in terms
of monotonicity (see figure 8). They play a crucial role in propositions 4.2 and 5.5.
This is followed by a lemma showing that additional symmetry reduces the costs
¢(z,y) of concave type to strictly concave increasing functions of Euclidean distance
|z — y|.- A third lemma develops a differential characterization for smooth costs of
concave type. It shows equivalence of concave type to the assertion that concavity
of ¢(z,y) in the direction leading away from the diagonal must outweigh convexity
in the direction parallel to y = x.

We begin by observing that for ¢ : R? — R U {—o0} of concave type, one knows

x # y and y # z imply
c(z,y) + ey, z) > c(z, 2) + c(y, y). B1)

To see this from the definition, set ¥’ = y and y’ = z; the intersection of the circles
O(z,y) and O(y, z) prevents (2.1) from being true. This version (B1) of the strict
triangle inequality asserts that, for a cost of concave type, it cannot be efficient to
move mass from x to y and simultaneously from y to z; any factory at site y must
be supplied from the on-site mine. Since the left side must be finite, we conclude as
well that ¢(z,y) > —oo if z # y; infinite cost does not occur off the diagonal.

Lemma B 1. Fora cost c: R? — RU{—o0} to be of concave type, it is necessary
and sufficient that c(z,-) — c¢(a’,-) increase strictly whenever (-) moves around the
circle S* ~ R from z toward =’ # .

Proof. To establish necessity, assume the cost to be of concave type. Given four
real numbers z, 3, y and 2’, labelled in order (either clockwise or counterclockwise)
around the circle R ~ S, we are asked to show

c(z,y) — e, y) <clz,y) —c(@’,y); (B2)
here z = ¢y and y = 2’ are allowed, but all other pairs must be distinct. The
ordering of points forces the circles O(z,y) and O(2’,y’) to intersect, though x # y
and y’ # x’. Since the cost is of concave type, one cannot have (2.1); the alternative
(B 2) establishes the necessity claim. (Both sides of this inequality are unambiguously
defined, since ¢ = —oo does not occur off the diagonal.)

To prove the converse, suppose ¢ fails to be of concave type. Then (2.1) is satisfied
by four points x # z’ and y # ¢/, for which O(z,y) and O(z’,y’) intersect. These
four points will be ordered z, 7', y, ' on the unit circle, if not clockwise then
counterclockwise. One also knows x # y, since otherwise the first circle degenerates
yielding 2’ = z = y or z = y = ¢y’ (a contradiction). Similarly ' # 3. Strict
monotonicity (B2) of ¢(x,-) — ¢(2’, ) cannot hold without contradicting (2.1). This
establishes the sufficiency claim. ]

Corollary B 2. An equivalent condition is that c(-,y) — c(-,y’) increases strictly
whenever (-) moves around the circle S* ~ R from y toward y' # y.
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Proof. From definition 2.2, é(x,y) := c(y,z) will be of concave type whenever
¢(z,y) is. The corollary follows by applying lemma B1 to ¢é. [ |

Corollary B 3. Fix a cost c(x,y) of concave type. If four numbers z, y, z', o/
remain ordered clockwise around the circle R, the cross-difference A(z,y,z’,y") :=
c(z,y) + c(2’,y) — c(z,y') — c(2',y) will increase strictly when either y or y'
moved clockwise, or when x or ' moves counterclockwise, the other three arguments
remaining fixed.

Proof. The pairs of variables whose cost contributes to A with a positive sign
will be called partners, e.g. z <> y, while the pairs which contribute with a negative
sign will be called opposites, e.g. z <> 3. Fixing any three variables, e.g. y, z’,
y’, the proposed motion slides the fourth variable (in this case z) away from its
partner but toward its opposite. By lemma B 1 or its corollary, this increases the
cross-difference A. [ ]

The next lemma couples with lemma 2.1 to show that for a cost invariant under
translations and reflections of the line—c(z,y) = ¢(z + 2,y + z) = ¢(y, x)—being of
concave type is no different from being a strictly concave increasing function of the
distance |z — y].

Lemma B 4. Suppose a cost ¢ : R?> — RU {—o0} of concave type is invariant
under (z,y) — (z + z,y + z) and x <> y. Then c(z,y) = h(|z — y|) with h strictly
concave increasing on [0, 00).

Proof. Translation and reflection invariance implies ¢(z,y) = h(|z — y|); the only
issues at stake are the strict concavity and monotonicity of h(x) = ¢(z,0) on x > 0.
We begin by showing that h is increasing: h(z’ —y) < h(z’ +y) for any 0 < y < 2.
Set x = —2’ and y' = —y so that z <y’ <y < z’. Then the circle O(z,y) intersects
O(z',y") though the cost is of concave type. This precludes (2.1). Translation and
reflection invariance yield c(z,y) = c(2’,y') = h(z’ + y) and c(z,y’") = c(2',y) =
h(z" —y), whence 2h(z" +y) > 2h(z’ — y) as desired.

The next step is to prove h strictly midpoint concave, meaning 0 < 2z < 2z’ must
imply

2h(z 4+ ') > h(2z) + h(22"). (B3)

This time set y := —2’ and ¥’ —x so that y < v < x < 2’. Again the cir-
cles O(z,y) and O(2',y’) 111tersect, precluding (2.1). Using translation invariance to
identify c(z,y) = h(m —|— ') = (2, y'), c(z,y') = h(2z) and c(z’,y) = h(22'), one
recovers (B 3).

