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2 L. A. CAFFARELLI, M. FELDMAN, AND R. J. MCCANNHere r 2 A(�+; ��) is sometimes denoted by r#�+ = ��, and means merely thatZRn �(r(x))f+(x)dx = ZRn �(y)f�(y)dy(3)holds for each continuous test function � on Rn.Though the norm kx� yk need not be Euclidean, throughout the present manu-script we assume there exist constants �; � > 0 such that all x; y 2 Rn satisfy theuniform smoothness and convexity estimates:� kyk2 � 12kx+ yk2 � kxk2 + 12kx� yk2 � � kyk2:(4)The estimates (4) assert some uniform convexity and smoothness [3] of the unitball; they are certainly satis�ed if, e.g., the unit sphere kxk = 1 is a C2 surfacein Rn with positive principal curvatures. In particular, � = � = 1 makes (4) anidentity in the Euclidean case. For a further discussion of Monge's problem, itshistory, and applications, we refer the reader to Evans [5], Evans and Gangbo [7],Gangbo and McCann [15] or Rachev and R�uschendorf [20].Part of the di�culty of this problem is the degeneracy which results from failureof the norm to be strictly convex (radially). Even in the simplest one-dimensionalexamples this leads to non-uniqueness of the minimizing map. By contrast, whenthe transportation cost function ky � xk is replaced by a strictly convex functionsuch as ky � xkp with p > 1, the problem simpli�es considerably, and followingideas of Brenier and others it is possible to show that a unique map solves theproblem and possesses nice measurability properties in both the Euclidean [4], [15]and Riemannian [18] settings.In this paper, our key idea for resolving this degeneracy is to �rst �nd a changeof coordinates which adapts the problem's local geometry so that all transportdirections become parallel, and then solve these one-dimensional transportationproblems separately before invoking Fubini's theorem to complete the proof. Themap we construct in this way might, in principle, be recovered in the p ! 1 limitfrom the unique maps solving the p > 1 problems. Although we don't carry outthis limit directly, we do use structural features of the optimal maps for p > 1 tofacilitate several aspects of the proof. This distinguishes our solution from that ofEvans and Gangbo, as illustrated by the book-shifting example f+ = �[0;n] andf� = �[1;n+1] on the line R1 [15]. For this example, the map we construct is thetranslation s(x) = x+1, whereas Evans and Gangbo would leave the mass commonto f+ and f� in its place a priori, obtaining the map s(x) = x on x 2 [1; n] ands(x) = x + n on [0; 1] as a result. We anticipate that the ability to deal withoverlapping densities f+ and f� will be signi�cant in applications. We also pointout that a sequel shows the map constructed below is the only optimal map topreserve the ordering of pairs of points with collinear images [12].We now give a heuristic outline of our existence proof. Following previous au-thors, we begin by solving a dual problem whose solution de�nes the set of transportrays, according to the terminology of Evans and Gangbo [7]. These rays are de-termined by the property that the Lipschitz potential u : Rn ! R from the dualproblem decreases along them with maximum admissible rate. As we show below,the optimal mapping s takes each transport ray into itself. We therefore restrictthe measures �+ and �� to each ray, so that mass balance holds for the restrictions,and solve a transportation problem on each ray. These one-dimensional problemsare easy to solve. Thus we get an optimal map on each ray, and as the result a map



CONSTRUCTING OPTIMAL MAPS 3from Rn into Rn. We show then that this map pushes �+ forward to ��, and isoptimal.The most delicate step in this procedure involves restricting the measures to rays,and it is here that our approach diverges from Sudakov's. Instead of building on themeasure decomposition results of Halmos [16] or Rokhlin [21], we seek a local changeof variables in Rn so that the new coordinate xn measures distance along each ray,while the remaining n� 1 coordinates vary across nearby rays. For the Euclideannorm on Rn the directions of rays are given by the gradient of Monge's potentialu, and thus it is natural to use level sets of u to parametrize rays, i.e., the variablesx1; : : : ; xn�1 will be coordinates on a �xed level set of u. This can also be adapted tomore general norms, if one de�nes the gradient of u using the appropriate (Finsler)identi�cation of vectors with one-forms. But we also need certain properties of thischange of variables in order to be able to express �+ and �� in the new coordinates:Indeed, expressing these measures is tantamount to changing variables under theintegral, and the change of variables must be Lipschitz continuous to apply the Areaformula. However, the typical pattern of rays is too complicated for us to achievethis globally. We therefore decompose the set of all rays into a countable collectionof special subsets, chosen so that the rays enjoy a more \regular" structure withineach subset while the mass of �+ still balances ��, and perform a Lipschitz changeof variables on each subset separately. Thus the Lipschitz control on directions ofrays given by Lemma 16 is absolutely crucial to our proof. The estimate whichprovides this control is a restriction on the geometry of quadrilaterals in a smooth,uniformly convex Banach space; established in Lemma 14, this estimate holds someindependent interest (cf. Federer [10, x4.8(8)] and Feldman [11, Appendix A]).The remainder of this paper is organized as follows. In the �rst section we recallthe general duality theory for Monge-type problems introduced by Kantorovich [17],and the construction of optimal maps for transportation costs given by strictlyconvex functions instead of a norm [4], [15]. The Kantorovich dual problem issolved by taking a limit of such costs, and the section concludes with a criterionfor optimality. It is followed by a section which introduces the transport raysand geometry dictated by the Kantorovich solution and criterion for optimality.Several observations by Evans and Gangbo are summarized here, followed by ourkey new estimate giving Lipschitz control on the directions of transport rays. In thethird section we construct the local changes of variables which parallelize nearbytransport rays, while the fourth section veri�es that the traces of f+ and f� |weighted by a Jacobian factor accounting for the change of variables | are balancedon each individual ray. Finally, these ingredients are combined in Section 5 to givea proof of our main theorem by constructing a map solving Monge's problem:Theorem 1 (Existence of Optimal Maps). Fix a norm on Rn satisfying the uni-form smoothness and convexity conditions (4), and two L1(Rn) densities f+; f� �0 with compact support and the same total mass (1). Then there exists a Borel maps : Rn ! Rn which solves Monge's problem, in the sense that it minimizes theaverage distance (2) transported among all maps pushing f+ forward to f� (3).Remarks added in revision. After the submission of this manuscript, the authorslearned of several signi�cant developments. Foremost among them is the concur-rent but independent discovery of a existence result for optimal maps in Monge'sproblem by Trudinger and Wang [24]. Although very similar to our approach, theargument there is streamlined somewhat by their decision to focus exclusively on



4 L. A. CAFFARELLI, M. FELDMAN, AND R. J. MCCANNthe Euclidean norm. Lecture notes subsequently released by Ambrosio [2] containan excellent summary of progress on Monge's problem cast into the framework ofgeometric measure theory; they include a derivation for existence and uniqueness ofa transport density corresponding to f� 2 L1(Rn) which parallels certain resultsof Feldman and McCann [12]. Ambrosio's notes also highlight a logical gap in thesolution of Monge's problem proposed by Sudakov. Without Lipschitz control onray directions, it is impossible to know that the conditional restriction of f� yieldsan absolutely continuous measure along almost every ray, as required for Sudakov'sproof. In two dimensions, disjointness prevents nearby rays from turning too muchwithout bumping into each other, so Lipschitz control is automatic and the gap canbe bridged (as long as the norm has a strictly convex unit ball). But a counterex-ample in R3 due to Alberti, Kircheim, and Preiss [1] shows an uncountable unionof disjoint segments can be constructed, whose midpoints form the support of anabsolutely continuous probability measure on R3. The restriction of this measureto each of the segments yields a Dirac mass at its midpoint, violating the absolutecontinuity claimed by Sudakov. In this context the geometrical control provided byLemma 16 is required to preclude such a collection of segments from forming trans-port rays in Monge's problem. Thus it would seem that Evans-Gangbo [7] containsthe �rst complete proof of existence for optimal maps between Lipschitz densitiesf� with disjoint support, while the present manuscript and Trudinger-Wang [24]complete the �rst proofs for more general f� 2 L1(Rn). Note that all completeproofs require a Euclidean ball, or at least the uniform smoothness and convexityhypothesis (4), which Sudakov explicitly eschews [23, p. 164].1. Duality in the limit of strictly convex costsIn this section we recall a problem formulated by Kantorovich as a dual toMonge's problem. We construct its solution, and extract properties germane to ourpurposes.Consider Rn metrized by a norm k � k satisfying the uniform smoothness andconvexity conditions (4), and denote the associated distance by d(x; y) := kx� yk.Then the problem asserted by Kantorovich [17] to be dual to Monge's problem isformulated as follows. Let Lip1(X ; d) denote the set of functions on X � Rn whichare Lipschitz continuous with Lipschitz constant no greater than one; thusLip1(Rn; d) = �u : Rn ! R1 j ju(x)� u(y)j � d(x; y) for any x; y 2 Rn�:Problem 2 (Kantorovich). For f+; f� 2 L1(Rn) from Monge's Problem 1, max-imize K̂[v] on Lip1(Rn; d), whereK̂[v] := ZRn(vf+ � vf�) dx:To solve the Monge and Kantorovich problems, we consider a second pair of dualproblems in which the metric d(x; y) is replaced by a more general transportationcost function c"(x; y) on Rn � Rn. The Monge problem analogous to (1) thenbecomes:Problem 3 (Primal). Fix two Borel densities f+; f� � 0 in L1(Rn) with com-pact support satisfying the mass balance condition (1). Among Borel maps r 2



