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1. Introduction

Symplectic geometry as its origins in physics, providing the mathematical framework
for classical mechanics and geometrical optics. See Guillemin-Sternberg, Symplectic
Techniques in Physics for an overview. For a rapid overview, recall Newton’s equa-
tions of motion for a particle of mass m, moving in Rn under the force for a given
potential V (q1, . . . , qn),

mq̈i = −∂V
∂qi

.

This is a second order ordinary differential equation; the evolution of the system is
determined once the initial position qi(0) and initial velocities q̇i(0) are prescribed. One
discovers that the energy of the system,

E =
m

2

∑
i

(q̇i)
2 + V (q)

is preserved, i.e. it is constant along solution curves. (Verify by taking the t-derivative.)
It is a standard tool in ODE theory to turn an n-th order ODE into a 1st-order ODE, by
introducing the derivatives up to order n− 1 as new variables. In the case at hand, this
is done by considering the linear momenta pi = mq̇i as new variables. Thus, Newton’s
equations are turned into a system of equations

ṗi = −∂V
∂qi

, q̇i =
1

m
pi;

regarded as a system of first order ODE’s on phase space R2n; the energy function
becomes the Hamiltonian

H(q, p) =
1

2m

∑
i

p2
i + V (q),

named after William Rowan Hamilton (1805-1865).

Actually, Newton’s equations are expressed quite beautifully in terms of the Hamil-
tonian itself:
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ṗi = −∂H
∂qi

, q̇i =
∂H

∂pi
.

One advantage of Hamilton’s equations are their symmetry properties. By symmetry,
we mean any (local) coordinate change from q, p to new coordinates q̃, p̃, in such a way
that the differential equation in the new coordinates is

˙̃pi = −∂H̃
∂q̃i

, ˙̃qi =
∂H̃

∂p̃i
.

with H̃(q̃, p̃) = H(q, p). Examples of such coordinate changes are

p̃i = qi, q̃i = −pi,
but also

q̃i = qi, p̃i = pi + fi(q1, . . . , qn)

for arbitrary functions fi. One may contrast this with the symmetry group of the gradient
flow equation

ẋi = −∂V
∂xi

here, we find that the symmetry group is finite-dimensional (the affine-linear transfor-
mations of Rn)

In differential geometry, we prefer to think of first order autonomous ODE’s as vector
fields. In the case of Hamilton’s equations, this is the Hamiltonian vector field

XH =
n∑
i=1

(∂H
∂qi

∂

∂pi
− ∂H

∂pi

∂

∂qi

)
.

By introducing the symplectic 2-form

ω =
n∑
i=1

dqi ∧ dpi

we may write Hamilton’s equations concisely as

ι(XH)ω = −dH

Here ι denotes the contraction of a vector field with a 2-form, and

dH =
n∑
i=1

(∂H
∂qi

dqi +
∂H

∂pi
dpi
)
.
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We may define a symplectic manifold to be a manifold M equipped with a 2-form ω
which, in suitable local coordinates, is given by ω =

∑n
i=1 dqi ∧ dpi.

So much for our rapid overview. It should be said that symplectic geometry appears
in many areas of mathematics and physics – Hamiltonian mechanics is only one of them.
For example, they play an important role in the theory of partial differential equations
– for example in the so-called method of characteristics and in the context of boundary
conditions. They are used as tools in fields such as complex geometry or representation
theory. By now, they are also studied in their own right – it turned out that the global
topological aspects of symplectic manifolds are extremely interesting, leading to the field
of symplectic topology.

A couple of historical remarks:1 Symplectic geometry, as a subject of differential
geometry, was developed in the 20th century. The ‘symplectic group’ was introduced
by Hermann Weyl in his 1939 book [49] on the classical groups; the word symplectic
is the Greek counterpart to the work ‘complex’ (which comes from Latin). Symplectic
manifolds were first formally studied by Charles Ehresmann and his student Paulette
Libermann, starting in in 1948.

Libermann’s work included a first formulation and proof of Darboux’s theorem in sym-
plectic geometry [26] 2). Other early contributions to symplectic geometry were made
by various people in the early 1950s, such as Heinrich Guggenheimer [17] and André
Lichnerowicz [28].

The theory blossomed in the late 1960s and early 1970s, with contributions by Souriau,
Kostant, Arnold, Guillemin, Sternberg, Weinstein, Marsden and many others. Thurston
[44] gave a first example of a symplectic manifold not admitting a Kähler structure,
hence showing that the theory is really distinct from complex geometry. Symplectic
geometry has since branched into various directions, ranging from Geometric Mechanics
to Symplectic Topology.

These notes are an extended and corrected version of notes written in 1999/2000. My
sources include the books by Abraham-Marsden [1], Guillemin-Sternberg [19], Liberman-
Marle [27], and Weinstein [48], as well as an article by Sjamaar-Lerman [41]. Other
references include the textbooks by Ana Canas da Silva [9], McDuff-Salamon [32], and
Dwivedi-Herman-Jeffrey-van den Hurk [].

1I learned some of these details from the Ph.D. thesis of G. Ogando, https://d-nb.info/

1257915312/34
2The classical Darboux theorem is a result on exterior differential systems.

https://d-nb.info/1257915312/34
https://d-nb.info/1257915312/34
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2. Linear symplectic algebra

2.1. Symplectic vector spaces. Let E be a finite-dimensional, real vector space.

Definition 2.1. A symplectic structure on E is a skew-symmetric non-degenerate
bilinear form

ω : E × E → R.
The pair (E,ω) is called a symplectic vector space.

Skew-symmetry of the symplectic form means that

ω(v, w) = −ω(w, v)

for all v, w; nondegeneracy means that the kernel

kerω := {v ∈ E|ω(v, w) = 0 for all w ∈ E}

is trivial. One may rephrase these conditions in terms of the associated map

ω[ : E → E∗, v 7→ ω(v, ·).

The skew-symmetry of ω means that ω[ is equal to minus its adjoint, while nondegeneracy
means that ω[ is an isomorphism (equivalently, injective).

Examples 2.2. (a) Let E = R2n with basis vectors e1, . . . , en, f1, . . . , fn. Then

(1) ω(ei, ej) = 0, ω(fi, fj) = 0, ω(ei, fj) = δi,j

defines a symplectic structure on R2n. This is the standard symplectic structure
on R2n.

(b) Let V be a real vector space of dimension n, and V ∗ its dual space. Then

E = V ⊕ V ∗

has a natural symplectic structure given by

ω((v, α), (v′, α′)) = α′(v)− α(v′).

(c) Let E be a complex inner product space of (complex) dimension n, with inner
product denoted h : E × E → C. Then E, viewed as a real vector space, with
bilinear form the imaginary part

ω(v, w) = Im(h(v, w))

is a symplectic vector space.

Actually, these three examples are really ‘the same’. Indeed, (b) turns into (a) once
we choose a basis e1, . . . , en of V , with dual basis f1, . . . , fn of V ∗. Likewise, (c) turns
into (a) once we choose a complex orthonormal basis e1, . . . , en of E; together with
fi =

√
−1ei this defines a real basis of the underlying real vector space.
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Definition 2.3. A symplectomorphism between symplectic vector spaces (E1, ω1)
and (E2, ω2) is an isomorphism A : E1 → E2 with

ω2(Av,Aw) = ω1(v, w)

for all v, w ∈ W . The group of symplectomorphisms from (E,ω) to itself is denoted

Sp(E,ω).

So, the claim is that the three examples above all are symplectomorphic. We shall
soon see that in fact, all examples of 2n-dimensional symplectic vector spaces are sym-
plectomorphic to R2n with the standard symplectic form.

2.2. Subspaces of a symplectic vector space. A subspace F of a symplectic vector
space is called a symplectic subspace if the restriction of the 2-form ω : E × E → R to
F × F is still nondegenerate. In general, this need not be the case: the restriction may
even by 0.

Definition 2.4. Let (E,ω) be a symplectic vector space. For any subspace F ⊆ E,
we define the ω-orthogonal space F ω by

F ω = {v ∈ E, ω(v, w) = 0 for all w ∈ F}

The isomorphism

ω[ : E → E∗, 〈ω[(v), w〉 = ω(v, w)

restricts to an isomorphism F ω → ann(F ), where

ann(F ) = {α ∈ E∗| ∀v ∈ F : 〈α, v〉 = 0} ⊆ E∗

is the annihilator of F inside E∗.

Proposition 2.5. We have that

dimF ω = dimE − dimF.

Furthermore,

(F ω)ω = F, (F1 + F2)ω = F ω
1 ∩ F ω

2 , (F1 ∩ F2)ω = F ω
1 + F ω

2 .

Exercise 2.6. Show that F ⊆ E is symplectic if and only if F ∩ F ω = 0.

Proof. The dimension formula follows from

dimF ω = dim(ann(F )) = dimE − dimF.

Note next that all vectors in F are ω-orthogonal to all vectors in F ω. Hence F ⊆
(F ω)ω; equality holds by the dimension formula. The other properties follow from the
corresponding properties of annihilators. �
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Definition 2.7. A subspace F ⊆ E of a symplectic vector space is called

(a) isotropic if F ⊆ F ω,
(b) coisotropic if F ω ⊆ F
(c) Lagrangian if F = F ω,

The set of all Lagrangian subspaces of E is called the Lagrangian Grassmannian
and denoted Lag(E,ω).

Note that F is isotropic if and only if the symplectic structure restricts to 0 on F .
We will soon get a reasonably good understanding of the Lagrangian Grassmannian
Lag(E,ω). For now, it is a certain subset of the Grassmannian of n-dimensional sub-
spaces of E. We shall soon see that it is, in fact, a submanifold.

Example 2.8 (Lagrangian coordinate subspaces). Let E = R2n be the standard symplec-
tic vector space. For any subset I ⊆ {1, . . . , n}, the subspace

LI = span{ei|i ∈ I}+ span{fi|i 6∈ I}.
is a Lagrangian subspace.

Exercise 2.9. Let E = R2n be the standard symplectic vector space. For subsets I, J ⊆
{1, . . . , n}, consider the coordinate subspace

FIJ = span{ei|i ∈ I}+ span{fj|j ∈ J} ⊆ R2n.

What is (FIJ)ω, in this notation? What is the condition on I, J so that FIJ is isotropic?
Coisotropic? Neither?

Notice that F is isotropic if and only if F ω is coisotropic. For example, every 1-
dimensional subspace is isotropic and every codimension 1 subspace is coisotropic. Ob-
serve also that isotropic subspaces satisfy dimF ≤ dimF ω = dimE − dimF . Hence

F isotropic ⇒ dimF ≤ 1

2
dimE,

with equality if and only if F is Lagrangian. By contrast,

F coisotropic ⇒ dimF ≥ 1

2
dimE

with equality if and only if F is Lagrangian.

Proposition 2.10. For every symplectic vector space, Lag(E,ω) 6= ∅. In fact,
one may choose two Lagrangian subspaces L,M ∈ Lag(E,ω) with L ∩M = 0.

Proof. (a) One constructs a Lagrangian subspace by induction, on dimension of isotropic
subspaces. (We may start with the zero subspace.) Let L be an isotropic subspace of
E. If L is not Lagrangian, pick any v ∈ Lω − L; then L′ = L + span(v) is an isotropic
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subspaces of strictly larger dimension. The process ends once we obtain a Lagrangian
subspace.

(b) Suppose L ∈ Lag(E,ω) is a given Lagrangian subspace. Let F ⊆ E be an isotropic
subspace with L∩F = 0. If F is not Lagrangian, we will show how to choose v ∈ F ω−F
so that F ′ = F + span(v) satisfies F ′ ∩ L = {0}. (This process ends once we arrive at a
Lagrangian subspace with M ∩ L = {0}.) The subspace

F + (L ∩ F ω) ⊆ F ω

is isotropic, since both F and L ∩ F ω are isotropic, and are ω-orthogonal to each other.
Since F ω is not isotropic, this must be a proper subspace. Choose

v ∈ F ω − (F + (L ∩ F ω)).

To see that F ′ = F + span(v) still satisfies F ′ ∩ L = 0, suppose y ∈ F ′ ∩ L. Write
y = w + tv with w ∈ F, t ∈ R. Then

tv = y − w ∈ (F + L) ∩ Lω = F + (L ∩ F ω).

By construction of v, this means t = 0, hence y ∈ F ∩ L = {0}. �

An immediate consequence is that symplectic vector spaces are of even dimension: For
any L ∈ Lag(E,ω), we have that dimE = 2 dimL.

Remark 2.11. Lemma 2.10 can be strengthened: If F is a finite collection of subspaces
F ⊆ E (not necessarily isotropic) with the property dimF ≤ 1

2
dimE, then there exists

L ∈ Lag(E,ω) such that L ∩ F = 0 for all F ∈ F .

Here is another way of constructing a Lagrangian complement L to a given Lagrangian
subspace M :

Exercise 2.12. Let M ∈ Lag(E,ω) be a Lagrangian subspace, and F ⊆ M any vector
space complement (so that E = L⊕F ). Show that there is a unique linear map A : F → L
such that

F ω = {v + Av| v ∈ F}.
Show that all Ft = {v + tAv| v ∈ F} for t ∈ R are vector space complements, and that
L = F1/2 is Lagrangian.

Some of you might prefer the following more conceptual version of the same exercise.
Observe first that for a given Lagrangian subspace L, the map E → L∗ (taking w ∈ E
to the linear functional L→ R, v 7→ ω(w, v)) vanishes exactly on L, and so descends to
an isomorphism

E/L→ L∗.

Exercise 2.13. (a) Show that the space of vector space complements to L ∈ Lag(E,ω)
is canonically 3 an affine space4 , with underlying linear space the vector space of

3Here, ‘canonical’ means, informally, that the constructions don’t require any additional choices.
4An affine space may be defined as a manifold X with a free and transitive action of a vector space

V . This means that for v ∈ V and x ∈ X there is an element x′ = v · x, in such a way that 0.x = x and
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all linear maps A : E/L = L∗ → L. (This means that for any given complement
F , we obtain a new complement A·F , in such a way that A1 ·A2 ·F = (A1 +A2)·F
and 0 · F = F .)

(b) Show that for any given complement F , the mid-point of the line segment from
F to F ω (as points of this affine space) is fixed under the involution, and hence
is a Lagrangian complement.

Exercise 2.14. Let L ∈ Lag(E,ω). Show that the set of Lagrangian complements to L
(i.e., subspaces M ∈ Lag(E,ω) with L ∩M = {0}) is canonically an affine space, with
underlying vector space the self-adjoint linear maps A : L∗ → L.

This last exercise may be used to construct charts on the Lagrangian Grassmannian,
making Lag(E,ω) into a manifold of dimension equal to n(n+ 1)/2 where n = 1

2
dimE.

2.3. Symplectic bases. Let (E,ω) be a symplectic vector space. By the results of
the previous section, we may always choose a Lagrangian splitting

E = L⊕M,

L,M ∈ Lag(E,ω). Recall also that by Example 2.2 (b), the space L⊕L∗ has a canonical
symplectic structure.

Proposition 2.15. The choice of a Lagrangian splitting E = L ⊕M determines
a symplectomorphism

E → L⊕ L∗,
where the symplectic form on L⊕ L∗ is given by the pairing.

Proof. Every w ∈M defines a linear functional αw ∈ L∗, by αw(v) = ω(v, w). If αw = 0,
then ω(v, w) = 0 for all v ∈ L, and hence ω(v, w) = 0 for all v ∈ E, so w = 0. It follows
that the map

M → L∗, w 7→ αw

is injective, and hence is an isomorphism. The resulting map

E = L⊕M → L⊕ L∗

is the desired symplectomorphism. �

In turn, this shows that any two symplectic vector spaces of a given dimension are
symplectomorphic:

Theorem 2.16. Every symplectic vector space (E,ω) of dimension 2n is symplec-
tomorphic to R2n with the standard symplectic form.

v1.(v2.x) = (v1 + v2).x; moreover, any two elements x, x′ are related in this way by a unique element
v ∈ V . The choice of any base point x0 ∈ X gives an identification X ∼= V .
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Proof. Choose a Lagrangian splitting to identify E = L ⊕ L∗. Let e1, . . . , en be a basis
for L and f1, . . . , fn the dual basis for L∗ ∼= M . By definition of the pairing,

ω(ei, fj) = αfj(ei) = δij.

On the other hand, ω(ei, ej) = 0, ω(fi, fj) = 0. �

Definition 2.17. A basis {e1, . . . , en, f1, . . . , fn} of (E,ω) for which ω has the stan-
dard form (1) is called a symplectic basis.

Remark 2.18. Let E1, E2 be two symplectic vector spaces of equal dimension, and with
Lagrangian splittings E1 = L1 ⊕M1, E2 = L2 ⊕M2. Then any choice of isomorphism
L1 → L2 determines an isomorphism M1 = L∗1 →M2 = L∗2. Taken together, this defines
a symplectomorphism E1 → E2 taking the first splitting to the second splitting.

2.4. Linear Reduction. Let (E,ω) be a symplectic vector space.

Definition 2.19. A subspace F ⊆ E is called symplectic if ω restricts to a nonde-
generate bilinear form on F .

Equivalently, F is symplectic if and only if F ∩ F ω = {0} (since F ∩ F ω is the kernel
of the restriction of ω to F ). From this, we see that if F is symplectic, then so is F ω,
and furthermore E = F ⊕ F ω.

A general subspace F ⊆ E can be made into a symplectic vector space by taking the
quotient by the kernel of ω|F×F .

Proposition 2.20. Given a subspace F ⊆ E, the quotient space

EF = F/(F ∩ F ω)

inherits a symplectic form ωF , where

ωF (π(v), π(w)) = ω(v, w)

for all v, w ∈ F . Here π : F → F/(F ∩ F ω) is the quotient map.

Proof. Observe first that ωF is well-defined: For v, w ∈ F the expression ω(v, w) depends
only on π(v), π(w). To see that it is symplectic, let v ∈ F with π(v) ∈ ker(ωF ). Then
ω(v, w) = 0 for all w ∈ F . That is, v ∈ F ∩ F ω, that is, π(v) = 0. �

Definition 2.21. The space EF with the symplectic form ωF is called the reduced
space or symplectic quotient.
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In the special case that F ∩ F ω = 0, the subspace F is called symplectic. Here, the
restriction of ω to F is symplectic to begin with, and no quotient is needed. Another
extreme case is when F is isotropic, in which case the symplectic quotient is EF = {0}.

We are mainly interested in the case that F is coisotropic, with the symplectic quotient
EF = F/F ω.

Proposition 2.22. Suppose F ⊆ E is coisotropic and L ∈ Lag(E,ω) Lagrangian.
Let LF = π(L ∩ F ) be its image under the reduction map. Then LF ∈ Lag(EF ).

Proof. Since L ∩ F is isotropic, it is immediate that LF is isotropic. To verify that LF
is Lagrangian we count dimensions:

dim(L ∩ F ω) = dimE − dim(L ∩ F ω)ω

= dimE − dim(L+ F )

= dimE − dimL− dimF + dim(L ∩ F )

= dim(L ∩ F )− dimF + dimL.

This shows that

dimLF = dim(L ∩ F )− dim(L ∩ F ω) = dimF − dimL,

on the other hand

dimEF = dimF − dimF ω = 2 dimF − dimE = 2 dimF − 2 dimL.

�

It may come as a surprise that the map

Lag(E,ω)→ Lag(EF , ωF )

constructed here is not continuous (unless the reduction is trivial). It is discontinuous
exactly where L fails to be transverse to F . (Away from that subset, it is smooth as
expected.)

Exercise 2.23. Let E = R4 with the standard symplectic basis, and F = span{e1, e2, f1},
so that EF ∼= R2 = span{e1, f1}. For t ∈ R let

Lt = span{e1 + tf2, e2 + tf1}.

Show that Lt is Lagrangian for all t, and compute (Lt)F . You will find that the family
(Lt)F is discontinuous at t = 0.
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2.5. Compatible complex structures. Any complex vector space V may be regarded
as a real vector space, by restricting the scalar multiplication from complex to real
numbers. The C-linear map V → V given by multiplication by

√
−1 becomes a real-

linear map J : V → V .
Conversely, a complex structure on a real vector space V is an automorphism J : V →

V such that J2 = − Id. Given J , one may turn V into a complex vector space for the
scalar multiplication (a+

√
−1b)v = av + bJv.

Definition 2.24. A complex structure J on a symplectic vector space (E,ω) is
called ω-compatible if

g(v, w) = ω(v, Jw)

defines a (real) inner product on V . We denote by

J (E,ω)

the set of compatible complex structures.

Notice that compatible complex structures J are symplectomorphisms:

ω(Jv, Jw) = g(Jv, w) = g(w, Jv) = ω(w, J2v) = −ω(w, v) = ω(v, w).

Similarly, J is orthogonal:

g(Jv, Jw) = ω(Jv, J2w) = −ω(Jv, w) = ω(w, Jv) = g(w, v) = g(v, w).

Thus, J> = J−1. Since J−1 = −J , we see that J is also skew-adjoint:

J> = −J.

We equip J (E,ω) with the subset topology induced from End(E). Later we will see
that it is in fact a smooth submanifold.

Example 2.25. For E = R2n with standard symplectic structure, a compatible almost
complex structure J is given by Jei = fi, Jfi = −ei. This identifies (R2n, ω, J) with Cn.

Given J ∈ J (E,ω), with corresponding real inner product g ∈ Riem(E), the space E
becomes a complex inner product space, with inner product (Hermitian metric)

h(v, w) = g(v, w) +
√
−1ω(v, w).

There is a corresponding unitary group U(E) of complex-linear transformations of E
preserving h. Note that in the equation g(v, w) = ω(v, Jw), any two of the structures
ω, g, J determines the third. Hence, if a linear transformation preserves two of the
structures, it also preserves the third. It follows that

U(E) = Sp(E,ω) ∩O(E, g)

where O(E, g) is the group of orthogonal transformations (preserving g).
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The following theorem gives a convenient method for constructing compatible complex
structures. For any vector space V let

Riem(V ) = { real inner products g : V × V → R}

the set of inner products (Riemannian metrics) on V . It is a convex open cone inside
the space Sym2 V ∗ of symmetric bilinear forms on V . 5

For a symplectic vector space (E,ω), we have a map

ψ : J (E,ω)→ Riem(E)

taking J to its associated metric. This map has a left inverse:

Theorem 2.26. Let (E,ω) be a symplectic vector space. There is a canonical
continuous retraction

φ : Riem(E)→ J (E,ω).

with φ ◦ ψ(J) = J .

Proof. Given k ∈ Riem(E) let A be defined by

k(v, w) = ω(v, Aw).

Note that A is invertible, since Aw = 0 would imply that k(v, w) = ω(v, Aw) = 0 for all
v, hence w = 0. Writing w = A−1y, we have we have

k(v, A−1y) = ω(v, y) = −ω(y, v) = −k(y, A−1v) = k(A−1v, y).

This shows that A−1 is skew-adjoint (with respect to k), and hence A is skew-adjoint:

A> = −A.

Hence, −A2 = A>A is positive definite, and the absolute value

|A| = (A>A)1/2 = (−A2)1/2,

is defined and commutes with A. The operator

J = A|A|−1

satisfies J2 = − Id, hence defines a complex structure. The calculation

ω(v, Jw) = ω(v, A|A|−1w) = k(v, |A|−1w) = k(|A|−1/2v, |A|−1/2w)

shows that g(v, w) = ω(v, Jw) defines a (positive definite) inner product. We thus obtain
a continuous map φ : Riem(E) → J (E,ω), taking k to J . Applying this procedure to
the metric ψ(J0) for a compatible complex structure J0, we obtain A = J0, |A| = I,
hence J = J0. This shows φ ◦ ψ = id. �

5For any vector space V , we denote by Symk(V ) its k-th symmetric power. It may be identified with
the space of k-multilinear maps V ∗ × · · · × V ∗ → R that are symmetric in all entries.
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Corollary 2.27. The space J (E,ω) is contractible. In particular, any two com-
patible complex structures can be deformed into each other.

Proof. Let X = Riem(E) and Y = J (E,ω). The space X is contractible since it is a
convex subset of a vector space. An explicit contraction hX : [0, 1]×X → X, (t, x) 7→ hXt
is given by

hXt (g) = (1− t)g + tg0

for any fixed choice of g0 ∈ Riem(V ). Since Y is a deformation retract of X, it too is
contractible: hYt = φ ◦ hXt ◦ ψ defines a retraction of Y . �

The symplectic group Sp(E,ω) acts on the space J (E,ω) of compatible complex
structures, by

A · J = AJA−1.

Indeed, it is clear that (A · J)2 = −I, so A · J is a complex structure. Furthermore, if J
defines the inner product g, then

ω(v, (A · J)w) = ω(v,AJA−1w) = ω(A−1v, JA−1w) = g(A−1v, A−1w) = (A · g)(v, w)

where A · g (defined by the last equation) is again an inner product).

Proposition 2.28. The action of the symplectic group on the space of compatible
complex structures is transitive, with stabilizer at J ∈ J (E,ω) equal to the unitary
group U(E) (with respect to J) That is, J (E,ω) is a homogeneous space

(2) J (E,ω) = Sp(E,ω)/U(E).

Proof. Given J, J ′ ∈ J (E,ω), let e1, . . . , en be an orthonormal basis for the complex inner
product defined by J , and e′1, . . . , e

′
n an orthonormal basis for the complex inner product

defined by J ′. We obtain symplectic bases e1, . . . , en, f1, . . . , fn by letting fi = Jei, and
similarly e′1, . . . , e

′
n, f

′
1, . . . , f

′
n. The transformation A defined by

A(ei) = e′i, A(fi) = f ′i

is symplectic, and it satisfies J ′ = AJA−1, as one verifies on the basis:

(AJA−1)(e′i) = (AJ)(ei) = A(fi) = f ′i = J ′e′i

and similarly (AJA−1)(f ′i) = −e′i = J ′f ′i . This shows that the action is transitive. We
have already mentioned that the symplectic transformations preserving a given J are
exactly the unitary transformations. �
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2.6. The group Sp(E,ω) of linear symplectomorphisms. It is time to discuss the
symplectic group of a symplectic vector space in some more detail.

Proposition 2.29. The symplectic group Sp(E,ω) is a connected Lie group of
dimension

dim Sp(E,ω) = 2n2 + n

where dimE = 2n.

Proof. It is a standard result in Lie theory (Cartan’s theorem) that any topologically
closed subgroup of a Lie group is again a Lie group. Hence Sp(E,ω) ⊆ GL(E) is a
Lie group. To determine its dimension, consider the action of the general linear group
GL(E) acts transitively on the open subset U ⊆ ∧2E∗ consisting of non-degenerate
2-forms. From the fact that any two symplectic vector spaces of the same dimension
are symplectomorphic, it follows that this action is transitive. The stabilizer at ω is
Sp(E,ω). It follows that U = GL(E)/ Sp(E,ω).

dim Sp(E,ω) = dim GL(E)− dimU = (2n)2 − (2n)(2n− 1)

2
= 2n2 + n.

The fact that Sp(E,ω) is connected may be seen, for example, from Sp(E,ω)/U(E) =
J (E,ω), and the fact that U(E) and J (E,ω) are both connected. �

Incidentally, this also gives dimJ (E,ω) = dim Sp(E,ω)−dimU(E) = n2 +n. Below,
we’ll see another proof of this fact.

Remark 2.30. In the theory of Lie groups, there is another Lie group that is also called
the symplectic group, and usually denoted Sp(n). (It is the unitary group of quaternionic
space Hn, if you know what that means.) This group is compact, whereas our symplectic
group Sp(R2n, ω) is non-compact. (See below.) The two groups are closely related:
working over C, we can consider complex symplectic vector spaces and the the complex
symplectic group Sp(C2n, ω) ⊆ GL(2n,C); this contains both as real subgroups

Sp(n) ⊆ Sp(C2n, ω) ⊇ Sp(R2n, ω).

In the terminology of (reductive) Lie groups, Sp(n) is the compact real form of while
Sp(R2n, ω) is the split real form. Another example of such a correspondence is

U(n) ⊆ GL(n,C) ⊇ GL(n,R).

Proposition 2.31. The closed subgroup of Sp(E,ω) preserving a given Lagrangian
splitting E = L⊕M is canonically isomorphic to GL(L). In particular, Sp(E,ω)
is noncompact.
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Proof. Suppose A ∈ Sp(E,ω) preserving a Lagrangian splitting E = L ⊕M , and let
B = A|L be the restriction. Since ω gives a nondegenerate pairing between L,M , we
have M = L∗; under this identification, A|M = (B∗)−1 (the conjugate transpose). Check:
if w ∈ W , corresponding to αw ∈ L∗, and all v ∈ L we have

〈αAw, v〉 = ω(v,Aw) = ω(A−1v, w) = 〈αw, A−1v〉 = 〈αw, B−1v〉 = 〈(B−1)∗αw, v〉.
Conversely, given B ∈ GL(L), the transformation given by A|L = B, A|M = (B∗)−1

is symplectic. �

Fix J ∈ J (E,ω). Let g be the inner product defined by J , and let (·)> denote the
transpose of an endomorphism with respect to g.

Proposition 2.32. An automorphism A ∈ GL(E) is in Sp(E,ω) if and only if

A> = J A−1J−1

where A> is the transpose of A with respect to g. In particular, Sp(E,ω) is invari-
ant under transposition.

Proof. We have

A ∈ Sp(E,ω)⇔ ∀v, w ∈ E : ω(Av,Aw) = ω(v, w)

⇔ ∀v, w ∈ E : g(JAv,Aw) = g(Jv, w)

⇔ ∀v, w ∈ E : g(A>JAv,w) = g(Jv, w)

⇔ A>JA = J ⇔ A> = JA−1J−1

�

Theorem 2.33 (Symplectic eigenvalue theorem). Let A ∈ Sp(E,ω). Then
det(A) = 1, and all eigenvalues of A other than 1,−1 come in either pairs

λ, λ, |λ| = 1

or quadruples

λ, λ, λ−1, λ
−1
, |λ| 6= 1.

The members of each multiplet all appear with the same multiplicity. The multi-
plicities of eigenvalues −1 and +1 are even.

Proof. Choose a compatible complex structure J . Since det(J) = 1, Proposition 2.32
shows that

det(A) = det(A>) = det(A−1) = det(A)−1;

hence det(A) = 1 since Sp(E,ω) is connected. For any A ∈ GL(E) the eigenvalues ap-
pear in complex-conjugate pairs of equal multiplicity (complex conjugation takes eigen-
vectors for λ to eigenvectors for λ). For A ∈ Sp(E,ω), the eigenvalues λ, λ−1 have equal
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multiplicity since by the matrices A> and A−1 are similar: A> = J A−1J−1. The mul-
tiplicities of eigenvalues −1 and +1 have to be even since the product of all eigenvalues
equals detA = 1. �

Let us finally describe the Lie algebra of the symplectic group. For any matrix Lie
group G, the Lie algebra g consists of all ξ ∈ gl(E) such that exp(tξ) ∈ G for all t. In
the case of the symplectic group, this gives:

Proposition 2.34. The Lie algebra sp(E,ω) of the symplectic group consists of
all ξ ∈ gl(E) such that

ω(ξv, w) + ω(v, ξw) = 0.

Given a compatible complex structure J , with corresponding inner product g and
transposition operation >, an endomorphism ξ ∈ gl(E) is in sp(E) if and only if

ξ> = JξJ.

Proof. Taking the derivative of the equation ω(exp(tξ)v, exp(tξ)w) = ω(v, w), we ar-
rive at the condition ω(ξv, w) + ω(v, ξw) = 0. Similarly, taking the t-derivative of
exp(tξ)>J exp(tξ) = J , we arrive at ξ>J + Jξ = 0, which is equivalent to ξ> = JξJ .
These are necessary conditions for ξ to be in sp(E,ω); by dimension count they are also
sufficient. �

Exercise 2.35. For E = R2n with the standard symplectic basis and the standard sym-
plectic structure, J is given by a matrix in block form,

J =

(
0 I
−I 0

)
.

Verify that a matrix, also written in block form

A =

(
a b
c d

)
,

is symplectic if and only if

a>c = c>a, b>d = d>b, a>d− b>c = I.

Also find a similar description of the Lie algebra sp(R2n).

As a special case, for n = 1 we have Sp(R2, ω) = SL(2,R).

Exercise 2.36. Suppose A ∈ Sp(E,ω) is symmetric, A = A> so that A is diagonalizable
and all eigenvalues are real. Let Eλ = ker(A− λ) denote the eigenspace. Then

Eω
λ = ⊕λµ6=1Eµ.

In particular, all Eλ for eigenvalues λ 6∈ {1,−1} are isotropic while the eigenspaces for
λ ∈ {1,−1} are symplectic. Moreover, Eλ ⊕ Eλ−1 is symplectic.
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2.7. Polar decomposition of symplectomorphisms. Recall that invertible matrices
A ∈ GL(m) admits a unique polar decomposition

A = U |A|,

where U is orthogonal (i.e., U> = U−1) and |A| is positive definite. Here B = (A>A)1/2,
using functional calculus. Furthermore, the exponential map gives a diffeomorphism
between symmetric (selfadjoint) matrices and positive definite matrices. This shows
that as a manifold,

GL(m) = O(m)× {ξ| ξ> = ξ}
where the second factor is a vector space.

For any matrix Lie group G ⊆ GL(m) that is invariant under transposition A 7→ A>,
the polar decomposition of matrices restricts to define a polar decomposition for G, called
the Cartan decomposition

G = K × P,
with K = G ∩O(m) and P the positive definite matrices in G; furthermore,

P = exp(p)

where p = g ∩ {ξ| ξ = ξ>}. The exponential map for symmetric matrices restricts to
a diffeomorphism p → P . In conclusion, the map (C, ξ) 7→ C exp(ξ) gives a global
diffeomorphism

G ∼= K × p.

The Cartan decomposition shows that G is homotopy equivalent to its maximal compact
subgroup K. That is, K captures all the topology. The Lie algebras satisfy g = k⊕ p as
vector spaces, and

[k, k] ⊆ k, [k, p] ⊆ p, [p, p] ⊆ k.

We specialize to the case of Sp(E,ω). Fix a compatible complex structure J , and let
(·)> be the corresponding transposition map. We had observed that Sp(E,ω) is invariant
under transposition; indeed, A> = −JA−1J .

Theorem 2.37 (Polar decomposition). The symplectic group G = Sp(E,ω) has
maximal compact subgroup K = U(E). Its Cartan decomposition G = KP is given
by P = exp p, with

p = {ξ ∈ sp(E,ω)| Jξ = −ξJ}.

Proof. We may pick a basis identifying E ∼= R2n, with standard symplectic form and
standard complex structure. We had already observed that Sp(R2n, ω) ∩O(2n) = U(n),
the unitary group of R2n ∼= Cn. Hence, U(E) ∼= U(n) is the maximal compact sub-
group. On the other hand, p ⊆ sp(E,ω) is defined by the condition ξ = ξ>. But recall
that sp(E,ω) is characterized by the condition ξ> = JξJ . This gives the alternative
description in the theorem. �
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Since J (E,ω) = Sp(E,ω)/U(E), this also shows:

Corollary 2.38. Any fixed J ∈ J (E,ω) defines a canonical diffeomorphism be-
tween J (E,ω) and the vector space p.

In particular, we see once again that J (E,ω) is contractible.

Corollary 2.39. Sp(E,ω) deformation retracts onto U(E). In particular, it is
connected and has fundamental group π1(Sp(E,ω)) = Z.

Indeed, it is known that the determinant map det : U(n) → U(1) induces an iso-
morphism on fundamental groups. Composing with the identification π1(U(E)) ∼=
π1(Sp(E,ω)), we obtain an isomorphism

µ : π1(Sp(E,ω))→ Z.

This is known as the Maslov index of a loop of symplectomorphisms. It is independent
of the choice of J , since any two choices are homotopic. There are other kinds of Maslov
indices related to the topology of the Lagrangian Grassmannian, which we shall discuss
next.

Exercise 2.40. Show that the Maslov index is a group morphism. That is, if A,B are
two loops and AB their pointwise product, then µ(AB) = µ(A) + µ(B).

2.8. The Lagrangian Grassmannian. The manifold structure on the Grassmannian
Gr(k, V ) of k-planes in an n-dimensional vector space V can be defined in two equivalent
ways. In the first approach, one constructs explicit charts: Given any fixed subspace
S ⊆ V of dimension n − k, the set of subspaces transverse to S is canonically an affine
space, and serves as a chart domain. In the second approach, one takes any subgroup
G ⊆ GL(V ) whose action on Gr(k, V ) is transitive (e.g. GL(V ) itself, or the orthogonal
group for some inner product), then Gr(k, V ) = G/H where H is the stabilizer of any
fixed subspace. By Cartan’s theorem, H is a Lie subgroup, and by standard results the
homogeneous space G/H is a manifold.

Similar approaches also work for the Lagrangian Grassmannian. Let (E,ω) be a
symplectic vector space of dimension 2n. Choose J ∈ J (E,ω) as before, defining an
inner product g. The symplectic group Sp(E,ω) acts on the Lagrangian Grassmannian,
by

A · L = A(L).

This action is transitive. In fact, already the restriction to the unitary group (for given
choice of J) is transitive:
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Proposition 2.41. The action of U(E) on Lag(E,ω) is transitive, with stabilizer
at L ∈ Lag(E,ω) the orthogonal group O(L) (for the restriction g|L×L). That is,
Lag(E,ω) is a homogeneous space

Lag(E,ω) = U(E)/O(L).

In particular, it is a connected manifold of dimension n(n+1)
2

.

Proof. Let h = g +
√
−1ω be the complex inner product defined by J, ω. Since h|L×L =

g|L×L any g-orthonormal basis e1, . . . , en of L (as a real inner product space) is also
an h-orthornormal basis for E (as a complex inner product space). Given another La-
grangian subspace L′ ∈ Lag(E,ω), with orthonormal basis e′1, . . . , e

′
n, the linear map

taking e1, . . . , en to e′1, . . . , e
′
n is unitary. Hence U(E) acts transitively on the set of

Lagrangian subspaces. The stabilizer for this action are linear transformations taking
e1, . . . , en to another orthonormal basis of L; it is hence the orthogonal group O(L). The
dimension is computed as

dim U(n)− dim O(n) =
n(n+ 1)

2
.

�

For E = R2n, with L the subspace spanned by e1, . . . , en, we obtain

Lag(R2n, ω) = U(n)/O(n).

For n = 1, this reduces to Lag(R2, ω) = U(1)/O(1) = S1/{±1} = RP (1), which agrees
with the fact that the Lagrangian subspaces in R2 are just the 1-dimensional subspaces.

On the other hand, let us consider the charts approach. Given M ∈ Lag(E,ω), let

Lag(E;M) = {L ∈ Lag(E,ω)|L ∩M = {0}}

be the space of Lagrangian complements.

Proposition 2.42. The space Lag(E;M) is canonically an affine space, with the
space Sym2(M) of symmetric bilinear forms on M∗ as its underlying vector space.
Given β ∈ Sym2(M) and L,L′ ∈ Lag(E;M) with β · L = L′, there is a canonical
isomorphism

ker(β) ∼= L ∩ L′.

Proof. Note that we can identify the symmetric bilinear forms β : M∗ ×M∗ → R with
self-adjoint linear maps ψ : M∗ →M , via β(µ1, µ2) = 〈µ1, ψ(µ2)〉.
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Let π : E → M∗ be the linear map taking v to the restriction of the linear functional
ω[(v) ∈ E∗ to M ⊆ E. The kernel of this linear map is the subspace M , defining an
exact sequence

0→M → E →M∗ → 0.

Giving a Lagrangian complement L to M is the same as giving a Lagrangian splitting

j : M∗ → E

of this sequence; i.e., a splitting whose image L = j(M∗) is isotropic (hence Lagrangian).
The set of splittings of this sequence is an affine space over the space of linear maps
Hom(M∗,M). 6 That is, if j is a given splitting, then every other splitting is of the
form j′(µ) = j(µ) +ψ(µ) for a unique linear map ψ : M∗ →M . The condition that j′ is
isotropic means

0 = ω(j′(µ1), j′(µ2))

= ω(j(µ1) + ψ(µ1), j(µ1) + ψ(µ2))

= ω(j(µ1), ψ(µ2))− ω(j(µ2), ψ(µ2))

= 〈µ1, ψ(µ2)〉 − 〈µ2, ψ(µ1)〉.
This is exactly the condition that ψ is self-adjoint; equivalently the associated bilinear
form is symmetric. This gives a free and transitive action of Sym2(M) on the space of
isotropic splittings, or equivalently on Lag(E;M).

Given two subspace L,L′ ∈ Lag(E;M), the condition w ∈ L∩L′ means that jL(µ) =
jL′(µ) where µ = π(v). That is, ψ(µ) = 0, which is the same as µ ∈ ker(β). �

Remark 2.43. The symmetric bilinear form on M∗ may be described directly as

β(µ1, µ2) = ω(jL′(µ1), jL(µ2))

where jL : M∗ → L is the inverse map to π|L. In other words, β is the composition of

ω|L′×L : L′ × L→ R
with the identifications L′ ∼= M∗, L ∼= M∗ given by restriction of π.

Remark 2.44. The coordinate version of this proposition is as follows: Consider R2n with
standard symplectic basis, and let M = span{f1, . . . , fn}. Every L ∈ Lag(R2n;M) has
a unique basis of the form gi = ei +

∑
j Sijfj. The condition Lω = L translates into

S being a symmetric matrix. If L,L′ are two such Lagrangian subspaces and gj, g
′
j the

corresponding bases, the pairing ω : L× L′ → R is given by

ω(gi, g
′
j) = Sij − S ′ij.

That is, the dimension of the intersection L ∩ L′ = Lω ∩ L′ equals the nullity of S − S ′.
6Quite generally, the set of splittings of an exact sequence of vector spaces 0→ A→ B → C → 0 is

an affine space over Hom(C,A); given one such splitting j : C → B, all other splittings are obtained by
adding a linear map from C with values in the kernel of the map B → C, i.e., with values in A.
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The sets Lag(E;M) for M ∈ Lag(E,ω) form an open covering of the Lagrangian
Grassmannian. One we fix L ∈ Lag(E;M), we obtain an identification of the affine
space Lag(E;M) with the vector space Sym2(M∗). One hence obtains charts for the
Lagrangian Grassmannian Lag(E,ω). In particular, we see again that the dimension is
n(n+ 1)/2.

Exercise 2.45. Show that for L ∈ Lag(E,ω), there is a canonical vector space isomor-
phism

TL Lag(E,ω) ∼= Sym2(L∗)

(the space of symmetyric bilinear forms on L × L → R) (One way of constructing the
isomorphism is as follows. Given a family of Lagrangian subspaces Lt representing a
tangent vector at L = L0, and letting v, w ∈ L, let wt ∈ Lt with wt ∈ Lt, w0 = w. Then

d

dt

∣∣
t=0
ω(v, wt)

depends only on v, w, and gives a symmetric bilinear form.)

2.9. Maslov indices, I. Since det : U(E) → S1 takes values ±1 on O(L), its square
descends to a function det2 : Lag(E,ω) → S1. This function depends on the choice of
J and L, but any two such choices are homotopic, and hence the homotopy class of the
map det2 is choice independent.

Theorem 2.46 (Arnold [2]). The map det2 : Lag(E,ω)→ S1 defines an isomor-
phism of fundamental groups,

µ : π1(Lag(E,ω)) ∼= π1(S1) = Z
(independent of the choice of L or J). It is called the Maslov index of a loop of
Lagrangian subspaces.

Proof. 7 Choose an orthonormal basis for L to identify L = Rn ⊆ Cn and E ∼= Cn so
that Lag(E,ω) = U(n)/O(n). For t ∈ [0, 1] let Ak(t) ∈ U(n) be the diagonal matrix

Ak(t) =


e
√
−1kπt 0 0 · · · · · ·
0 1 0 · · · · · ·
0 0 1 · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · 1


Since Ak(1) ∈ O(n), we obtain a loop Lk(t) = Ak(t)Rn. This loop has Maslov index k,
which shows that µ is surjective.

To show that µ is injective, it is enough to show that any loop L(t), t ∈ [0, 1] with
L(0) = L(1) the base point Rn ⊆ R2n can be deformed into one of the loops Lk. To see
this, choose any lift of L(t) to a path A(t) ∈ U(t) (not necessarily closed) with A(0) = I.

7We didn’t present this in class; same for following proposition.
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Then A(1) ∈ O(n). Since O(n) has two connected components distinguished by the sign
of the determinant, we can arrange that A(1) is a diagonal matrix

A(1) =


±1 0 0 · · · · · ·
0 1 0 · · · · · ·
0 0 1 · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · 1


We want to show that A(t) can be deformed into one of the paths Ak(t) while keeping
the endpoints fixed. If the upper left corner of A(1) is +1, so that A(1) = I; and A(t) is
actually a loop, this follows since the map π1(U(n)) → π1(S1) = Z is an isomorphism;
in this case k must be even. If the upper left corner of A(1) is −1, then the path
B(t) = A(t)A−1(t) (pointwise product) is a loop, i.e. can be deformed into A2l(t) for
some l. Thus A(t) = B(t)A1(t) can be deformed into A2l(t)A1(t) = A2l+1(t). �

Proposition 2.47. Let A : S1 → Sp(E,ω) and L : S1 → Lag(E,ω) be loops of
symplectomorphisms resp. of Lagrangian subspaces. Then

µ(A(L)) = µ(L) + 2µ(A).

Proof. Using the notation from the previous proof we may assume that A takes values in
U(n) since Sp(E,ω) = U(E)×p. Any such A is homotopic to a loop A2l where l = µ(A).
The proposition follows since A2l ◦ Ak = Ak+2l. �

Let M ∈ Lag(E,ω) be given. The fact that Lag(E;M) is contractible can be used to
generalize the Maslov index from loops to arbitrary paths

L : [0, 1]→ Lag(E,ω)

so long as L(0), L(1) ∈ Lag(E;M). Indeed, we can complete L to a loop L̃ : [0, 1] →
Lag(E,ω) with L̃(t) = L(2t) for 0 ≤ t ≤ 1/2 and L̃(t) ∈ Lag(E;M) for 1/2 ≤ t ≤ 1 such
that L̃(1) = L(0). The Maslov intersection index is defined as

[L : M ] = µ(L̃) ∈ Z

which is independent of completion to a loop (provided that L̃(t) ∈ Lag(E;M) for
1/2 ≤ t ≤ 1). The definition requires transversality at the end points; below we will
remove that restriction as well.

Remark 2.48. The Maslov index can be interpreted as a (signed) intersection number of
L with the “singular cycle”

Σ = Lag(E)\Lag(E;M)

(the set of Lagrangian subspaces that are not transverse to M). It was in this form
that Maslov originally introduced his index. The difficulty of this approach is that the
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singular cycle is not a smooth submanifold of Lag(E,ω). Given a path in Lag(E,ω), one
perturbs this path until it intersects only the smooth part of the singular cycle and all
intersections are transverse. It is then necessary to prove that the index is independent
of the choice of perturbation.

Maslov invented his index around 1965, in the context of geometrical optics (“high
frequency asymptotics”) and quantum mechanics “semi-classical approximation”. It
appears physically as a phase shift when a light ray passes through a focal point; a
phenomenon discovered in the 19th century. On the more mathematical side, Maslov’s
theory gave rise to Hörmander’s theory of Fourier integral operators in PDE.

Maslov’s index can be generalized to paths L that are not necessarily transverse to
M at the end points. This was first done by Dazord in a 1979 paper and re-discovered
several times since then. We will describe one such construction in the following section.

2.10. Maslov indices, II. In this section we describe a different approach towards
Maslov indices, using the Hörmander-Kashiwara index of a Lagrangian triple. As a
motivation, consider the action of Sp(E,ω) on Lag(E,ω). We have seen that this action
is transitive. Moreover, any two ordered pairs of transverse Lagrangian subspaces can
be carried into each other by some symplectomorphism. An analogous statement is true
if one fixes the dimension of the intersection dim(L1 ∩ L2).

Exercise 2.49. Show that for any L1, L2 ∈ Lag(E,ω) there exists a symplectic basis
in which L1 is spanned by the e1, . . . , en and L2 by e1, . . . , ek, fk+1, . . . , fn. where k =
dim(L1 ∩L2). It follows that the action of Sp(E,ω) on Lag(E,ω)×Lag(E,ω) has n+ 1
orbits, labeled by the dimension of intersections.

Is this true also for triples of Lagrangian sub-spaces?

Exercise 2.50. Let E = R2 with symplectic basis e, f . Let L1 = span{e}, L2 = span{f}.
What is the form of a matrix of the most general symplectomorphism preserving L1, L2?
Let L3 = span{e+f}, and (L′1, L

′
2, L

′
3) a second triple of Lagrangian subspaces with L′1 =

L1, L
′
2 = L2. Show by direct computation that there exists a symplectic transformation

A ∈ Sp(E,ω) with L′j = A(Lj) for all j = 1, 2, 3, if and only if L′3 = span{e + λf} with
λ > 0.

Thus, specifying the dimensions of intersections is insufficient for describing the orbit
of a Lagrangian triple L1, L2, L3. There is another invariant called the Hörmander-
Kashiwara index of a Lagrangian triple.

Before we define the index, let us recall:

Definition 2.51. The signature Sig(B) ∈ Z of a real symmetric matrix B is the
number of positive eigenvalues, minus the number of negative eigenvalues.

The signature has the property Sig(ABA>) = Sig(B) for any invertible matrix A. If
β ∈ Sym2(V ∗) is a symmetric bi-linear form (equivalently, a quadratic form) on a vector
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space V , one defines

Sig(β) := Sig(B)

where B is the matrix of β in a given basis of V . The signature and the nullity are the
only invariants of a symmetric bilinear form: That is, the action of GL(V ) on Sym2(V ∗)
has a finite number of orbits labeled by dim(ker(β)) and Sig(β). Letting n = dimV , the
signature for given ` = dim(ker(β)), may take on any of the values

−n+ `, −n+ `+ 2, . . . , n− `− 2, n− `.

Given three Lagrangian subspaces (not necessarily transverse) consider the symmetric
bilinear form β(L1, L2, L3) on their direct sum L1 ⊕ L2 ⊕ L3, given by

β(L1, L2, L3)
(
(v1, v2, v3), (v′1, v

′
2, v
′
3)
)

=
1

2

(
ω(v1, v

′
2) + ω(v2, v

′
3) + ω(v3, v

′
1)

+ ω(v′1, v2) + ω(v′2, v3) + ω(v′3, v1)
)
.

Definition 2.52. The index of the the Lagrangian triple (L1, L2, L3) is the signature
of this bilinear form,

s(L1, L2, L3) := Sig(β(L1, L2, L3)) ∈ Z.

The index of a triple was introduced by Hörmander (in his paper [21] on Fourier
integral operators) in case one of the Lagrangians is transverse to the other two, and by
Kashiwara in general (according to the book [29] by Lion-Vergne). Clearly s is invariant
under the action of Sp(E,ω) on triples of Lagrangian subspaces.

Choosing bases for L1, L2, L3, the definition gives β(L1, L2, L3) as a symmetric 3n×3n-
matrix. One can reduce to signatures of n × n-matrices as follows. Choose a symplec-
tic basis e1, . . . , en, f1, . . . , fn of E, such that L1, L2, L3 are transverse to the span of
f1, . . . , fn. Let Sj denote the symmetric bilinear forms on the span of e1, . . . , en corre-
sponding to Lj. In terms of the basis, Sj is just a matrix, and Q(L1, L2, L3) is given by
a symmetric matrix,

Q(L1, L2, L3) =
1

2

 0 S1 − S2 S3 − S1

S1 − S2 0 S2 − S3

S3 − S1 S2 − S3 0

 .

Lemma 2.53. s(L1, L2, L3) = Sig(S1 − S2) + Sig(S2 − S3) + Sig(S3 − S1).

Proof. (Brian Feldstein) An elementary calculation shows that the invertible matrix

T =

 0 I I
I 0 I
I I 0

 .
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(where I is the identity n× n matrix) satisfies

T Q(L1, L2, L3)T> =

 S3 − S1 0 0
0 S2 − S3 0
0 0 S1 − S2.

 .

From this the lemma is immediate. �

Remark 2.54. This may be formulated more intrinsically, as follows. We choose a 4th
Lagrangian subspace M that is transverse to each of L1, L2, L3. That is, Li ∈ Lag(E;M)
for i = 1, 2.3. Recall that Lag(E;M) is an affine space, with the space Sym2(M) of
bilinear forms on M∗ = E/M as its space of motions. To each pair i, j corresponds a
bilinear form Sij ∈ Sym2(M), in such a way that βij ·Lj = Li. In terms of these bilinear
forms,

s(L1, L2, L3) = Sig(β21) + Sig(β32) + Sig(β13).

Theorem 2.55. The signature s : Lag(E,ω)3 → Z of a Lagrangian triple has the
following properties:

(a) s is anti-symmetric under permutations of L1, L2, L3:

s(L1, L2, L3) = s(L2, L3, L4) = −s(L2, L1, L3).

(b) (Cocycle Identity) For all quadruples L1, L2, L3, L4 ∈ Lag(E,ω),

s(L2, L3, L4)− s(L1, L3, L4) + s(L1, L2, L4)− s(L1, L2, L3) = 0.

(c) If M(t) is a continuous path of Lagrangian subspaces such that M(t) is
always transverse to L1, L2 ∈ Lag(E,ω), then

t 7→ s(L1, L2,M(t))

is constant as a function of t.
(d) Any ordered triple of Lagrangian subspaces is determined up to symplecto-

morphism by the five numbers

dim(L1 ∩ L2), dim(L2 ∩ L3), dim(L3 ∩ L1),

dim(L1 ∩ L2 ∩ L3), s(L1, L2, L3).

Proof. The first property is immediate from the definition, while the second and third
property follow from Lemma 2.53. The fourth property is left as a non-trivial exercise.
(Perhaps try it first for the case that the Lj are pairwise transverse.) �

Exercise 2.56. Let L1, L2, L3 be three Lagrangian subspaces. Suppose L1, L2 are both
transverse to L3. Choose a symplectic basis e1, . . . , en, f1, . . . , fn of E such that

L1 = span{e1, . . . , en}, L3 = span{f1, . . . , fn}.
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Thus L3 = span{g1, . . . , gn} where

gi = ei +
∑
j

Sijfj

for a symmetric matrix n× n-matrix S.
a) Prove that 8

s(L1, L2, L3) = Sig(S).

b) Show that one may choose the symplectic basis so that for all i, we have gi = ei+fi
for i < k, gi = ei − fi for k ≤ i < `, and gi = ei for i ≥ `. What is s(L1, L2, L3) in terms
of k, `?

Proposition 2.57. Suppose L1(t), L2(t) ∈ Lag(E,ω) are two paths of Lagrangian
subspaces, a ≤ t ≤ b. Suppose there exists M ∈ Lag(E,ω) transverse to L1(t) and
L2(t) for all t ∈ [a, b]. then the difference

[L1 : L2] :=
1

2

(
s(L1(a), L2(a),M)− s(L1(b), L2(b),M)

)
is independent of the choice of such M .

Proof. Let M,M ′ be two choices. By the cocycle identity, the first term changes by

s(L1(a), L2(a),M)− s(L1(a), L2(a),M ′) = s(L1(a),M,M ′)− s(L2(a),M,M ′).

We have to show that this equals the change of the second term,

s(L1(b), L2(b),M)− s(L1(b), L2(b),M ′) = s(L1(b),M,M ′)− s(L2(b),M,M ′).

But s(L1(t),M,M ′) and s(L2(t),M,M ′) are independent of t, since Li stay transverse
to M,M ′. �

This proposition tells us how to define the Maslov intersection index for ‘short’ paths.
We define the Maslov intersection index for two arbitrary paths L1, L2 : [a, b] →
Lag(E,ω) by requiring additivity under concatenation:

8Need to verify sign
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Definition 2.58 (Maslov index). ([34], see also [33, 38]). Let L1, L2 : [a, b] →
Lag(E,ω) be two continuous paths of Lagrangians. We define the Maslov index
[L1 : L2] ∈ 1

2
Z by the formula

[L1 : L2] =
1

2

k∑
j=1

(s(L1(tj−1), L2(tj−1),Mj)− s(L1(tj), L2(tj),Mj)).

Here a = t0 < t1 < · · · tk = b is a subdivision, and M1, . . . ,Mk are Lagrangian sub-
spaces, with the property that for all j = 1, . . . , k, both L1(t), L2(t) ∈ Lag(E;Mj)
for all t ∈ [tj−1, tj].

By the proposition, this is independent of the choice of subdivision and of the choice
of the Mj.

Note that this definition does not require transversality at the endpoints. The Maslov
intersection index is additive under concatenation of paths, and is anti-symmetric [L1 :
L2] = −[L2 : L1].

Exercise 2.59. Show that for any path of symplectomorphisms A : [a, b] → Sp(E,ω),
[A(L1) : A(L2)] = [L1 : L2].

Exercise 2.60. Let E = R2, and let L1, L2 : [a, b] → Lag(E,ω) be defined by L1(t) =
span(f + te) and L2(t) = span(f). Find [L1 : L2]. How does it depend on a, b?

Exercise 2.61. Let L1, L2, L3 : [a, b] → Lag(E,ω) be three paths of Lagrangian sub-
spaces. Show that

[L1 : L2] + [L2 : L3] + [L3 : L1] =
1

2
(s(L1(a), L2(a), L3(a))− s(L1(b), L2(b), L3(b)).

Definition 2.58 may also be used to define Maslov indices of paths of symplectomor-
phisms. Let E− denote E with minus the symplectic form, and let E ⊕E− be equipped
with the symplectic form pr∗1 ω − pr∗2 ω where pri are the projections to the first and
second factor.

Proposition 2.62. For any symplectomorphism A ∈ Sp(E,ω), the graph

ΓA := {(Av, v)| v ∈ E} ⊆ E ⊕ E−

is a Lagrangian subspace.

Proof. Let pr1, pr2 denote the projections from E ⊕E− to the respective factor. For all
v1, v2 ∈ E, we have

(pr∗1 ω − pr∗2 ω)((Av1, v1), (Av2, v2)) = −ω(v1, v2) + ω(Av1, Av2) = 0.

�
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On the other hand, E ⊕ E− has a distinguished Lagrangian subspace given by the
diagonal ∆ ⊆ E ⊕ E−.

Definition 2.63. The Maslov index of a path of symplectomorphisms A : [a, b] →
Sp(E,ω) is defined by

[ΓA : ∆] ∈ 1

2
Z.

For loops based at the identity this reduces (up to a factor of 2) to the index µ(A)
introduced earlier.

Exercise 2.64. The set of paths [a, b]→ Sp(E,ω) is a group under pointwise multiplica-
tion. Given two paths of symplectomorphisms A1, A2 : [a, b]→ Sp(E,ω), give a formula
for

µ(A1A2)− µ(A1)− µ(A2),

and use it to show that this difference is bounded, independently of the choice of A1, A2.
(This shows that the Maslov index is a quasi-morphism of groups.)
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3. Foundations of symplectic geometry

An almost complex structure on a manifold M is given by a family of complex struc-
tures on the tangent spaces

Jm : TmM → TmM, J2
m = − idTmM ,

depending smoothly on m. A complex structure on a real manifold M may be defined
in terms of an atlas with Cn-valued charts with holomorphic transition functions. The
Newlander-Nirenberg theorem gives a necessary and sufficient integrability condition for
an almost complex structure J = {Jm} to define a complex structure (in terms of the
vanishing of the so-called Nijenhuis torsion).

Similarly, an almost symplectic structure on a manifold may be defined to be a family
of symplectic structures on tangent spaces,

ωm : TmM × TmM → R.

In other words, it is a 2-form ω whose restriction to every tangent space is nondegenerate.
There is an integrability condition on such 2-forms, which is much easier to state than
for almost complex structures.

3.1. Definition of symplectic manifolds.

Definition 3.1. A symplectic structure on a manifold M is a non-degenerate 2-form
ω ∈ Ω2(M) which is closed :

dω = 0.

Non-degeneracy means that for each m ∈ M , the form ω|m is a symplectic form on
TmM , in particular dimM = 2n is even. The nondegeneracy may also be characterized
as follows:

Proposition 3.2. A 2-form ω ∈ Ω2(M) is nondegenerate (i.e., symplectic) if and
only if the top exterior power

ωn = ω ∧ · · · ∧ ω︸ ︷︷ ︸
n

is non-zero everywhere.

Proof. This is a pointwise statement (we could have discussed in in the section on sym-
plectic vector spaces); hence we check at any given m ∈M .

”⇐” Suppose ωnm 6= 0, and let v ∈ TmM be non-zero. Since ωnm is a volume element,
we have ι(v)ωnm 6= 0. But ι(v)ωnm = n(ι(v)ωm)∧ωn−1

m , so we must have ι(v)ωm 6= 0. This
shows ker(ωm) = 0.
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”⇒” Suppose ker(ωm) = 0. Choose a symplectic basis e1, f1, . . . , en, fn of the tangent
space TmM . We have

ι(en) · · · ι(e1)ωnm = nι(en) · · · ι(e2)
(
ωn−1
m ∧ ι(e1)ωm

)
= n(n− 1)ι(en) · · · ι(e3)

(
ωn−2
m ∧ ι(e2)ωm ∧ ι(e1)ωm

)
· · ·
= n! ι(en)ωm ∧ · · · ∧ ι(e1)ωm

(We are using that ωm(ei, ej) = 0 for all i, j.) Hence

ι(fn) · · · ι(f1)ι(en) · · · ι(e1)ωnm = ±n!.

In particular ωnm 6= 0. �

Definition 3.3. Let (M,ω) be a (almost) symplectic manifold. The volume form

Λ = exp(ω)[dimM ] =
1

n!
ωn

is called the Liouville form.

The existence of a canonical volume form means, in particular, that (almost) symplec-
tic manifolds come equipped with a natural orientation.

Remark 3.4. Similarly, every almost complex manifold (M,J) carries a natural orien-
tation. In fact, we may pick a Riemannian metric g on M such that J is orthogonal9;
then ω(v, w) = g(Jv, w) defines an almost symplectic structure, which, in turn, defines
an orientation.

3.2. Symplectomorphisms, Hamiltonian vector fields. Before discussing first ex-
amples, let us consider the automorphisms of a symplectic manifold:

Definition 3.5. Let (M,ω) be a symplectic manifold.

(a) A symplectomorphism of M is a diffeomorphism F ∈ Diff(M) such that

F ∗ω = ω.

The group of symplectomorphism of M onto itself is denoted Diff(M,ω).
(b) A symplectic vector field on (M,ω) is a vector field X with the property

LXω = 0.

The Lie algebra of symplectic vector fields is denoted X(M,ω).

Remark 3.6. More generally a symplectomorphism between two symplectic manifolds
(M1, ω1) and (M2, ω2) is a smooth map F : M1 →M2 such that F ∗ω2 = ω1.

9If g0 is any choice of Riemannian metric, then g(v, w) = g0(v, w) + g0(Jv, Jw) has this property.
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It is immediate that a symplectomorphism F is volume preserving:

F ∗ω = ω ⇒ F ∗(ωn) = ωn.

(The converse is not true unless dimM = 2.) Furthermore, the local flow Ft of a sym-
plectic vector field is volume preserving: F ∗t ω = ω follows by integrating the differential
equation

d

dt
F ∗t ω = −F ∗t LXω = 0.

That is, X(M,ω) is informally the Lie algebra of the infinite-dimensional group Diff(M,ω).

Definition 3.7. For any H ∈ C∞(M,R), the corresponding Hamiltonian vector
field XH is the unique vector field satisfying

ιXHω = −dH
The space of Hamiltonian vector fields is denoted XHam(M,ω).

Proposition 3.8. Every Hamiltonian vector field is a symplectic vector field. That
is,

XHam(M,ω) ⊆ X(M,ω).

Proof. Suppose X = XH , that is ιXω = −dH. Then

LXω = dιXω = −ddH = 0. �

3.3. Basic example: Open subsets of R2n. The prototype of a symplectic manifold
is an open subset U ⊆ R2n. Let q1, . . . , qn, p1, . . . , pn be coordinates with respect to a
symplectic basis e1, f1, . . . , en, fn for R2n. This identifies ej = ∂

∂qj
and fj = ∂

∂pj
. In terms

of the dual 1-forms dq1, . . . , dpn, the symplectic form is given by

ω =
n∑
j=1

dqj ∧ dpj.

Darboux’s theorem, to be discussed later, shows that every symplectic structure is locally
of this form, in suitable coordinates. The Liouville volume form ωn/n! is

Λ = dq1 ∧ dp1 ∧ . . . ∧ dqn ∧ dpn.

Given a smooth function H on U , we have

XH =
n∑
j=1

(∂H
∂qj

∂

∂pj
− ∂H

∂pj

∂

∂qj

)
.

Hence the ordinary differential equation defined by XH is

q̇j =
∂H

∂pj
, ṗj = −∂H

∂qj
.
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Example 3.9. The Hamiltonian H(q, p) = 1
2
(q2+p2) gives the vector field XH = q ∂

∂p
−p ∂

∂q
,

generating (with our sign conventions) the flow given by clockwise rotation. (This agrees
with the physics interpretation as a harmonic oscillator.)

3.4. Cotangent bundles. Let M = T ∗Q be the cotangent bundle of a manifold Q, i.e.,
the dual of the tangent bundle. Let

π : T ∗Q→ Q

be the bundle projection, Tπ : T (T ∗Q)→ TQ its tangent map.

Definition 3.10. The canonical 1-form

θ ∈ Ω1(T ∗Q)

is given, at any µ ∈ T ∗Q, in terms of its pairings with tangent vectors v ∈ Tµ(T ∗Q)
by

〈θµ, v〉 = 〈µ, Tπ(v)〉.

Let us verify that the definition makes sense: The element µ ∈ T ∗Q is a covector at
π(µ) ∈ Q, while Tπ(v) ∈ Tπ(µ)Q is a tangent vector at π(µ); hence we may pair them.

Remark 3.11. To rephrase the definition: By dualizing the tangent map

Tµπ : Tµ(T ∗Q)→ Tπ(µ)Q,

we obtain a map

(Tµπ)∗ : T ∗π(µ)Q→ T ∗µ(T ∗Q).

But T ∗π(µ)Q contains the element µ itself. Hence, we obtain a covector

θµ = (Tµπ)∗(µ).

Another characterization of the form θ is as follows. Given a 1-form α ∈ Ω1(Q)
(regarded, e.g., as a C∞(Q)-linear map X(Q) → C∞(Q)), let σα : Q → T ∗Q be the
corresponding section of the cotangent bundle. (Usually one would just denote it by α.)

Proposition 3.12. The canonical 1-form is the unique 1-form θ ∈ Ω1(T ∗Q) with
the property that for every 1-form α ∈ Ω1(Q) on the base,

α = σ∗αθ

where σα : Q→ T ∗Q defined by α.
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Proof. Let us evaluate the right hand side on a tangent vector w ∈ TqQ with base point
q ∈ Q. Let µ = αq = σα(q) ∈ T ∗Q. Since π ◦ σα = idQ, we have

〈(σ∗αθ)q, w〉 = 〈θµ, (Tqα)(w)〉
= 〈µ, (Tµπ)((Tqα)(w))〉
= 〈µ,w〉
= 〈αq, w〉.

For the uniqueness part, let us call a tangent vector v ∈ Tµ(T ∗Q) vertical if it is in
the kernel of Tµπ. Every non-vertical tangent vector is tangent to the range of σα for
some 1-form α ∈ Ω1(Q). Thus, we may write v = (Tqσα)(w), for with α(q) = µ and
w ∈ TqQ. Hence, the defining identity 〈θµ, v〉 = 〈µ, Tπ(v)〉 holds on non-vertical vectors.
The general case follows by continuity (since non-vertical vectors are dense) or because
every tangent vector to T ∗Q may be written as a sum of two non-vertical ones. �

Remark 3.13. One usually doesn’t make notational distinction between a 1-form as C∞-
linear map α : X(M) → C∞(M) (by contraction with vector fields) as a function on
the tangent bundle α : TM → R (by evaluating on tangent vectors), or as a section
α : M → T ∗M . Thus, the formula just proved is often written as

α∗θ = α.

We shall need the expression for the 1-form θ in local coordinates. Let q1, . . . , qn be
local coordinates on some open subset U ⊆ Q. Then dq1, . . . , dqn are sections of T ∗Q|U ,
and span the cotangent bundle over U . (That is, the differentials form a frame.) A
general covector µ ∈ T ∗qQ can be written as µ =

∑
i pidqi|q. Thus, the coordinates

q1, . . . , qn of q, together with the coordinates p1, . . . , pn, for coordinates on T ∗Q|U . The
coordinates q1, . . . , qn, p1, . . . , pn on T ∗Q|U are called cotangent coordinates.

Proposition 3.14. In local cotangent coordinates q1, . . . , qn, p1, . . . , pn on T ∗Q,
the canonical 1-form θ is given over T ∗Q|U by

θ =
∑
j

pj dqj.

Proof. Let α =
∑

j αjdqj be a 1-form on U . Viewed as a section, it is the map

σα(q1, . . . , qn) = (q1, . . . , qn, α1(q1, . . . , qn), . . . , αn(q1, . . . , qn)).

That is, σ∗αpj = αj, σ∗αqj = qj. It follows that

σ∗α
(∑

j

pj dqj
)

=
∑
j

αjdqj = α. �
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Exercise 3.15. It is instructive to give another proof, directly in terms of the definition.
That is, verify the property 〈θµ, v〉 = 〈µ, Tπ(v)〉 for the coordinate tangent vectors
∂
∂q1
, . . . , ∂

∂qn
, ∂
∂p1
, . . . , ∂

∂pn
.

Theorem 3.16. Let T ∗Q be a cotangent bundle and θ its canonical 1-form. Then
ω = −dθ is a symplectic structure on M .

Proof. In local cotangent coordinates, −dθ =
∑

j dqj ∧ dpj. �

This 2-form is called the canonical symplectic structure of the cotangent bundle.

We will now describe some natural symplectomorphisms and Hamiltonian vector fields
on M = T ∗Q, taking into account its structure as a fiber bundle π : T ∗Q→ Q.

Definition 3.17. Let π : P → Q be a surjective submersion from a manifold P to
a manifold Q.

(a) A diffeomorphism F ∈ Diff(P ) is called a lift of a diffeomorphism f ∈
Diff(Q) if it satisfies π ◦ F = f ◦ π.

(b) A vector field X ∈ X(P ) is called a lift of a vector field Y ∈ X(Q) if it
satisfies X ∼π Y , that is, (Tpπ)(Xp) = Yπ(p) for all p ∈ P .

The diffeomorphisms of P that are lifts under π may be called fibration-preserving.
The form a group Diff(P, π). Similarly, the vector fields on P that are lifts of some vector
fields under π form a Lie algebra X(P, π).

Remark 3.18. Lifts of vector fields may be constructed locally, and then patched with a
partition of unity. The resulting lift is unique up to vertical vector fields.

Example 3.19 (Tangent lifts). For P = TQ, every diffeomorphism f ∈ Diff(Q) has a
distinguished tangent lift

fT = Tf ∈ Diff(TQ, π).

Similarly, every vector field Y ∈ X(Q) has a distinguished tangent lift

YT ∈ X(TQ, π),

in such a way that the local flow of X is the tangent lift of the local flow of Y . Another
way of describing it: for f ∈ C∞(Q), let fT ∈ C∞(TQ) be the function v 7→ v(f). (In
other words, fT is just the exterior differential df , viewed as a function on TQ.) Then
YT is uniquely characterized by the properties

YT (π∗f) = 0, YT (fT ) = (Y f)T .

for all f .
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We are interested in the case P = T ∗Q. The cotangent lift of a diffeomorphism
f ∈ Diff(Q) is defined by

fT ∗ = (Tf−1)∗.

The cotangent lift of a vector field Y ∈ X(Q) is the vector field YT ∗ whose local flow is
the cotangent lift of the local flow of Y .

Exercise 3.20. (a) Show that both tangent and cotangent of vector fields are Lie
algebra morphisms.

(b) Find coordinate expressions for the tangent and cotangent lifts. (The solution for
cotangent lifts will be given below.)

For all α ∈ Ω1(Q) one has a commutative diagram,

T ∗Q
fT∗
// T ∗Q

Q

σα

OO

f
// Q

σ(f−1)∗α

OO

(This is really how the pullback of a 1-form is defined.)

Proposition 3.21. Let f ∈ Diff(Q) be a diffeomorphism. Then the cotangent lift
of f preserves the canonical 1-form,

(fT ∗)
∗θ = θ.

Conversely, the cotangent lifts of diffeomorphisms are the unique fibration preserv-
ing diffeomorphisms F ∈ Diff(T ∗Q) satisfying F ∗θ = θ.

Proof: Next time.

Proof. This is ‘essentially clear’ since our definition of the canonical 1-form was coordinate-
free. For the skeptic, check the property σ∗α(fT ∗)

∗θ = α from Proposition 3.12 : We have

σ∗α(fT ∗)
∗θ = ((fT ∗) ◦ σα)∗θ

= (σ(f−1)∗α ◦ f)∗θ

= f ∗(σ(f−1)∗α)∗θ

= f ∗(f−1)∗α

= α.

For the uniqueness claim, suppose F is a fiber-preserving diffeomorphism with F ∗θ =
θ. Let f be its base map. By composing F with the inverse of fT ∗ , we may assume
f = idQ. We have to show F = idT ∗Q. Since f fixed base points, we may use local
coordinates near any given point of Q, and corresponding cotangent coordinates qi, pi on
T ∗Q, so θ =

∑
i pidqi. Since F ∗qi = qi, the property F ∗θ = θ implies that also F ∗pi = pi,

that is F is the identity map. �
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Since cotangent lifts preserve the canonical 1-form, they also preserve the symplectic
form ω. It follows that the cotangent lift of diffeomorphisms gives a group morphism

(3) Diff(Q)→ Diff(T ∗Q,ω), f 7→ fT ∗ .

Given α ∈ Ω1(Q) let Gα : T ∗Q → T ∗Q be the diffeomorphism obtained by adding α
fiberwise; that is, µ 7→ µ + απ(µ). Note that Gα is fibration-preserving, with base map
the identity map on Q. The map

Gα ∈ Diff(T ∗Q, π)

may also be described through its property Gα ◦ σβ = σα+β.

Proposition 3.22. For all α ∈ Ω1(Q),

G∗αθ − θ = π∗α

Thus Gα is a symplectomorphism if and only if dα = 0, that is α ∈ Ω1
cl(Q).

Conversely, every fibration-preserving symplectomorphism of T ∗Q for which the
base map on Q is trivial is obtained in this way from a closed 1-form.

Proof. Let β ∈ Ω1(Q). Then

σ∗β(G∗αθ − π∗α) = (Gα ◦ σβ)∗θ − (π ◦ σβ)∗α = σ∗α+βθ − α = α + β − α = β

By the characterizing property of θ this proves G∗αθ − π∗α = θ.
For the converse, suppose F is a fibration-preserving symplectomorphism of T ∗Q with

trivial base map. Consider the 1-form

α̃ = F ∗θ − θ.

This 1-form is closed, since d(F ∗θ − θ) = F ∗dθ − dθ = −F ∗ω + ω = 0. We claim that α̃
is ‘basic’, i.e., α̃ = π∗α for a 1-form α ∈ Ω1(Q) (necessarily closed). This is equivalent to
the statement that ιZα̃ = 0, LZα̃ = 0 for all vertical vector fields Z ∈ X(T ∗Q). 10 But

ιZα̃ = ιZ(F ∗θ − θ) = F ∗(ιF∗(Z)θ)− ιZθ = 0

since θ vanishes on vertical vector fields, and Z, F∗(Z) are vertical. Moreover,

LZα̃ = LZ(F ∗θ − θ) = ιZd(F ∗θ − θ) + dιZ(F ∗θ − θ) = 0

(both terms vanish). We have thus shown that F ∗θ − θ = π∗α. But this means F =
Gα. �

10It is a general fact for surjective submersions π : P → Q with connected fibers that a differential
form β ∈ Ω(P ) is of the form β = π∗α if and only if it satisfies ιZβ = 0, LZβ = 0 for all vertical vector
fields Z. This may be proved, for example, in coordinates adapted to the submersion.
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We have thus constructed a group morphism

(4) Ω1
cl(Q)→ Diff(T ∗Q,ω)

For any representation of a group G on a vector space V , one defines the semi-direct
product V oG to be the group whose underlying set is V ×G and with product structure,

(v1, g1)(v2, g2) = (v1 + g1 · v2, g1g2).

In our case, we let Diff(Q) act on closed 1-forms by f · α = (f−1)∗α. Summarizing our
discussion, we have shown:

Theorem 3.23. The group Diff(T ∗Q,ω) ∩ Diff(T ∗Q, π) of fibration preserving
symplectomorphisms of T ∗Q is a semidirect product

Ω1
cl(Q) o Diff(Q) ↪→ Diff(T ∗Q,ω), (α, f) 7→ Gα ◦ fT ∗

There is a similar description for the infinitesimal setting: The Lie algebra of fibration-
preserving symplectic vector fields is a semidirect product

X(T ∗Q,ω) ∩ X(T ∗Q, π) = Ω1
cl(Q) o X(Q)

(where the second factor is mapped to vector fields on T ∗Q via cotangent lift. We will
now show that these cotangent lifts are, in fact, Hamiltonian vector fields.

Proposition 3.24. The cotangent lift X = YT ∗ is the unique vector field with the
properties

X ∼π Y, LXθ = 0.

It is a Hamiltonian vector field XH for H = −ιXθ.

Proof. Since the flow of the cotangent lift YT ∗ preserves θ, we have LYT∗θ = 0. For the
uniqueness part, note that other lifts are of the form X = YT ∗ +Z where Z is a vertical
vector field (Z ∼ π0). If LXθ = 0 then LZθ = 0. But for a vertical vector field, ιZθ = 0.
Hence the property LZθ = 0 gives ιZω = −ιZdθ = −LZθ = 0, hence Z = 0.

Letting H = −ιXθ, we obtain

dH = −dιXθ = ιXdθ − LXθ = −ιXω.

This shows X = XH . �

Exercise 3.25. Suppose X ∈ X(T ∗Q,ω) is a symplectic vector field, which is vertical
with respect to π. Show that

ιXω = −π∗α
for a closed 1-form α ∈ Ω1(Q).
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Let us express some of these results in cotangent coordinates. Suppose

Y =
∑
j

Yj
∂

∂qj
.

Every lift (in particular the cotangent lift) is of the form

X =
∑
j

Yj
∂

∂qj
+
∑
j

fj(q, p)
∂

∂pj
.

The vertical part does not contribute to contraction with θ. Hence

−ιXθ = −
∑
j

Yj(q)ι ∂
∂qj

θ = −
∑
j

Yj(q)pj.

The function H = −
∑

j Yj(q)pj has exterior differential

dH =
∑
j

Yj(q)dpj −
n∑

j,k=1

pj
∂Yj
∂qk

dqj;

so, the Hamiltonian vector field is

YT ∗ = XH =
n∑
j=1

Yj
∂

∂qj
−

n∑
j,k=1

pj
∂Yj
∂qk

∂

∂pk
.

Remarks 3.26. Note that the Hamiltonians corresponding to cotangent lifts are those
which are linear along the fibers of T ∗Q. Other interesting flows are generated by Hamil-
tonians that are constant along the fibers of T ∗Q, i.e. of the form H = π∗f , with
f ∈ C∞(Q). The flow generated by such an H is given, in terms of the notation Gα

introduced above, by φt = G−t df . The Hamiltonian vector field corresponding to H is,
in local cotangent coordinates,

Xπ∗f = −
∑
j

∂f

∂qj

∂

∂pj
.

Exercise 3.27. Verify these claims!

On the total space of any vector bundle E → Q there is a canonical distinguished
vector field E ∈ X(E), called the Euler vector field; its flow φt is fiberwise multiplication
by e−t. In our case E = T ∗Q, we have in local cotangent coordinates

E =
∑
j

pj
∂

∂pj
.

On the other hand, we have θ =
∑

j pj dqj. We hence see that

(5) LEθ = θ, ιEθ = 0.

(The first formula says that θ is homogeneous of degree 1).



41

Proposition 3.28. The Euler vector field satisfies

LEω = ω, ιEω = −θ.

Proof. The first identity follows by applying −d to (5). The second formula is obtained
using the Cartan formula for the Lie derivative, ιEω = −ιEdθ = −LEθ = −θ. �

Remark 3.29. A symplectic manifold M , together with a free R-action whose generating
vector field E satisfies such that LEω = ω is called a symplectic cone. Thus, cotangent
bundles minus their zero section are examples of symplectic cones. Another example is
R2n − {0}, for the action given as multiplication by e−t/2.

Proposition 3.30. For every closed 2-form σ ∈ Ω2(Q), the sum ω + π∗σ is a
symplectic form on T ∗Q. The Liouville form of ω + π∗σ equals that for ω.

We leave the proof as an exercise.

This has the following somewhat silly corollary: Every closed 2-form σ ∈ Ω2
cl(Q) arises

as the pullback of a symplectic 2-form under some embedding. (Proof: Consider Q as
the zero section of M = T ∗Q with symplectic form ω = −dθ + π∗σ.)

3.5. Kähler manifolds. An almost complex manifold is a manifold M together with
a smoothly varying complex structure Jm on each tangent space TmM ; i.e. a smooth
section

J : M → End(TM) = tm End(TmM)

satisfying
J2 = − id .

A complex manifold is a manifold, together with an atlas with charts taking values in
Cn ∼= R2n, in such a way that the transition functions are holomorphic maps. Every
complex manifold is almost complex, the automorphism J given by multiplication by√
−1 in complex coordinate charts. The Newlander-Nirenberg theorem states that an

almost complex structure J is integrable, i.e. comes from a complex manifold, if and
only if the so-called Nijenhuis tensor 11 NijJ vanishes. Moreover, the complex structure
(defined in terms of holomorphic charts) is uniquely determined by J . Here NijJ is
defined by

NijJ(X, Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X, Y ]

for all vector fields X, Y . (One may check that it the expression is C∞-linear in both
entries.) We won’t make use of this criterion, but let us note one consequence: If (M,J)
is a complex manifold, and N ⊆ M is a (real) submanifold such that J(TN) ⊆ TN ,
then N is a complex submanifold. Similarly, a C∞ map between complex manifolds is
holomorphic if and only if its tangent map intertwines the corresponding J ’s.

11Please consult the internet for proper pronounciation.
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An almost complex structure J on a symplectic manifold (M,ω) is called ω-compatible
if

g(X, Y ) = ω(X, JY )

defines a Riemannian metric. In other words, Jm is ωm-compatible for all m ∈M .

Definition 3.31. We denote by J (M,ω) the set of ω-compatible almost complex
structures J on M , and by Riem(M) the set of all Riemannian metrics g on M .

One may regard these sets as the smooth sections of fiber bundle tmJ (TmM,ωm),
respectively tm Riem(TmM). The constructions from linear symplectic algebra (Section
2.5) can be carried out fiberwise:

• We have a map

ψ : J (M,ω)→ Riem(M)

associating to {Jm} the corresponding inner products {gm} on {TmM}.
• This map has a canonically defined left inverse,

φ : Riem(M)→ J (M,ω);

In particular J (M,ω) is non-empty.
• Any two compatible almost complex structures J0, J1 ∈ J (M,ω) can be smoothly

deformed within J (M,ω): There exists a family of complex structures Jt ∈
J (M,ω) taking on the given values for t = 0, 1, and such that the map

J : [0, 1]×M → End(TM), (t,m) 7→ Jt(m)

is smooth. (More strongly, given a manifold S, any map S → J (M,ω), which is
smooth in the sense that the associated maps S ×M → End(TM) are smooth,
is smoothly homotopic to a constant map through compatible almost complex
structures.)

Definition 3.32. A Kähler manifold is a triple (M,ω, J) where ω is a symplectic
structure and J is an ω-compatible complex structure.

Thus, for a Kähler manifold both the 2-form and the complex structure must be
integrable. A first example of a Kähler manifold is

Cn = R2n,

with the standard symplectic and complex structure. More generally, every open subset
of Cn, or in fact any complex inner product space, is a Kähler manifold.

Remark 3.33. As usual, the data (ω, J) determine a Riemannian metric g, and any two
of (ω, J, g) determine the third.
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Proposition 3.34. Every complex complex submanifold of a Kähler manifold is
again a Kähler manifold, and in particular is symplectic.

Proof. Let (M,ω, J) be a Kähler manifold, and N ⊆ M a complex submanifold. This
means that the tangent bundle TN is J-invariant, and J |TN = JN is the complex struc-
ture on N . Let ι : N →M be the inclusion, and

ωN = ι∗ω.

To show that ωN is symplectic, we have to show that for nonzero v ∈ TnN there exists
w ∈ TnN with ωN(v, w) 6= 0. But w = JNv has this property, since ωN(v, Jv) =
ω(v, Jv) = g(v, v) > 0. A similar calculation also shows that JN is ωN -compatible. �

This gives many new examples: All complex submanifolds of Cn are Kähler manifolds,
and in particular are symplectic.

Remark 3.35. More generally, we have a similar result for complex immersions rather
than just embeddings.

We next consider complex projective space,

(6) CP (n) = (Cn+1\{0})/(C\{0}) = S2n+1/U(1).

By construction, it has a complex structure in such a way that the quotient map
Cn+1\{0} → CP (n) is holomorphic. Let

(7)

S2n+1 ι
//

π
��

Cn

CP (n)

denote the embedding and projection. Let ω ∈ Ω2(R2n) be the standard symplectic
structure.

Proposition 3.36. The manifold CP (n) has a unique 2-form ωFS (called the
Fubini-Study form) such that

π∗ωFS = ι∗ω.

This 2-form is symplectic, and the standard complex structure on CP (n) is ωFS-
compatible. That is, CP (n) is naturally a Kähler manifold, and so are all complex
submanifolds of CP (n).

Proof. To show that ι∗ω descends under the submersion π, we have to show

ιZ(ι∗ω) = 0, LZ(ι∗ω) = 0

for all vertical vector fields Z ∈ X(S2n+1) for the submersion π. Using Cartan’s formula
for LZ , and since ι∗ω is closed, the second condition follows from the first. For the first
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condition, it suffices to check at any z ∈ S2n+1. Consider the complex quotient map
q : Cn+1 − {0} → CP (n) and its tangent map

Tzq : TzCn+1 → Tπ(z)CP (n).

Identify TzCn+1 = Cn+1. Then ker(Tzq) = C · z contains the real line R · z = Tz(S
2n+1)⊥,

hence it also contains J(R · z). The latter is orthogonal to R · z, hence tangent to S2n+1.
This shows

J(R · z) = ker(Tzq) ∩ Tz(S2n+1) = ker(Tzπ).

We arrive at a g-orthogonal direct sum decomposition

TzCn+1 = (TzS
2n+1 ∩ J(TzS

2n+1))⊕ ker(Tzπ)︸ ︷︷ ︸
TzS2n+1

⊕R · z

where the last two summands add to ker(Tzq).
From this decomposition, we see that ι∗ω|z (the restriction of ω to TzS

2n+1) has kernel
exactly ker(Tzπ). This shows that ι∗ω descends to a 2-form on CP (n). Moreover, the
quotient map gives an isomorphism of complex vector spaces

TzS
2n+1 ∩ J(TzS

2n+1)→ Tπ(z)CP (n),

and the 2-form on Tπ(z)CP (n) is induced by the 2-form on this complex subspace. It is
hence symplectic, and compatible with the symplectic structure. �

Later we will see this construction of the Fubini-Study form ωFS more systematically
as a symplectic reduction.

Combining with Proposition 3.34, we see that every complex submanifold of CP (n)
(e.g., nonsingular projective variety) is in particular a symplectic manifold, with 2-form
given by pullback of the Fubini-Study form.

Remark 3.37. It is natural to ask if every symplectic manifold admits a compatible com-
plex structure, i.e. whether every symplectic manifold is Kähler. A counterexample was
given by Thurston [44], apparently the example had previously been found by Kodaira
(but nobody seems to give a reference). By now there are many counterexamples. In
particular, there are examples due to Geiges of symplectic manifolds not admitting any
complex structure at all, and also simply connected examples due to McDuff. See the
book by McDuff-Salamon [32] for references and further information.
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4. Basic properties of symplectic manifolds

Now that we have some examples of symplectic manifolds, let us develop the general
theory.

4.1. Hamiltonian and symplectic vector fields. We begin with a study of the Lie
algebras of Hamiltonian and symplectic vector fields. Let (M,ω) be a symplectic mani-
fold.

Proposition 4.1. There is a short exact sequence

(8) 0→ XHam(M,ω)→ X(M,ω)→ H1(M)→ 0.

where H1(M) is the first de Rham cohomology group.

Proof. The map ω[ : TM → T ∗M is a vector bundle isomorphism; on the level of sections
it gives an isomorphism

ω[ : X(M)→ Ω1(M), X 7→ ιXω = ω(X, ·)

between vector fields and 1-forms. By definition, a vector field X is symplectic if and
only if LXω = 0. Since dω = 0, Cartan’s identity shows that this is equivalent to ω[(X)
being closed. Similarly, X is Hamiltonian if ιXω = −dH for some smooth function H, if
and only if ω[(X) is exact. That is, we have isomorphisms

X(M,ω)
ω[−→ Ω1

cl(M), XHam(M,ω)
ω[−→ Ω1

ex(M).

Taking the quotient, we obtain a canonical isomorphism with H1(M) = Ω1
cl(M)/Ω1

ex(M).
�

We conclude that if H1(M) = {0} (e.g. for simply connected spaces such as M = Cn

or M = CP (n)) then every symplectic vector field is Hamiltonian.

Proposition 4.2. The Lie bracket of two symplectic vector fields is a Hamiltonian
vector field:

[X(M,ω),X(M,ω)] ⊆ XHam(M,ω).

In fact, for Y1, Y2 ∈ X(M,ω),

[Y1, Y2] = Xω(Y1,Y2).
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Proof. Let Y1, Y2 ∈ X(M,ω). Then

d(ω(Y1, Y2)) = dιY2ιY1ω

= LY2ιY1ω − ιY2dιY1ω

= ι([Y2, Y1])ω + ιY1LY2ω + ιY2ιY1dω − ιY2LY1ω

= ι([Y2, Y1])ω

= −ι([Y1, Y2])ω.

�

In particular, XHam(M,ω) is an ideal in the Lie algebra X(M,ω) and the quotient Lie
algebra X(M,ω)/XHam(M,ω) is abelian. It follows that (8) is an exact sequence of Lie
algebras, where H1(M) carries the trivial Lie algebra structure.

4.2. Poisson brackets. Consider next the surjective map

C∞(M)→ XHam(M,ω), H 7→ XH .

Its kernel is the space H0(M) of locally constant functions. (If M is connected then
H0(M) = R.) We thus have an exact sequence of vector spaces

(9) 0 −→ H0(M) −→ C∞(M) −→ XHam(M,ω) −→ 0.

We shall define a Lie algebra structure on C∞(M) to make this into an exact sequence
of Lie algebras. Proposition 4.2 indicates what the right definition of the Lie bracket
should be.

Definition 4.3. Let (M,ω) be a symplectic manifold. The Poisson bracket of two
functions F,G ∈ C∞(M,R) is defined as

{F,G} = ω(XF , XG).

From the definition, it is immediate that the Poisson bracket is skew-symmetric. Us-
ing that ι(XF )ω = −dF (by definition), together with Cartan’s identity, one has the
alternative formulas

(10) {F,G} = LXFG = −LXGF.
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Proposition 4.4. The Poisson bracket defines a Lie algebra structure on
C∞(M,R): That is, it is anti-symmetric and satisfies the Jacobi identity

(11) {F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0

for all F,G,H. The Poisson bracket has the following compatibility with the algebra
structure on C∞(M):

(12) {F,GH} = {F,G}H +G{F,H}.
. The map C∞(M)→ X(M), F 7→ XF is a Lie algebra morphism:

(13) X{F,G} = [XF , XG].

Proof. Equation (13) is just a special case of Proposition 4.2. The first statement follows
from (13) and the calculation,

{F, {G,H}} = LXF {G,H}
= LXF (ω(XG, XH))

= ω([XF , XG], XH) + ω(XG, [XF , XH ])

= ω(X{F,G}, XH) + ω(XG, X{F,H})

= {{F,G}, H}+ {G, {F,H}}.
Finally, (12) may be written as

LXF (GH) = (LXFG)H +G(LXFH),

and this holds because vector fields are derivations. �

Remark 4.5. This result motivates a generalization of symplectic structures: A Poisson
structure on a manifold is a Lie bracket {·, ·} on the algebra of functions satisfying (12).
It is also relevant for ideas of ‘quantization’; the basic observation is that for any algebra
A, the commutator [a, b] = ab−ba, a, b ∈ A is a Lie bracket satisfying a property similar
to (12), [a, bc] = [a, b]c+ b[a, c]. The idea is, then, to pass from the commutative algebra
C∞(M) to a noncommutative algebra A in such a way that Poisson brackets become
commutators. (It turns out that this naive idea of quantization doesn’t really work, but
it’s nonetheless a good guiding principle.)

Corollary 4.6. Suppose F,G ∈ C∞(M) Poisson-commute. Then:

(a) The function G is constant along the integral curves of XF , while F is
constant along the integral curves of XG.

(b) The flows of the Hamiltonian vector fields XF , XG commute.

Proof. The first claim is immediate from (10), the second claim is immediate from (13).
�
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Remark 4.7. Despite its simplicity, this Corollary is of crucial importance in applications
of symplectic geometry in physics, e.g., in classical mechanics. There, one is given
a ‘Hamiltonian’ H, the vector field XH generates the dynamics of the system, and the
functions that Poisson commute withH are ‘conserved quantities’ or ‘integrals of motion’.

Definition 4.8. An algebra A together with a Lie bracket [·, ·] is called a Poisson
algebra if

[FG,H] = F [G,H] + [F,H]G

for all F,G,H ∈ A.

For any algebra A, the canonical Lie bracket [F,G] = FG−GF satisfies this property.

Proposition 4.9. The algebra (C∞(M,R), {·, ·}) is a Poisson algebra.

Proof.

{FG,H} = LXH (FG) = (LXHF )G+ F (LXHG) = {F,H}G+ F{G,H}.
�

Proposition 4.10. For any compact connected symplectic manifold, Lie algebra
extension (9) has a canonical splitting. That is, there exists a canonical Lie algebra
morphism

XHam(M,ω)→ C∞(M,R)

that is a right inverse to the map F 7→ XF .

Proof. The required map associates to every X ∈ XHam(M,ω) the unique H such that
XH = X and

∫
M
HΛ = 0 (where Λ is the Liouville form). The equality∫

M

{F,G}Λ =

∫
M

(LXFG)Λ =

∫
M

LXF (GΛ) = 0

shows that this is indeed a Lie algebra morphism. �

Let us give the expression for the Poisson bracket for open subsets U ⊆ R2n, with
symplectic coordinates q1, . . . , qn, p1, . . . , pn. We have

XF =
n∑
j=1

(∂F
∂pj

∂

∂qj
− ∂F

∂qj

∂

∂pj

)
,

hence {F,G} = XF (G) is given by

{F,G} =
n∑
j=1

(∂F
∂pj

∂G

∂qj
− ∂F

∂qj

∂G

∂pj

)
.
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Exercise 4.11. Verify directly, in local coordinates, that the right hand side of this formula
defines a Lie bracket.

4.3. Lagrangian submanifolds. The notions of isotropic, coisotropic, Lagrangian, and
symplectic subspaces of symplectic vector spaces carry over to submanifolds; one simply
requires the defining property on each tangent spaces.

Definition 4.12. A submanifold (or, more generally, an immersion) ι : N ↪→ M is
called coisotropic (resp. isotropic, Lagrangian, symplectic) if at any point m ∈ N ,
TmN is a coisotropic (resp. isotropic, Lagrangian, symplectic) subspace of TmM .

Thus, ι : N ↪→ M is isotropic if ι∗ω = 0, and is Lagrangian if furthermore dimN =
1
2

dimM . All 1-dimensional submanifolds of M are isotropic, all codimension 1 subman-
ifolds are coisotropic. We’ll give a long list of examples of Lagrangian submanifolds:

Example 4.13. The fibers π−1(q) of a cotangent bundle π : T ∗Q→ Q are Lagrangian.

Example 4.14. The zero section of a cotangent bundle is Lagrangian. More generally, if
α ∈ Ω1(Q) is a 1-form and σα : Q → T ∗Q the corresponding section, then the range of
σα is Lagrangian if and only if α is closed. This follows from

σ∗αω = −σ∗αdθ = −dσ∗αθ = −dα.

Example 4.15. The submanifold Rn ⊆ Cn is Lagrangian, as is RP (n) ⊆ CP (n). More
generally, if a Kähler manifold has a complex conjugation map, by which we mean an
isometric anti-linear involution F : M →M , i.e.

F ∗g = g, F ∗J = −J, F ◦ F = idM

then the corresponding set of real points (fixed points under complex conjugation) is a
Lagrangian submanifold. This follows as a special case of the next example.

Example 4.16. If (M,ω) is a symplectic manifold, and F : M →M is an anti-symplectic
involution, i.e,

F ∗ω = −ω, F ◦ F = idM

then the fixed point set

N = {m ∈M | F (m) = m}
is Lagrangian. Indeed, the fixed point set of an action of a compact group (here Z2)
is always a submanifold. This reduces the problem to a symplectic vector space (V, ω)
with an anti-symplectic linear involution F : V → V . Decompose into eigenspaces

V = V+ ⊕ V−
for the involution. Then ω restricts to zero on both V±, hence both are Lagrangian. (By
the way, a similar reasoning shows that the fixed point set of a symplectic involution is
a symplectic submanifold.)
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Example 4.17. For any symplectic manifold (M,ω), we denote by M the same manifold
with the symplectic structure −ω. Then the diagonal

∆ ⊆M ×M
is a Lagrangian submanifold. More generally, a diffeomorphism Φ ∈ Diff(M) between
symplectic manifolds is a symplectomorphism if and only if its graph

gr(Φ) = {(Φ(m),m)| m ∈M} ⊆M ×M
is Lagrangian. (Exercise).

Example 4.18. Consider a smooth map F : Q1 → Q2. Then

gr(T ∗F ) ⊆ T ∗Q2 × T ∗Q1

is a Lagrangian submanifold, where we define

gr(T ∗F ) = {(µ2, µ1)| ∃q ∈ Q1 : µ1 ∈ T ∗qQ1, µ2 = (T ∗q F )(µ1)}.
The proof is left as an exercise. (As usual, one mainly has to understand the linear
version.)

For our next example, recall that the conormal bundle of a submanifold j : S ↪→ Q
is the subbundle of T ∗Q along S given as the annihilator bundle of the tangent bundle
to S: ν(Q,S)∗ = ann(TS). In other words, letting j∗ = (T ∗j) : T ∗Q|S → T ∗S be the
pullback map,

ν(Q,S)∗ = {µ ∈ T ∗Q|S| j∗µ = 0}.
The conormal bundle is the dual bundle to the normal bundle ν(Q,S) = TQ|S/TS;
hence the name.

Proposition 4.19. The conormal bundle to any submanifold j : S ↪→ Q is a
Lagrangian submanifold of T ∗Q. In fact, letting ι : ν(Q,S)→ T ∗Q be the inclusion,
we already have ι∗θ = 0.

Proof. Coordinate proof: Around any point of S we can choose submanifold coordinates
q1, . . . , qn on Q such that S is given by equations qk+1 = 0, . . . , qn = 0. In the corre-
sponding cotangent coordinates qj, pj on T ∗Q, the conormal bundle ann(TS) is given by
equations qk+1 = 0, . . . , qn = 0, p1, . . . , pk = 0. Clearly each summand in θ =

∑
j pjdqj

vanishes after pullback to this submanifold. Hence also ι∗ω = −ι∗dθ = 0. �

The examples of ‘conormal bundle’ and ‘closed 1-form’ can be combined:

Proposition 4.20. Let S ⊆ Q be a submanifold, and α ∈ Ω1(S) be a closed 1-form
on S. Then the subset

N = {µ ∈ T ∗Q|S| j∗µ = α|π(µ)}
is a Lagrangian submanifold.
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Proof. In submanifold coordinates for S ⊆ Q, the subset from the proposition is given
by equations

qk+1 = 0, . . . , qn = 0, p1 = α1(q1, . . . , qk), . . . , pk = αk(q1, . . . , qk).

Hence the pull-back of ω to this submanifold is given by

k∑
i=1

dqi ∧ dαj =
k∑

i,j=1

∂αi
∂qj

dqi ∧ dqj

so that ω vanishes on this submanifold if and only if α is closed. �

As a special case, we see that any submanifold S ⊆ Q together with a function
f ∈ C∞(S) determines a Lagrangian submanifold of T ∗Q. Indeed, we may just take
α = df in the proposition.

4.4. Lagrangian relations. The description of symplectic diffeomorphisms as Lagrangian
submanifolds (via their graphs), suggests the concept of a Lagrangian relation. Recall
that a relation between two sets M1,M2 is simply a subset

R ⊆M2 ×M1;

we write m1 ∼R m2 if (m2,m1) ∈ R. Maps F : M1 → M2 may be regarded as relations
via their graphs gr(F ) ⊆M2 ×M1. We think of R as a ‘generalized map’

R : M1 99KM2.

Composition of relations R′ ◦R is defined as

R′ ◦R = {(m3,m1) ∈M3 ×M1| ∃m2 ∈M2 : m1 ∼R m2, m2 ∼R′ m3}.
If M1,M2 are manifolds, then we can speak of smooth relations, meaning that R is

a submanifold. The composition of smooth relations need not be smooth, in general.
There is a notion of ‘clean composition’ of relations R′, R, ensuring that the composition
is again a smooth submanifold (sometimes immersed, i.e. with self-intersections). Here
are simpler ‘transverse composition’ conditions.

Definition 4.21. A composition of smooth relations R′ ◦R is called transverse if:

(i) The submanifolds R′ ×R and M3 ×∆M2 ×M1 of M3 ×M2 ×M2 ×M1 are
transverse.

(ii)
(TR′ × TR) ∩ (0M3 × T∆M2 × 0M1) = {0}.

The first condition guarantees that the intersection is a smooth submanifold,

R′ �R ⊆M3 ×M2 ×M2 ×M1.

The second condition means that the projection q : M3 ×M2 ×M2 ×M1 → M3 ×M1

satisfies ker(Tq)∩T (R′ �R) = 0, hence it restricts to an immersion on R′ �R. The image
of the latter is R′ ◦R ⊆M3 ×M1 which hence is an immersed submanifold.
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A Lagrangian relation between symplectic manifolds R : M1 99K M2 is a Lagrangian
submanifold

R ⊆M2 ×M1.

For Lagrangian relations R′ : M2 99K M3, R : M1 99K M2, the transversality conditions
(i), (ii) are actually equivalent to each other (as one finds by writing the condition on
tangent spaces and taking ω-orthogonals). The composition of Lagrangian relations
satisfying the transversality condition is again a Lagrangian relation. (The proof in the
linear case is a homework exercise.)

Example 4.22. For every smooth map F : Q1 → Q2, the cotangent relation T ∗F : T ∗Q1 99K
T ∗Q2 is a Lagrangian relation. Given maps F : Q1 → Q2 and F ′ : Q2 → Q3, one has

gr(T ∗F ′) ◦ gr(T ∗F ) = gr(T ∗(F ′ ◦ F )).

Example 4.23. A Lagrangian relation pt 99K M is the same thing as a Lagrangian
submanifold N ⊆M . (Same for Lagrangian relations M 99K pt.)

Example 4.24. Let j : S → Q be a submanifold. This defines a cotangent relation

T ∗j : T ∗S 99K T ∗Q

If α ∈ Ω1(S) is a closed 1-form, the range of σα is a Lagrangian submanifold of T ∗S,
which we may think of as a Lagrangian relation

pt 99K T ∗S.

Composing, we obtain a Lagrangian relation pt → T ∗Q which we may think of as a
Lagrangian relation {pt} 99K T ∗S. This recovers Proposition 4.20. (The transversality
condition (i) holds because the map T ∗Q|S → T ∗S is surjective.)

Here is a nice application of these considerations.

Theorem 4.25 (Tulczyjew). Let E → B be a vector bundle, E∗ → B its dual
bundle. There is a canonical symplectomorphism T ∗E ∼= T ∗E∗.

Proof. Consider first the case that B = pt, thus E = V is a vector space. Consider the
pairing

f : V ∗ ⊕ V → R, (µ, v) 7→ 〈µ, v〉.
The range of differential df is Lagrangian submanifold T ∗(V ∗ ⊕ V ), given by

{(µ, v; v, µ)| v ∈ V, µ ∈ V ∗} ⊆ T ∗(V ∗ ⊕ V ) = (V ∗ ⊕ V )× (V ⊕ V ∗).

After the identification T ∗(V ∗ ⊕ V ) ∼= T ∗V ∗ × T ∗V , followed by sign change in T ∗V
(given by map (v1, µ1) 7→ (v1,−µ1), this becomes the Lagrangian submanifold

{((µ, v), (v,−µ)| v ∈ V, µ ∈ V ∗} ∈ T ∗V ∗ × T ∗V
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which we may regard as the graph of the symplectomorphism (v,−µ) 7→ (µ, v). For the
general case, consider E∗ ⊕ E as a submanifold

E∗ ⊕ E ⊆ E∗ × E.

The pairing defines a function

f : E∗ ⊕ E → R, (µ, v) 7→ 〈µ, v〉.

By Proposition 4.20, the closed 1-form df defines a Lagrangian submanifold

L ⊆ T ∗(E∗ × E) = T ∗E∗ × T ∗E.

One checks that the projections from L onto both factors T ∗E and T ∗E∗ are diffeomor-
phisms. After sign change in the second factor (i.e., mapping a covector to minus the
covector) it becomes a Lagrangian submanifold of T ∗E × T ∗E∗, which is the graph of a
symplectomorphism. �

Remark 4.26. Tulczyjew [45] considered the case E = TQ; his aim was to give a geometric
interpretation of the Legendre transform. I learned the argument above from the thesis
of Roytenberg [39, page 33], who also pointed out that it works for arbitrary vector
bundles.

4.5. Coisotropic submanifolds. For any submanifold N ⊆M , let

C∞(M)N = {F ∈ C∞(M)|F |N = 0}

be its vanishing ideal. The tangent bundle TN has the characterization

TN = {v ∈ TM | v(F ) = 0 for all F ∈ C∞(M)N},

On the other hand, the annihilator ann(TN) is spanned by all differentials dF |N with
F ∈ C∞(M)N . For symplectic manifolds, this translates to the following fact:

Proposition 4.27. For any submanifold N of a symplectic manifold (M,ω), the
subbundle TNω is spanned by restrictions of Hamiltonian vector fields XF |N with
F ∈ C∞(M)N .

Proof. The map ω[ : TM → T ∗M restricts to an isomorphism TNω → ann(TN), and
identifies the Hamiltonian vector field XF ∈ X(M) with dF . �

Recall that a submanifold N of a symplectic manifold (M,ω) is coisotropic if its
tangent spaces are coisotropic, that is,

TNω ⊆ TN.
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Theorem 4.28. The following three statements are equivalent:

(a) N is a coisotropic submanifold of M .
(b) For all F ∈ C∞(M)N , the Hamiltonian vector field XF is tangent to N .
(c) The space C∞(M)N is a Poisson subalgebra of C∞(M).

Proof. (a) ⇔ (b). By the proposition, TNω is spanned by restrictions of Hamiltonian
vector fields XF |N with F ∈ C∞(M)N . Hence N is coisotropic (TNω ⊆ TN) if and only
if every such vector field is tangent to N .

(b)⇔ (c). XF is tangent to N if and only if XF (G) ∈ C∞(M)N for all G ∈ C∞(M)N .
Since XF (G) = {F,G} this shows that (b) and (c) are equivalent. �

Remark 4.29. Note that in order to verify condition (c) around a given point m ∈ N , it is
not necessary to check on all functions vanishing on N . It suffices to check {Fi, Fj} = 0
for any finite collection of functions vanishing on N near m and such that dF1, . . . , dFk
span the conormal bundle at m.

Proposition 4.30. Let (M,ω) be a symplectic manifold, and π : M → Q a sub-
mersion to another manifold. Then the fibers of π are coisotropic if and only if
the functions in

π∗C∞(Q) ⊆ C∞(M)

all Poisson commute.

Proof. “⇐”. Suppose all fibers of π are coisotropic. Given q ∈ Q, suppose N = π−1(q).
For every f ∈ C∞(Q), the function π∗f − f(q) lies in the vanishing ideal of N . Hence,
given f1, f2 ∈ C∞(Q), the Poisson bracket

{π∗f1, π
∗
2f2} = {π∗f1 − f1(q), π∗2f2 − f2(q)}

must vanish when restricted to N . Since q was arbitrary, the restriction to all fibers must
vanish. That is, {π∗f1, π

∗
2f2} = 0. “⇒”. Suppose the functions in π∗C∞(Q) ⊆ C∞(M)

all Poisson commute. Given q ∈ Q, choose functions f1, . . . , fk with fi(q) = 0, and
such that the differentials dfi|q span T ∗qQ. (In other words, choose local coordinates

around q.) Then the differentials of Fi = π∗fi span the conormal bundle to N = π−1(q)
everywhere. By the preceding remark, since the Fi Poisson commute, it follows that N
is coisotropic. �

The fibers of this submersion have codimension equal to the dimension of Q. In
particular, if dimQ = 1

2
dimM , the fibers of F define a Lagrangian foliation of M . This

is the setting for completely integrable systems. We will discuss this case later in more
detail.
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4.6. Constant rank submanifolds. A 2-form σ ∈ Ω2(N) is said to have constant rank
if the rank of the map σ[n : TnN → TnN

∗, n ∈ N is independent of n. Equivalently, the
kernel of this map has constant dimension.

Definition 4.31. A submanifold ι : N ↪→ M of a symplectic manifold is called a
constant rank submanifold if ι∗ω has constant rank.

Isotropic, Lagrangian, coisotropic, and symplectic submanifolds are all examples of
constant rank submanifolds.

Proposition 4.32. Let N be a manifold together with a closed 2-form σ ∈ Ω2(N)
of constant rank. Then the subbundle ker(σ) is integrable, i.e. defines a foliation.

Proof. Suppose X1, X2 ∈ X(N) with ιXjσ = 0. Since σ is closed, this implies LXjσ =
dιXjσ = 0. Hence

ι[X1,X2]σ = LX1ιX2σ − ιX2LX1σ = 0.

By Frobenius’ theorem, this shows that kerσ is integrable. �

A foliation of N is called fibrating if the leaves of the foliation are the fibers of a
submersion π : N → B. (In this case, B is the space of leaves of the foliation.) The
closed form σ is basic for this fibration since ιXσ = 0 and LXσ = 0 for all vertical vector
fields. It follows that B inherits a unique 2-form ωB such that

π∗ωB = σ

Lemma 4.33. The 2-form ωB is symplectic.

Proof. The 2-form ωB is closed since π∗dωB = dσ = 0 implies dωB = 0. It is also
nondegenerate: For suppose v ∈ TbB is in the kernel of ωB. Let ṽ ∈ TnN be a lift
(for some n ∈ π−1(b). Then ι(ṽ)σn = 0, so ṽ ∈ ker(σn) = ker(Tnπ). It follows that
v = (Tnπ)(ṽ) = 0. �

Definition 4.34. The symplectic manifold (B,ωB) is called the symplectic reduction
of (N, σ).

For a constant rank submanifold j : N ↪→ M of a symplectic manifold, one refers to
the foliation defined by σ = j∗ω as the null foliation of N . Thus, if the null foliation is
fibrating then the symplectic reduction N/ ∼ is defined. Of course, in practice it rarely
happens that the null foliation is fibrating, unless additional symmetries are at work.
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5. Normal Form Theorems

We shall next prove various versions of the so-called Darboux theorem. In its simplest
form (due to Libermann), the theorem says that every symplectic form ω is locally given
by ω =

∑
i dqi ∧ dpi in suitable symplectic coordinates. More generally, one has various

normal form theorems around constant rank submanifolds.

5.1. Moser’s argument. Moser’s argument (also known as Moser’s trick) was used by
Moser [37] to show that on a compact oriented manifold any two normalized volume
forms are diffeomorphism equivalent. His proof involves the flows of time-dependent
vector fields.

Definition 5.1. The flow of a time-dependent vector field Xt ∈ X(Q) (t ∈ R) is the
smooth family of diffeomorphisms φt such that φ0 = idQ and such that

(14) φ∗t (LXtf) = − d

dt
φ∗tf

for all f ∈ C∞(Q).

Written in local coordinates, the flow is described as the solution of a time-dependent
system of ODE’s: With Xt =

∑
i ai(x, t)

∂
∂xi

, this is the system

d

dt
xi(t) + ai(x(t), t) = 0.

Hence, we have local existence and uniqueness for such equations. (Given m ∈ M and
any ε > 0, there exists an open neighborhood U such that φt : U → M is defined for
|t| < ε and satisfies the differential equation.) In general it is only defined on a certain
domain of definition. If Xt is supported in some fixed compact subset (in particular, if
Q is compact), the flow exists globally, for all t. The definition implies a similar identity
for differential forms α ∈ Ω∗(Q),

φ∗t LXtα = − d

dt
φ∗tα.

Theorem 5.2 (Moser). Let Q be a compact, oriented manifold, and Λ0,Λ1 two
volume forms such that ∫

M

Λ0 =

∫
M

Λ1.

Then there exists a smooth family of diffeomorphisms φt ∈ Diff(Q) with φ0 = idM ,
such that

φ∗1Λ1 = Λ0.



57

Proof. Moser’s argument is as follows. First, note that every Λt = (1 − t)Λ0 + tΛt is
a volume form. Second, since Λ0 and Λ1 have the same integral they define the same
cohomology class: Λ1 = Λ0 + dβ for some n− 1-form β. Thus

Λt = Λ0 + t dβ.

We would like to construct a family of diffeomorphisms φt defined on some open neigh-
borhood of [0, 1], with the property

(15) φ0 = idM , φ∗tΛt = Λ0.

This is equivalent to the differentiated version, d
dt

(φ∗tΛt) = 0. Let Xt be the vector field
for which the sought-after φt is the corresponding time-dependent flow, defined by (14).
Then

− d

dt
φ∗tΛt = φ∗t (LXtΛt −

d

dt
Λt)

= φ∗t

(
dιXtΛt − dβ

)
= φ∗td

(
ιXtΛt − β

)
This expression will vanish for all t, provided that

(16) ιXtΛt = β

for all t. Since each Λt is a volume form, the map X 7→ ιXΛt from vector fields to
(n− 1)-forms (n = dimQ) is an isomorphism. It follows that (16) has a unique solution,
given by a time dependent vector field Xt, and its flow satisfies (15). �

Moser’s theorem shows that volume forms on a given compact oriented manifold Q
are classified up to diffeomorphism by their integral.

Remark 5.3. Let us also note the following variant: If Λt is any family of volume forms
on a manifold Q (not necessarily compact), with

(17)
d

dt
Λt = dβt

for a smooth family of forms βt with support in some compact subset K ⊆ Q, then
there exists a family of diffeomorphisms φt (equal to the identity outside K) such that
φ∗tΛt = Λ0 for all t. These diffeomorphisms are obtained as the flow of the time dependent
vector field Xt such that ι(Xt)Λt = βt. (Actually, the existence of βt satisfying (17) is
equivalent to saying that the Λt’s coincide outside a compact set K, and

∫
Q

(Λt−Λ0) = 0

for all t. In fact, one may construct primitives βt with the help of a Riemannian metric,
using Hodge theory.)

Moser [37] remarks that his argument also applies to prove Darboux’s theorem in
symplectic geometry. This was used extensively in the work of Weinstein to obtain
many related normal form theorems in symplectic geometry.
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Theorem 5.4 (Moser stability theorem). Let ωt be a smooth family of symplectic
2-forms on a compact manifold M , with t varying in some interval around 0, and
such that

d

dt
ωt = dβt

for some smooth family of 1-forms βt ∈ Ω1(M). Then there exists a smooth family
of diffeomorphisms φt such that φ0 = idM and

φ∗tωt = ω0

for all t.

Proof. The conditions φ0 = idM and φ∗tωt = ω0 are equivalent to the differentiated
version

d

dt
φ∗tωt = 0.

Letting Xt be the time dependent vector field corresponding to the flow φt, we have

− d

dt
φ∗tωt = φ∗t

(
LXtωt −

d

dt
ωt

)
= φ∗td(ιXtωt − βt)

Thus, the flow of the time-dependent vector field Xt defined by

ιXtωt = βt

has the desired property. �

Remark 5.5. The assumption of the theorem holds whenever d
dt
ωt is exact for all t. In

other words, the forms ωt must be cohomologous. Using a Riemannian metric and Hodge
theory, one can always pick primitives depending smoothly on t.

Remark 5.6. A bit more generally, the argument works for noncompact manifolds and any
family of symplectic forms ωt such that d

dt
ωt = dβt for a family of 1-forms βt supported

in some fixed compact set.

5.2. Homotopy operators. Let Q1, Q2 be manifolds. A smooth homotopy between
smooth maps F0, F1 : Q1 → Q2 is a smooth map

F : [0, 1]×Q1 → Q2, (t, q) 7→ Ft(q),

having F0, F1 as its boundary values. If such an F exists, we call F0, F1 (smoothly)
homotopic. (One can show that this is equivalent to the two maps being continuously
homotopic.) Given a smooth homotopy, define the homotopy operator

h : Ωk(Q2)→ Ωk−1(Q1)
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by pullback followed by fiber integration:

h(α) =

∫
[0,1]

F ∗α.

Here fiber integration ∫
[0,1]

: Ωk( [0, 1]×Q1)→ Ωk−1(Q1)

integrates over the [0, 1] factor. In detail, write a given k-form on [0, 1]×Q as

ds ∧ βs + γs

where βs ∈ Ωk−1(Q), γs ∈ Ωk(Q) are forms on Q depending smoothly on s. Then∫
[0,1]

(
ds ∧ βs + γs) =

∫ 1

0

βs |ds|

where the right hand side is the usual Riemannian integral over s.

Exercise 5.7. Verify that for any form β on [0, 1]×Q,∫
[0,1]

dβ + d

∫
[0,1]

β = ι∗1β − ι∗0β

where ιj : Q → [0, 1] × Q are the two inclusions of boundary components. (Hint:
fundamental theorem of calculus!)

As a consequence:

Proposition 5.8. The map h has the property,

d ◦ h + h ◦ d = F ∗1 − F ∗0 : Ωk(Q2)→ Ωk(Q1)

If α ∈ Ωk(Q2) with dα = 0, then β = h(α) satisfies

F ∗1α− F ∗0α = dβ.

In particular, F ∗0 and F ∗1 induce the same map in cohomology. A typical application is
the following

Proposition 5.9. Suppose U ⊆M is an open neighborhood with a smooth defor-
mation retraction

F : [0, 1]× U → U

onto a submanifold N ⊆ M . (That is, F1 = id, F0 = ι ◦ π for some π : U → N .)
Then the inclusion ι : N ↪→ U induces an isomorphism in cohomology, ι∗ : H(U)→
H(N).
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Proof. The deformation retraction defines a homotopy operator with

dh + hd = id−ι∗π∗.
This means that ι∗ defines an isomorphism in cohomology, with inverse induced by
π∗. �

A special case of this result is for U ⊆ Rn any open ball around 0, with the deformation
retraction ontoN = {0} given as scalar multiplication by t. The corresponding homotopy
operator is called the de Rham homotopy operator. Similarly, vector bundles π : E → B
have a canonical homotopy operator, defined by the linear retraction onto the base.

5.3. Darboux-Weinstein theorems. The following result is commonly known as Dar-
boux’s theorem. The classical Darboux theorem [10] is a local normal form theorem for
1-forms α such that the exterior differential dα has constant rank k. Its version for sym-
plectic manifolds was first proved by Paulette Liberman [26] (using the classical Darboux
theorem).

Theorem 5.10 (Darboux’s theorem). Let (M,ω) be a symplectic manifold of di-
mension dimM = 2n and m ∈ M . Then there exist a coordinate chart (U, φ)
around m, defining coordinates q1, p1, . . . , qn, pn such that

ω|U = φ∗
(∑

j

dqj ∧ dpj
)
.

Coordinate charts of this type are called Darboux charts, the coordinates are called
Darboux coordinates.

Proof. Let ω0 = dqj ∧ dpj the standard symplectic form on R2n. Using any coordinate
chart centered at m, we may assume that M is an open neighborhood U ⊆ R2n of m = 0,
with ω some possibly non-standard symplectic form. Since any two symplectic forms on
the vector space T0R2n are related by a linear transformation, we may assume that ω
agrees with ω0 on T0R2n. All the forms

ωt = tω1 + (1− t)ω0

are standard at 0 ∈ R2n, and in particular are nondegenerate at 0. They remain non-
degenerate on some neighborhood of 0. Replacing U with a small open ball, we may
assume that ωt are symplectic on all of U . Using the de Rham homotopy operator for
the open ball put

β := h(ω1 − ω0) ∈ Ω1(U).

Then d
dt
ωt = dβ. Define a time-dependent vector field Xt on U by

ιXtωt = β.

The flow of this vector field will not be complete in general. But since ω1 − ω0 vanishes
at {0}, the 1-form β and therefore the vector field Xt also vanish at {0}. Hence we can
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find a smaller neighborhood U ′ of 0 such that the flow φt : U ′ → U is defined for all
t ∈ [0, 1]. The flow satisfies

− d

dt
φ∗tωt = φ∗t (LXtωt − dβ) = φ∗t (dιXtωt − dβ) = 0,

hence by integration (with initial condition φ0 = id) we have φ∗tωt = ω0. In particular,
φ∗1ω1 = ω0. Darboux’s theorem follows by setting φ = (φ1)−1. �

Darboux’s theorem shows that symplectic manifolds have no local invariants, in con-
trast to Riemannian geometry where curvature provides such invariants.

Darboux’s theorem can be strengthened in many ways. The following results involve
tubular neighborhood embeddings. For any manifold M and (topologically) closed sub-
manifold N , let

ν(M,N) = TM |N/TN → N

be the normal bundle. Some basic facts about this construction:

• dim ν(M,N) = dimM .
• Any smooth map φ : M1 → M2 taking the closed submanifold N1 ⊆ M1 into a

closed submanifoldN2 ⊆M2 induces a vector bundle morphism ν(φ) : ν(M1, N1)→
ν(M2, N2).
• For a vector bundle E → N , we have that (TE)|N = E ⊕ TN , and hence
ν(E,N) = E canonically.

Definition 5.11. A tubular neighborhood embedding for a closed submanifold N ⊆
M is an open neighborhood U ⊆ ν(M,N) of the zero section of the normal bundle,
together with an embedding φ : U → M , taking N ⊆ U to N ⊆ M , such that the
induced map on normal bundles

ν(φ) : ν(U,N)→ ν(M,N)

is the identity map.

It is a basic result in differential geometry that tubular neighborhood embeddings
always exist. They may be constructed, for example, with the help of a Riemannian
metric, or with the help of Euler-like vector fields. One may always take U ⊆ ν(M,N)
to be a bundle of open balls: for N compact, fix an inner product and take U to be
elements of length < ε for ε sufficiently small. By rescaling along the fibers, we may
even arrange that U = ν(M,N); we shall call this a complete tubular neighborhood
embedding.

The following result says that for a closed submanifold N of a symplectic manifold
(M,ω), a sufficiently small open neighborhood of N ⊆M is uniquely determined by the
restriction (not to be confused with pullback)

ω|N ∈ Γ(∧2T ∗M |N).
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Theorem 5.12. [48] Let (M0, ω0) and (M1, ω1) be symplectic manifolds, and let

Nj ⊆Mj

be closed submanifolds. Suppose furthermore that ψ : N0 → N1 a diffeomorphism,
with a lift to an isomorphism of symplectic vector bundles

ψ̂ : TM0|N0 → TM1|N1 ,

such that ψ̂ restricts to the tangent map Tψ : TN0 → TN1. Then ψ extends to a
symplectomorphism φ : U1 → U2 between open neighborhoods Ui of Ni, in such a
way that ψ̂ is the restriction of Tφ.

Here, a symplectic vector bundle

E → B

is a real vector bundle together with a smooth family of linear symplectic structures
ωb : Eb×Eb → R on the fibers. (No integrability condition is imposed.) Here smoothness
is the condition that for any two sections σ, τ ∈ Γ(E) the function ω(σ, τ) on the base is
smooth, or equivalently that ω define a smooth section of ∧2E∗. Examples of symplectic
vector bundles include the tangent bundle TM of an (almost) symplectic manifold, and
also its restriction to any submanifold.

Proof. The map ψ̂ induces a morphism of normal bundles ν(M0, N0)→ ν(M1, N1). Using
complete tubular neighborhood embeddings, we may assume that M0 = M1 =: M is the
total space of a vector bundle

π : M = E → N

over a given manifold N0 = N1 = N , with two given symplectic forms ω0, ω1 ∈ Ω2(M)
that agree along N . Let h : Ωk(M) → Ωk−1(M) be the standard (de Rham) homotopy
operator for the vector bundle π : M → N , and put

β = h(ω1 − ω0)

and ωt = ω0 + tdβ. Since ωt agrees with ω0 along N , it is in particular symplectic on a
neighborhood of N in M . On that neighborhood we can define a time-dependent vector
field Xt with ιXtωt = β. Let φt be its flow (defined on some neighborhood U ⊆M of N
for all t ∈ [0, 1]), and put φ1 =: φ. By Moser’s argument φ∗ω1 = ω0. �

We now specialize this master theorem to various interesting settings, starting with
Lagrangian submanifolds.

Lemma 5.13. For a Lagrangian submanifold N ⊆ M , there is a canonical iso-
morphism of vector bundles

ν(M,N)→ T ∗N.
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Proof. The map ω[ : TM |N → T ∗M |N takes TN = TNω to ann(N), and so descends to
a vector bundle isomorphism ν(M,N)→ T ∗N . �

In particular, the total space of the normal bundle of a Lagrangian submanifold has a
symplectic structure.

Theorem 5.14 (Lagrangian neighborhood theorem). [46] Let (M,ω) be a sym-
plectic manifold, and N ⊆M a closed Lagrangian submanifold. Then there exists
a tubular neighborhood embedding

ψ : U →M

of an open neighborhood U ⊆ ν(M,N) ∼= T ∗N , intertwining the symplectic struc-
tures.

Proof. By the master theorem (Theorem 5.12) it suffices to construct an isomorphism
of symplectic vector bundles TM |N ∼= T (T ∗N)|N , restricting to the identity map on
TN . The subbundle TN ⊆ TM |N is Lagrangian; choose a a Lagrangian complement
L ⊆ TM |N . (E.g., take L = J(TM |N) for some compatible almost complex structure J
on M .) The symplectic form gives an identification L ∼= (TN)∗, and so

TM |N ∼= TN ⊕ T ∗N.
as a symplectic vector bundle (where the symplectic structure on the right hand side is
given by the pairing). The same argument applies to M replaced with T ∗N . Thus

TM |N ∼= TN ⊕ T ∗N ∼= T (T ∗N)|N
is the desired symplectic isomorphism. �

Remark 5.15. One may look at this result as follows. For any k-form α whose pullback
to a submanifold N vanishes, one obtains a linear approximation α[1], which is a k-form
on ν(M,N) which is homogeneous of degree 1 in the fiber direction. If M is symplectic
and N is Lagrangian, then ω[1] is again symplectic. The isomorphism ν(M,N) → T ∗N
takes ω[1] to the standard symplectic form. The essence of Theorem 5.14 is that there
exists a tubular neighborhood embedding ν(M,N) ⊇ U →M under which ω pulls back
to its linearization.

The result generalizes to constant rank submanifolds. We shall need the following
notion.

Definition 5.16. [41] Let N be a constant rank submanifold of a symplectic mani-
fold (M,ω). The symplectic normal bundle of N is the symplectic vector bundle

TNω/(TN ∩ TNω)

Examples 5.17.
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(a) For coisotropic submanifolds the symplectic normal bundle is just 0.
(b) For an isotropic submanifold of dimension k, the symplectic normal bundle has

rank 2(n− k) where 2n = dimM .
(c) For a symplectic submanifold, the symplectic normal bundle is just TNω.

The following theorem is due to Marle [30] (see also Sjamaar-Lerman [41]), extending
earlier results of Weinstein [47] (for the cases N isotropic) and Gotay [16] (for the case
N coisotropic). It says that a neighborhood of a constant rank submanifold ι : N ↪→M
is characterized up to symplectomorphism by the pullback of the symplectic form ι∗ω,
together with the symplectic normal bundle. In particular, if N is coisotropic, then a
neighborhood is completely determined by ι∗ω.

Theorem 5.18 (Constant rank embedding theorem). For j = 0, 1, let ιj : Nj ↪→
Mj be closed constant rank submanifolds of symplectic manifolds (Mj, ωj). Denote
by

Fj = TN
ωj
j /(TNj ∩ TN

ωj
j )

their symplectic normal bundles. Suppose there exists a symplectic bundle isomor-
phism

ψ̂ : F0 → F1,

with base map a diffeomorphism ψ : N0 → N1 such that

ψ∗ι∗1ω1 = ι∗0ω0.

Then ψ extends to a symplectomorphism φ of neighborhoods of Nj in Mj, such

that φ induces ψ̂.

Proof. Given a closed constant rank submanifold N is a of a symplectic manifold (M,ω),
consider the following three symplectic vector bundles over N :

E = TN/(TN ∩ TNω),

F = TNω/(TN ∩ TNω),

G = (TN ∩ TNω)⊕ (TN ∩ TNω)∗.

Choose complementary subbundles E ′ ⊆ TN and F ′ ⊆ TNω to TN ∩TNω in TN, TNω,
respectively. Then

TN ∼= E ′ ⊕ (TN ∩ TNω), TNω = F ′ ⊕ (TN ∩ TNω).

Then E ′, F ′ are symplectic subbundles of TM |N , and are symplectically orthogonal to
each other. The quotient maps gives isomorphisms E ′ ∼= E, F ′ ∼= F . The symplectic
vector bundle G′ = (E ′ ⊕ F ′)ω contains TN ∩ TNω as a Lagrangian subbundle; after
choice of a complementary Lagrangian subbundle we obtain an isomorphism G′ ∼= G.
This gives an isomorphism

TM |N ∼= E ⊕ F ⊕G
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as symplectic vector bundles. To prove the constant rank embedding theorem, choose

isomorphisms of this type for both TMi|Ni . Let ψ̂ as in the statement of the theorem, with
base map ψ. Then Tψ induces an isomorphism of symplectic vector bundles E0

∼= E1

since ψ : N0 → N1 preserves two-forms. We also obtain a unique isomorphism of
symplectic vector bundles G0

∼= G1 preserving the given splitting and coinciding with
Tψ on TNi ∩ TNω

i . Furthermore, F0
∼= F1 by assumption of the theorem. Putting all

these together, we obtain an isomorphism TM0|N0 → TM1|N1 as in Theorem 5.12. �

We note the special cases:

(a) Given two coisotropic submanifolds ιj : Nj ↪→Mj, a diffeomorphism ψ : N0 → N1

extends to a symplectomorphism of neighborhoods if and only if ψ∗ι∗1ω1 = ι∗0ω0.
(b) Given isotropic submanifolds ιj : Nj ↪→ Mj, a diffeomorphism ψ : N0 → N1 ex-

tends to a symplectomorphism of open neighborhoods if and only if ψ∗(TNω
1 /TN1)

is isomorphic to TNω
0 /TN as a symplectic vector bundle.

Remark 5.19 (Equivariant versions). The normal form theorems discussed in this section
generalize to a setting with symmetries, under actions of compact Lie groups G. For ex-
ample, the equivariant version of Darboux’s theorem states that if G acts symplectically
on (M,ω), and m0 ∈ M is a fixed point, then there is a G-equivariant symplectomor-
phism between G-invariant open neighborhoods of m0 in M and 0 in the symplectic
vector space Tm0M . Similarly, the G-equivariant version of Weinstein’s Lagrangian em-
bedding theorem says that for a G-invariant Lagrangian submanifold N ⊆ M , there
exists a G-equivariant symplectomorphism between invariant open neighbourhoods of N
inside M and inside T ∗N .

They key fact needed for the proof is the existence of G-equivariant tubular neigh-
bourhoods. Suppose M is a manifold with an action of a compact group G, and N ⊆M
is a G-invariant submanifold. Then we obtain a G-action on the vector bundle TM |N ,
preserving TN , and hence a G-action on the normal bundle ν(M,N) = TM |N/TN . A
G-equivariant tubular neighborhood embedding is given by a G-invariant neighborhood
U ⊆ ν(M,N) of the zero section, and a tubular neighborhood embedding φ : U → M
intertwining the G-actions. If G is compact (more generally, if the G-action is proper),
these may be constructed by using G-invariant Riemannian metrics. The proofs of the
various normal form theorems also involved Moser’s argument and homotopy operators,
but these are all compatible with the G-actions.
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6. Lagrangian fibrations and action-angle variables

Recall that a function F ∈ C∞(M) on a symplectic manifold (M,ω) Poisson commutes
with a given function H ∈ C∞(M) if and only if F is constant along the integral curves of
XH . In the theory of completely integrable systems, one is looking for a large number of
Poisson commuting functions. If F1, . . . , Fk ∈ C∞(M) all Poisson commute, and b ∈ Rk

is a regular value of (F1, . . . , Fk), then the fiber F−1(b) is a coisotropic submanifold
of codimension k. The maximum number of such a collection of Poisson commuting
functions admitting regular values is given by k = n = 1

2
dimM ; in this case the regular

fibers are Lagrangian. Letting B ⊆ Rn be the set of regular values, and replacing M
with M ′ = F−1(B), we obtain a submersion with Lagrangian fibers. It turns out that
the geometry of such Lagrangian submersions is quite interesting and restrictive. The
following discussion is based mainly on the paper On global action-angle variables by
Duistermaat [12].

6.1. Lagrangian submersions. Let (M,ω) be a symplectic manifold, and B a manifold
of dimension 1

2
dimM . We had seen that a submersion π : M → B has Lagrangian fibers

if and only if the subalgebra π∗C∞(B) has trivial Poisson bracket: that is,

{π∗f, π∗g} = 0

for all f, g ∈ C∞(B).

Definition 6.1. Let (M,ω) be a symplectic manifold. A Lagrangian submersion is
a submersion π : M → B such that every fiber π−1(b) is a Lagrangian submanifold
of M . It is called a Lagrangian fibration if π : M → B is furthermore a fiber bundle
(i.e., locally trivial).

This implies in particular dimB = n = 1
2

dimM .

Examples 6.2.

(a) The fibers of a cotangent bundle π : M = T ∗Q→ Q define a Lagrangian fibration.
The restriction of π to an open subset of M is a Lagrangian submersion (but not
a fibration, in general).

(b) If Q = (R/Z)n = T n is an n-torus, we have a natural trivialization T ∗Q = Q×Rn.
Projection to the second factor defines a Lagrangian fibration T ∗Q→ Rn.

Is it possible to generalize the second example to compact manifolds Q other than a
torus? That is, is it possible to find a Lagrangian fibration of T ∗Q such that the zero
section Q ⊆ T ∗Q is one of its leaves? We will find that the answer is no: A compact
leaf of a Lagrangian fibration is always diffeomorphic to a torus.

For any submersion π : M → B, we have the exact sequence of vector bundles over M

0→ ker(Tπ)→ TM → π∗(TB)→ 0
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where π∗(TB) is the pullback bundle (with fiber at m ∈M given by Tπ(m)B). Hence,

TM/ ker(Tπ) ∼= π∗(TB).

In particular, for each b ∈ B the restriction to the submanifold π−1(b) is a trivial vector
bundle

(TM/ ker(Tπ))|π−1(b) = π−1(b)× TbB.

Suppose now that (M,ω) is a symplectic manifold, and that π : M → B is a Lagrangian
submersion. Then the vertical subbundle

ker(Tπ) ⊆ TM

is a Lagrangian subbundle, and ω gives a nondegenerate pairing with the quotient bundle
TM/ ker(Tπ) ∼= π∗TB. (Recall that for every Lagrangian subspace L of a symplectic
vector space, the symplectic form gives a pairing between L and V/L. The pairing
involves a choice of sign, which we wil specify in the lemma below.) In summary:

Lemma 6.3. If (M,ω) is symplectic, and π : M → B is a submersion with La-
grangian fibers, there is a canonical vector bundle isomorphism

ker(Tπ) ∼= π∗(T ∗B),

taking v ∈ ker(Tπ)m to the unique µ ∈ T ∗π(b)B such that

ι(v)ωm = −(Tmπ)∗µ.

Hence, for each b ∈ B the tangent bundle of the fiber T (π−1(b)) = ker(Tπ)|π−1(b) is
trivial:

T (π−1(b)) = π−1(b)× T ∗b B.

Remark 6.4. The fact that the tangent bundle of any fiber of a Lagrangian submersion
is trivial already restricts the geometry: For instance, a fiber cannot be a 2-sphere. On
the other hand 3-spheres are not yet ruled out.

For µ ∈ T ∗b B, let Xµ ∈ X(π−1(b)) be the corresponding vector field. Similarly, for
α ∈ Ω1(B) let Xα ∈ X(M) be the resulting vertical vector field. By definition,

ι(Xα)ω = −π∗α.

If µ = α|b, then Xα restricts to the vector field Xµ.

Lemma 6.5. For all µ1, µ2 ∈ T ∗b B we have that

[Xµ1 , Xµ2 ] = 0.
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Proof. Choose extensions of the covectors µ1, µ2 to 1-forms α1, α2 ∈ Ω1(B) and Xj =
Xαj . (The vector fields Xµi are just the restrictions.) We have

ι[X1,X2]ω = (LX1ιX2 − ιX2LX1)ω

= −LX1π
∗α2 − ιX2dιX1ω

= −LX1π
∗α2 + ιX2π

∗dα1

= 0

since π∗αj and π∗dαj are basic forms on π : M → B. Since ω is non-degenerate this
verifies [X1, X2] = 0. �

Remark 6.6. Given m ∈M with base point b = π(m), a choice of basis µ1, . . . , µn of T ∗b B
defines local coordinates on π−1(b), by using the (commuting flows) of the vector fields
Xµi . Changing the basis will change the coordinates by a linear transformation, changing
m to a nearby point changes the coordinates by translation. Hence, the coordinates are
canonically defined up to an affine transformation. This means that the fibers π−1(b)
acquire an affine structure. (An affine structure on a manifold is given by an atlas whose
transition functions are affine-linear transformations.)

Definition 6.7. A Lagrangian submersion π : M → B is complete if the vector
fields Xµ on π−1(b) are complete, for all b ∈ B and µ ∈ T ∗b B.

Equivalently, for all α ∈ Ω1(B) the flow of Xα is complete, defining diffeomorphisms12

F t
α : M →M.

Since the vector fields commute, the flows commute also; furthermore F t
α ◦ F t

β = F t
α+β

(since the flow of a sum of commuting vector fields is the composition of the flows). Let
Fα = F−1

α : M →M be the time flow for time (−1). We have

Fα ◦ Fβ = Fα+β, F0 = idM .

Hence, on each fiber π−1(b) we obtain an action of the vector space T ∗b B (regarded as
an abelian group).

Remark 6.8. Taken together, this defines an action of the vector bundle T ∗B on M , i.e.
a map T ∗B ×B M → M (where the subscript means fiber product), satifying the usual
axioms of an action.

Remark 6.9. As a special case, for M = T ∗Q → B = Q, we find that Fα agrees with
the diffeomorphism Gα from Section 3.4, given by fiberwise addition of α. This is our
motivation for using the t = −1 flow rather than the t = 1 flow.

12Our notion of complete Lagrangian submersion is a special case of the notion of complete symplectic
realizations in Poisson geometry.
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From now on, we shall assume that π : M → B is a complete Lagrangian submersion,
and that all of its fibers are connected.

Proposition 6.10. Let π : M → B be a complete Lagrangian submersion with
connected fibers. Then each π−1(b) has a transitive and locally free action of the
cotangent space T ∗b B. In particular,

π−1(b) ∼= (R/Z)k × Rn−k

for some k, where n = 1
2

dimM .

Here, a group action is locally free of its stabilizers are discrete (i.e., 0-dimensional).

Proof. For m ∈ π−1(b), since the vector fields Xµ, µ ∈ T ∗b B span the tangent space
Tmπ

−1(b), the orbit T ∗b B ·m is open in π−1(b). Since π−1(b) is a union of such orbits,
and is connected, it follows that π−1(b) is a single orbit: That is, the action is transitive.
For dimension reasons, since dimT ∗b B = dimπ−1(b), the action has discrete stabilizers
Λb. Hence,

π−1(b) ∼= T ∗b B/Λb,

the quotient of a vector space by a discrete subgroup. It is well-known (but not quite
obvious) that every such lattice is generated over Z by some linearly independent vectors
e1, . . . , ek; extending to a basis e1, . . . , en gives the identification with (R/Z)k×Rn−k. �

We emphasize that much more than being diffeomorphic to (R/Z)k ×Rn−k, the fibers
are principal homogeneous spaces for the abelian group T ∗b B/Λb, and are identified with
that group once a base point m ∈ π−1(b) is chosen. Observe also that Λb (the stabilizer
of m ∈ π−1(b)) does not depend on the choice of m in the fiber, since T ∗b B is an abelian
group.

Let us next consider the compatibility of the T ∗B-action with the symplectic structure.

Lemma 6.11. The flow of Xα satisfies

(F t
α)∗ω = ω + t π∗dα.

In particular, Fα = F−1
α is a symplectomorphism if and only if α is closed.

Proof. The lemma follows by integrating

d

dt
(F t

α)∗ω = −(F t
α)∗LXω = (F t

α)∗π∗dα = π∗dα

(using π ◦ F t
α = π) from 0 to t. �

Taking the union of stabilizers over all b ∈ B, we obtain a subset

Λ =
⊔
b∈B

Λb ⊆ T ∗B.
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Proposition 6.12. The subset Λ ⊆ T ∗B is a Lagrangian submanifold, transverse
to the fibers of π.

Proof. We check near a given fiber π−1(b0), b0 ∈ B. Choose an open neighborhood
U ⊆ B of b0 over which the submersion admits a section σ : U → M , i.e. π ◦ σ = id |U .
Restricting the action of T ∗B to the range of σ, we obtain a smooth map

φ : T ∗B|U →M |U = π−1(U), µ 7→ µ · σ(b) for µ ∈ T ∗b B

The map φ intertwines the cotangent projection T ∗B → B with the map π : M → B, and
intertwines the vector bundle actions of T ∗B|U on both sides. From this, it follows that
the map has maximal rank, and so is a local diffeomorphism. Since Λb = {µ| µ·σ(b) = µ},
we see that

Λ|U = φ−1(σ(U))

is a submanifold. Since σ(U) is transverse to the fibers of M , its pre-image is transverse
to the fibers of T ∗B. This proves that Λ is a submanifold transverse to the fibers.

We next show that Λ is Lagrangian, near any given µ0 ∈ Λb0 . Since Λ is transverse to
the fibers, there is an open neighborhood U ⊆ B of b0 and a 1-form α ∈ Ω1(U) such that
Λ is given on some neighborhood of µ0 as the range of α. Since Λ describes stabilizers
of the action, this 1-form satisfies Fα = idπ−1(U). By the previous lemma, this means
π∗dα = 0. Thus dα = 0. Since the range of a closed 1-form is a Lagrangian submanifold,
this concludes the proof. �

Proposition 6.13. The quotient

T = T ∗B/Λ = tb∈BT ∗b B/Λb

is a symplectic manifold, and the projection T → B is a complete Lagrangian
submersion with connected fibers.

Proof. As in the previous proof, choose a local section σ : U → M |U of π. The choice
determines a bijection

T ∗B|U/ΛU →MU .

It is a standard fact from manifold theory that a quotient under an equivalence relation
admits at most one smooth structure for which the quotient map is a submersion. Since
T ∗B|U →M |U is a submersion (even a local diffeomorphism), this shows that T ∗B|U/ΛU

is a manifold.
Recall that the action of closed 1-forms α ∈ T ∗B by fiberwise addition is a symplectic

transformation of T ∗B. Since Λ is locally described as the graph of closed 1-forms, it
follows that the symplectic structure descends. �
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Remark 6.14. By construction, Λ is a family of lattices Λb ⊆ T ∗b B. This family need not
be locally trivial. For example, let B = R, so that T ∗B = R× R. Let

Λ = {(x, y) ∈ T ∗B| x 6= 0, xy ∈ Z} ∪ {(0, 0)}.
This is a Lagrangian submanifold. For fixed x ∈ R, the set Λx is given by x−1Z, for
x = {0} it is just {0}. The quotient T ∗B/Λ is a well-defined manifold.

The choice of a local section σ : U →M determines a diffeomorphism ψ : T |U →M |U
(induced by the map φ above. In general, this won’t be a symplectomorphism: Note that
the pre-image of σ(U) under the diffeomorphism is the identity section of T (image of the
zero section in T ∗B|U), and so is Lagrangian. Hence, ψ can only be a symplectomorphism
if σ(U) is Lagrangian.

Proposition 6.15. Suppose U ⊆ B is such that π : M → B admits a section σ
over U . If H2(U) = 0 (e.g., if U is contractible), then we may take this section to
be Lagrangian. For any choice of a Lagrangian section, the map

ψ : T |U →M |U
is a symplectomorphism.

Proof. Let σ : U → M |U be a given section. By assumption, the 2-form σ∗ω ∈ Ω2(U) is
exact: σ∗ω = dβ. The new section σ̃ = Fβ ◦ σ satisfies

σ̃∗ω = σ∗ F ∗βω = σ∗(ω − π∗dβ) = σ∗ω − dβ = 0.

In this way, we may arrange that σ∗ω = 0, i.e. the graph of σ is a Lagrangian subman-
ifold. Let ψ be the resulting diffeomorphism, and let ψ̃ : T ∗B|U → M |U be the map
covering ψ. We want to show that

ψ̃∗ω = ωcan

where ωcan = −dθ is the canonical symplectic form on the cotangent bundle. The map
ψ̃ is uniquely defined by is property

ψ̃ ◦ α = Fα ◦ σ
for every 1-form α ∈ Ω1(U). Equivalently, it takes the zero section to σ, and satisfies

ψ̃ ◦Gα = Fα ◦ ψ̃
for all α, where Gα is the diffeomorphism of T ∗B|U given by fiberwise addition of α.
Let Yα be the vector field on T ∗B defined by ι(Yα)ωcan = −π∗T ∗Bα. Letting Gt

α be its
time-1-flow, we have

ψ̃ ◦Gt
α = F t

α ◦ ψ̃.
Hence, the local diffeomorphism ψ̃ takes Yα on T ∗B to Xα on M . We have

ι(Yα)ψ̃∗ω = ψ̃∗ι(Xα)ω = −ψ̃∗π∗α = −π∗T ∗Bα = ι(Yα)ωcan
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for all α, which shows that the 2-forms agree on vertical vectors. Since the 2-forms are
closed, this shows that

ψ̃∗ω − ωcan ∈ Ω2(T ∗B)

is basic. To show that it is zero, it is enough to show that its pullback under any section
τ : U → T ∗B|U vanishes. We may take this section to be the zero section of T ∗B. Then

ψ̃ ◦ τ = σ, and

τ ∗(ψ̃∗ω − ωcan) = σ∗ω − τ ∗ωcan = 0.

We conclude ψ̃∗ω = ωcan. �

To summarize the discussion: Let π : M → B be a complete Lagrangian fibrations
with connected fibers. Then:

• There is an action of the vector bundle T ∗B → B on M (i.e., actions of the vector
spaces T ∗b B on π−1(b)).
• The stabilizers

Λ =
⊔
b∈B

Λb

for this action define a Lagrangian submanifold Λ ⊆ T ∗B.
• The quotient

T ∗B/Λ =
⊔
b∈B

T ∗b B/Λb

is a symplectic manifold, with a Lagrangian fibration τ : T → B.
• The choice of local Lagrangian sections σ : U → M determines symplectomor-

phisms T |U →M |U .

Although the Lagrangian fibrations T → B and M → B ‘look the same’ locally, they
can be different globally. For example, the image of the zero section in T ∗B defines a
global Lagrangian section of T = T ∗/Λ, but π : M → B need not admit a global section.

6.2. Action-angle coordinates. Let us now make the additional assumption that the
fibers are also compact. Thus, we consider a Lagrangian submersion π : M → B with
compact, connected fibers. Choose a covering of B by contractible open subsets U (i.e.,
each U is diffeomorphic to an open ball). Since U is simply connected, the group bundle
Λ|U → U is trivial:

Λ|U = U × Zn,
The isomorphism is unique up to an action of

Aut(Zn) = GL(n,Z),

the group of invertible matrices A such that both A and A−1 have integer coefficients
(this implies detA = ±1). The trivialization of Λ|U also trivializes the cotangent bundle
(since a lattice basis of Λb is a vector space basis for T ∗b B). Hence,

T ∗B|U = U × Rn.
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Let β1, . . . , βn ∈ Ω1(U) the closed 1-forms corresponding to the standard basis vectors
of Zn. Since U is simply connected, we may write

βi = dIi,

where the Ii ∈ C∞(U) are coordinates on U .

Definition 6.16. The coordinates Ii ∈ C∞(U) are called action coordinates for the
Lagrangian fibration.

Let us consider the uniqueness of the action coordinates. Given a trivialization of Λ|U ,
the action coordinates are determined up to a constant. Changing the trivialization of
Λ|U by A ∈ GL(n,Z) will change the action coordinates by the same transformation.
We hence see that the action coordinates are uniquely determines up to an affine trans-
formation hose linear part has integral entries. This is called an integral affine structure.
To summarize:

Proposition 6.17. If π : M → B is a Lagrangian fibration with compact, con-
nected fibers, then the base B acquires a canonical integral affine structure.

So, we see that the geometry of the base is quite restricted; e.g., if B is compact an
connected it must itself be a torus. (In concrete examples, B is rarely compact.)

As usual, having local coordinates on U ⊆ B defines cotangent coordinates on T ∗B|U .
Rather than q1, p1, . . . .qn, pn, we will use notation

I1, s1, . . . , In, sn ∈ C∞(T ∗B|U)

for these coordinates. The si descend to R/Z-valued functions on

(T ∗B/Λ)|U = U × (R/Z)n.

Definition 6.18. The coordinates I1, s1, . . . , In, sn on (T ∗B/Λ)|U are called the
action-angle coordinates.

By construction, the symplectic form on (T ∗B/Λ)|U is given in action-angle coordi-
nates by ∑

i

dIi ∧ dsi.

Until now, our action-angle coordinates are coordinates on (T ∗B/Λ||U rather than on
M |U . The choice of a Lagrangian section σ : U →M |U gives a (symplectic) identification

M |U ∼= T |U = (T ∗B/Λ)|U .
In particular, we see that M → B is itself a fiber bundle with typical fiber a torus of
dimension n = 1

2
dimM . Using this identification, the action-angle coordinates becomes

coordinates on M |U . The identification depends on the choice of σ, which in turn is
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unique up to the action of a closed exact 1-form. Since we assume U is simply connected,
this 1-form is of the form df . The action coordinates are not affected by this change,
but the angle coordinates change by addition of (the pullback of) this function f .

In his paper [12], Duistermaat discusses the existence of global action-angle coordi-
nates. A necessary condition for the existence of global action coordinates is that the
bundle Λ be trivial. This is automatic if B is simply connected; one obtains the trivial-
ization by parallel transport. In general, after trivializing a fiber Λb

∼= Zn, the parallel
transport defines a monodromy map

π1(B)→ GL(n,Z).

If this monodromy is trivial, we obtain a trivialization of Λ, and hence of T ∗B and of
T ∗B/Λ. A second obstruction (to get oordinates on M rather than on T ∗B/Λ) is the
existence of a global Lagrangian section.

Duistermaat shows that for a very standard integrable system, the spherical pendulum,
the monodromy obstruction is non-zero. We will discuss this example in Section 6.4
below.

Exercise 6.19. Suppose (M,ω) is a symplectic manifold such that ω is exact: ω = dγ
for some 1-form γ. Let π : M → B be a Lagrangian fibration with compact connected
fibers, with B simply connected. Given b ∈ B let

A1(b), . . . , An(b) : R/Z→ π−1(b)

be smooth loops in π−1(b) generating the fundamental group of the fiber. Suppose that
the Ai(b) define continuous functions Ai : B × R/Z→M . Show that the formula

Ij(m) :=

∫
Aj(π(m))

γ

defines a set of action variables.

6.3. Completely integrable systems. After this lengthy general discussion let us
finally make the connection with the theory of completely integrable systems. Let (M,ω)
be a compact symplectic manifold, H ∈ C∞(M,R) a Hamiltonian and XH its vector field.
In general the flow of XH can be very complicated, unless there are many “integrals of
motion”. An integral of motion is a function G ∈ C∞(M,R) such that XH(G) = 0, or
equivalently {H,G} = 0. An integral of motion defines itself a Hamiltonian flow XG,
which commutes with the flow of XH since [XH , XG] = X{H,G} = 0.

Definition 6.20. The mechanical system (M,ω,H) is called completely integrable
if there are n integrals of motion G1, . . . , Gn ∈ C∞(M,R), {Gj, H} = 0 such that

(a) The Gi are “in involution”, i.e. they Poisson-commute: {Gi, Gj} = 0.
(b) The map G = (G1, . . . , Gn) : M → Rn is a submersion almost everywhere,

i.e. the open set of points where G has maximal rank is dense.
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Suppose (M,ω,H) is completely integrable, and suppose also that the map G is proper
(i.e., pre-images of compact sets are compact). Then all the fibers of M are compact, but
possibly disconnected. Replacing M with the pre-image of the set of regular values, we
may assume that G is a submersion everywhere. Let B = M/ ∼ be the quotient under
the equivalence relation, where m′ ∼ m if m,m′ are in the same connected component
of a fiber of G. This is a finite cover of G(M), and so π : M → B is a Lagrangian
submersion with compact, connected fibers.

Hence, we may introduce local action-angle coordinates. Since {Gj, H} = 0 for all j
the Hamiltonian H is constant along the fibers of G. In other words, H is a function of
the action variables Ii only. The Hamiltonian vector field becomes

XH =
∑
j

∂H

∂Ij

∂

∂sj
.

The flow is therefore straightforward to compute. The result is:

Theorem 6.21 (Liouville-Arnold). [3] Let (M,ω,H) be a completely integrable
Hamiltonian dynamical system, with integrals of motion Gj. Suppose G is a proper
map. Let M ′ ⊆ M be the subset on which G is a submersion, let B be the set of
connected components of fibers of G|M ′, and π : M ′ → B the induced map. Then
π : M → B is a Lagrangian fibration with compact connected fibers, hence it is an
affine torus bundle. The flow of XH is vertical and preserves the affine structure;
in local action-angle coordinates it is given by

Ij(t) = Ij(0),

sj(t) = sj(0) + t
∂H

∂Ij
.

The flow on these Liouville-Arnold tori is quasi-periodic, i.e., is linear in local affine
coordinates on the tori.

6.4. The spherical pendulum. As one of the simplest non-trivial examples of an
integrable system let us briefly discuss the spherical pendulum. We first give the general
description of the motion of a particle on a Riemannian manifold Q in a potential V ∈
C∞(Q).

One defines the kinetic energy T ∈ C∞(TQ) by

T (v) =
1

2
||v||2.

Using the identification g[ : TQ → T ∗Q given by the Riemannian metric, view T as a
function on T ∗Q. The Hamiltonian is the total energy

H = T + V ∈ C∞(T ∗Q).
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In local coordinates qi on Q,

T (v) =
1

2

∑
ij

g(q)ij q̇iq̇j,

where gij is the metric tensor. The relation between velocities and momenta in local
coordinates is pi =

∑
j gij q̇j. Thus

T (q, p) =
1

2

∑
ij

h(q)ij pipj

where h(q)ij is the inverse matrix to g(q)ij, and

H(q, p) =
1

2

∑
ij

h(q)ij pipj + V (q).

Consider now the spherical pendulum. Its configuration space Q is the 2-sphere, which
by an appropriate normalization we can take to be the unit sphere

Q = S2 ⊆ R3.

Let φ ∈ [0, 2π], ψ ∈ (0, π) be polar coordinates on S2, that is

x1 = sinψ cosφ, x2 = sinψ sinφ, x3 = cosψ.

The potential energy is

V = cosψ

and the kinetic energy is

T =
1

2

3∑
i=1

ẋ2
i =

1

2
(ψ̇2 + sin2 ψφ̇2).

Thus

H =
1

2

(
p2
ψ +

1

sin2 ψ
p2
φ

)
+ cosψ.

(The apparent singularity at ψ = 0, π comes only from the choice of coordinates.) An
integral of motion for this system is given by the angular momentum

G = pφ.

Indeed,

{H,G} = 0

because H does not depend on φ (i.e. because the problem has rotational symmetry
around the x3-axis). Since dimT ∗S2 = 4, it follows that the spherical pendulum is a
completely integrable system.

The image of the map (G,H) has the form H ≥ f(G) where u 7→ f(u) is a symmetric
function shaped roughly like a parabola, but non-smooth at u = 0.
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4

The minimum of f is the point (G,H) = (0,−1), corresponding to the stable equilib-
rium. The set of singular values of (G,H) consists of the boundary of the region, i.e.
the range of the function f , together with the unstable equilibrium (0, 1) (corresponding
to the configuration where the pendulum is vertical).

Removing these singular points as well as the boundary from the image of (G,H), we
obtain a non-simply connected region B, and one can raise the question about existence
of global action-angle variables. Duistermaat shows that they do not exist in this system:
The lattice bundle Λ→ B is non-trivial, i.e. the monodromy obstruction does not vanish.
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7. Symplectic group actions and moment maps

7.1. Background on Lie groups. Let us start with a rapid review of Lie groups. A
Lie group is a group G with a manifold structure on G such that group multiplication is
a smooth map. (This implies that inversion is a smooth map also.)

7.1.1. Cartan’s theorem. A Lie subgroup H ⊆ G is a subgroup which is also a submani-
fold. By a theorem of Cartan, every (topologically) closed subgroup of a Lie group is an
(embedded) Lie subgroup (i.e, smoothness is automatic). In this case the homogeneous
space G/H inherits a unique manifold structure such that the quotient map is smooth.
A closed subgroup of the group GL(n,R) of invertible matrices (for some n) will be called
a matrix Lie group.

7.1.2. Lie algebra of a Lie group. The Lie algebra g of a Lie group G is defined as

g = TeG,

with Lie bracket defined by the identification TeG ∼= XL(G) with the Lie algebra of
left-invariant vector fields on G. Here X ∈ X(G) is called left-invariant if it satisfies
(La)∗X = X under all left translations La : G → G, g 7→ ag; a left-invariant vector
field is uniquely determined by its value X(e) = ξ at the group unit. The construction
is functorial: for a Lie group morphism φ : G1 → G2, the differential at the group unit
gives a Lie algebra morphism Teφ : g1 → g2. For matrix Lie groups, the Lie bracket
coincides with the commutator of matrices.

7.1.3. Exponential map. Every ξ ∈ g determines a unique Lie group morphism (1-
parameter group)

γξ : R→ G, t 7→ γξ(t)

with the property that d
dt
|t=0γξ(t) = ξ. One defines the exponential map

exp : g→ G

by exp(ξ) = γξ(1). It restricts to a diffeomorphism between open neighborhoods of 0 ∈ g
and e ∈ G. We have γξ(t) = exp(tξ).

The construction is functorial: For a Lie group morphism φ : G1 → G2, we have
exp ◦Teφ = φ ◦ exp. For matrix Lie groups, exp is the usual exponential of matrices.

7.1.4. Adjoint actions and coadjoint actions. For a ∈ G let

Ada : G→ G, g 7→ aga−1.

This is a Lie group automorphisms of G, so it induces a Lie algebra automorphism Te Ada
of g = TeG. For simplicity, this is again denoted by Ada:

Ada : g→ g, ξ 7→ (Te Ada)(ξ).

This is a linear representation of G on g; its dual representation on g∗ is called the
coadjoint action or coadjoint representation:

a : g∗ → g∗, µ 7→ a · µ = (Ada−1)∗(µ).
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Some authors use the notation Ad∗a = (Ada−1)∗, but this can get confusing and we shall
avoid it.

Remark 7.1. If the Lie algebra has a nondegenerate Ad-invariant symmetric bilinear
form B, used to identify g with g∗, then the adjoint and coadjoint actions are identified
as well. For example, in the case of matrix Lie algebras g ⊆ gl(n,R) with the property
X ∈ g 7→ X> ∈ g (e.g., the Lie algebras of O(n), SO(n), SL(n,R), . . .) we can use
B(X, Y ) = tr(XY ). This is nondgenerate due to the fact that B(X,X>) = tr(X>X) ≥ 0
with equality only if X = 0. For complex Lie algebras g ⊆ gl(n,C) with the property X ∈
g 7→ X† ∈ g (e.g., the Lie algebras of U(n), SU(n), SL(n,C), . . .) we may similarly use
B(X, Y ) = Re(tr(XY )). Observe however that the identification g ∼= g∗ does depend on
the choice of such B, in general. Furthermore, not all Lie algebras admit a nondegenerate
Ad-invariant bilinear form.

From the Lie group representations one obtains Lie algebra representations,

adξ : g→ g, adξ(η) =
d

dt

∣∣∣
t=0

Adexp(tξ)(η).

It turns out that adξ(η) = [ξ, η], which gives an alternative way of defining the Lie
bracket on g. We also have the coadjoint representation on g∗, ξ · µ = −(adξ)

∗(µ).
For matrix Lie groups, Ada is simply conjugation of matrices by a, while adξ is com-

mutator with ξ.

7.2. Generating vector fields for group actions.

Definition 7.2. Let G be a Lie group. An action of G on a manifold Q is a smooth
map

A : G×Q→ Q, (g, q) 7→ Ag(q) = g · q
such that the map G→ Diff(Q), g 7→ Ag is a group morphism.

We refer to Q as a G-manifold. A map F : Q1 → Q2 between two G-manifolds is
called equivariant if it intertwines the G-actions, that is, g.F (q1) = F (g.q1).

Example 7.3. (a) There are three natural actions of any Lie group G on itself: The
action by left multiplication, the action by right multiplication, and the adjoint
action:

g.a = ga, g.a = ag−1, g.a = gag−1.

(b) A linear representation of G on a finite dimensional vector space V is a G-action
on V viewed as a manifold.

(c) Given an action g 7→ Ag of G on a manifold Q, one obtains actions on the tangent
and cotangent bundles by tangent lift and cotangent lift,

g 7→ TAg, g 7→ (TAg−1)∗.
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(d) Given a closed subgroup H ⊆ G, any G-manifold Q becomes an H-manifold by
restriction. Similarly, if a submanifold P ⊆ Q is invariant under the G-action,
then it becomes a G-manifold by restriction.

(e) Given a G-manifold Q, and a given point q ∈ Q, the stabilizer Gq is a closed
subgroup of G, and hence is a Lie subgroup. Its action on TQ restricts to a linear
action of Gq on TqQ called the isotropy representation. For example, the adjoint
action of G on G fixes e, and the corresponding isotropy representation is the
adjoint representation on g. Dually, by restricting the action on T ∗G we obtain
the coadjoint action (representation) on g∗. The two actions are related by

〈g · µ, ξ〉 = 〈µ, g−1 · ξ〉, µ ∈ g∗, ξ ∈ g.

From now on, we will use the notation Adg for both the adjoint and the co-adjoint
G-action: That is, 〈Adg µ, ξ〉 = 〈µ,Adg−1 ξ〉 for µ ∈ g∗, ξ ∈ g.

Definition 7.4. Let g be a finite-dimensional Lie algebra. A Lie algebra action of
g on Q is a smooth vector bundle map

g×Q→ TQ, (q, ξ) 7→ ξQ(q)

such that the map g→ X(Q), ξ 7→ ξQ is a Lie algebra morphism.

Lie algebra action often arise by differentiating Lie group actions G×Q→ Q. Infor-
mally, we think of X(Q) as the Lie algebra of Diff(Q). If these were finite-dimensional
Lie groups, we would just apply Lie differentiation to G → Diff(Q) in to obtain a Lie
algebra morphism g→ X(Q). To make it rigorous, we think of vector fields as operators
on functions. The action Ag gives a G-representation on C∞(Q) by

(g · f)(q) = f(g−1 · q),
and the idea is to differentiate that:

Definition 7.5. Suppose Q is a G-manifold, with action map g 7→ Ag. The gener-
ating vector fields

ξQ ∈ X(Q), ξ ∈ g

are defined in terms of the action on functions by

(LξQf)(q) =
d

dt

∣∣∣
t=0
f(exp(−tξ) · q).

In other words, ξQ is the vector field whose flow is given by t 7→ Aexp(tξ).

Remark 7.6. Another formulation: The evaluation of ξQ at q ∈ Q is the tangent vector
represented by the curve exp(−tξ).q:

(18) ξQ(q) =
d

dt

∣∣
t=0

exp(−tξ).q.
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Example 7.7. For ξ ∈ g we denote by ξL the left-invariant vector field with ξL|e = ξ.
Similarly, define ξR to be the right-invariant vector field with ξR|e = ξ. Note that

[ξ, η]L := [ξL, ηL],

by definition of the Lie bracket.
The generating vector field for the left-action g ·a = ga of G on itself is right-invariant

(since the left-action commutes with the right-action), and its value at e is −ξ. Hence
the left-action is generated by −ξR. Similarly the right-action g · a = ag−1 is generated
by ξL, and the adjoint action g · a = gag−1 is generated by ξL − ξR.

If F : Q1 → Q2 is a G equivariant map, then F intertwines the action of exp(tξ) on
the two manifolds, and hence relates the generating vector fields:

ξQ1 ∼F ξQ2 .

Proposition 7.8. Let G be a Lie group with Lie algebra g. For any action of a
Lie group G on a manifold Q the map

g→ X(Q), ξ 7→ ξQ

is a Lie algebra action of g on Q. In particular,

[ξQ, ηQ] = [ξ, η]Q.

For g ∈ G one has
(Ag)∗ξQ = (Adg ξ)Q.

If G is simply connected, then a g-action on Q integrates to a G-action if and only
if all the generating vector fields ξQ are complete. In particular, this is the case if Q is
compact.

Example 7.9. Consider the action of G = GL(n,R) on Rn given by matrix multiplication.
The Lie algebra g = gl(n,R) is the space of all real matrices, with exponential map the
usual exponential map for matrices. For A ∈ gl(n,R), we calculate the generating vector
field ARn of the action through the action on functions:

(LARnf)(q) =
d

dt

∣∣∣
t=0
f(exp(−tA)q)

= −
∑
j

(Aq)j
∂f

∂qj

= −
∑
j,k

Ajkqk
∂f

∂qj
,

that is,

(19) ARn = −
∑
j,k

Ajkqk
∂

∂qj
.
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You may verify directly that [ARn , BRn ] = [A,B]Rn (with the matrix commutator on
the right hand side). Note that the generating vector fields in this example are exactly
the linear vector fields on Rn, i.e., the vector fields for which the coefficients are linear
functions. Equivalently, this is the space of vector fields that are invariant under scalar
multiplications γt : Rn → Rn, x 7→ tx for t 6= 0.

Example 7.10. The additive group G = Rn has g = Rn (with zero bracket) as its Lie
algebra, with exponential map the identity map exp(b) = b. (This looks a bit funny, but
remember that this is the exponential map for Lie groups, not for real numbers.) Let G
act on Rn by translation:

b · x = x+ b

(the sign is just a convention). We calculate the generating vector fields bRn for b ∈ Rn

as

(LbRnf)(q) =
d

dt

∣∣∣
t=0
f(exp(−tb) · q) ==

d

dt

∣∣∣
t=0
f(q − tb) = −

∑
j

bj
∂f

∂qj
.

Thus

(20) bRn = −
∑
j

bj
∂

∂qj
.

Example 7.11. For the basis-free version of these examples, consider a vector space V
with the natural action of GL(V ). For v ∈ V we have TvV ∼= V ; hence the generating
vector fields may be regarded as V -valued functions on V . The calculation above shows
that for ξ ∈ gl(V ) = End(V ), the generating vector field is

(21) ξV |v = −ξ · v

(which is also immediate from (18)). This specializes to the generating vector fields for
any G-representation on a vector space, for example the adjoint and coadjoint action of
G on g and g∗.

ξg|ζ = − adξ ζ = −[ξ, ζ], ξg∗|µ = −ξ · µ = (adξ)
∗(µ).

The generating vector fields for the translation action v 7→ v− b of V on itself are given
by bV |v = b.

7.3. Hamiltonian group actions. A G-action A : G×M →M on a symplectic man-
ifold (M,ω) is called symplectic if Ag ∈ Diff(M,ω) for all g. It is thus described by a
group morphism

G→ Diff(M,ω).

The generating vector fields of such an action give a Lie algebra action g→ X(M,ω). The
G-action is called weakly Hamiltonian if its generating vector fields ξM are Hamiltonian
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vector fields. In other words, the infinitesimal action map takes values in the subalgebra
XHam(M,ω). For a weakly Hamiltonian action, one can choose a lift 13

0 // R // C∞(M) // XHam(M,ω) // 0

g

OO

Φ

gg

of the infinitesimal action map to a linear map Φ: g→ C∞(M): Define on basis vectors
and extend by linearity. Thus

ξM = XΦ(ξ), ξ ∈ g.

The linear map ξ 7→ Φ(ξ) can also be viewed as a function Φ ∈ C∞(M) ⊗ g∗, i.e. as
a map Φ: M → g∗. The latter version is called a moment map. The original version
Φ: g→ C∞(M) is often called a comoment map. (Thus, Φ(ξ) = 〈Φ, ξ〉. It is essentially
‘the same’ map.)

Definition 7.12. [43] A symplectic G-action on a symplectic manifold (M,ω) is
called weakly Hamiltonian if there exists a smooth moment map

Φ: M → g∗

satisfying
d〈Φ, ξ〉 = −ι(ξM)ω, ξ ∈ g.

It is called Hamiltonian if the map Φ is G-equivariant.

Thus, for a Hamiltonian action we have the equivariance property

Φ(g ·m) = g · Φ(m).

Equivalently,
〈Φ(g ·m),Adg ξ〉 = 〈Φ(m), ξ〉

for all ξ ∈ g, m ∈M .

Remarks 7.13. (a) Hamiltonian G-spaces where introduced around 1970 by Kostant
[24], Smale [42], and Souriau [43] (independently). The terminology moment in
the context of Hamiltonian actions was introduced in Souriau’s book [43], and
has since been called application moment in the French literature. The term
‘moment map’ is a mistranslation, which has become more or less standard. A
better translation is momentum map (also widely used) since it relates to the
physics concepts of angular and linear momentum (as opposed to ‘moment of
inertia’ and such things). A similar mistranslation is common in the German
literature (Momentenabbildung, as opposed to the correct Impulsabbildung).

13In this diagram we assume M is connected; otherwise R should be replaced with the space H0(M)
of locally constant functions
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(b) To repeat: The coadjoint action of G on g∗ is defined by

〈g · µ, ζ〉 = 〈µ,Adg−1 ζ〉

for µ ∈ g∗, ζ ∈ g. Infinitesimally, the coadjoint representation of g on g∗ is
defined by

〈ξ · µ, ζ〉 = −〈µ, [ξ, ζ]〉.

(c) If a Lie group G acts on M in a Hamiltonian way, and if H → G is a Lie group
morphism (e.g. inclusion of a subgroup) then the action of H is Hamiltonian;
the moment map is the composition of the G-moment map with the dual map
g∗ → h∗.

(d) Writing g = exp(−tξ) and taking the derivative at t = 0 we find the infinitesimal
version of the equivariance condition

LξMΦ = −ξ · Φ, ξ ∈ g.

If G is connected, the G-equivariance of Φ: M → g∗ is equivalent to its infinites-
imal counterpart.

(e) For an abelian group, the coadjoint action is trivial, so that equivariance simply
means invariance.

The following fact uses the equivariance of the moment map.

Lemma 7.14. Suppose A : G → Diff(M,ω) is a weakly Hamiltonian action. If
the action is Hamiltonian, then the comoment map

g→ C∞(M), ξ 7→ 〈Φ, ξ〉
is a Lie algebra morphism with respect to the Poisson bracket on C∞(M). If G is
connected, the converse is true.

Proof. Write Φξ = 〈Φ, ξ〉. If the action is Hamiltonian, we have:

{Φξ,Φη} = LX
Φξ

(Φη) = LξMΦη = −〈ξ · Φ, η〉 = Φ[ξ,η].

Conversely, if ξ 7→ Φξ is a Lie algebra morphism, a similar calculation gives the g-
equivariance condition LξMΦ = −ξ · Φ. This implies, by integration, for all t,

A∗exp(−tξ)(exp(−tξ) · Φ) = Φ

as one verifies by taking a t-derivative. Hence, the equivariance property A∗g−1(g−1 ·Φ) =

Φ holds for ‘small’ g, and hence for all g. (We are using that a connected Lie group is
generated by any open neighborhood of the group unit.) �
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Proposition 7.15. A weakly Hamiltonian action of a Lie group G on a connected
symplectic manifold (M,ω) is necessarily Hamiltonian, in each of the following
cases:

(a) G is compact,
(b) M is compact,
(c) the G-action on M has a fixed point.

That is, in these cases one can always take the (weak) moment map to be G-
equivariant.

Proof. Let E be the set of all weak moment maps Φ: M → g∗. Since any two weak
moment maps differ by addition of a constant g∗-valued functions, the set E is an affine
space under the action of g∗. We have an (affine) action of G on the affine space E , by

(g · Φ)(m) = g · Φ(g−1 ·m).

To check that g · Φ is again a weak moment map for the G-action, we calculate

d〈g · Φ, ξ〉 = (Ag−1)∗d〈Φ,Adg(ξ)〉
= −(Ag−1)∗(Ag)∗ι(ξM)ω

= −ι(ξM)ω.

Note that Φ is G-equivariant if and only if g · Φ = Φ; that is, the (equivariant) moment
maps are the G-fixed points of the action on E .

Consider now the three settings. (a) If G is compact, then an affine G-action on
a finite-dimensional affine space has a fixed point, obtained by averaging. Concretely,
given any Φ ∈ E , an equivariant moment map is obtained as

Φ(m) =

∫
G

(g · Φ)(m) |dg|

where |dg| is the normalized bi-invariant measure on G. Indeed, one checks that h ·
Φ(m) = Φ(m). (b) If If M is compact, we may normalize Φ ∈ E by the condition∫

M

Φωn = 0.

This property determines Φ uniquely. Since g · Φ is aain normalized, we must have
g ·Φ = Φ. (c) If the action has a G-fixed point m0 ∈M , we can normalize Φ by requiring
Φ(m0) = 0; since g · Φ also vanishes at m0 it follows that g · Φ = Φ. �

Remark 7.16. SupposeM is connected, and let g→ XHam(M,ω) be a weakly Hamiltonian
action. Let ĝ ⊆ g × C∞(M) be the set of pairs (ξ, f) such that ξQ = Xf . This is a Lie
subalgebra, and defines a central extension

0→ R→ ĝ→ g→ 0→ 0.
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The map ĝ → C∞(M) is, by construction, a Lie algebra morphism. Hence, if G is
connected, then a G-equivariant moment map is equivalent to a Lie algebra splitting of
the central extension, g→ ĝ.

The central extensions of a Lie algebra g by R are classified by the Lie algebra co-
homology H2(g,R). Hence, if H2(g,R) = 0 we can always choose a splitting. This is
the case, for example, for all semisimple Lie algebras. On the other hand, abelian Lie
algebras g of dimension at least 2 admit nontrivial central extensions. In fact, every
skew-symmetric bilinear form φ : g× g→ R defines a central extension.

From now on, we will always assume that the moment map is equivariant unless stated
otherwise.

7.4. Examples of Hamiltonian actions and moment maps.

7.4.1. Linear momentum and angular momentum. Recall from Proposition 3.24 that for
any vector field Y on a manifold Q, the cotangent lift YT ∗ ∈ X(T ∗Q) is a Hamiltonian
vector field YT ∗ = XH , for the Hamiltonian function H = −ιYT∗θ. In local coordi-
nates q1, . . . , qn on Q and corresponding coordinates q1, . . . , qn, p1, . . . , pn on T ∗Q, the
Hamiltonian for the cotangent lift of Y =

∑
j Yj(q)

∂
∂qj

is

H(q, p) = −
∑
j

Yj(q)pj.

Exercise 7.17. Show that the linear map

X(Q)→ C∞(T ∗Q), Y 7→ −ιYT∗θ
is a Lie algebra morphism (using the Poisson bracket on T ∗Q), which furthermore inter-
twines the action of Diff(Q) on both sides.14

Hence if Q is a G-manifold, we obtain a comoment map for the cotangent lift of the
G-action to T ∗Q by composing this map with the generating vector fields:

g 7→ X(Q)→ C∞(T ∗Q)

Let us specialize to Q = Rn, thus M = T ∗(Rn) = R2n with standard symplectic
coordinates qj, pj. Let G = Rn act on itself by translation

b · x = x+ b.

In (19) we had calculated the generating vector fields as bRn = −
∑

j bj
∂
∂qj

. Hence, the

moment map for the cotangent lift is

〈Φ, b〉 =
∑
j

bjpj.

Using the standard inner product on Rn to identify (Rn) ∼= (Rn)∗, this means

Φ(q, p) = p.

14One might say that the latter claim is ‘clear’ since the construction is coordinate-free.
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That is, the moment map is just linear momentum.
Consider similarly the cotangent lift of the action of G = GL(n,R) on Rn. We had

found ARn = −
∑

j,k Ajkqk
∂
∂qj
. Hence,

〈Φ, A〉 =
∑
j,k

Ajkpjqk.

Using the non-degenerate bilinear form (A,A′) = tr(AA′) on gl(n,R) to identify gl(n,R) ∼=
gl(n,R)∗, this means

Φ(q, p)ij = qipj.

Let us restrict the action to the orthogonal group O(n). The Lie algebra of o(n)
consists of skew-symmetric matrices, A = −A>. Using again the trace form to identify
the Lie algebra and its dual, the moment map Ψ : T ∗Rn → o(n)∗ for the action of O(n)
reads,

Ψ(q, p)ij =
1

2
(qipj − qjpi).

For n = 3, we can further identify so(3)∗ ∼= R3 with the standard rotation action of
SO(3), and Ψ just becomes just angular momentum

~q × ~p =

 q2p3 − q3p2

q3p1 − q1p3

q1p2 − q2p1


(up to an irrelevant factor, which again just depends on the chosen identification o(3) ∼=
o(3)∗).

7.4.2. Exact symplectic manifolds. The cotangent bundle example generalizes to exact
symplectic manifolds. A symplectic manifold (M,ω) is called exact if ω = −dθ for
a 1-form θ (which is sometimes called a symplectic potential). Note that a compact
symplectic manifold is never exact (unless it is 0-dimensional): Indeed, if ω = −dθ is
exact, then also the Liouville form ωn = −dθ∧ωn−1 is exact. Hence if M were compact,
Stokes’ theorem would show that M has zero volume, a contradiction.

Proposition 7.18. Suppose (M,ω) is an exact symplectic manifold, ω = −dθ. Then
every G-action on M preserving θ is Hamiltonian, with moment map

〈Φ, ξ〉 = −ι(ξM)θ.

Proof. We calculate

−dι(ξM)θ = ι(ξM)dθ − L(ξM)θ︸ ︷︷ ︸
=0

= −ι(ξM)ω.

The resulting moment map is equivariant:

A∗g〈Φ, ξ〉 = A∗g(ι(ξM)θ) = ι(A∗g(ξM))A∗gθ = ι(A∗g(ξM))θ = ι((Adg ξ)M)θ = 〈Φ,Adg ξ〉.
�
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Remark 7.19. Note that if ω is exact, and G is compact, one can construct a G invariant
θ by averaging. If H1(M,R) = 0 then Φ is independent of the choice of invariant θ.

The examples considered above were of the form M = T ∗Q, with G acting by the
cotangent lift of a G-action on Q. Another example is provided by the defining action
of U(n) on Cn = R2n, discussed below.

7.4.3. Symplectic representations. Generalizing the case of unitary representations, con-
sider symplectic representation of G on a symplectic vector space (E,ω). That is, G acts
by a Lie group morphism G→ Sp(E) into the symplectic group.

Proposition 7.20. The action of G = Sp(E) on E is Hamiltonian, with moment
map given by the formula,

〈Φ(v), ξ〉 = −1

2
ω(v, ξ.v).

Proof. if we identify TvE = E the generating vector field for ξ ∈ g is just ξE(v) = −ξ.v.
Thus for w ∈ E we have

ω(ξE(v), w) = −ω(ξ.v, w) = ω(v, ξ.w).

On the other hand, the map Φξ = 〈Φ, ξ〉 defined above satisfies

dΦξ|v(w) =
d

dt

∣∣
t=0

Φξ(v + tw)

= −1

2

d

dt

∣∣
t=0
ω(v + tw, ξ.(v + tw))

= −1

2
(ω(w, ξ.v) + ω(v, ξ.w))

= ω(ξ.v, w)

= −ω(ξE(v), w)

verifying that Φ is a moment map. Note that this is the unique moment map vanishing
at 0. �

Remark 7.21. If desired, we may also express this in terms of the nondegenerate sym-
metric bilinear form tr(ξη) on sp(E). Regard elements v ∈ E as linear maps v : R→ E,
and let v∗ : E∗ → R be the dual map. The map ω[ : E → E∗ is skew-adjoint. We have,

ω(v, ξv) = 〈ω[(v), ξv〉 = (ω[ ◦ v)∗ξv = −v∗ω[ξv = −Tr(vv∗ω[ξ) = −〈vv∗ω[, ξ〉.

This shows 〈Φ(v), ξ〉 = 1
2

Tr(vv∗ω[ξ). We read off that

Φ(v) =
1

2
vv∗ω[.
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7.4.4. Unitary representations. Consider now the case of a complex inner product space
E, with corresponding unitary group U(E). Denote by h : E×E → C the corresponding
Hermitian metric (linear in the second entry, conjugate linear in the first entry.)

In Section 2.5 we explained how this data is equivalent to symplectic structure ω and
a compatible complex structure J , through the equation

h(v, w) = ω(v, Jw) +
√
−1ω(v, w).

Furthermore, U(E) ⊆ Sp(E,ω). Hence, by the previous section we know that the U(E)-
action is Hamiltonian, with moment map 〈Φ(v), ξ) = −1

2
ω(v, ξ.v). We may express this

in terms of h, using that for ξ ∈ u(E), the expression h(v, ξ.v) is purely imaginary.

h(v, ξ.v) = −h(ξ.v, v) = −h(v, ξ.v)

So, h(v, ξ.v) =
√
−1ω(v, ξ.v) and hence

〈Φ(v), ξ) =

√
−1

2
h(v, ξ.v)

For any linear map A : E → F between complex inner product spaces, let A† : F → E be
the adjoint map. Then U(E) consists of maps A : E → E such that A† = A−1, and its
Lie algebra u(E) consists of maps ξ such that ξ† = −ξ. Use the U(E)-invariant positive
define inner product on u(E),

Tr(ξ†η) = −Tr(ξη)

to identify u(E)∗ ∼= u(E). We may regard the ‘column vector’ v ∈ E as a linear map
C → E, hence the corresponding ‘row vector’ v† is a linear map E → C. We may thus
write 15

〈Φ(v), ξ〉 =

√
−1

2
h(v, ξ.v) =

√
−1

2
v†ξv =

√
−1

2
Tr(vv†ξ).

The endomorphism vv† of E is self-adjoint, hence
√
−1
2
vv† is skew-adjoint and so defines

an element of u(E). We arrive at the following formula:

Proposition 7.22. The U(E)-action on a complex inner product space E is
Hamiltonian, with moment map given by

Φ(v) =
1

2
√
−1

vv†,

using the identification u(E)∗ ∼= u(E) given by the inner product 〈ξ, η〉 = Tr(ξ†η)
on u(E).

We may express these results also in terms of a complex orthonormal basis, identifying
E = Cn = R2n with complex coordinates zj = qj +

√
−1pj. These define complex

15We used that Tr(AB) = Tr(BA) for linear maps A : E → F, B : F → E.
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differentials

dzi = dqi +
√
−1dpi, dzi = dqi −

√
−1dpi

and dual complex-valued vector fields

∂

∂zi
=

1

2
(
∂

∂qi
−
√
−1

∂

∂pi
),

∂

∂zi
=

1

2
(
∂

∂qi
+
√
−1

∂

∂pi
).

The map A 7→ A† is the conjugate transpose. The Hermitian inner product is h(v, w) =∑
i viwi = v†w. The symplectic form reads as

ω =
∑
j

dqj ∧ dpj =

√
−1

2

∑
j

dzj ∧ dzj =
1

2
√
−1

h(dz, dz),

The Lie algebra u(n) of U(n) consists of skew-Hermitian matrices ξ, i..e, ξ† = −ξ The
generating vector fields are

ξCn = −
∑
j,k

(
ξjk zk

∂

∂zj
− ξkj zk

∂

∂zj

)
The moment map Φ(z) = 1

2
√
−1
zz† (using the positive define inner product on u(n),

−Tr(ξη) to identify the Lie algebra and its dual, we arrive at

Φ(z)ij =
1

2
√
−1

ziz̄j

More generally, any finite dimensional unitary representation G→ U(n) defines a Hamil-
tonian action of G on Cn; the moment map is the composition of the U(n) moment map
with the projection u(n)∗ → g∗ dual to g → u(n). For example, the moment map for
the diagonal U(1) ⊆ U(n)-action is given by 1

2
√
−1
||z||2. (It looks complex valued since

we think of u(1) as
√
−1R.)

Exercise 7.23. Show that ω = −dθ, where

θ =

√
−1

4

∑
j

(
z̄jdzj − zjdz̄j

)
= −1

2
Im(h(z, dz)),

is preserved under the unitary group.

7.4.5. Projective Representations. The action of U(n+ 1) on Cn+1 induces an action on
CP (n) which is again Hamiltonian (as follows already from the fact that U(n + 1) is
compact). In homogeneous coordinates [z0 : . . . : zn], the moment map is

(22) Φ([z0 : . . . : zn]) =
1

2
√
−1||z||2

zz†

(note that this is well-defined). We will verify this fact later in the context of symplectic
reduction.
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7.4.6. Constructions. There are a number of simply constructions, obtaining new exam-
ples of Hamiltonian spaces from old.

(a) Products. Let (Mi, ωi), i = 1, 2 be Hamiltonian G-spaces, with moment maps
Φi : Mi → g∗. Then the product M1×M2 with the diagonal G-action is a Hamil-
tonian G-space, with moment map the pointwise sum

Φ = Φ1 ◦ pr1 +Φ2 ◦ pr2 .

(Here pri : M1×M2 →Mi are the two projections.) Direct products are a classical
analog to tensor products of G-representations.

(b) Conjugates. Let (M,ω) be a Hamiltonian G-space, with moment map Φ. Then
(M,−ω) (with the same G-action) is a Hamiltonian G-space, with moment map
−Φ. This is known as the conjugate (sometimes denoted M∗ or M−) since it is a
classical analog of dual representation of a Lie group.

(c) Restriction to subgroups. Let (M,ω) be a Hamiltonian G-space with moment
map Φ: M → g∗, and H ⊆ G a subgroup. Then the action of H ⊆ G on (M,ω)
has moment map

ΦH = p ◦ Φ: M → h∗

where p : g∗ → h∗ is the projection dual to the inclusion j : h ↪→ g. (We leave
details as an exercise.) More generally, for every group homomorphism H → G,
the space (M,ω) becomes a Hamiltonian H-space with moment map ΦH as above,
where p : g∗ → h∗ is the dual map to the infinitesimal map j : h→ g.

Exercise 7.24. Let G → G × G be the diagonal embedding, and j : g → g × g its
differential. Show that the dual map p : g∗ × g∗ → g∗ is addition. Use this to explain
how item (a) above may be seen as a special case of (c).

7.5. Coadjoint Orbits. Recall that a homogeneous G-space is a manifold M with a
transitive G-action. In this case, any choice of a base point m0 ∈M identifies M = G/H
where H = Gm0 is the stabilizer. For a homogeneous space, the tangent spaces to M are
spanned by generating vector fields.

Consider now a homogeneous Hamiltonian G-space (M,ω,Φ). (Example: M = CP (n)
with the natural action of U(n+1).) By the moment map condition, ι(ξM)ω = −d〈Φ, ξ〉,
the symplectic structure of a homogeneous Hamiltonian G-space is completely deter-
mined by the moment map Φ: M → g∗. In fact, we have

ω(ξM , ηM) = ι(ηM)ι(ξM)ω = −ι(ηM)dΦ, ξ〉 = −〈L(ηM)Φ, ξ〉 = −〈Φ, η.ξ〉 = 〈Φ, [ξ, η]〉.

We obtain the formula

ω(ξM , ηM) = 〈Φ, [ξ, η]〉.

The first examples of homogeneous Hamiltonian G-spaces are the orbits of the coadjoint
action.
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Theorem 7.25 (Kirillov-Kostant-Souriau). [23, 24, 43] Let

O ⊆ g∗

be an orbit for the coadjoint action of G on g∗. There exists a unique invariant
symplectic structure on O such that the action is Hamiltonian, with moment map
given by the inclusion Φ : O ↪→ g∗.

Proof. For fixed µ ∈ O, the generating vector fields are given in terms of the coadjoint
action by ξO(µ) = −ξ · µ. In particular, the stabilizer algebra gµ consists of all ξ such
that ξ ·µ = 0. By the discussion above, the only candidate for ω is given by the formula

(23) ω(ξO, ηO)|µ = 〈µ, [ξ, η]〉.

The right hand side may also be written as

〈µ, [ξ, η]〉 = −〈ξ · µ, η〉 = 〈η.µ, ξ〉,

which shows that the right hand side only depends on ξO|µ, ηO|µ. Forthermore, ξO|µ
lies in the kernel of ωO|µ if and only if (23) vanishes for all η, if and only if 〈ξ · µ, η〉
vanishes for all η, if and only if ξ · µ = 0, if and only if ξO|µ = 0. This shows that ω is
nondegenerate. The calculation

A∗g(ω(ξO, ηO)) = 〈A∗gΦ, [ξ, η]〉 = 〈Φ, [Adg ξ,Adg η]〉 = ω(A∗gξO,A∗gηO)

shows that the resulting 2-form ω on O is G-invariant, and the moment map condition
holds by construction. To check dω = 0, we compute:

ι(ξO)dω = L(ξO)ω − dι(ξO)ω = 0.

As remarked above, the moment map uniquely determines the symplectic form. �

Example 7.26. Let G = SO(3). Identify the Lie algebra so(3) with R3, by identifying
the standard basis vectors of so(3) as follows:

e1 7→

 0 0 0
0 0 −1
0 1 0

 e2 7→

 0 0 1
0 0 0
−1 0 0

 e3 7→

 0 −1 0
1 0 0
0 0 0


This identification takes the adjoint action of SO(3) to the standard rotation action on
R3, and takes the invariant inner product (A,B) 7→ −1

2
tr(AB) on so(3) to the standard

inner product on R3. The inner product also identifies so(3)∗ ∼= R3. The coadjoint orbits
for SO(3) are the 2-spheres around 0, together with the origin {0}.

Example 7.27. Let G = U(n), so that u(n) are the skew-adjoint matrices. Use the
inner product Tr(ξ†η) to identify u(n)∗ ∼= u(n), and hence identify coadjoint orbits with
adjoint orbits. Now, the skew-adjoint matrices are those of the form ξ =

√
−1A where
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A is self-adjoint, and the adjoint orbits correspond to matrices with a prescribed set of
eigenvalues

(
√
−1λ1, . . . ,

√
−1λn)

where λ1 ≥ · · · ≥ λn are real numbers. (By linear algebra, two self-adjoint matrices are
U(n)-conjugate if and only they have the same set of eigenvalues.) Hence, every such
n-tuple

λ = (λ1, . . . , λn), λ1 ≥ · · · ≥ λn

determines a unique coadjoint orbit. We haveO = G/H where H ⊆ U(n) is the stabilizer
of the diagonal matrix

√
−1


λ1 0 · · · · · · · · ·
0 λ2 · · · · · · · · ·
0 0 · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · 0 λn

 .

This stabilizer is of the form H = U(k1)× · · ·×U(kr) depending on coincidences among
the eigenvalues. For example, if n = 5 and λ1 = λ2 > λ3 > λ4 = λ5 then H =
U(2)× U(1)× U(2).

Note that for 1 ≤ k ≤ n, if λ1 = . . . = λk > λk+1 = . . . = λn the coadjoint orbit is the
Grassmannian of k-dimensional subspaces of Cn

(24) GrC(k, n) = U(n)/(U(k)× U(n− k)).

Indeed, the action of U(n) on Cn induces a transitive action on the set of k-dimensional
subspaces, and the stabilizer of Ck ⊕ 0 ⊆ Cn is H = U(k) × U(n − k), thought of as
matrices in block diagonal form.

Example 7.28. The discussion is similar for SU(n), except that now the set of eigenvalues
has the additional condition λ1 + . . . + λn = 0. Using this to eleminate λn, we get the
conditions

λ1 ≥ · · ·λn−1 ≥ −(λ1 + . . .+ λn−1).

Observe that the Grassmannian may alse be regarded as a coadjoint orbit G/H of G =
SU(n), with H = SU(n) ∩ (U(k)× U(n− k)).

Theorem 7.29 (Kostant, Souriau). [24, 43] Let G be a Lie group, and (M,ω,Φ)
is a homogeneous Hamiltonian G-space. Then M is a covering space of a coadjoint
orbit, with 2-form obtained by pull-back of the KKS form on O.

Proof. Since the action on M is transitive, the same is true for the action on Φ(M).
Hence O = Φ(M) is a single coadjoint orbit. Let

π : M → O
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be the map Φ, regarded as a map to its image. By by G-equivariance, the range of Tmπ
contains all orbit directions, and so is all of Tπ(m)O. Thus π is a submersion. Let ωO be
the symplectic structure on O. We had already seen that the 2-form on M is determined
by the moment map condition, and the formula shows that

ω = π∗ωO.

Hence Tπ must be injective everywhere (any element of its kernel would lie in the kernel
of π∗ωO). This shows π : M → O is a local diffeomorphism, and hence is a covering. �

Still asuming that M is a homogeneous Hamiltonian G-space, let m ∈M so that

M = G/Gm, O = Φ(M) = G/GΦ(m).

The covering map π is a fibration with discrete fiber GΦ(m)/Gm. Hence, non-trivial cov-
erings can be obtained only if the stabilizer GΦ(m) is disconnected (for compact connected
Lie group do not have nontrivial subgroups of the same dimension). If G is a compact,
connected Lie group then it is known that all stabilizer groups Gµ for the (co)adjoint
action are connected. (See Remark 7.32 below.) Thus:

Theorem 7.30. If G is compact and connected, and (M,ω,Φ) is a homogeneous
Hamiltonian G-space, then the moment map induces a symplectomorphism of M
with the coadjoint orbit O = Φ(M).

Example 7.31. The space M = CP(n) with the Fubini-Study symplectic form and the
natural action of G = U(n + 1) is a homogeneous Hamiltonian G-space. Hence it is a
coadjoint orbit of G. The stabilizer of [1 : 0 : · · · : 0] is H ∼= U(1)× U(n), so it must be
the coadjoint orbit of type U(n + 1)/(U(1) × U(n)). To decide exactly which coadjoint
orbit it is, it suffices to find the image of [1 : 0 : · · · : 0] under the moment map.

Remark 7.32. The connectedness of stabilizers Gµ for compact G can be shown as follows:
Using the fibration

G→ G/Gµ,

and the fact that G is connected, it suffices to show that the base G/Gµ is simply
connected. (Given p0, p1 ∈ Gµ choose a path γ : [0, 1]→ G connecting them. γ projects
to a closed path in G/Gµ, and can be contracted to a constant path. By the homotopy
lifting property this homotopy can be lifted to a homotopy with fixed end points of γ.
This will then be a path in Gµ connecting p0, p1.) In turn, the simply-connectedness of
G/Gµ follows from Morse theory; this will be explained later.

7.6. Poisson manifolds. Moment maps fit very nicely into the more general category
of Poisson manifolds.
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Definition 7.33. A Poisson manifold is a manifold M together with a bilinear map
{·, ·} : C∞(M)× C∞(M)→ C∞(M) such that

(a) {·, ·} is a Lie algebra structure on C∞(M), and
(b) for all H ∈ C∞(M), the map C∞(M)→ C∞(M), F 7→ {H,F} is a deriva-

tion.

Since any derivation of C∞(M) is given by a vector field, any H defines a so-called
Hamiltonian vector field XH by XH(F ) = {H,F}.

Exercise 7.34. Show that XH is a Poisson vector field. Show that the flow of any complete
Poisson vector field is Poisson.

Examples of Poisson manifolds are of course symplectic manifolds, with the Poisson
bracket associated to the symplectic structure. Another important example, due to
Kirillov, is the dual g∗ of a Lie algebra g. For any µ ∈ g∗ and any function F ∈ C∞(g∗)
identify

dFµ ∈ T ∗µg∗ ∼= (g∗)∗ = g.

Then define
{F,G}(µ) := 〈µ, [dFµ, dGµ].〉

Exercise 7.35. Verify that this is a Poisson structure on g∗.

Remark 7.36. This standard Poisson structure on the dual of a Lie algebra was originally
found by Lie himself. It was independently rediscovered by Kirillov, Kostant, and Souriau
and is usually called the Kirillov-Kostant-Souriau Poisson structure.

Definition 7.37. A smooth map φ : M1 →M2 between Poisson manifolds is called
a Poisson map if

φ∗{F1, F2} = {φ∗F1, φ
∗F2}.

A vector field X ∈ X(M) is called Poisson if

X{F1, F2} = {X(F1), F2}+ {F1, X(F2)}.

Exercise 7.38. Show that the inclusion O ↪→ g∗ of a coadjoint orbit is a Poisson map.

The definition of a moment map carries over to Poisson manifolds: A G-action is
Poisson if it preserves Poisson brackets, and any such action is Hamiltonian if there
exists an equivariant smooth map Φ : M → g∗ such that

ξM = X〈Φ,ξ〉

for all ξ ∈ k.

Exercise 7.39. Show that the coadjoint action of G on g∗ is Hamiltonian, with moment
map the identity map.
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Exercise 7.40. Show that if M is a Poisson manifold with a Hamiltonian G-action, the
moment map is a Poisson map.

Exercise 7.41. Suppose G is a connected Lie group, and M a Poisson G-manifold with
a map Φ: M → g∗ satisfying the moment map condition ξM = {〈Φ, ξR, ·}. Show that Φ
is equivariant if and only if Φ is a Poisson map.

Conversely, show that for every Poisson map Φ : M → g∗, the equation ξM =
{〈Φ, ξ〉, ·} defines a Poisson g-action on M , i.e. LξM{f, g} = {LξMf, g}+ {f,LξMg}.

7.7. 2d Gauge Theory. In this section we will discuss, somewhat informally, an inter-
esting ∞-dimensional example due to Atiyah-Bott [5, 6] (see also [35]). We start with
some background on connections, curvature, and gauge transformations. Let Σ be a
manifold (later this will be a surface), and G a Lie group with Lie algebra g. We shall
consider the action of the infinite-dimensional gauge group

G(Σ) = C∞(Σ, G)

(with pointwise group multiplication) on the infinite-dimensional manifold

A(Σ) := Ω1(Σ, g)

of connections, given by

g · A = Adg(A)− dg g−1.

Here the first term is the pointwise adjoint action. The second term is written for matrix-
groups so that dgg−1 makes sense as a 1-form on Σ with values in g. One may verify
that this is indeed an action: g1 · g2 · A = (g1g2) · A.

Remark 7.42. For general Lie groups, the term dgg−1 is to be interpreted as the pull-back
under g : Σ→ G of the right-invariant Maurer-Cartan form θR ∈ Ω1(G, g); i.e. θR is the
unique right-invariant form such that for any right-invariant vector field ξR, ι(ξR)θR = ξ.

The formula for the gauge action may be motivated as follows. Consider aG-representation
G→ GL(V ) on a vector space V . By differentiation, one obtains a Lie algebra represen-
tation of g. The connection A defines an operator on the space of V -valued differential
forms, called the covariant derivative

dA : Ωk(Σ, V )→ Ωk+1(Σ, V ), dAσ = dσ + A · σ

(using both the g-action and wedge product in the second term). On the other hand,
the G-action on V gives an action of the gauge group G(Σ) = C∞(Σ, G) acts on V -
valued forms, simply using the pointwise action on V . The gauge action on connections
is defined in such a way that the following is true:

Lemma 7.43. For all σ ∈ Ωk(Σ, V ),

dg·A(g · σ) = g · (dAσ).
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Proof. For all σ ∈ Ωk(Σ, V ),

d(g · σ) = dg · σ + g · dσ
= (dgg−1) · g · σ + g · dσ.

This gives

dg·A(g · σ) = d(g · σ)) + (Adg(A)− dgg−1) · g · σ
= g · (dσ) + Adg(A) · g · σ
= g · (dAσ).

�

Due to the presence of the gauge term the square of the covariant derivative is usually
not zero:

Lemma 7.44. We have
(dA)2σ = curv(A) · σ

with the curvature curv(A) = dA+ 1
2
[A,A] ∈ Ω2(Σ, g). The curvature transforms

equivariantly:
curv(g · A) = Adg curv(A).

Proof. We compute

dAdAσ = d(A · σ) + A · dσ + A · A · σ

= (dA) · σ +
1

2
[A,A] · σ.

Similarly, equivariance of the curvature is verified by direct calculation (or using the
equivariance of the covariant derivative). �

By the lemma, d2
A = 0 provided that the curvature is zero. Connections with this

property are called flat. Consider the infinite-dimensional affine space A(Σ) as a G(Σ)-
space. What are the generating vector fields? The Lie algebra of the gauge group is
identified with Ω0(Σ, g).

Lemma 7.45. The generating vector fields for ξ ∈ Ω0(Σ, g) are

ξA(Σ)(A) = dAξ.

Here dAξ = dξ + [A, ξ] is defined using the adjoint representation on V = g.
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Proof. Recall that the evaluation ξM(m) ∈ TmM of a generating vector field for a G-
action on a manifold M is represented by the curve exp(−tξ).m. Using this, we calculate

ξA(Σ)(A) =
d

dt

∣∣∣
t=0

exp(−tξ) · A

=
d

dt

∣∣∣
t=0

(
Adexp(−tξ)(A)− d(exp(−tξ)) exp(tξ)

)
= −[ξ, A] + dξ

= dAξ.

�

We now specialize to the case that Σ is a compact, oriented surface dim Σ = 2. Let
us fix an invariant inner product on g (unique up to scalar if G is simple). We will
denote the inner product simply by a fat dot • (to avoid confusion with actions). Then
A(Σ) = Ω1(Σ, g) is an ∞-dimensional symplectic manifold: The 2-form is

ωA(a, b) =

∫
Σ

a • b

for all a, b ∈ TAΩ1(Σ, g) ∼= Ω1(Σ, g), using the inner product and wedge product. This
2-form is G(Σ)-invariant. Indeed, since the gauge action is an affine action, with linear
part the adjoint action, the action on tangent vectors a ∈ TAA(Σ) = Ω1(Σ, g) is simply

g∗a = Adg(a) ∈ Tg·AA(Σ) = Ω1(Σ, g)

Hence,

ωg·A(g∗a, g∗b) =

∫
Σ

Adg(a) • Adg(b) =

∫
Σ

a • b = ωA(a, b).

Theorem 7.46. [6] For a compact oriented surface Σ, the gauge action of G(Σ)
on A(Σ) is Hamiltonian, with moment map the curvature A 7→ curv(A), i.e.

〈Φ(A), ξ〉 =

∫
Σ

curv(A) • ξ.
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Proof. We calculate: For all a ∈ Ω1(Σ, g), viewed as a constant vector field,

〈d〈Φ, ξ〉
∣∣∣
A
, a〉 =

d

dt

∣∣∣
t=0
〈Φ(A+ ta), ξ〉

=
d

dt

∣∣∣
t=0

∫
Σ

curv(A+ ta) • ξ

=
d

dt

∣∣∣
t=0

∫
Σ

(
dA+ tda+ t[A, a] +

1

2
([A,A] + t2[a, a])

)
• ξ

=

∫
Σ

ξ • dAa

= −
∫

Σ

dAξ • a

= −ω(ξA(Σ)(A), a).

�

It is interesting to extend this calculation to 2-manifolds with boundary ∂Σ. Every-
thing carries over, but the partial integration produces an extra boundary term so that
the (weak) moment map is

〈Φ(A), ξ〉 =

∫
Σ

curv(A) • ξ +

∫
∂Σ

A • ξ.

That is, the (informally) dual space to the Lie algebra Ω0(Σ, g) of the gauge group is
identified with Ω2(Σ, g)⊕ Ω1(∂Σ, g) with the natural pairing, and the moment map is

Ω0(Σ, g)→ Ω2(Σ, g)⊕ Ω1(∂Σ, g), A 7→ (curv(A), ι∗∂ΣA).

Notice however that this moment map is no longer equivariant in the usual sense, for
the action on the second summand is still the gauge action! This leads one to define a
central extension of the gauge group. Define a Polyakov-Wiegmann cocycle

c : G(Σ)× G(Σ)→ U(1), c(g1, g2) = exp

(
−iπ

∫
Σ

g−1
1 dg1 • dg2g

−1
2

)
,

and let Ĝ(Σ) = G(Σ)× U(1) with product

(g1, z1)(g2, z2) =
(
g1g2, z1z2 c(g1, g2)

)
.

One can show that this does indeed define a group structure (i.e. c is a cocycle). The
Lie algebra of this new group is Ω0(Σ, g)⊕R with defining cocycle (up to scalar factor)∫

Σ
dξ1dξ2 =

∫
∂Σ
ξ1dξ2, and its dual is Ω2(Σ, g)⊕ Ω1(∂Σ, g)⊕ R, with action

(g, z) · (α, β, λ) = (Adg α,Adg β − λdgg−1, λ).

It follows that the moment map for the action of the extended gauge group (where
the extra circle acts trivially) is equivariant, the image of the original moment map is
identified with the hyperplane λ = 1.
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8. Symplectic Reduction

8.1. The Meyer-Marsden-Weinstein Theorem. Let (M,ω,Φ) be a Hamiltonian G-
space. One of the basic properties of the moment map is the following:

Proposition 8.1. For all m ∈ M , the kernel and image of the tangent map
TmΦ: TmM → TΦ(m)g

∗ = g∗ are given by

ker(TmΦ) = Tm(G ·m)ω,

ran(TmΦ) = ann(gm).

Proof. By the defining condition of the moment map we have, for v ∈ TmM and ξ ∈ g,

(25) ωm(ξM(m), v) = −ι(v)d〈Φ, ξ〉
∣∣∣
m

= −〈(TmΦ)(v), ξ〉.

It follows that (TmΦ)(v) = 0 if and only if ωm(ξM(m), v) = 0 for all ξ ∈ g. This shows
ker(TmΦ) = Tm(G ·m)ω.

Equation (25) also shows that if ξ ∈ gm then 〈(TmΦ)(v), ξ〉 = 0 for all v. Hence
ran(TmΦ) ⊆ ann(gm). Equality follows by dimension count:

dim(ran(TmΦ)) = dimM − dim(ker(TmΦ))

= dimM − dim(Tm(G ·m))ω

= dimTm(G ·m)

= dim(G ·m)

= dimG− dimGm

= dim ann(gm).

�

Theorem 8.2. A point µ ∈ g∗ is a regular value of Φ if and only if for all
m ∈ Φ−1(µ), the stabilizer group Gm is discrete. In this case, Φ−1(µ) is a constant
rank submanifold. The leaf of the null foliation through m ∈ Φ−1(µ) is the orbit

Gµ ·m ⊆ Φ−1(µ).

Proof. We have

µ is a regular value of Φ ⇔ ∀m ∈ Φ−1(µ) : ran(TmΦ) = g∗

⇔ ∀m ∈ Φ−1(µ) : ann(gm) = g∗

⇔ ∀m ∈ Φ−1(µ) : gm = {0}
⇔ ∀m ∈ Φ−1(µ) : Gm ⊆ Gµ is discrete.
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Assuming µ is a regular value, let ι : Φ−1(µ) ↪→ M be the inclusion, and consider
m ∈ Φ−1(µ). Using Tm(Φ−1(µ)) = ker(TmΦ) the kernel of ι∗ω|m is

ker ι∗ω
∣∣∣
m

= Tm(Φ−1(µ)) ∩ Tm(Φ−1(µ))ω

= Tm(Φ−1(µ)) ∩ Tm(G ·m)

= Tm(Φ−1(µ) ∩G ·m)

= Tm(Gµ ·m).

Since the stabilizers for the Gµ-action on Φ−1(µ) are discrete, we see that the dimension

of ker ι∗ω
∣∣∣
m

is equal to dimGµ, and in particular is constant. �

Theorem 8.3 (Marsden-Weinstein, Meyer). [31] [36] Let (M,ω,Φ) be a Hamil-
tonian G-space. Suppose that µ ∈ g∗ is a regular value of Φ, and that the foliation
of Φ−1(µ) by Gµ-orbits is a fibration. Let Mµ = Φ−1(µ) → Φ−1(µ)/Gµ be the
quotient, and denote by ι, π the projection and inclusion

Φ−1(µ) ι
//

π

��

M

Mµ

There exists a unique symplectic form ωµ on Mµ such that

ι∗ω = π∗ω.

Proof. Since the null-foliation is given by the Gµ-orbits, this is a special case of the
theorem on reduction of constant rank submanifolds. �

Remark 8.4. The assumption that the quotient map is a fibration is satisfies when the
Gµ-action on Φ−1(µ) is free and proper. (A Lie group action of G on Q is called proper if
the map G×Q→ Q×Q, (g, q) 7→ (g ·q, q) is proper. This is automatic if G is compact.)

Definition 8.5. The space Mµ is called the reduced space or symplectic reduction
at level µ. The reduced space at 0 is denoted

M0 = M//G

and called the symplectic quotient.

The notation M//µG in place of Mµ is also common; it is especially useful when several
groups are involved.

The symplectic reductions Mµ depend only on the coadjoint orbit O = G.µ. Let O−
be the same G-space but with the opposite symplectic structure and minus the inclusion
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as a moment map. The moment map for the diagonal action on M ×O− is

Φ̃ : M ×O− → g∗, (m,µ) 7→ Φ(m)− µ.

Proposition 8.6 (Shifting-trick). [41] µ is a regular value of Φ if and only if 0 is
a regular value of

Φ̃ : M ×O− → g∗, (m,µ) 7→ Φ(m)− µ.
Moreover the Gµ-action on Φ−1(µ) is free if and only if the G-action on Φ̃−1(0) is
free. There is a canonical symplectomorphism,

Mµ
∼= (M ×O−)//G.

Proof. The zero level set of Φ̃ consists of pairs (m,µ) such that µ ∈ O and Φ(m) = µ.
This gives a G-equivariant bijection

Φ−1(O)→ Φ̃−1(0), m 7→ (m,Φ(m)).

0 is a regular value of Φ̃ if and only if the G-action on Φ̃−1(0) is locally free, if and only if
the action on Φ−1(O) is locally free. Since Φ−1(O) = G.Φ−1(µ), the G-action on Φ−1(O)
is locally free if and only if the Gµ-action on Φ−1(µ) is locally free, if and only if µ is a
regular value of Φ. The map

M →M ×O−, m 7→ (m,µ)

(inclusion as M × {µ}) preserves 2-forms, hence so does its restriction

Φ−1(µ)→ Φ̃−1(0), m 7→ (m,µ).

It follows that the maps

Mµ = Φ−1(µ)/Gµ → (Φ̃−1(0) ∩ (M × {µ}))/Gµ → Φ̃−1(0)/G

are all symplectomorphisms. �

Example 8.7. Let M = Cn+1, with the standard symplectic form

ω =
i

2

n∑
j=0

dzj ∧ dz̄j,

and scalar S1 = R/Z-action given as multiplication by exp(2πit). Under the identifica-
tions Lie(S1) = R, Lie(S1)∗ = R the moment map for this action is given by

Φ(z) = −π||z||2.

The reduced space at level −π is CP (n) = S2n+1/S1, with the Fubini-Study form as
described in Proposition 3.36. Reducing at a different value −λπ amounts to rescaling
the symplectic form by λ.
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Example 8.8. Let (M,ω) be an exact symplectic manifold, ω = −dθ, and suppose θ
is invariant under some G-action. Let Φ be the corresponding moment map 〈Φ, ξ〉 =
−ι(ξM)θ. Suppose 0 is a regular value of Φ and the G-action on Φ−1(0) is free and
proper. Then the pull-back ι∗θ is G-invariant and horizontal, i..e, G-basic. and hence
descends to a 1-form θ0 on M0 such that π∗θ0 = ι∗θ, and one has

ω0 = −dθ0.

It follows that the symplectic quotient of an exact Hamiltonian G-space at 0 an exact
symplectic manifold.

Example 8.9. As a sub-example, consider the case M = T ∗Q, where G acts by the
cotangent lift of a G-action on Q. The moment map is given by

〈Φ(m), ξ〉 = 〈m, ξQ(q)〉

where q ∈ Q is the base point of m ∈ M = T ∗Q. This shows that the zero level set is
the union of covectors orthogonal to orbits:

Φ−1(0) =
∐
q∈Q

ann(Tq(G · q)).

Since Φ−1(0) ⊇ Q, it is clear that the G-action on Φ−1(0) is locally free if and only if the
action on Q is locally free. If the action is free, we have

(T ∗Q)//G = T ∗(Q/G).

To see this (at least set-theoretically), note that

T (Q/G) =
(∐

q

TqQ/Tq(G · q)
)
/G

so that

T ∗(Q/G) =
(∐

q

ann(Tq(G · q))
)
/G.

To identify the symplectic forms one has to identify the reduced canonical 1-form θ0 with
the canonical 1-form on T ∗(Q/G), we leave this as an exercise.

For an arbitrary G-space Q the singular reduced space (T ∗Q)//G may be viewed as a
cotangent bundle for the singular space Q/G.

Example 8.10. Returning to the Atiyah-Bott gauge theory example, the reduction

M(Σ) = A(Σ)//G(Σ)

is the moduli space of flat connections on Σ. Indeed, we identified the moment map
with the curvature, hence the zero level set consists of flat connections, and the quotient
passes to the moduli space.
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8.2. Reduced Hamiltonians. 16 Suppose (M,ω,Φ) is a Hamiltonian G-space, that
µ ∈ g∗ is a regular value of the moment map, and that the action of Gµ on the level set
Φ−1(µ) is free and proper. Then every invariant Hamiltonian H ∈ C∞(M)G descends to
a unique function Hµ ∈ C∞(Mµ) with π∗Hµ = ι∗H. Passing to the reduced Hamiltonian
Hµ is often a first step in solving the equations of motion for H. From H-invariance of
XH it follows that the restriction (XH)

∣∣
Φ−1(µ)

∈ X(Φ−1(µ)) is π-related to XHµ ∈ X(Mµ),

that is its flow projects down to the flow on Mµ. After one has solved the reduced system
(i.e. determined its flow Fµ(t)) it is a second step to lift Fµ(t) up to the level set Φ−1(µ).

Example 8.11. Consider the motion of a particle on R2 in a potential V (q). It is described
by the Hamiltonian on T ∗R2,

H(q, p) =
||p||2

2
+ V (q).

Suppose the potential has rotational symmetry, i.e. that it depends only on r = ||q||.
Then H is invariant under the cotangent lift of the rotation action of G = S1. We had
seen that the moment map for this action is angular momentum, Φ(q, p) = p2q1 − q2p1.
In polar coordinates, (r, θ) on R2 and corresponding cotangent coordinates on T ∗R2,

H(r, θ, pr, pθ) =
1

2
(p2
r +

1

r2
p2
θ) + V (r)

and Φ = pθ. The symplectic form on T ∗R2 is ω = dr ∧ pr + dθ ∧ pθ. Every value
µ 6= 0. is a regular value of Φ (since S1 acts freely on the set where pθ = r2θ̇ 6= 0).
On ι : Φ−1(µ) ↪→ T ∗R2 the second term disappears, i.e. ι∗ω = dr ∧ pr. It follows that
Mµ
∼= T ∗R>0 symplectically, and the reduced Hamiltonian is

Hµ(r, pr) =
1

2
p2
r + Veff(r)

with the effective potential,

Veff(r) = V (r) +
µ2

2r2
.

Using conservation of energy

p2
r

2
+ Veff(r) =

ṙ2

2
+ Veff(r) = E,

i.e. ṙ2 = 2(E − Veff(r)), one obtains the solution in implicit form,

t− t0 =

∫ r

r0

dr√
2(E − Veff(r))

.

Using r2θ̇ = pθ = µ, one also obtains a differential equation for the trajectories,

∂r

∂θ
=
r2

µ

√
2(E − Veff(r)),

16We will omit this discussion in class
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with solutions,

θ − θ0 =

∫ r

r0

µdr

r2
√

2(E − Veff(r))
.

In the special case V (r) = −1
r

(Kepler problem) this integral can be solved and leads to
conic sections – see any textbook on classical mechanics.

8.3. Reduction in stages. As a special case of “reduced Hamiltonian” one sometimes
has a reduced moment map. For the simplest situation, suppose G,H are Lie groups,
and (M,ω) is a Hamiltonian G×H-space, with moment map

(Φ,Ψ): M → g∗ × h∗.

The equivariance of the moment map means, in particular, that Φ is H-invariant and Ψ
is G-invariant.

Let µ be a regular value of Φ, and that the Gµ-action on Φ−1(µ) is free and proper,
so that the reduced space Mµ is defined.

Proposition 8.12. The action of H on the G-reduced space Mµ is Hamiltonian,
with moment map

Ψµ : Mµ → h∗

given by π∗Ψµ = ι∗Ψ.

We leave the proof as an exercise.

Proposition 8.13 (Reduction in Stages). Suppose µ is a regular value of Φ and
(µ, ν) a regular value for (Φ,Ψ). Then ν is a regular value for Ψµ. If Gµ acts freely
and properly on Φ−1(µ) and Gµ×Hν acts freely and properly on Φ−1(µ)∩Ψ−1(ν),
then Hν acts freely and properly on Ψ−1

µ (ν), and there is a natural symplectomor-
phism

(Mµ)ν ∼= M(µ,ν).

Proof. If Gµ acts with finite (resp. trivial) stabilizers on Φ−1(µ) and Gµ × Hν acts
with finite (resp. trivial) stabilizers on Φ−1(µ) ∩ Ψ−1(ν), the same is true for the Hν-
action on Ψ−1

µ (ν). This proves the first part since a level set having finite stabilizers is
equivalent to the level being a regular value. The second part follows because the natural
identifications

(Mµ)ν = Ψ−1
µ (ν)/Hν = (Φ−1(µ) ∩Ψ−1(ν))/(Gµ ×Hν) = M(µ,ν)

all preserve 2-forms. �
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8.4. The cotangent bundle of a Lie group. Recall that a Lie group G acts on itself
by left multiplication,

g · a = ga,

with generating vector fields −ξR. It also acts on G by right multiplication

h · a = ah−1

with generating vector fields ηL. These two actions commute, and define a G × G-
action on G (where the first factor corresponds to left multiplication, the second to right
multiplication), with generating vector fields

(ξ, η) 7→ ηL − ξR.

By cotangent lift, we obtain a Hamiltonian G×G-action on T ∗G. The moment map

(Φ,Ψ): T ∗G→ g∗ × g∗

is described using contractions of the canonical 1-form θ ∈ Ω1(T ∗G) with the cotangent
lifts ηLT ∗ − ξRT ∗ . but we would like a somewhat more concrete description.

To this end shall use left-trivialization of the tangent and cotangent bundles. For the
tangent bundle, the left trivialization

TG
∼=−→ G× g

is given by the inverse of the map (g, ξ) 7→ ξL(g). Recall that the left-invariant Maurer-
Cartan form θL ∈ Ω1(G, g) is defined as ι(ξL)θL = ξ. by left-invariant 1-forms. We
hence see that left trivialization is described in terms of the Maurer-Cartan form as
v 7→ (g, θLg (v)), for v ∈ TgG.

Dual to the left-trivialization of TG there is the left trivialization of T ∗G

T ∗G
∼=−→ G× g∗.

The cotangent lift of the left-and right actions are given in this triviaization by

g · (a, µ) = (ga, µ), h · (a, µ) = (ah−1, h · µ)

(with the coadjoint action µ 7→ h · µ). We read off the generating vector fields

−ξRT ∗ = (−ξR, 0), ηLT ∗ = (ηL, ηg∗).

Lemma 8.14. The canonical 1-form θ ∈ Ω1(T ∗G) is described in left trivialization by
the 1-form 17

〈µ, θL〉 ∈ Ω1(G× g∗).

17In the following expression, θL lives on the first factor of G×g∗, and µ is understood as the variable
on the second factor. More pedantically, letting pr1 : G×g∗ → G, pr2 : G×g∗ → g∗ the two projections,
it is given by 〈pr2,pr∗1 θ

L〉.
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Proof. Recall that the canonical 1-form is characterized by the property that it vanishes
on vertical vector fields, and its contractions with cotangent lifts of Y ∈ X(Q) satisfy

ι(YT ∗)θ|µ = 〈µ, Y |q〉
for all µ ∈ T ∗qQ.

The 1-form θ̃ = 〈µ, θL〉 vanishes on vertical vectors, and its contractions with cotangent
lifts of left-invariant vector fields are, for µ ∈ g∗ = T ∗gG

ι(ηLT ∗)θ̃ = 〈µ, η〉.
This is the pairing of µ ∈ g∗ = T ∗gG with ηL|g ∈ TgG under left trivialization. �

Using this description, we can compute the contractions of our generating vector fields
with the canonical 1-form, and hence reas off the moment map:

Proposition 8.15. The moment map (Φ,Ψ) for the G×G-action on T ∗G is given
in left trivialization by

Φ(g, µ) = g · µ, Ψ(g, µ) = −µ.

Proof. We have 〈Φ, ξ〉 = ι(ξRT ∗)θ, 〈Ψ, η〉 = −ι(ηLT ∗)θ. In left trivialization, this becomes

〈Φ, ξ〉|(g,µ) = 〈µ,Adg−1 ξ〉 = 〈g · µ, ξ〉, 〈Ψ, η〉|(g,µ) = −〈µ, η〉.
�

Remark 8.16. To remember which of these moment map components correspond to the
left action, and which to the right action, recall that the moment map for the right-
action must be left-invariant (since left and right actions commute). That is, in left
trivialization the moment map for the right-action must be constant.

Note that each of the two factors in G×G acts freely on T ∗G. (The action of the full
group G×G is not free.) In particular, every ν ∈ g∗ is a regular value for both moment
maps.

Theorem 8.17. The symplectic reduction (T ∗G)−ν by the right action, with G-
action inherited from the left-action, is the coadjoint orbit O = G · ν with its KKS
symplectic form.

Proof. The left action of G on the level set Ψ−1(−ν) is free and transitive, and the action
on the quotient Ψ−1(−ν)/Gν has stabilizer conjugate to Gν . The moment map induced
by ΦL identifies gives a symplectomorphism onto O = G · ν. �

Of course, the reduced spaces with respect to the left action are coadjoint orbits as
well: the cotangent lift of the inversion map G→ G, g 7→ g−1 exchanges the roles of the
left- and right action.
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Theorem 8.18. Let (M,ω,Φ) be a Hamiltonian G-space. Let G act diagonally
on T ∗G ×M , where the action on T ∗G is the right action. Consider the reduced
space at 0 as a Hamiltonian G-space, with G-action induced from the left-G-action
on T ∗G. Then there is a canonical isomorphism of Hamiltonian G-spaces,

(T ∗G×M)//G ∼= M

Proof. Use left trivialization T ∗G = G × g∗. The moment map for the left G-action on
T ∗G×M is

Φ1 : (a, µ,m) 7→ g · µ
while that for the diagonal G-action is

Φ2 : (a, µ,m) 7→ Φ(m)− µ.

Let i : Z → T ∗G × M be the zero level set Z = Φ−1
2 (0) for the diagonal action. It

consists of elements of the form (a,Φ(m),m), with the G-action h · (a,Φ(m),m) =
(ah−1, h · Φ(m), h ·m). We hence see that Z/G = M , with the quotient map

π : Z →M, (a,Φ(m),m) 7→ a ·m.

The inclusion

j : M → T ∗G×M, m 7→ (e,Φ(m),m)

is an embedding as a symplectic submanifold, contained in Z. Since π ◦ j = idM , it
follows that (T ∗G×M)//G = M as a symplectic manifold.

This quotient map intertwines the left G-action with the given action on M :

π(g · a,Φ(m),m) = g · π(a,Φ(m),m).

Furthermore, the moment map Φ1 descends to Φ:

Φ1 ◦ i = Φ ◦ π.

This completes the proof. �

A modification of this construction allows us to construct Hamiltonian G-spaces from
Hamiltoian spaces for any subgroup. LetH be a closed subgroup ofG, and let (N,ωN ,ΦN)
be a Hamitlonian H-space. Then T ∗G×N is a Hamiltonian G×H-space, and

(T ∗G×N)//H

is a Hamiltonian G-space. Note that the H-action on T ∗G × N is free (and proper)
since the action on the first factor is. Hence, the symplectic quotient is a well-defined
symplectic manifold. The map T ∗G × N → G given by bundle projection for the first
factor descends to a map (T ∗G × N)//H → G/H, making the reduction into a fiber
bundle over G×H.
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Exercise 8.19. Suppose h ⊆ g admits an H-invariant complementary subspace p, so
g = h⊕p (as vector spaces). Show that IndGH(N) contains N as an H-invariant symplectic
submanifold, and

(T ∗G×N)//H = (G× (ann(h)×N))/H

as a fiber bundle over G/H.

Note that (T ∗G×N)//H is non-compact, in general, even when N is compact.

8.5. Normal forms near the zero level set. Let (M,ω,Φ) be a Hamiltonian G-space,
where G is a compact Lie group. If 0 is a regular value of the moment map then so are
nearby values µ ∈ g∗. What is the relation between M0 and reduced spaces Mµ at nearby
values?

To investigate this question we describe the reduction process in terms of a normal
form. Let

i : Z = Φ−1(0)→M

be the inclusion of the zero level set. Since 0 is a regular value, the level set is a closed
submanifold, and the G-action on Z is locally free.

Lemma 8.20. There exists a Lie algebra valued 1-form

α ∈ Ω1(Z, g),

which is G-equivariant
A∗gα = Adg−1 α, g ∈ G

and satisfies
ι(ξZ)α = ξ.

for all ξ ∈ g.

In the terminology of principal bundles, α is a connection 1-form.

Proof. Since the G-action is locally free, the map

Z × g→ TZ, (m, ξ) 7→ ξZ(m)

is an inclusion as a G-invariant subbundle. Choose a G-invariant Riemannian metric on
Z (such a metric may be constructed by averaging), and let

α̃ : TZ → Z × g

be the corresponding orthogonal projection onto this subbundle. We may regard α̃ as
a g-valued 1-form on Z, α̃(v) = (m, ι(v)α|m). The G-equivariance of α̃ corresponds to
G-equivariance of α, and the property ι(ξZ)α = ξ holds since α̃ restricts to the identity
on Z × g. �

Remark 8.21. The lemma, and the discussion below, holds more generally if G is not
necessarily compact but the G-action on Z is proper, since it is still possible to find a
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G-invariant Riemannian metric in this case. (However, the construction is more tricky
since averaging over G is not defined.)

Using α, we construct the local normal form near the zero level set. The normal form
is given by the product Z × g∗, with the diagonal G-action, and with the G-equivariant
map

Ψ: Z × g∗ → g∗, (m,µ) 7→ µ

given by projection to the second factor, and with the closed G-invariant 2-form

σ = i∗ω + d〈Ψ, α〉.

(Here i∗ω, α are regarded as forms on the product Z × g∗; more accurately one should
write pr∗1 i

∗ω, pr∗1 α.)

Theorem 8.22 (Local normal form near the zero level set). (a) The 2-form
σ ∈ Ω2(Z × g∗) satisfies

ι(ξZ×g∗)σ = −d〈Ψ, ξ〉
for all ξ ∈ g. It is nondegenerate (i.e. symplectic) on some neighborhood
of Z × {0}.

(b) There exists an equivariant symplectomorphism between neighbourhoods of
Z in M and in Z × g∗, intertwining the two moment maps.

Proof. We have

ι(ξZ×g∗)σ = i∗ι(ξZ)ω + ι(ξZ×g∗)d〈Ψ, α〉
= −i∗dΦ, ξ〉+ L(ξZ×g∗)〈Ψ, α〉)− dι(ξZ×g∗)〈Ψ, α〉

The first term vanishes since i∗d〈Φ, ξ〉 = d〈i∗Φ, ξ〉 = 0. The second term vanishes since
the 1-form 〈Ψ, α〉 is G-invariant. Finally, ι(ξZ×g∗)〈Ψ, α〉 = 〈Ψ, ξ〉 since ξZ×g∗ = ξZ + ξg∗
and ι(ξZ)α = ξ. We conclude ι(ξZ×g∗)σ = −d〈Ψ, ξ〉.

To show that σ is nondegenerate near Z ×{0}, it suffices to show that it is nondegen-
erate at all points (m, 0) ∈ Z × {0}. But

T(m,0)(Z × g∗) = TmZ × g∗ = ker(αm)⊕ (g⊕ g∗),

where g is included via the generating vector fields. Note also that since Ψ vanishes on
Z,

σm = (i∗ω)m + 〈dΨ|m, αm〉.
The first summand (i∗ω)m restricts to a nondegenerate symplectic form on ker(αm) and
vanishes on all vectors of (g⊕ g∗). The second summand vanishes on vectors of ker(αm)
and restricts to a nondegenerate symplectic form on g ⊕ g∗ (in fact, it restricts to the
standard symplectic form there). This shows that (T(m,0)(Z × g∗), σ(m,0)) is the a direct
sum of symplectic vector spaces; in particular σ(m,0) is symplectic.
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b) By the G-equivariant version of the co-isotropic embedding theorem (Theorem 5.18)
it follows that neighborhoods of Z in M and of Z in X are equivariantly symplectomor-
phic. Since both moment maps vanish on Z, it is automatic that the symplectomorphism
intertwines the moment maps. �

Remark 8.23. We can view Z×g∗ also as a quotient (Z×T ∗G)/G, using left trivialization
to identify T ∗G ∼= G× g∗; the G-action on Z × g∗ is induced from the cotangent lift of
the right G-action.

Suppose the G-action on Z = Φ−1(0) is free, so that M0 is a symplectic manifold.
The model shows that the G-action is free on some open neighborhood of Z. (This also
follows since for any G-manifold, the subset where G acts freely is open.) We may hence
compare M0 with the reduced spaces Mµ for ‘small’ µ. In the model,

Ψ−1(µ) = Z × {µ},

and so

Ψ−1(µ) = (Z × {µ})/Gµ
∼= Z/Gµ.

We can write this quotient also as

Z/Gµ = (Z ×G/Gµ))/G

which is a fiber bundle over Z/G = M0 with fiber a coadjoint orbit O = G · µ = G/Gµ.

8.6. The symplectic slice theorem.

8.6.1. The slice theorem for G-manifolds. Let G be a compact Lie group, and H a closed
subgroup.

Every G-equivariant vector bundle over the homogeneous space G/H is of the form

E = G×H W ≡ (G×W )/H

where W is an H-representation, the quotient is taken by the H-action h.(g, w) =
(gh−1, h.w) and theG-action is given by g1.[g, w] = [g1g, w]. Indeed, given aG-equivariant
vector bundle E → G/H one defines W = Em to be the fiber over the identity coset
m = eH. The map G ×H W 7→ E, [g, w] 7→ g.w is a well-defined, equivariant vector
bundle isomorphism.

For example, suppose M is a G-manifold, and O = G · m ⊆ M an orbit for the G-
action. Then the normal bundle ν(M,O) is a G-equivariant vector bundle. Let H = Gm

so that O = G/H. Then

ν(M,O) = G×H W
with the slice representation of H on

W = TmM/Tm(G.m)

Using a G-equivariant tubular neighborhood embedding ν(M,O) ⊃ U →M , we obtain:
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Theorem 8.24 (Slice theorem). Let G be a compact Lie group, and let M be
a G-manifold. There exists a G-equivariant diffeomorphism from an invariant
open neighborhood of any orbit O = G.m to a neighborhood of the zero section of
E = G×HW , where H = G.m with slice representation on W = TmM/Tm(G.m).

Corollary 8.25. Every G-orbit O = G/H ