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1. Introduction

If a compact Lie group G acts on a manifold M , the
space M/G of orbits of the action is usually a singu-
lar space. Nonetheless, it is often possible to develop
a ’differential geometry’ of the orbit space in terms
of appropriately defined equivariant objects on M . In
this article, we will be mostly concerned with ’differen-
tial forms on M/G’. A first idea would be to work with
the complex of ’basic’ forms on M , but for many pur-
poses this complex turns out to be too small. A much
more useful complex of equivariant differential forms

on M was introduced by H. Cartan in 1950, in [2, Sec-
tion 6]. In retrospect, Cartan’s approach presented a
differential form model for the equivariant cohomol-
ogy of M , as defined by A. Borel [8] some ten years
later. Borel’s construction replaces the quotient M/G
by a better behaved (but usually infinite-dimensional)
homotopy quotient MG, and Cartan’s complex should
be viewed as a model for forms on MG.

One of the features of equivariant cohomology are
the localization formulas for the integrals of equivari-
ant cocycles. The first instance of such an integration
formula was the ’exact stationary phase formula’, dis-
covered by Duistermaat-Heckman [12] in 1980. This
formula was quickly recognized, by Berline-Vergne [5]
and Atiyah-Bott [3], as a localization principle in equi-
variant cohomology. Today, equivariant localization is
a basic tool in mathematical physics, with numerous
applications.

In this article, we will begin with Borel’s topological
definition of equivariant cohomology. We then proceed
to describe H. Cartan’s more algebraic approach, and
conclude with a discussion of localization principles.

As additional references for the material covered
here, we particularly recommend the books by Berline-
Getzler-Vergne [4] and Guillemin-Sternberg [17].

2. Borel’s model of HG(M)

Let G be a topological group. A G-space is a topo-
logical space M on which G acts by transformations

g 7→ ag, in such a way that the action map

(1) a : G × M → M

is continuous. An important special case of G-spaces
are principal G-bundles E → B, i.e. G-spaces locally
isomorphic to products U × G.

Definition 2.1. A classifying bundle for G is a princi-
pal G-bundle EG → BG, with the following universal
property: For any principal G-bundle E → B, there is
a map f : B → BG, unique up to homotopy, such that
E is isomorphic to the pull-back bundle f∗EG. The
map f is known as a classifying map of the principal
bundle.

To be precise, the base spaces of the principal bun-
dles considered here must satisfy some technical con-
dition. For a careful discussion, see Husemoller [18].
Classifying bundles exist for all G (by a construction
due to Milnor [22]), and are unique up to G-homotopy
equivalence.

It is a basic fact that principal G-bundles with con-
tractible total space are classifying bundles.

Examples 2.2. (a) The bundle R → R/Z = S1 is a
classifying bundle for G = Z.
(b) Let H be a separable complex Hilbert space, dimH =
∞. It is known that unit sphere S(H) is contractible.
It is thus a classifying U(1)-bundle, with base the pro-
jective space P (H). More generally, the Stiefel mani-
fold St(k,H) of unitary k-frames is a classifying U(k)-
bundle, with base the Grassmann manifold Gr(k,H)
of k-planes.
(c) Any compact Lie group G arises as a closed sub-
group of U(k), for k sufficiently large. Hence, the
Stiefel manifold St(k,H) also serves as a model for
EG.
(d) The based loop group G = L0K of a connected Lie
group K acts by gauge transformations on the space
of connections A(S1) = Ω1(S1, k). This is a classify-
ing bundle for L0K, with base K. The quotient map
takes a connection to its holonomy.

For any commutative ring R (e.g. Z, R, Z2) let
H(·;R) denote the (singular) cohomology with coef-
ficients in R. Recall that H(·;R) is a graded commu-
tative ring under cup product.

Definition 2.3. The equivariant cohomology HG(M) =
HG(M ;R) of a G-space M is the cohomology ring of
its homotopy quotient MG = EG ×G M ,

(2) HG(M ;R) = H(MG;R).
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Equivariant cohomology is a contravariant functor
from the category of G-spaces to the category of R-
modules. The G-map M → pt induces an algebra
homomorphism from HG(pt) = H(BG) to HG(M).
In this way, HG(M) is a module over the ring H(BG).

Example 2.4. (Principal G-bundles) Suppose E → B
is a principal G-bundle. The homotopy quotient EG

may be viewed as a bundle E×GEG over B. Since the
fiber is contractible, there is a homotopy equivalence

(3) EG ≃ B,

and therefore HG(E) = H(B).

Example 2.5. (Homogeneous spaces) If K is a closed
subgroup of a Lie group G, the space EG may be
viewed as a model for EK, with BK = EG/K =
EG ×K (G/K). Hence,

(4) HG(G/K) = H(BK).

Let us briefly describe two of the main techniques
for computing HG(M).

(1) Leray spectral sequences. If R is a field, the equi-
variant cohomology may be computed as the E∞ term
of the spectral sequence for the fibration MG → BG.
If BG is simply connected (as is the case for all com-
pact connected Lie groups), the E2-term of the spec-
tral sequence reads

(5) Ep,q
2 = Hp(BG) ⊗ Hq(M).

(2) Mayer-Vietoris sequences. If M = U1 ∪ U2 is a
union of two G-invariant open subsets, there is a long
exact sequence

· · · → Hk
G(M) → Hk

G(U1) ⊕ Hk
G(U2) →

→ Hk
G(U1 ∩ U2) → Hk+1

G (M) → · · ·

More generally, associated to any G-invariant open
cover there is a spectral sequence converging to HG(M).

Example 2.6. Consider the standard U(1)-action on
S2 by rotations. Cover S2 by two open sets U±, given
as the complement of the south- and north pole, re-
spectively. Since U+ ∩ U− retracts onto the equa-
torial circle, on which U(1) acts freely, its equivari-
ant cohomology vanishes except in degree 0. On the
other hand, U± retract onto the poles p±. Hence,
by the Mayer-Vietoris sequence the map Hk

U(1)(S
2) ∼=

Hk
U(1)(p+)⊕Hk

U(1)(p−) given by pull-back to the fixed

points is an isomorphism for k > 0. Since the pull-
back map is a ring homomorphism, we conclude that
HU(1)(S

2;R) is the commutative ring generated by
two elements x± of degree 2, subject to a single re-
lation x+x− = 0.

3. g-differential algebras

Let G be a Lie group, with Lie algebra g. A G-

manifold is a manifold M together with a G-action
such that the action map (1) is smooth. We would
like to introduce a concept of equivariant differential

forms on M . This complex should play the role of dif-
ferential forms on the infinite-dimensional space MG.
In Cartan’s approach, the starting point is an alge-
braic model for the differential forms on the classifying
bundle EG.

The algebraic machinery will only depend on the
infinitesimal action of G. It is therefore convenient to
introduce the following concept.

Definition 3.1. Let g be a finite-dimensional Lie al-
gebra. A g-manifold is a manifold M , together with
a Lie algebra homomorphism a : g → X(M), ξ 7→ aξ

into the Lie algebra of vector fields on M , such that
the map g × M → TM, (ξ,m) 7→ aξ(m) is smooth.

Any G-manifold M becomes a g-manifold, by tak-
ing aξ to be the generating vector field

(6) aξ(m) :=
d

dt

∣

∣

∣

t=0
aexp(−tξ)(m).

Conversely, if G is simply connected, and M is a g-
manifold for which all of the vector fields aξ are com-
plete, the g-action integrates uniquely to an action of
the group G.

The de Rham algebra (Ω(M),d) of differential forms
on a g-manifold M carries graded derivations Lξ =
L(aξ) (Lie derivatives, degree 0) and ιξ = ι(aξ) (con-
tractions, degree −1). One has the following graded
commutation relations,

(7) [d,d] = 0, [Lξ,d] = 0, [ιξ,d] = Lξ,

(8) [ιξ, ιη] = 0, [Lξ, Lη] = L[ξ,η]g , [Lξ, ιη] = ι[ξ,η]g .

More generally, we define:

Definition 3.2. A g-differential algebra (g − da) is a
commutative graded algebra A =

⊕∞
n=0 An, equipped

with graded derivations d, Lξ, ιξ of degrees 1, 0,−1
(where Lξ, ιξ depend linearly on ξ ∈ g), satisfying the
graded commutation relations (7), (8).
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Definition 3.3. For any g− da A one defines the hori-

zontal subalgebra Ahor =
⋂

ξ ker(ιξ), the invariant sub-

algebra Ag =
⋂

ξ ker(Lξ), and the basic subalgebra

Abasic = Ahor ∩ Ag.

Note that the basic subalgebra is a differential sub-
complex of A.