Having established strict midpoint concavity, the monotonicity provides sufficient
smoothness to conclude concavity in the usual sense: a corresponding estimate holds
for each convex combination of 2z and 2x’. |

The costs of concave type are next characterized by positivity off the diagonal of
the mixed partial 9%c/dxdy. Rotating coordinates by 45° reveals this condition to
assert that the local concavity of ¢(z, y) perpendicular to the diagonal must outweigh
its convexity in the direction parallel to y = x. The limits expressed in (B4) play
the role of mixed partials at infinity, so this characterization is local on the torus
R x R. The proof is based on an observation (B 6) used by Rochet (1987) to discuss
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costs satisfying the opposite condition dc? /0xdy < 0 of Lorentz (1953), Spence and
Mirrlees.

Lemma B 5. Let ¢(x,y) be continuous on the plane, and continuously twice dif-
ferentiable on {(z,y) | * # y} C R2. For c to be a function of concave type, it is
necessary that

d%c

Oc
920y >0 a.e., mll)liloo 7y( z,y) — y(%y) 20, (B4)
and
Oc Oc
li —(z,—y) — — = 0.
y—}rfoo Ox (2. ~9) or (z.9) 20

These three inequalities are also sufficient provided the first holds strictly (a.e.).

Proof. First assume ¢(x,y) to be of concave type. For fixed z < 2/, lemma B1
shows ¢(z,-) —c(2',-) to be strictly increasing as y increases from x towa1d z’. Thus

Oc oc, ,

ge % >0, B5

By (z,y) By (=',y) (B5)
holds for z < y < z’. Letting 2’ = —x tend to +oo yields the middle inequality

(B4). The last inequality must also hold true, since the condition for ¢(z,y) to be of
concave type is symmetrical in x <> y. (Existence of the limits can be deduced from
non-negativity of the mixed partials by evaluating the integrand of (B 7).)

Now for the orderings z<z <y<y orfory<y <zx<z, observe

/ / Baca = c(@',y) — c(a’y) — c(z,y) + c(z,y). (B6)

Since the circles O(z,y) and O(z’, ') intersect non-tangentially, (B 6) must be posi-
tive if the cost is to be of concave type. Taking the off-diagonal rectangle [z, '] X [y, ¥/]
sufficiently small forces the continuous function 9%¢/dxdy > 0 at = # y. This con-
cludes the necessity proof.

To argue the converse, assume (B4) holds with strict positivity a.e. of the mixed
partial of the cost. We need to preclude (2.1) whenever the circles O(z,y) and
O(z’,y') intersect but x # z’ and y # y'. If this intersection takes place, by the
x <> y and primed <> unprimed symmetries we may assume either (i) z < 2’ <y <9/
or (i) z < ¢y <y < 2. In the first case, positivity of the integral (B6) (letting y
decrease to 2’ if necessary) precludes (2.1). In the second case, observe from (B4)
that

y z 52 t 92
0< / lim [ —(u,v)du + (u,v) du] dv

g t=toe | )y Ox0y 2 020y
<C<x7y)_C(Ivy)_c(x/ay)+c(x7y)7 (B7)
again contradicting (2.1). Thus ¢ must be of concave type. |

A final lemma is required to show that for ¢(z,y) > 0 of concave type, the moment
conditions (4.4) control the transport cost C(y) on I'g(p4, p—).
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Lemma B6. Fix p € My(R), a Borel cost of concave type c(xz,y) > 0, and
a,b,n,p,q € R. Let X, Y : [0,t] — R be the non-decreasing maps representing
py+ = Xy, and p_ = Y\ 4, extended periodically with period t = p[R]. Then
(4.4) implies

b
I::/ c(X(n+6),Y(p—10))do < cc.

Proof. Setting x = X(n+6), z =Y (p—0) and y = ¢ in the triangle inequality
(B1) before integrating yields

b b
/ c(X(n+0),q)do + / (¢, Y(p—0))d0 =1+ (b—a)c(q,q)-
If the integration is over one full cycle, e.g. a = 0 and b = ¢, then (2.7) shows that the
two terms on the left coincide with the finite integrals (4.4). Since the integrands are
non-negative and periodic, both integrals must also converge for arbitrary a,b € R
thus proving finiteness of 1. |

For p € M{*(R) and costs of concave type satisfying the monotonicity conditions

c(z,p) < c(z,y) and c(z,y) = c(p,y), (B8)

whenever z < p < y, a strong converse is true (though it will not be proven here): the
moment conditions (4.4) are implied whenever C(y) < oo holds for a single measure
v € I'(ps,p—). Even when a cost of concave type fails to satisfy (B8), it can be
modified to obtain a cost é(x,y) = ¢(x,y) — f(z) — g(y) which does by subtracting

f(x) hrfoo c(z,y) —c(z,0) (B9)

T—
(the limits exist by lemma B1). Moreover, ¢(x,y) will share the optimal measures
of ¢(z,y). The moment conditions (4.4) therefore cause no loss in generality: the
functional C(7) is either bounded above or identically infinity. Should C(v) := +oo,
minimizing the ‘renormalized’ cost C};((b) of (4.12) over feasible potentials, @, and
networks, G, should still select the unique measures v with c-cyclically monotone
support from I'(p4, p_).

== 1' —_
S c(z,y) —c0,y) and g(y)
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