CONSTRUCTING OPTIMAL MAPS 5A(�+; ��) which push the measure d�+ = f+(x)dx forward to d�� = f�(y)dy asin (3), �nd a map s : Rn ! Rn which minimizes the total transportation costI"[r] := ZRn c"(x; r(x))f+(x)dx:(5)The corresponding dual problem is:Problem 4 (Dual). Take f+, f� 2 L1(Rn) as in Problem 3. Denote the supportof f+ by X and of f� by Y. Among all pairs of continuous functions ';  inJ"(X ;Y) := f(';  ) 2 C(X )� C(Y) j(6) '(x) +  (y) � �c"(x; y) on X � Yg�nd a pair ('";  ") minimizing the functionalK(';  ) := ZX 'f+ dx+ ZY  f� dy:(7)The duality assertion I"[s] = �K('";  ") which relates these two problems holdsrather generally; see Rachev and R�uschendorf [20]. However, the Dual Problem 4takes a fundamentally di�erent form than the Kantorovich problem, due to the factthat the cost c"(x; y) need no longer satisfy a triangle inequality. This generalizationis useful, since it permits us to replace the distance function d(x; y) = kx � yk bya strictly convex cost functionc"(x; y) := h"(x� y) = kx� yk1+";(8)for which existence, uniqueness, and a characterization of optimal maps in Monge'sproblem can be found in Ca�arelli [4] and Gangbo and McCann [14], [15]. Notingthat h�(x) is C1;"(Rn) smooth and strictly convex from Lemma 11 below, we recallthe relevant results as follows:Theorem 2 (Duality and Optimal Maps for Strictly Convex Costs [4], [14]). Takef+; f� 2 L1(Rn) and denote X := spt f+ and Y := spt f� as in Problem 4. If thetransportation cost c"(x; y) satis�es (8) and (4), then for " > 0:(i). Some pair ('";  ") minimizing K(';  ) on J"(X ;Y) in the dual problem sat-is�es '"(x) = supy2Y(�c"(x; y)�  "(y));(9)  "(y) = supx2X (�c"(x; y)� '"(x)):(10)(ii). The function '" is Lipschitz on X (as  " is on Y), with Lipschitz constantdominated by the Lipschitz constant of c"(x; y) on X � Y.(iii). For a.e. x 2 X there exists a unique y 2 Y such that'"(x) +  "(y) = �c"(x; y):(11)(iv). De�ne the mapping s" : X ! Y by assigning to a.e. x 2 X the unique y 2 Yfor which (11) holds. Then s" pushes the measure d�+ = f+(x)dx forward tod�� = f�(y)dy and is the unique minimizer for the primal Problem 3.Our �rst goal is to extract a pair of functions minimizing K(';  ) on J0(X ;Y)from the limit " ! 0 of this theorem. This follows from a simple compactnessresult:



6 L. A. CAFFARELLI, M. FELDMAN, AND R. J. MCCANNProposition 3 (Limit of Minimizing Pairs). For some sequence "j > 0 whichtends to zero, the Dual Problem 4 admits a sequence of pairs ('"j ;  "j) which min-imize K(';  ) on J"j (X ;Y) and converge uniformly on the compact sets X and Yrespectively to limits '"j ! '0 and  "j !  0 as j !1. The limit functions '0;  0minimize K(';  ) on J0(X ;Y) and satisfy'0(x) = supy2Y(�kx� yk �  0(y));(12)  0(y) = supx2X (�kx� yk � '0(x)):(13)Proof. Fix x0 2 X and observe that K(';  ) = K(' � A; + A) for each A 2 R1according to the mass balance condition (1). Thus any pair ('";  ") minimizingK(';  ) on J"(X ;Y) may be shifted by A = '"(x0) to ensure '"(x0) = 0.Now X and Y are compact, so for " 2 (0; 1) the costs c"(x; y) = kx � yk1+"form an equi-Lipschitz family on X � Y. The minimizing functions '" and  " inTheorem 2(ii) also form equi-Lipschitz families on X and Y respectively. Moreover'"(x0) = 0, so the functions '" are uniformly bounded on X . Also, jc"(x; y)j � Cfor all (x; y; ") 2 X � Y � (0; 1), implying a uniform bound on the  " in (9). TheAscoli-Arzela theorem then yields a subsequence "j ! 0 such that '"j and  "jconverge uniformly on X and Y respectively to '0 2 C(X ) and  0 2 C(Y); (12){(13) follow from (9){(10) and imply that ('0;  0) 2 J0(X ;Y).It remains to show that ('0;  0) minimizes K(';  ) on J0(X ;Y). For any otherpair ( ~'; ~ ) 2 J0(X ;Y) and " > 0, de�ne ~'" � ~' and~ "(y) = ~ (y) +maxx2X [�c"(x; y) + d(x; y)]:Compactness of X yields ~ " 2 C(Y), while ( ~'"; ~ ") 2 J"(X ;Y) from their def-inition and (6). Moreover, ~ " ! ~ uniformly on Y as " ! 0. For each jthese competitors satisfy K('"j ;  "j ) � K( ~'"j ; ~ "j ). Uniform convergence yieldsK('0;  0) � K( ~'; ~ ) in the limit j !1, so the proposition is proved.Next we demonstrate equivalence of the Dual Problem 4 in the case " = 0 to theKantorovich Problem 2 via the triangle inequality; see (14) and (17) especially.Proposition 4 (Lipschitz Maximizer). Suppose ('0;  0) satisfy (12){(13) and min-imize K(';  ) on J0(X ;Y). Then there exists u 2 Lip1(Rn; d) such thatu = �'0 on X ; u =  0 on Y:(14)Moreover, u maximizes K̂ [v] on Lip1(Rn; d) and satis�esu(x) = miny2Y (u(y) + kx� yk) for any x 2 X ;u(y) = maxx2X (u(x)� kx� yk) for any y 2 Y:(15)Proof. Extend '0;  0 to the whole space Rn using the right-hand sides of (12){(13).We show �rst that '0;  0 2 Lip1(Rn; d). Indeed, let x1; x2 2 Rn. Continuity of  0on the compact set Y yields a point y1 2 Y where the supremum (12) is attained:'0(x1) = �kx1 � y1k �  0(y1). Also (12) implies '0(x2) � �kx2 � y1k �  0(y1).Thus '0(x1)� '0(x2) � �kx1 � y1k+ kx2 � y1k � kx1 � x2kby the triangle inequality. Thus '0 2 Lip1(Rn; d), and  0 2 Lip1(Rn; d) similarly.



CONSTRUCTING OPTIMAL MAPS 7Next we show that '0 +  0 = 0 on X . For any x 2 X , (13) yields'0(x) +  0(x) � 0 on X .(16)Suppose for some z 2 X a strict inequality holds: '0(z) +  0(z) > 0. By (12){(13)and continuity of '0 and  0, there exist x 2 X and y 2 Y such that'0(z) = �kz � yk �  0(y); 0(z) = �kz � xk � '0(x):Combined with '0(z) +  0(z) > 0 and ('0;  0) 2 J0(X ;Y) this implieskz � yk + kz � xk = �'0(z) �  0(z) � '0(x)�  0(y)< �'0(x)�  0(y) � kx� yk;contradicting the triangle inequality. Thus '0 +  0 � 0 on X . In conjunction with(16) this yields '0 +  0 = 0 on X as desired.Thus, denoting u =  0 in Rn we have shown u 2 Lip1(Rn; d) and both parts of(14). Also, (15) follows directly from (12){(13). It remains to prove u maximizesK̂[v] in the Kantorovich Problem 2.Note that K̂[u] = �K['0;  0](17)by (14). Let v 2 Lip1(Rn; d). Then the pair '̂;  ̂ de�ned by'̂ = �v on X and  ̂ = v on Ybelongs to the set J0(X ;Y) de�ned in (6); indeed, for (x; y) 2 X � Y we have'̂(x) +  ̂(y) = �v(x) + v(y) � �kx� yk:Now K̂[u] = �K['0;  0] � �K['̂;  ̂] = K̂[v];where the last equality follows from the de�nition of '̂;  ̂, and the proposition isproved.De�nition 5 (Kantorovich Potentials). Any function u which maximizes K̂[v] onLip1(Rn; d) may be referred to as a Kantorovich potential. Such potentials existby Propositions 3 and 4. However, the Kantorovich potentials obtained in this way| via a limit ('0;  0) of pairs from Theorem 2(i) | have additional virtues ((14){(15)). We call such u a limiting Kantorovich potential and exploit its existencehereafter.Finally, we discuss the connection between the primal and dual problems. Forthe strictly convex costs (8) this connection is given by Theorem 2, which shows howthe primal problem can be solved using a solution to the dual problem. However,for the non-strictly cost c0(x; y) the uniqueness assertion of Theorem 2(iii) wouldfail, so the corresponding map is not well de�ned: its direction is clear, but itsdistance ambiguous. Indeed, when a minimizing pair ('0;  0) for K(';  ) satis�es(12){(13) and '0(x) +  0(y) = kx� yk holds for some (x; y) 2 X � Y, we shall see'0(x) +  0(z) = kx � zk for all z 2 [x; y] \ Y, meaning all z = tx + (1 � t)y 2 Ywith t 2 [0; 1].The next lemma exhibits the connection between the primal and dual problemsfor the cost function c0(x; y) = kx � yk. It shows in particular that to obtain an



8 L. A. CAFFARELLI, M. FELDMAN, AND R. J. MCCANNoptimal map in the primal problem, it is su�cient to start from a Kantorovichpotential u and construct any admissible map consistent with (18). The rest of thispaper is devoted to carrying out this program on Rn, suitably normed.Lemma 6 (Dual Criteria for Optimality). Fix u 2 Lip1(Rn; d) and let s : Rn !Rn be a mapping which pushes �+ forward to ��. Ifu(x)� u(s(x)) = kx� s(x)k for �+ a.e. x 2 X ;(18)then:(i). u is a Kantorovich potential maximizing Problem 2.(ii). s is an optimal map in Problem 1.(iii). The in�mum I[s] in Problem 1 is equal to the supremum K̂ [u] in Problem 2.(iv). Every optimal map ŝ and Kantorovich potential û also satisfy (18).Proof. For any map r : Rn ! Rn pushing forward �+ to �+ and v 2 Lip1(Rn; d)we compute: I[r] = ZRn kx� r(x)kd�+(x)� ZRn [v(x) � v(r(x))]d�+(x)(19) = ZRn v(x)d�+(x)� ZRn v(y)d��(y)= K̂[v];using (3). Thus the minimum value of I[r] on A(�+; ��) is at least as large asthe maximum of K̂[v] on Lip1(Rn; d). On the other hand, our hypothesis (18)produces a case of equality I[s] = K̂[u] in (19). This implies the assertions (i) K̂[u]is a maximum; (ii) I[s] is a minimum; and (iii) I[s] = K̂[u] of the lemma.Now let r 2 A(�+; ��) and v 2 Lip1(Rn; d) be any other optimal map andKantorovich potential. Then I[r] = I[s] and K̂[v] = K̂[u] combine with (iii) toyield I[r] = K̂[v]. But this implies a pointwise equality �+ almost everywhere in(19), so the proofs of assertion (iv) and hence the lemma are complete.2. Transport rays and their geometryThe preceding section reduced the problem of �nding an optimalmap in Monge'sproblem to constructing an admissible map which also satis�es (18). We carry outthis program on Rn metrized by the norm d(x; y) = kx� yk. Our starting point isa Kantorovich potential u 2 Lip1(Rn; k � k). In this section, we study the geometricmeaning of condition (18), and introduce the transport rays and transport setswhich are ultimately used to construct an optimal map. We study the properties oftransport rays, in particular proving a Lipschitz estimate for howmuch the directionof nearby rays can vary if none of the rays are too short. The underlying idea isthat smoothness and uniform convexity of the norm ball (4) impose geometricalconstraints on each quadrilateral whose opposite sides are formed by transportrays. This estimate is much in the spirit of Federer's theorem on Euclidean distancefunctions [10, x4.8(8)]; see also Feldman [11, Appendix A]Fix two measures �+ and �� de�ned by non-negative densities f+ ; f� 2 L1(Rn)satisfying the mass balance condition (1). Assume that �+ and �� have compactsupports, denoted by X and Y � Rn respectively. Through xx2{5, we �x a limiting



CONSTRUCTING OPTIMAL MAPS 9Kantorovich potential u | a maximizer in Problem 2 obtained from a limit ofsolutions to dual problems with strictly convex costs c"(x; y) = kx� yk1+". Sucha potential exists and satis�es (15) by Propositions 3 and 4 and De�nition 5. Notethat u has Lipschitz constant one with respect to the distance d(x; y) = kx � yk.The derivative of any function ' : Rn ! R1 at x 2 Rn | viewed as a linearfunctional on the tangent space | is denoted by D'(x) 2 (Rn)�.Since we want to investigate the geometrical implications of (18) for u, supposex 2 X and y 2 Y satisfy u(x)� u(y) = kx� yk:From the Lipschitz constraintju(z1) � u(z2)j � kz1 � z2k for any z1; z2 2 Rn;(20)it follows that on the segment connecting x and y the function u is a�ne anddecreasing with the maximum rate compatible with (20). We will call maximalsegments [x; y] having these properties the transport rays. More precisely:De�nition 7 (Transport Rays). A transport ray R is a segment with endpoints a,b 2 Rn such that(i). a 2 X , b 2 Y , a 6= b;(ii). u(a)� u(b) = ka� bk;(iii). Maximality: for any t > 0 such that at := a+ t(a� b) 2 X there holdsju(at) � u(b)j < k at � bk;and for any t > 0 such that bt := b+ t(b� a) 2 Y there holdsju(bt)� u(a)j < k bt � ak:We call the points a and b the upper and lower ends of R, respectively. Sinceu(a)� u(b) = ka� bk, it follows from (20) that any point z 2 R satis�esu(z) = u(b) + kz � bk = u(a)� ka� zk:(21)De�nition 8 (Rays of Length Zero). Denote by T1 the set of all points which lieon transport rays. De�ne a complementary set T0, called the rays of length zero,by T0 := fz 2 X \ Y : ju(z)� u(z0)j < kz � z0k for any z0 2 X [ Y; z0 6= zg:From these two de�nitions and the property (15) of u we immediately infer thefollowing lemma, whose obvious proof is omitted.Lemma 9 (Data is Supported Only on Transport Rays). X [ Y � T0 [ T1.To study the properties of rays, let us call a point z 2 Rn an interior point of asegment [a; b], where a; b 2 Rn, if z = ta+ (1� t)b for some 0 < t < 1. We denoteby [a; b]0 the set of interior points of [a; b]. The basic observation which goes backto Monge is that transport rays do not cross.Lemma 10 (Transport Rays Are Disjoint). Let two transport rays R1 6= R2 sharea common point c. Then R1 \R2 = fcg and c is either the upper end of both rays,or the lower end of both rays. In particular, an interior point of a transport raydoes not lie on any other transport ray.



10 L. A. CAFFARELLI, M. FELDMAN, AND R. J. MCCANNProof. First note the strict convexity of the unit ball kxk � 1 asserted in Lemma 11implies that equality kx� yk + ky � zk = kx� zkholds if and only if y lies on the segment [x; z].Since R1 6= R2 share the point c, they cannot be collinear; otherwise (21) and themaximality part of De�nition 7 would force R1 = R2. Thus the two rays can onlyintersect in a single point: R1\R2 = fcg. It remains to prove either c = a1 = a2 orc = b1 = b2, where ak denotes the upper end and bk the lower end of Rk, k = 1; 2.We shall assume c 6= b2 and argue that this forces c = a1. It then follows thatc 6= b1 which by symmetry forces c = a2 to complete the proof. The other possibilityc 6= a2 is handled similarly, leading to the conclusion that c = b1 = b2 must be thelower end of both rays.Assuming c 6= b2 means b2 =2 R1. By (21)u(c) = u(b2) + kc� b2k; u(c) = u(a1)� ka1 � ck;thus u(a1)� u(b2) = ka1 � ck+ kc� b2k � ka1 � b2k:Strict inequality would violate the Lipschitz condition (20). Thus equality musthold, meaning c lies in the segment [a1; b2] as well as R1 = [a1; b1]. Since b2 62 R1,these two segments, like the two rays, are not collinear. Their sole intersectionpoint is a1, hence c = a1. By our above remarks this completes the proof: c 6= b1hence c = a2 is the upper end of both rays.Denoting the norm by N (x) := kxk and its square by F (x) := kxk2, the nextlemmahighlights some smoothness and strict convexity which follow from (4). From(23) it is clear that the strict convexity is uniform over the sphere @B.Lemma 11 (Norm Smoothness and Strict Convexity). If the norm N (x) := kxksatis�es (4), then F (x) := kxk2 is of smoothness class C1;1(Rn). Moreover, theunit ball B := fx 2 Rn j N (x) � 1g is strictly convex, andjDN (x) yj < 1; DN (x)x = 1 for all y 6= �x with kxk = kyk = 1;(22)where DN (x) y denotes the pairing of DN (x) 2 (Rn)� and y 2 Rn.Proof. Every norm N (x) is convex throughout Rn and bounded by some multipleof the Euclidean norm: N (y) � Ljyj. Thus both N (x) and its square F (x) = kxk2are continuous functions. The midpoint convexity condition (4) therefore impliesconvexity of F (x). We shall use the opposite inequality to conclude concavity ofg(x) := F (x)� L2�jxj2; indeed, for x; y 2 Rn, g satis�es the midpoint estimateg(x+ y) + g(x� y)2 � g(x) = F (x+ y) + F (x� y)2 � F (x)� L2�jyj2� �F (y) � L2�jyj2� 0:Now recall that the distributional second derivative of a convex function is a non-negative de�nite matrix of Radon measures D2ijF (x) [8, x6.3]. Concavity of gimplies a pointwise bound on this matrix: 0 � D2F (x) � 2L2�I. Thus F belongsto the Sobolev space W 2;1(Rn) and is di�erentiable Lipschitz continuously [6,x5.8.2{3]: F 2 C1;1(Rn).



CONSTRUCTING OPTIMAL MAPS 11To address (22), �rst observe strict convexity of the closed unit ball: given twodistinct points a; b 2 B, their midpoint must lie in the interior of B according to(4): 



a+ b2 



2 + � 



a � b2 



2 � kak2 + kbk22 � 1(23)with � > 0. Now the triangle inequality impliesDN (x) y := limt!0 kx+ tyk � kxkt� kyk � 1(24)while homogeneity yields DN (x)x = kxk = 1. Thus the supporting hyperplane tothe ball at x 2 @B consists of those z 2 Rn satisfyingDN (x) z = 1. Strict convexityprevents this hyperplane from touching the ball at more than one point, whence(24) can be sharpened to DN (x) y < 1 for y 2 B n fxg. Similarly,DN (x) (�y) < 1for �y 2 B n fxg, which concludes the proof of (22).Lemma 12 (Di�erentiability of Kantorovich Potential Along Rays). If z0 lies inthe relative interior of some transport ray R, then u is di�erentiable at z0. Indeed,setting e := (a� b)=ka� bk where a; b are the upper and lower ends of R yields:jDu(z0)yj � 1 for all kyk = 1, with equality if and only if y = �e.Remark 13. This proof requires a modi�cation of the Euclidean case dealt with byEvans and Gangbo [7, Lemma 4.1].Proof of Lemma 12. Choose z0 in the interior of R. By (21), for some small r0 > 0,we have u(z0 + te) = u(z0) + t on � r0 � t � r0:Rescale u by settingur(z) = u(z0 + rz) � u(z0)r for 0 < r � r0:Then ur satis�es the same Lipschitz condition (20) as u but is centered at ur(0) = 0.Hence for some subsequence rk ! 0 we have urk ! v where the convergence isuniform on every compact subset of Rn. Clearly v 2 Lip1(Rn; k � k) andv(te) = t for all t 2 R1:(25)We shall now show linearityv(z) = DN (e) z for all z 2 Rn;(26)by exploiting the Lipschitz condition v inherits from u together with the �rst orderTaylor expansion of N (e + z=t) := ke + z=tk around e guaranteed by Lemma 11:v(te) � v(z)t � kte� zkjtj = kek �DN (e) zt + o(1t ):Subtracting v(te)=t = kek from both sides, the two limits t!�1 of this inequalitycombine to yield (26).We conclude thatlimr!1 u(z0 + rz) � u(z0)r = DN (e) z uniformly for z 2 B1(0):



12 L. A. CAFFARELLI, M. FELDMAN, AND R. J. MCCANNThis implies that u is di�erentiable at z0, with Du(z0) = DN (e). The remainingassertions of Lemma 12 follow directly from (22).The next lemma exploits uniform convexity and smoothness of the norm toproduce a quantitative estimate of how far away any two rays must be from crossing.When F (x) = kxk2, it states that the sums of the squares of the diagonals ACand BD of any quadrilateral ABCD are controlled by the distance between themidpoints of the shorter pair (in least squares sense) of opposite sides. In particular,no quadrilateral can be folded in such a way that the midpoints of these two sidesare brought close together unless both pairs of opposite corners are also driventogether | with a particular rate. In the Euclidean or Hilbert space setting, therate constant (1+�=�)=(1+ �) = 1 given by the polarization identity is seen to besharp by folding up a square. Alternately, the estimate (28) can be interpreted as areverse form of the triangle inequality, which holds for vectors that are su�cientlyaligned.Lemma 14 (Twisted Quadrilateral Non-crossing Estimate). Let F : V ! R beany function on a vector space V , uniformly smooth and convex enough that forsome �; � > 0 and all x; y 2 V the following inequalities hold:�F (y) � 12F (x+ y) � F (x) + 12F (x� y) � �F (y):(27)If four points a; b; c; d 2 V satisfy F (a� b) + F (c� d) � F (a� d) + F (c� b), thenF �a� c2 �+ F �b� d2 � � 1 + (�=�)1 + � F �a+ b2 � c+ d2 � :(28)Proof. Applying uniform convexity (27) with both (x; y) = (a � c; b � d)=2 and(x; y) = (b � d; a� c)=2 and then summing yields(1 + �) �F �a� c2 �+ F �b� d2 ��(29) � F �a � c2 + b� d2 �+ ~F �a� c2 � b� d2 � ;where ~F (z) := [F (z)+F (�z)]=2. The desired inequality will follow if we can showthat the second-to-last term controls the last one. Applying uniform convexityagain yields � ~F �a� b2 � c � d2 � � F (a� b) + F (c� d)2(30) �F �a � b2 + c� d2 � ;either with or without the tilde. Uniformity of the smoothness givesF (a� d) + F (c� b)2 � F �a� d2 + c� b2 � � �F �a� d2 � c� b2 � :(31)But the left hand side of (31) dominates the right hand side of (30) by hypothesis,so � ~F �a� c2 � b� d2 � � �F �a+ b2 � c+ d2 � :Together with (29), this completes the proof of (28).



CONSTRUCTING OPTIMAL MAPS 13The next lemma is crucial for the de�nition of the change to variables in whichone variable is along transport rays. The lemma shows that if transport rays inter-sect a level set of u(z) in their interior points, then directions of rays have a Lipschitzdependence on the point of intersection, provided distances from the point of in-tersection to endpoints of a ray are uniformly bounded away from zero for all rays.Taking x = 0 and F (y) = F (�y) symmetrical implies � � 1 � � in (27), so theLipschitz constant of Lemma 16 is seen to satisfy C � 1 with equality only in theHilbert space case.De�nition 15 (Ray Directions). De�ne a function � : Rn ! Rn as follows. If zis an interior point of a transport ray R with upper and lower endpoints a, b (notethat R is uniquely de�ned by z in view of Lemma 10), then�(z) := a� bka� bk :(32)De�ne �(z) = 0 for any point z 2 Rn not the interior point of a transport ray. Wecall �(z) the direction function corresponding to the Kantorovich potential u.Lemma 12 shows that on transport rays, the direction function �(z) is nothingbut the gradient of u computed in the Finsler setting.Lemma 16 (Ray Directions Vary Lipschitz Continuously). Let R1 and R2 betransport rays, with upper end ak and lower end bk for k = 1; 2 respectively. Ifthere are interior points yk 2 (Rk)0 where both rays pierce the same level set ofMonge's potential u(y1) = u(y2), then the ray directions (32) satisfy a Lipschitzbound k�(y1) � �(y2)k � C� ky1 � y2k;(33)with constant C2 + � = 2(1 + ��1�)=(1 + �) depending on the norm (4) and thedistance � := mink=1;2fkyk � akk; kyk � bkkg to the ends of the rays.Proof. Let zk; xk 2 Rk denote the points at distance � above and below yk on theray, so that u(zk) = u(y1) + �;(34) u(xk) = u(y1)� �;(35) kzk � xkk = 2�;(36) yk = (zk + xk)=2;(37) and �(yk) = (zk � xk)=2�(38)for k = 1; 2. Thusk�(y1)� �(y2)k2 = 1�2 



 z1 � x12 � z2 � x22 



2 ;(39)while uniform convexity of the norm (4) gives



z1 � z22 + x2 � x12 



2 � 12kz1 � z2k2 + 12kx2 � x1k2(40) �� 



 z1 � z22 � x2 � x12 



2 :



14 L. A. CAFFARELLI, M. FELDMAN, AND R. J. MCCANNCombining (34){(36),kz1 � x1k = u(z1)� u(x2) � kz1 � x2k;kz2 � x2k = u(z2)� u(x1) � kz2 � x1k;where the Lipschitz condition (20) controls the cross-terms. Lemma 14 thereforeapplies to F (x) = kxk2 and the four points (a; b; c; d) = (z1; x1; z2; x2), to yield



z1 � z22 



2 + 



x1 � x22 



2 � 1 + (�=�)1 + � 



z1 + x12 � z2 + x22 



2 :(41)Combining (39){(41) with the identity (37) gives�2 k�(y1)� �(y2)k2 � �21 + (�=�)1 + � � ��ky1 � y2k2;to complete the proof.Remark 17. The proof of Lemma 16 uses only the Lipschitz property of u, and notthe optimality of u in the Kantorovich Problem 2. Thus its conclusions hold true forany u 2 Lip1(Rn; k � k), if we call each segment [a; b] on which u(a)�u(b) = ka� bka transport ray, and de�ne the direction function � accordingly.3. Measure decomposing change of variablesIt is in this section that we construct the change of variables on Rn which isthe heart of our proof. Lemma 16 suggests how these new coordinates must bede�ned: n � 1 of the new variables are used to parametrize a given level set ofthe Kantorovich potential u, while the �nal coordinate xn measures distance tothis set along the transport rays which pierce it. Thus the e�ect of this change ofvariables will be to 
atten level sets of u while making transport rays parallel. Butthe conditions of the lemma make clear that we retain Lipschitz control only if werestrict our transformation to clusters of rays in which all rays intersect a givenlevel set of u, and the intersections take place a uniform distance away from bothendpoints of each ray. These observations motivate the construction to follow.We begin by parametrizing the level sets of u using a lemma of Federer [9, x3.2.9].The key observation is that we only need this parametrization on the interiors oftransport rays, where Du 6= 0 exists in view of Lemma 12. From now on, it will beconvenient to �x a Euclidean structure in Rn. The Euclidean scalar product andassociated norm are denoted by (�; �) and jzj := (z; z)1=2, while BR(z) denotes theEuclidean ball of radius R centered at z 2 Rn. Of course, a function is Lipschitz inone norm if and only if it is Lipschitz in all norms, though the Lipschitz constantsmay di�er.Lemma 18 (Bi-Lipschitz Parametrization of Level Sets). Let u : Rn ! R1 be aLipschitz function, p 2 R1, and Sp the level set fx 2 Rn j u(x) = pg. Then the setSp \ fx 2 Rn j u is di�erentiable at x and Du(x) 6= 0ghas a countable covering consisting of Borel sets Sip � Sp, such that for each i 2Nthere exist Lipschitz coordinates U : Rn ! Rn�1 and V : Rn�1 ! Rn satisfyingV (U (x)) = x for all x 2 Sip:(42)



CONSTRUCTING OPTIMAL MAPS 15Proof. Note that if Du(x) 6= 0 exists, then Du(x)(Rn) = R1. Federer [9, x3.2.9]asserts that fx 2 Rn j u is di�erentiable at x and Du(x)(Rn) = R1ghas a countable covering consisting of Borel sets Ei such that there exist orthogonalprojections �i : Rn ! Rn�1 in O�(n; n� 1) and Lipschitz mapsÛi : Rn ! R1 �Rn�1 and V̂i : R1 �Rn�1 ! Rn(43)with Ûi(x) = (u(x); �i(x)) and V̂i[Ûi(x)] = x for all x 2 Ei:Clearly the sets Sip := Sp \Ei(44)cover Sp. For any �xed i 2N, de�neU : Rn ! Rn�1 and V : Rn�1 ! Rn(45)by U := � � Ûi; where � : R1 �Rn�1 ! Rn�1 is the projection (x1; X)! X;V (X) = V̂i(p;X) for all X 2 Rn�1:Clearly U and V are Lipschitz continuous, while U (x) = �i(x) for x 2 Sip, andV (U (x)) = V̂i(p; �i(x)) = V̂i[Ûi(x)] = x establishes (42).For each rational level p 2 Q and integer i 2N, we shall extend these coordinatesto the transport rays intersecting Sip. Taken together, these coordinate charts mustparametrize all points T1 � Rn on transport rays (cf. De�nition 8). It is convenientto de�ne them on a countable collection of subsets called clusters of rays:De�nition 19 (Ray Clusters). Fix p 2 Q, a Kantorovich potential u, and theBorel cover fSipgi of the level set Sp := fx 2 Rn j u(x) = pg in Lemma 18. Foreach i; j 2N let the cluster Tpij := SRz denote the union of all transport rays Rzwhich intersect Sip, and for which the point of intersection z 2 Sip is separated fromboth endpoints of the ray by distance greater than 1=j in k � k. The same cluster,but with ray ends omitted, is denoted by T 0pij := Sz(R0z).Lemma 20 (Clusters Cover Rays). The clusters Tpij indexed by p 2 Q and i; j 2N de�ne a countable covering of all transport rays T1 � Rn. Moreover, each Tpijand transport ray R satisfy:Either (R)0 � Tpij , or (R)0 \ Tpij = ;:(46)Proof. A transport ray R = [a; b] has positive length by De�nition 7. Along it,the Kantorovich potential u is an a�ne function with non-zero slope, accordingto Lemma 12. Thus there is some rational number p 2 (u(a); u(b)), for which Rintersects the level set Sp := fx j u(x) = pg. The point x of intersection belongsto one of the covering sets Sip � Sp of Lemma 18, and lies a positive distance fromeach end of the ray, so R � Tpij for some j 2N.Conversely, if the interior of some other ray R0 intersects one of the rays Rzcomprising the cluster Tpij, the non-crossing property of Lemma 10 forces R =Rz � Tpij, which completes the proof of (46).



16 L. A. CAFFARELLI, M. FELDMAN, AND R. J. MCCANNDe�nition 21 (Ray Ends). Denote by E � T1 the set of endpoints of transportrays.On each ray cluster Tpij we are now ready to de�ne the Lipschitz change ofvariables which inspired the title of this section:Lemma 22 (Lipschitz Change of Variables). Each ray cluster Tpij � Rn admitscoordinates G = Gpij : T 0pij ! Rn�1 � R1 with inverse F = Fpij : G(T 0pij) ! Rnsatisfying:(i). F extends to a Lipschitz mapping between Rn�1 �R1 and Rn.(ii). For each � > 0, G is Lipschitz on T �pij := fx 2 T 0pij j kx� ak; kx� bk > �g,where a and b denote the endpoints of the (unique) transport ray Rx.(iii). F (G(x)) = x for each x 2 T 0pij.(iv). If a transport ray Rz � Tpij intersects Sip at z, then each interior pointx 2 (Rz)0 of the ray satis�esG(x) = (U (z); u(x)� u(z));(47) where U : Rn ! Rn�1 gives the Lipschitz coordinates (42) on Sip.Remark 23 (Flattening Level Sets). The �nal assertion of Lemma 22 implies: (a)F maps the part of the hyperplane Rn�1 � f0g which lies within G(T 0pij) onto Sip;(b) F maps the segment where each \vertical" line fXg � R1 intersects G(T 0pij)onto a transport ray. Thus in the new coordinates (X;xn) 2 Rn�1 �R1, the levelsets of u are 
attened: they are parametrized by the variables X = (x1; : : : ; xn�1)while xn varies along the transport rays.Proof. Lemma 10 shows that rays do not cross, while De�nition 7 (or Lemma 12)shows that u is an a�ne function on each ray, with slope as large as permitted bythe Lipschitz constraint (20). Thus every point x 2 T 0pij lies on a unique transportray, and this ray intersects the level set Sp in a single point z 2 Sip, so the expression(47) de�nes a map G : T 0pij ! Rn�1 � R1 throughout the cluster. It remains toconstruct the inverse map F on G(T 0pij) � Rn�1�R1. Let (X;xn) 2 G(T 0pij), andlet V be the map (42) parametrizing Sip. Then the point V (X) 2 Sip is an interiorpoint of some transport ray R, both of whose endpoints are separated from V (X)by a distance exceeding 1=j. Let �( � ) be the direction function (32) associatedwith the Kantorovich potential u, and de�neF (X;xn) := V (X) + xn�(V (X)):(48)That F inverts G (assertion (iii)) now follows from (42), (47) and the fact that uis a�ne with maximal slope along the ray R.To prove F is Lipschitz on G(T 0pij) � Rn�1 �R1, introduce� := fX 2 Rn�1 j (X; 0) 2 G(T 0pij)g:(49)We �rst claim the ray direction � � V is a Lipschitz function of X 2 �. Indeed,recalling that V (X) 2 Sip is separated from the endpoints of RV (X) by a distancegreater than 1=j, we invoke Lemma 16 to conclude that X;X 0 2 � satisfyk�(V (X)) � �(V (X 0))k � jC1 kV (X) � V (X 0)k(50) � jC2 jX �X 0j(51)



CONSTRUCTING OPTIMAL MAPS 17because V : Rn�1 ! Rn was Lipschitz in Lemma 18. To complete the proof thatF is Lipschitz, it remains only to bound xn in (48). Since the supports X and Y ofthe original measures were compact, the transport rays Tpij � T1 lie in a boundedset. It follows from the de�nition (47) of G that (X;xn) 2 G(T 0pij) is also bounded,since u and U are Lipschitz on Rn. Finally, we can extend F to all of Rn�1 �R1while preserving the Lipschitz bound (51) using Kirszbraun's theorem [9, x2.10.43],to conclude the proof of assertion (i).It remains to prove assertion (ii) of the lemma. Let � > 0. We �rst show thedirection function �( � ) to be Lipschitz on T�pij . Being discontinuous at the mutualend of two rays, its Lipschitz constant must depend on �. Let x; x0 2 T�pij lie onthe transport rays R and R0. If kx� x0k � �=2 there is nothing to prove, sincek�(x)� �(x0)k � 2 � 4�kx� x0k:Therefore, assume kx� x0k < �=2 and hence ju(x)� u(x0)j � kx� x0k < �=2. Thepoint y0 := x0+ [u(x)� u(x0)]�(x0) then lies on the ray R0, since the ends of R0 areat least distance � from x0. Moreover, u(y0) = u(x0) + [u(x)� u(x0)] = u(x), andthe distances from x and y0 to the ends of R and R0 are at least �=2 respectively.Invoking Lemma 16 again yields:k�(x)� �(x0)k = k�(x)� �(y0)k � 2C� kx� y0k:(52)Moreover, x0; y0 2 R0 lie on the same transport ray, and u(x) = u(y0), sokx0 � y0k = ju(x0) � u(y0)j = ju(x0) � u(x)j � kx0 � xk(53)combines with the triangle inequality kx� y0k � kx� x0k + kx0 � y0k to producethe desired bound for �( � ) on T�pij :k�(x)� �(x0)k � 4C� kx� x0k:(54)Turning to G, we estimatejG(x)�G(x0)j � jG(x)�G(y0)j+ jG(y0)� G(x0)j:(55)Since x0 and y0 lie on R0, de�nition (47) yieldsjG(y0) �G(x0)j = ju(x0)� u(y0)j = ju(x0) � u(x)j � kx� x0k:(56)Let z and z0 be the points where R and R0 pierce Sip. Since u(x)� u(z) = u(y0) �u(z0), the same de�nition givesjG(x)�G(y0)j = jU (z)� U (z0)j:(57)Setting � := u(z) � u(x), we have z = x + ��(x) and z0 = y0 + ��(x0). Also j�jis bounded by the diameter of the cluster T�pij. Because the coordinates U wereLipschitz, we havejU (z)� U (z0)j � C3kx� y0k+ �C3k�(x)� �(x0)k(58) � C3(2 + 4�C��1)kx� x0k(59)from (53){(54). Now (55){(59) implyG is Lipschitz on T�pij , to complete the lemma.



18 L. A. CAFFARELLI, M. FELDMAN, AND R. J. MCCANNThe next step is to address measurability of the sets Tpij and G(T 0pij). As inEvans and Gangbo [7], this is done with the help of the distance functions to theupper and lower ends of rays:Lemma 24 (Semicontinuity of Distance to Ray Ends). At each z 2 Rn de�ne�(z) := supfkz � yk j y 2 Y; u(z)� u(y) = kz � ykg;(60) �(z) := supfkz � xk j x 2 X ; u(x)� u(z) = kz � xkg;(61)where sup ; := �1. Then �; � : Rn ! R[f�1g are both upper semicontinuous.Proof. We prove only the upper semicontinuity of �(z); the proof for �(z) is similar.Given any sequence of points zn ! z for which �0 := limn�(zn) exists, we needonly show �0 � �(z). It costs no loss of generality to assume �0 > �1 and�(zn) > �1; moreover, �(zn) < 1 since the support Y of the measure �� wasassumed compact. From (60),�(zn)� 1=n � kzn � ynk = u(zn)� u(yn)(62)for some sequence yn 2 Y. By compactness of Y, a convergent subsequence yn !y 2 Y exists. The (Lipschitz) continuity of u yields �0 � kz � yk = u(z) � u(y) ��(z) from the limit of (62), which proves the lemma.Geometrically, the functions �, � have the following meaning: If z lies on atransport ray R, then �(z) and �(z) are the distances (in k � k) from z to the lowerand upper end of R respectively; thus at ray ends z 2 E , exactly one of thesedistances vanishes. If z 2 T0 is a ray of zero length, then �(z) = �(z) = 0. Ifz 2 Rn n (T0 [ T1), then either �(z) = �1 or �(z) = �1. We combine thesefunctions with our change of variables to show the clusters of ray interiors T 0pijare Borel sets, and to give a much simpler proof than Evans and Gangbo that theray ends have measure zero [7, Proposition 5.1]. In what follows, n-dimensionalLebesgue measure is denoted Ln.Lemma 25 (Measurability of Clusters / Negligibility of Ray Ends). The ray endsE � T1 form a Borel set of measure zero: Ln(E) = 0. The rays of length zeroT0 � Rn also form a Borel set. Finally, for each p 2 Q and i; j 2 N, the clusterT 0pij of ray interiors and its 
attened image G(T 0pij) from Lemma 22 are Borel.Proof. First observe that T0 = fz 2 Rn j �(z) = �(z) = 0g while E = fz 2 Rn j�(z)�(z) = 0 but �(z) + �(z) > 0g. Both of these sets are Borel by the uppersemicontinuity of � and � shown in Lemma 24.Therefore, �x p 2 Q and i; j 2N and recall the Borel set Sip � Rn and Lipschitzcoordinates U : Rn ! Rn�1 on it from Lemma 18. Since U is univalent (i.e.,one-to-one) on Sip, it follows from Federer [9, x2.2.10, p. 67] that U (Sip) is a Borelsubset of Rn�1. Moreover, the set � de�ned in (49) is given by� = fX 2 U (Sip) j �(U�1(X)); �(U�1(X)) > 1=jgaccording to (47), which with De�nition 19 also yields the imageG(T 0pij) = f(X;xn) j X 2 �; ��(V (X)) < xn < �(V (X))gof the ray cluster in 
attened coordinates. Here V = U�1 is Lipschitz, so � � V ,� � V are upper semicontinuous in view of Lemma 24. Thus we conclude that



CONSTRUCTING OPTIMAL MAPS 19both � � Rn�1 and G(T 0pij) � Rn�1 � R1 are Borel. Lemma 22(iii) shows thatthe transformation F = G�1 back to the original coordinates is well de�ned andunivalent on G(T 0pij). Since F extends to a Lipschitz function throughout Rn andT 0pij = F (G(T 0pij)), we conclude, using Federer [9, x2.2.10] again, that T 0pij is Borel.To show the ray ends have measure zero, consider the corresponding pointsG � Rn�1 �R1 of Tpij in the 
attened coordinate system:G = f(X;��(V (X))) j X 2 �g [ f(X; �(V (X))) j X 2 �g:Using upper semicontinuity of � � V and � � V we conclude G is a Borel set, andLn(G) = 0 by Fubini's theorem. Now E \Tpij = F (G). Since F : Rn�1�R1 ! Rnis a Lipschitz map, we can use Ln(G) = 0 and the Area formula [9, x3.2.3] toconclude that Ln(E \ Tpij) = 0 (and hence is Lebesgue measurable). By Lemma20, the clusters fTpijg form a countable cover for E � T1, so Ln(E) = 0 to concludethe proof.As a particular consequence of this lemma, the set T1 of all transport rays isBorel, being a countable union of Borel sets T 0pij with E . Also, the sets Tpij areLebesgue measurable, being the union of a Borel set with a subset of a negligibleset.Finally, we can take the clusters Tpij of rays to be disjoint. Indeed, enumeratethe triples (p; i; j) so the collection of clusters fTpijg becomes fT(k)g, k = 1; 2; : : : .For k > 1 rede�ne T(k) ! T(k) n (Sk�1l=1 T(l)). Rede�ne T 0(k) ! T 0(k) n (Sk�1l=1 T 0(l))analogously. We will continue to denote the modi�ed sets by Tpij and T 0pij. Notethat the structure of the clusters Tpij remains the same: for each Tpij we have aBorel subset Spij := Tpij \Sp of Sip � Rn on which there are Lipschitz coordinatesU , V (42) satisfying V (U (x)) = x for all x 2 Spij:(63)Indeed, since the new cluster is a subset of the old, the former maps U , V willsu�ce. From the modi�cation procedure it also follows that the ray property (46)holds for the modi�ed sets | which justi�es calling them clusters | and that theray Rz corresponding to each z 2 Spij extends far enough on both sides of Sp(i.e., �(z); �(z) > 1=j) to de�ne coordinates F , G on Tpij satisfying all assertionsof Lemma 22 (again, the original maps F and G work for the modi�ed clusters).The measurability Lemma 25 holds for the new clusters, as follows readily from themodi�cation procedure. Thus from now on we assume:The clusters of ray interiors T 0pij are disjoint.(64) 4. Mass balance on raysSince we intend to solve Monge's problem by constructing a map which movesmass along rays, it is essential to know that f+ and f� assign the same amountof mass to each transport ray. In the Euclidean case this is the content of Evansand Gangbo [7, Lemma 5.1]. Here it remains true, but our proof exploits thefact that the optimal maps s"(x) between f+ onto f� for the cost c"(x; y) =kx� yk1+" in Theorem 2(iv) accumulate onto transport rays of the limiting Kan-torovich potential.While individual rays all have mass zero, one can consider arbitrary collectionsof transport rays instead. The ray ends, having measure zero, are neglected. Thus:



20 L. A. CAFFARELLI, M. FELDMAN, AND R. J. MCCANNDe�nition 26 (Transport Sets). A set A � Rn is called a transport set if z 2A\ (T1nE) impliesR0z � A, where Rz is the unique transport ray passing through z.It is called the positive end of a transport set if A merely contains the interval [z; a)whenever z 2 A \ (T1 n E) and a denotes the upper end of the transport ray Rz.Examples. Any subset A � T0 of rays of length zero is a transport set, as are theclusters of rays Tpij.For Borel transport sets, such as T 0pij , the following balance conditions apply.Lemma 27 (Mass Balance on Rays). Let A � Rn be a Borel transport set. ThenZA f+(x) dx = ZA f�(x) dx:(65)More generally, if a Borel set A+ � Rn forms the positive end of a transport set,then ZA+ f+(x) dx � ZA+ f�(x) dx:(66)Proof. We will prove inequality (66) for a positive end of a transport set. Equality(65) for transport sets then follows by symmetry.Let A+ be a positive end of a transport set. Since T0[T1 � conv[X [Y] containsall transport rays by De�nitions 7 and 8 and the supports of f� by Lemma 9, itcosts no generality to replace A+ by its intersection with T0 [T1. Thus we assumeA+ � T0 [ T1.Assume �rst that A+ is a closed set and that A+ does not contain any lowerends of rays. Then A+ is compact since X [Y is bounded. Recall that our limitingKantorovich potential u was obtained from (14) and a limit ('"j ;  "j ) ! ('0;  0)| uniform on X � Y | of potentials minimizing K(';  ) on J"j (X ;Y). Here theconvex costs c"j (x; y) = kx � yk1+"j ! c0(x; y) uniformly on X � Y as j ! 1 inProposition 3.For r > 0, let Nr(A+) = fx 2 Rn j dist(x;A+) < rg denote the r-neighborhoodof A+. Since A+ is the positive end of a transport set and closed and does notcontain any lower ends of rays, it follows that if y 2 A+ and u(x)� u(y) = kx� ykfor some x 2 X , then x 2 A+. Since u 2 Lip1(Rn; d) and A+, X n Nr(A+) arecompact sets, it follows thatinfy2A+; x2XnNr(A+)[kx� yk � u(x) + u(y)] � �(r) > 0:By (14),'0(x) +  0(y) � �kx� yk + �(r) for any y 2 A+; x 2 X nNr(A+):The uniform convergence mentioned above then yields'"j (x) +  "j (y) � �c"j (x; y) + �(r)2 for any y 2 A+; x 2 X nNr(A+);provided j > j0(r) is su�ciently large. From Theorem 2(iii){(iv) it now followsthat s"j (x) 2 A+ implies x 2 Nr(A+) if j > j0(r). Here s"j : X ! Y is theunique optimal map between f+ and f� with respect to the cost function c(x; y) =kx�yk1+"j . Since s"j pushes �+ forward to ��, we obtain �+[Nr(A+)] � ��(A+).But because A+ is closed, the limit r! 0+ yields (66).



CONSTRUCTING OPTIMAL MAPS 21If A+ is merely Borel, then we can replace A+ by A+ nE since E is a Borel set ofLn measure zero and �� are absolutely continuous with respect to Lebesgue. Thuswe assume that A+ � (T0 [ T1) n E . Since A+ is Borel, for any � > 0 there exists aclosed set C = C� � A+ such that Ln[A+ nC] < �. Denote by R+(C) the setR+(C) = C [0@ [z2C\(T1nE)[z; a(z)]1A ;where a(z) denotes the upper end of the transport rayRz. Continuity of u(�) impliesthat R+(C) is closed. By de�nition, R+(C) is a positive end of a transport set,and does not contain lower ends of rays since C \ E = ;. Thus�+[R+(C)] � ��[R+(C)]:(67)Since A+ � C is a positive end of a transport set, R+(C) � A+ [ E . Moreover,Ln(E) = 0, so ��[R+(C)] � ��(A+). Finally, Ln[A+ n R+(C)] < � and the mea-sures �� are absolutely continuous with respect to Lebesgue, so ��[A+ nR+(C)]!0 with � ! 0+. Thus ��[R+(C)]! ��(A+), and (67) implies (66).5. Construction of the optimal mapThis �nal section is devoted to the proof of Theorem 1 by constructing an optimalmap for Monge's problem.Proof. Step 1. Localization to clusters of rays. According to Lemma 6, it isenough to construct a map s : Rn ! Rn pushing �+ forward to �� which onlymoves mass down transport rays: i.e., for any x 2 X , the point s(x) must lie belowx on the same transport ray Rx, possibly of length zero. Here `down' and `below'refer to the constraint u(x) � u(s(x)) from (18).Decompose the set X [Y into the rays T0 of length zero, clusters of ray interiorsT 0pij, and the ray ends E using Lemmas 9 and 20. The cluster property (46) impliesthat any such map s satis�es s(x) 2 T 0pij almost everywhere on T 0pij, while s(x) = xon T0. Since the ray ends form a set of measure zero by Lemma 25, they are ne-glected here and in the sequel. Thus we can construct an optimal map s separatelyon each cluster T 0pij and on T0. Indeed, suppose for each (p; i; j) we have a mapspij : T 0pij ! T 0pij pushing �+jT0pij forward onto ��jT0pij , and a map s0 : T0 ! T0 push-ing �+jT0 forward onto ��jT0 . Here �jA denotes the restriction of measure � from Rnto A � Rn. The clusters T 0pij and T0 are disjoint and Borel by (64) and Lemma 25.Thus the map s : Rn ! Rn de�ned bys(x) = � s0(x) for x 2 T0;spij(x) for x 2 T 0pij ;(68)is well de�ned, Borel, and pushes �+ forward to ��.Consider s0 �rst. Since every subset A � T0 is a transport set, Lemma 27 showsthe identity map pushes �+jT0 forward to ��jT0 . Thus we de�ne s0(x) = x on T0. Theremainder of the proof is devoted to constructing maps spij : T 0pij ! T 0pij pushing�+jT0pij forward to ��jT0pij which only move mass down transport rays.Step 2. Change of variables. Fix p 2 Q, i; j 2 N and consider T 0pij .Denote ��pij := ��jT0pij . By Lemma 22 the map F is one-to-one on G(T 0pij), and



22 L. A. CAFFARELLI, M. FELDMAN, AND R. J. MCCANNF (G(T 0pij)) = T 0pij . Since F is Lipschitz, the Area formula [9, x3.2.5] yieldsZG(T0pij ) '(F (x))f�(F (x))JnF (x) dx = ZT0pij '(z)f�(z)dz(69)for any summable ' : Rn ! R1. Here JnF denotes the n-dimensional Jacobian ofF . De�ne f̂� : Rn�1 �R1 ! R1 byf̂�(x) = � f�(F (x))JnF (x) x 2 G(T 0pij);0 otherwise:(70)The characteristic function ' = �G(T0pij) in (69) shows f̂� is summable; it is obvi-ously non-negative and Borel since Lemma 25 shows G(T 0pij) Borel and bounded.Introduce the measures d�� := f̂�(x)dx. Comparing (3) with (69) givesF#�� = ��pij;(71)meaning the map F pushes �� forward to ��pij. From Lemma 22(ii){(iii) we deducethe inverse map G is Borel on T 0pij, and G(F (y)) = y on G(T 0pij). With (71) thisimplies G#��pij = ��:(72)From (71){(72) it then follows that if a map ŝ : Rn�1 �R1 ! Rn�1 �R1 pushes�+ forward to ��, then the composition spij = F � ŝ�G pushes �+pij forward to ��pij .In addition, Lemma 22(iv) shows that when ŝ moves mass down vertical lines, i.e.,satis�es ŝ(X;xn) 2 fXg � [�1; xn] for any (X;xn), then spij moves mass downtransport rays. Thus it remains only to construct ŝ : Rn�1 � R1 ! Rn�1 � R1satisfyingŝ#�+ = ��; ŝ(X;xn) 2 fXg � [�1; xn] for any (X;xn) 2 Rn�1 �R1:Step 3. Restriction to vertical lines. By Fubini's theorem, the functionsf̂�(X; � ) are summable for a.e. X 2 Rn�1. Let us introduce the distributionfunction 	�(X; � ) := Z 1� f̂�(X;xn) dxn(73) = ZR1 �(0;1)(xn � � )f̂�(X;xn) dxn:(74)Here 	� is non-negative and Borel throughout Rn [22, x8.8], with a continuousnon-increasing dependence on � . For a.e. X 2 Rn�1 we shall show:	+(X; � ) � 	�(X; � )(75)holds for all � 2 R, with equality	+(X;�1) = 	�(X;�1) <1(76)as � ! �1. These inequalities are interpreted to mean that at no point � alonga transport ray can the mass of �� above � exceed the mass of �+, though they



CONSTRUCTING OPTIMAL MAPS 23balance in the limit (76). Note that 	�(X; � ) becomes independent of j� j for largej� j, since f̂� had compact support in (70). The bound in (76) comes from Fubini'stheorem applied to f̂� 2 L1(Rn).Let us �rst �x � 2 R, and establish (75) for a.e. X 2 Rn�1. Consider the sets�+ := fX 2 Rn�1 j 	+(X; � ) < 	�(X; � )g;(77) 
+ := f(X;xn) 2 G(T 0pij) j X 2 �+; xn > �g;(78) F (
+) = fx 2 T 0pij j G(x) 2 
+g:(79)Noting that (Z; zn) 2 
+ implies (Z; xn) 2 
+ for every xn > zn with (Z; xn) 2G(T 0pij), it is not hard to verify that F (
+) � T 0pij is the positive end of a transportset from (46){(47) and De�nition 26. Now �+ � Rn�1 is Borel like 	�, and
+ � Rn is Borel by Lemma 25. Fubini's theorem, (70), (73) and (77){(78) yieldZ�+ [	+(X; � )� 	�(X; � )] dX = Z
+ [f̂+(x)� f̂�(x)] dx:(80)On the other hand, F (
) is Borel whenever 
 � G(T 0pij) is, since F is one-to-one and continuous on G(T 0pij) [9, x2.2.10]. Choosing the characteristic function' = �F (
) in (69){(70) yieldsZ
 f̂�(x) dx = ZF (
) f�(z) dz <1;hence Z�+ [	+(X; � )�	�(X; � )] dX = ZF (
+)[f+(z) � f�(z)] dz � 0(81)from (80). Here the last integral is non-negative by Lemma 27, since F (
+) wasthe positive end of a transport set. But the �rst integrand is negative by (77), sowe infer Ln�1(�+) = 0. Thus (75) holds for a.e. X 2 Rn�1, depending on our�xed � . Fubini's theorem then shows it holds for a.e. (X; � ) 2 Rn. Therefore, �xX0 2 Rn�1. The continuous dependence of 	�(X0; � ) on � implies (75) is notviolated for X = X0 and any � , unless it is violated on an interval of positivemeasure around � . Using Fubini again, we conclude for a.e. X 2 Rn�1 that (75)holds for all � .To obtain the equality (76), use compactness to �x � < xn for all (X;xn) 2G(T 0pij), so that 	�(X; � ) = 	�(X;�1). We need the reverse inequality to (75),so de�ne �� := fX 2 Rn�1 j 	+(X; � ) > 	�(X; � )g;
� := f(X;xn) 2 G(T 0pij) j X 2 ��g;F (
�) = fx 2 T 0pij j G(x) 2 
�g:Note that this time 
� is independent of � , whence (Z; zn) 2 
� implies (Z; xn) 2
� if (Z; xn) 2 G(T 0pij). It follows that F (
�) � T 0pij is a complete transport set(and not merely its positive end). Repeating the same argument as before, Lemma27 impliesZ�� [	+(X; � )�	�(X; � )] dX = ZF (
�)[f+(z) � f�(z)] dz = 0



24 L. A. CAFFARELLI, M. FELDMAN, AND R. J. MCCANNinstead of (81). This time the �rst integrand is strictly positive, so Ln(��) = 0,which completes the proof that mass balance (76) also holds for almost every X 2Rn�1.This balancing of mass (76) is a consistency condition which enables us to solvethe one-dimensional transport problem on a.e. vertical line fXg�R1 separately. Weshall use inequality (75) to show the solution maps we construct verify tX (xn) � xnon R1. After that, it will remain only to prove that the resulting map ŝ : Rn�1 �R1 ! Rn�1 �R1, de�ned by ŝ(X;xn) = (X; tX (xn)), pushes �+ forward to ��.Step 4. One-dimensional transport. Fix X 2 Rn�1 for which (75){(76)hold. We will construct a map tX(x) � x on R1 which pushes f̂+(X;xn) dxnforward to f̂�(X;xn) dxn. Note that this map is not unique: among the possiblesolutions we are free (and we elect) to choose the unique non-decreasing, lowersemicontinuous map. But this choice is arbitrary; the only important thing is thatour choices are consistent enough on di�erent rays that we end up with a measurablemap on Rn.We de�ne tX using the distribution functions 	�(X; � ). Fix � 2 R1, and recallthat 	�(X; � ) is a continuous, non-increasing function which takes constant valuesoutside a compact set. By (76), there exists some � 2 R1 which satis�es	+(X; � ) := Z 1� f̂+(X;xn) dxn = Z 1� f̂�(X;xn) dxn =: 	�(X; �):(82)Of course � need not be unique, since 	�(X; � ) will not decrease strictly where f̂�vanishes. But the set of all � satisfying (82) forms a closed segment (or half-line).If we de�ne tX (� ) := inff� 2 R1 j 	+(X; � ) � 	�(X; �)g(83) = supf� 2 R1 j 	+(X; � ) < 	�(X; �)g;(84)then monotonicity of 	�(X; � ) shows tX non-decreasing, and the equivalence of(83) to (84). Lower semicontinuity of tX ( � ) follows from (83) and continuity of	�(X; � ), while tX(� ) � � follows from (75). Finally, we claim the map tX pushesd�+X := f̂+(X;xn) dxn forward to d��X := f̂�(X;xn) dxn, or equivalently�+X ((tX )�1(A)) = ��X (A) for each Borel set A � R1.(85)Indeed, when A is a half-line (�1; �), then (85) follows directly from the conditions(82){(84) de�ning tX . But half-lines generate all Borel sets, so (85) is established.Step 5. ŝ pushes �+ forward to ��. Here ŝ : Rn�1 �R1 ! Rn�1 � R1 isde�ned as ŝ(X;xn) = (X; tX(xn)), where tX(xn) � xn is from Step 4.First we prove ŝ is Borel. It is enough to show that the function t : Rn�1�R1 !R1 de�ned as t(X;xn) := tX (xn) is Borel. For each � 2 R1 setT� := f(X; � ) 2 Rn�1 �R1 j t(X; � ) > �g; and(86) M� := f(X; � ) 2 Rn�1 �R1 j 	+(X; � ) < 	�(X; �)g:(87)Observe that M� is Borel since 	� are, and M� � M�+" for " > 0. We shall proveT� =M� , to conclude that t(X; � ) is Borel on Rn.
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