Definition 3.4. A connection on a g−da is an invariant
element θ ∈ A1 ⊗ g, with the property ιξθ = ξ. The
curvature of a connection is the element F θ ∈ A2 ⊗ g

given as F θ = dθ + 1
2 [θ, θ]g.

g − da’s A admitting connections are the algebraic
counterparts of (smooth) principal bundles, with Abasic

playing the role of the base of the principal bundle.

4. Weil algebra

The Weil algebra Wg is the algebraic analogue to
the classifying bundle EG. Similar to EG, it may be
characterized by a universal property:

Theorem 4.1. There exists a g−da Wg with connec-

tion θW , having the following universal property: If A
is a g−da with connection θ, there is a unique algebra

homomorphism c : Wg → A taking θW to θ.

Clearly, the universal property characterizes Wg up
to a unique isomorphism. To get an explicit construc-
tion, choose a basis {ea} of g, with dual basis {ea} of
g∗. Let ya ∈ ∧1g∗ be the corresponding generators of
the exterior algebra, and va ∈ S1g∗ the generators of
the symmetric algebra. Let

(9) Wng =
⊕

2i+j=n

Sig∗ ⊗ ∧jg∗

carry the differential,

(10) dya = va +
1

2
fa

bcy
byc

(11) dva = −fa
bcv

byc

where fa
bc = 〈ea, [eb, ec]g〉 are the structure constants

of g. Define the contractions ιa = ιea
by

(12) ιayb = δb
a, ιavb = 0,

and let La = [d, ιa]. Then La are the generators for
the adjoint action on Wg. The element θW = ya⊗ea ∈
W 1g⊗ g is a connection on Wg. Notice that we could
also use ya, dya as generators of Wg. This identifies
Wg with the Koszul algebra, and implies:

Theorem 4.2. Wg is acyclic. That is, the inclusion

R → Wg is a homotopy equivalence.

Acyclicity of Wg corresponds to the contractibility
of the total space of EG.

The basic subalgebra of Wg is equal to (Sg∗)g, and
the differential restrict to zero on this subalgebra, since
d changes parity. Hence, if A is a g− da with connec-
tion, the characteristic homomorphism c : Wg → A in-
duces an algebra homomorphism, (Sg∗)g → H(Abasic).
This homomorphism is independent of θ:

Theorem 4.3. Suppose θ0, θ1 are two connections on

a g−da A. Then their characteristic homomorphisms

c0, c1 : Wg → A are g-homotopic. That is, there is

a chain homotopy intertwining contractions and Lie

derivatives.

Remark 4.4. One obtains other interesting examples
of g−da’s if one drops the commutativity assumption
from the definition. For instance, suppose g carries an
invariant scalar product. Let Cl(g) be the correspond-
ing Clifford algebra, and U(g) the enveloping algebra.
The non-commutative Weil algebra [2]

(13) Wg = Ug ⊗ Cl(g)

is a (non-commutative) g − da, with the derivations
d, La, ιa defined on generators by the same formulas
as for Wg.

5. Equivariant cohomology of g-da’s

In analogy to HG(M) := H(MG), we now declare:

Definition 5.1. The equivariant cohomology algebra of
a g−da A is the cohomology of the differential algebra
Ag := (Wg ⊗A)basic,

(14) Hg(A) := H(Ag)

The equivariant cohomology Hg(A) has functorial
properties parallel to those of HG(M). In particular,
Hg(A) is a module over

(15) Hg({0}) = H((Wg)basic) = (Sg∗)g.

Theorem 5.2. Suppose A is a g−da with connection

θ, and let c : Wg → A be the characteristic homomor-

phism. Then

(16) Wg ⊗A → A, w ⊗ x 7→ c(w)x

is a g-homotopy equivalence, with g-homotopy inverse

the inclusion

(17) A → Wg ⊗A, x 7→ 1 ⊗ x.
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In particular, there is a canonical isomorphism,

(18) H(Abasic) ∼= Hg(A).

Proof. By Theorem 4.3, the automorphism w ⊗ x 7→
1 ⊗ c(w)x of Wg ⊗ A is g-homotopic to the identity
map. �

The above definition of the complex Ag is often
referred to as the Weil model of equivariant cohomol-
ogy, while the term Cartan model is reserved for a
slightly different description of Ag. Identify the space
(Sg∗ ⊗ A)g with the algebra of equivariant A-valued
polynomial functions α : g → A. Define a differential
dg on this space by setting

(19) (dgα)(ξ) = d(α(ξ)) − ιξα(ξ).

Theorem 5.3 (H. Cartan). The natural projection

Wg ⊗ A → Sg∗ ⊗ A restricts to an isomorphism of

differential algebras, Ag
∼= (Sg∗ ⊗A)g.

Suppose A carries a connection θ. The g-homotopy
equivalence (16) induces a homotopy equivalence Ag →
Abasic of the basic subcomplexes. By explicit calcula-
tion, the corresponding map for the Cartan model is
given by,

(20) (Sg∗ ⊗A)g → Abasic, α 7→ P θ
hor(α(F θ)).

Here α(F θ) ∈ Ag is the result of substituting the cur-
vature of θ, and Phor : A → Ahor is horizontal projec-
tion. On elements of (Sg∗)g ⊂ (Sg∗ ⊗ A)g, the map
(20) specializes to the Chern-Weil homomorphism.

There is an algebraic counterpart of the Leray spec-
tral sequence, as follows. Introduce a filtration,

(21) F pAp+q
g

:=
⊕

2i≥p

(Sig∗ ⊗Aq)g

Since second term in the equivariant differential (19)
raises the filtration degree by 2, it follows that

(22) Ep,q
2 = (Sp/2g∗)g ⊗ Hq(A),

for p even, Ep,q
2 = 0 for p odd. In fortunate cases,

the spectral sequence collapses at the E2-stage (see
below).

6. Equivariant de Rham theory

We will now restrict ourselves to the case that A =
Ω(M) is the algebra of differential forms on a G-ma-
nifold, where G is compact and connected.

Theorem 6.1 (Equivariant de Rham theorem). Sup-

pose G is a compact, connected Lie group, and that

M is a G-manifold. Then there is a canonical isomor-

phism,

(23) HG(M ; R) ∼= Hg(Ω(M)),

where the left hand side is the equivariant cohomology

as defined by the Borel construction.

Motivated by this result, we will change our nota-
tion slightly and write

(24) ΩG(M) = (Sg∗ ⊗ Ω(M))G

for the Cartan complex of equivariant differential forms,
and dG for the equivariant differential (19).

Remark 6.2. Theorem 6.1 fails, in general, for non-
compact Lie groups G. A differential form model for
the non-compact case was developed by Getzler [13].

Example 6.3. Let (M,ω) be a symplectic manifold,
and a : G → Diff(M) a Hamiltonian group action.
That is, a preserves the symplectic form, a∗

gω = ω, and
there exists an equivariant moment map Φ: M → g∗

such that ιξω + d〈Φ, ξ〉 = 0. Then the equivariant

symplectic form ωG(ξ) := ω + 〈Φ, ξ〉 is equivariantly
closed.

Example 6.4. Let G be a Lie group, and denote by

(25) θL = g−1dg, θR = dgg−1

the left-, right-invariant Maurer-Cartan forms. Sup-
pose g = Lie(G) carries an invariant scalar product ·,
and consider the closed 3-form

(26) φ =
1

12
θL · [θL, θL].

Then

(27) φG(ξ) = φ +
1

2
(θL + θR) · ξ

is a closed equivariant extension for the conjugation
action of G. More generally, transgression gives ex-
plicit differential forms φj generating the cohomology
ring H(G) = (∧g∗)G. Closed equivariant extensions
of these forms were obtained by Jeffrey [19], using a
construction of Bott-Shulman.

A G-manifold is called equivariantly formal if

(28) HG(M) = (Sg∗)G ⊗ H(M)

as an (Sg∗)G-module. Equivalently, this is the condi-
tion that the spectral sequence (22) for HG(M) col-
lapses at the E2-term. M is equivariantly formal un-
der any of the following conditions, (1) Hq(M) = 0 for
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q odd, (2) the map HG(M) → H(M) is onto, (3) M
admits a G-invariant Morse function with only even
indices, (4) M is a symplectic manifold and the G-
action is Hamiltonian. (The last fact is a theorem due
to Ginzburg and Kirwan, see e.g. [14]).

Example 6.5. The conjugation action of a compact Lie
group is equivariantly formal, by criterion (2). In this
case (28) is an isomorphism of algebras.

It is important to note that (28) is not an algebra
isomorphism, in general. Already the rotation action
of G = U(1) on M = S2, discussed in Example 2.6,
provides a counter-example.

Theorem 6.6 (Injectivity). Suppose T is a compact

torus, and M is T -equivariantly formal. Then the

pull-back map HT (M) → HT (MT ) to the fixed point

set is injective.

Since the pull-back map to the fixed point set is an
algebra homomorphism, one can sometimes use this
result to determine the algebra structure on HT (M):
Let αr ∈ H(M) be generators of the ordinary coho-
mology algebra, and let (αr)T be equivariant exten-
sions. Denote by xr ∈ HT (MT ) the pull-backs of
(αr)T to the fixed point set, and let yi be a basis of t∗,
viewed as elements of St∗ ⊂ HT (MT ). Then HT (M)
is isomorphic to the subalgebra of HT (MT ) generated
by the xr and yj .

The case of non-Abelian compact groups G may be
reduced to maximal torus T using the following result.
Observe that for any G-manifold M , there is a natural
action of the Weyl group W = N(T )/T on HT (M).

Theorem 6.7. The natural restriction map

(29) HG(M ; R) → HT (M ; R)W

onto the Weyl group invariants is an algebra isomor-

phism.

Remark 6.8. The Cartan complex (24) may be viewed
as a small model for the differential forms on the infinite-
dimensional space MG. In the non-commutative case,
there exists an even ’smaller’ Cartan model, with un-
derlying complex (Sg∗)G ⊗Ω(M)G, involving only in-
variant differential forms on M . See e.g. [1, 15].

7. Equivariant characteristic forms

Let G be a compact Lie group, and E → B a princi-
pal G-bundle with connection θ ∈ Ω1(E)⊗g. Suppose
the principal G-action commutes with the action of a

compact Lie group K on E, and that θ is K-invariant.
The K-equivariant curvature of θ is defined as follows,

F θ
K = dKθ + 1

2 [θ, θ] ∈ Ω2
K(E) ⊗ g.

By the equivariant version of (20), there is a canonical
chain map,

(30) ΩK×G(E) → ΩK(B),

defined by substituting the K-equivariant curvature
for the g-variable, followed by horizontal projection
with respect to θ. The Cartan map (30) is homo-
topy inverse to the pull-back map from ΩK(B) to
ΩK×G(B).

Example 7.1. The complex ΩK×G(E) contains a sub-
complex (Sg∗)G. The restriction of (30) By construc-
tion, is the equivariant Chern-Weil map

(31) (Sg∗)G → ΩK(B)

Forms in the image of (31) are equivariantly closed;
they are called the K-equivariant characteristic forms

of E.

Example 7.2. Similarly, if V → B is a K-equivariant
vector bundle with structure group G ⊂ GL(k), one
defines the K-equivariant characteristic forms of V to
be those of the corresponding bundle of G-frames in V.
For instance, suppose V is an oriented K-equivariant
vector bundle of even rank k, with an invariant metric
and compatible connection. The Pfaffian defines an
invariant polynomial on so(k),

(32) ζ 7→ det1/2(ζ/2π)

(equal to 0 if k is odd). The K-equivariant charac-
teristic form of degree k on B determined by (32) is
known as the equivariant Euler form

(33) EulK(V) ∈ Ωk
K(B).

Similarly, one defines equivariant Pontrjagin forms of
V, and (for Hermitian vector bundles) equivariant Chern
forms.

Example 7.3. Suppose G is a maximal rank subgroup
of the compact Lie group K. The bundle K → K/G
admits a unique K-invariant connection. Hence, one
obtains a canonical chain map (Sg∗)G → ΩK(K/G),
realizing the isomorphism HK(K/G) ∼= (Sg∗)G. In
particular, any G-invariant element of g∗ defines a
closed K-equivariant 2-form on K/G. For instance,
symplectic forms on co-adjoint orbits are obtained in
this way.
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Suppose M is a G-manifold, and let Q = E×GM be
the associated bundle. For any K-invariant connection
on E one obtains a chain map

(34) ΩG(M) → ΩK×G(E × M) → ΩK(Q),

by composing the pull-back to E×M with the Cartan
map for the principal bundle E × M → Q.

Example 7.4. Suppose (M,ω) is a Hamiltonian G-ma-
nifold, with moment map Φ: M → g∗. The image
of ωG = ω + Φ under the map (34) defines a closed
K-equivariant 2-form on Q. This construction is of
importance in symplectic geometry, where it arises in
the context of Sternberg’s minimal coupling.

8. Equivariant Thom forms

Let π : V → B be a G-equivariant oriented real vec-
tor bundle of rank k over a compact base B. There is
a canonical chain map, called fiber integration

(35) π∗ : Ω•(V)cp → Ω•−k(B)

where the subscript indicates ’compact support’. It
is characterized by the following properties: (i) for a
form of degree k, the value of its fiber integral at x ∈ B
is equal to the integral over the fiber Vx, and (ii)

(36) π∗(α ∧ π∗β) = π∗α ∧ β

for all α ∈ Ω(V)cp and β ∈ Ω(B). Fiber integration
extends to G-equivariant differential forms, and com-
mutes with the equivariant differential.

Theorem 8.1 (Equivariant Thom isomorphism). Fiber

integration defines an isomorphism,

(37) H•+k
G (V)cp → H•

G(B).

An equivariant Thom form for a G-vector bundle is
a cocycle ThG(V) ∈ Ωk

G(V)cp, with the property,

(38) π∗ ThG(V) = 1.

Given ThG(V), the inverse to (37) is realized on the
level of differential forms as

(39) Ω•
G(B) → Ω•+k

G (E), α 7→ ThG(V) ∧ π∗α

A beautiful ’universal’ construction of Thom forms
was obtained by Mathai-Quillen [21]. Using (34), it
suffices to describe an SO(k)-equivariant Thom form
for the trivial bundle R

k → {0}. Using multi-index
notation for ordered subsets I ⊂ {1, . . . , k}, write
(40)

ThSO(k)(R
k)(ζ) =

e−‖x‖2

πk/2

∑

I

ǫIdet1/2
(ζI

2

)

(dx)Ic

.

Here the sum is over all subsets I with |I| even, and
Ic is the complement of I. The matrix ζI is obtained
from ζ by deleting all rows and columns that are not

in I, and det1/2 is defined as a Pfaffian. Finally, ǫI

is the sign of the shuffle permutation defined by I,
that is, (dx)I(dx)Ic

= ǫIdx1 · · · dxk. As shown by
Mathai-Quillen the form (40) is equivariantly closed,
and clearly (38) holds since the top degree part is just
a Gaussian. If k is even, the Mathai-Quillen formula
can also be written, on the open dense where ζ ∈ so(k)
is invertible,
(41)

ThSO(k)(R
k)(ζ) = det1/2

(

ζ
2π

)

e−‖x‖2−〈dx,ζ−1(dx)〉

The form ThSO(k)(R
k) given by these formulas does

not have compact support, but is rapidly decreasing
at infinity. One obtains a compactly supported Thom
form, by applying an SO(k)-equivariant diffeomorphism
from R

k onto some open ball of finite radius.
Note that the pull-back of (40) to the origin is equal

to det1/2( ζ
2π ) (equal to 0 if k is odd). This implies:

Theorem 8.2. Let ι : B → V denote the inclusion of

the zero section. Then

(42) ι∗ ThG(V) = EulG(V),

where EulG(V) ∈ Ωk
G(B) is the equivariant Euler form.

Suppose next that M is a G-manifold, and S a
closed G-invariant submanifold with oriented normal
bundle νS . Choose a G-equivariant tubular neighbor-
hood embedding,

(43) νS → U ⊂ M,

and let PDG(S) ∈ ΩG(M)cp be the image of ThG(V)
under this embedding. The form PDG(S) has the
property,

(44)

∫

M

PDG(S) ∧ α =

∫

S

ι∗Sα,

for all closed equivariant forms α ∈ ΩG(M). It is called
an equivariant Poincaré dual of S. By construction,
the pull-back to S is the equivariant Euler form,

(45) ι∗S PDG(S) = EulG(νS).

Equivariant Poincaré duality takes transversal inter-
sections of G-manifolds to wedge products, similar to
the non-equivariant case.

Remark 8.3. In general, the (Sg∗)G-submodule gener-
ated by Poincaré duals of G-invariant submanifold is



7

strictly smaller than HG(M). In this sense the termi-
nology ’duality’ is misleading.

9. Localization Theorem

In this Section, T will denote a torus. Suppose M is
a compact oriented T -manifold. For any component F
of the fixed point set of T , the action of T on νF fixes
only the zero section F . This implies that the normal
bundle νF has even rank and is orientable. Fix an
orientation, and give F the induced orientation.

Since T is compact, the list of stabilizer groups of
points in M is finite. Call ξ ∈ t generic if it is not in
the Lie algebra of any of these stabilizers, other than T
itself. In this case, value EulT (νF , ξ) of the equivariant
Euler form is invertible as an element of Ω(F ).

Theorem 9.1 (Integration formula). Suppose M is a

compact oriented T -manifold, where T is a torus. Let

α ∈ ΩT (M) be a closed equivariant form, and let ξ ∈ t

be generic. Then

(46)

∫

M

α(ξ) =
∑

F

∫

F

ι∗F α(ξ)

EulT (νF , ξ)

where the sum is over the connected components of the

fixed point set.

Rather than fixing ξ, one can also view (46) as an
equality of rational functions of ξ ∈ t.

Remark 9.2. The integration formula was obtained in
1983 by Berline-Vergne [5], based on ideas of Bott [9].
The topological counterpart, as a “localization prin-
ciple” was proved independently by Atiyah-Bott [3].
More abstract versions of the localization theorem in
equivariant cohomology had been proved earlier by
Borel, Chiang-Skjelbred and others.

Remark 9.3. If α = PDT (F ) ∧ β, where β is equiv-
ariantly closed, the integration formula is immediate
from the property (44) of Poincaré duals. The essence
of the proof is to reduce to this case.

Remark 9.4. The localization contributions are par-
ticularly nice if F = {p} is isolated (which can onely
happen if dimM is even). In this case, ι∗F α(ξ) is sim-
ply the value of the function α[0](ξ) at p. For the Euler
form one has

(47) Eul(νF , ξ) = (−1)dim M/2
∏

〈µj(p), ξ〉

where µj(p) ∈ t∗ are the (real) weights of the action
on the tangent space TpM . (Here we have chosen an

isomorphism TpM ∼= C
l compatible with the orienta-

tion.) Hence, if all fixed points are isolated,

(48)

∫

M

α(ξ) = (−1)dim M/2
∑

p

α[0](ξ)(p)
∏

j〈µj(p), ξ〉

Example 9.5. Let M be a compact oriented mani-
fold, and e(M) =

∫

M
Eul(TM) its Euler character-

istic. Suppose a torus T acts on M . Then

(49) e(M) =
∑

F

e(F ),

where the sum is over the fixed point set of T . This
follows from the integral of the equivariant Euler form
α(ξ) = EulT (M, ξ), by letting ξ → 0 in the localization
formula. In particular, if M admits a circle action
with isolated fixed points, the number of fixed points
is equal to the Euler characteristic.

In a similar fashion, the localization formula gives
interesting expressions for other characteristic num-
bers of manifolds and vector bundles, in the presence
of a circle action. Some of these formulas were discov-
ered prior to the localization formula, see in particular
Bott [9].

Example 9.6. In this example, we show that for a sim-
ply connected, simple Lie group G the 3-form φ ∈
Ω3(G) defined in (26) is integral, provided · is taken
to be the basic inner product (for which the length
squared of the short co-roots equals 2). Since any such
G is known to contains an SU(2) subgroup, it suffices
to prove this for G = SU(2). Consider the conjugation
action of the maximal torus T ∼= U(1), consisting of
diagonal matrices. The fixed point set for this action
is T itself. The normal bundle νF is trivial, with T act-
ing on the fiber g/t by the negative root −α. Hence,
Eul(νF , ξ) = 〈α, ξ〉. Let α̌ ∈ t be the co-root, defined
by 〈α, α̌〉 = 2. By definition, 〈α, ξ〉 = α̌ · ξ for all ξ ∈ t.
Let us integrate the T -equivariant extension φT (ξ) (cf.
(27)). Its pull-back to T is θT · ξ, where θT ∈ Ω(T, t)
is the Maurer-Cartan form. The integral

∫

T
θT is a

generator of the integral lattice, i.e. it equals α̌. Thus

(50)

∫

SU(2)

φT (ξ) =

∫

T
θT · ξ

〈α, ξ〉
=

α̌ · ξ

〈α, ξ〉
= 1.

It follows that
∫

SU(2)
φ = 1.

10. Duistermaat-Heckman formulas

In this Section we discuss the Duistermaat-Heckman
formula, for the case of isolated fixed points. Let T be
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a torus, and (M,ω) a compact Hamiltonian T -space,
with moment map Φ: M → t∗. Denote by ωT = ω+Φ
the equivariant extension of ω. Assuming isolated
fixed points, the localization formula gives, for all in-
tegers k ≥ 0,

(51)

∫

M

(ω + 〈Φ, ξ〉)k = (−1)n
∑

p

〈Φ(p), ξ〉k
∏

j〈µj(p), ξ〉
.

where n = 1
2 dimM . Note that both sides are homo-

geneous of degree k − n in ξ, but the terms on the
right hand side are only rational functions while the
left hand side is a polynomial. For k = n both sides
are independent of ξ, and compute the integral

∫

M
ωn.

For k < n, the integral (51) is zero, and the cancella-
tion of the terms on the right hand side gives identities
among the weights µj(p). (51) also implies

(52)

∫

M

eω+〈Φ,ξ〉 = (−1)n
∑

p

e〈Φ(p),ξ〉

∏

j〈µj(p), ξ〉
.

Assume in particular that T = U(1), and let ξ = tξ0

where ξ0 is the generator of the integral lattice in t.
Identify t ∼= R in such a way that ξ0 corresponds to
1 ∈ R. Then H = 〈Φ, ξ0〉 is a Hamiltonian function
with periodic flow. Write aj(p) = 〈µj(p), ξ0〉 ∈ Z.
Then (52) reads,

(53)

∫

M

etH ωn

n!
=

(−1)n

tn

∑

p

etH(p)

∏

j aj(p)
.

The right hand side of (53) is the leading term for
the stationary phase approximation of the integral on
the left. For this reason, Formula (52) is known as
the Duistermaat-Heckman exact stationary phase the-

orem.
Formula (52) has the following consequence for the

push-forward of the Liouville measure under the mo-
ment map, the so-called Duistermaat-Heckman mea-

sure H∗(
ωn

n! ). Let Θ be the Heaviside measure (i.e. the
characteristic measure of the positive real axis).

Theorem 10.1 (Duistermaat-Heckman). The push-

forward H∗(
ωn

n! ) is piecewise polynomial measure of

degree n − 1, with singularities at the set of all H(p)
for fixed points p of the action. One has the formula,

(54) H∗(
ωn

n!
) =

∑

p

(λ − H(p))n−1

∏

j aj(p)
Θ(λ − H(p))

Proof. It is enough to show that the Laplace trans-
forms of the two sides are equal. Multiplying by etλ

and integrating over λ (take t < 0 to ensure conver-
gence of the integral), the resulting identity is just
(53). �

Remark 10.2. The Theorem generalizes to Hamilton-
ian actions of higher rank tori, and also to non-isolated
fixed points. See the paper by Guillemin-Lerman-
Sternberg [16] for a detailed discussion of this formula
and of its ’quantum analogue’.

11. Equivariant index theory

By definition, the Cartan model consists of equi-
variant forms α(ξ) with polynomial dependence on the
equivariant parameter ξ. However, the integration for-
mula holds in much greater generality. For instance,
one may consider generalized Cartan complexes [20],
where the parameter ξ varies in some invariant open
subset of g, and the polynomial dependence is replaced
by smooth dependence. The use of these more general
complexes in equivariant index theory was pioneered
by Berline and Vergne, see also [4].

Assume that M is an even-dimensional, compact
oriented Riemannian manifold, equipped with a Spin-
c structure. According to the Atiyah-Singer theorem,
the index of the corresponding Dirac operator D is
given by the formula,

(55) ind(D) =

∫

M

Â(M)ec/2.

Here c is the curvature 2-form of the complex line bun-
dle associated to the Spin-c structure, and Â(M) is the

Â-form. Recall that Â(M) is obtained by substituting
the curvature form in the formal power series expan-

sion of the function Â(x) = det1/2( x/2
sinh(x/2) ) on so(n).

Suppose now that a compact, connected Lie group
G acts on M by isometries, and that the action lifts
to the Spin-c bundle. Replacing curvatures with equi-
variant curvatures, one defines the equivariant form
Â(M)(ξ) and the form c(ξ). Note that Â(ξ) is only
defined for ξ in a sufficiently small neighborhood of 0,
since the function Â(x) is not analytic for all x.

The G-index of the equivariant Spin-c Dirac oper-
ator is a virtual character g 7→ ind(D)(g) of the group
G. For g = exp ξ sufficiently small it is given by the
formula,

(56) ind(D)(exp ξ) =

∫

M

Â(M)(ξ)ec(ξ)/2.
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For ξ sufficiently small, the fixed point set of g co-
incides with the set of zeroes of the vector field aξ.
The localization formula reproduces the Atiyah-Segal
formula for ind(D)(g), as an integral over Mg.

Berline-Vergne [6] gave similar formulas for the equi-
variant index of any G-equivariant elliptic operator,
and more generally [7] for operators that are transver-

sally elliptic in the sense of Atiyah.
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11. , Notions d’algèbre différentielle; application aux

groupes de Lie et aux variétés où opère un groupe de Lie.,
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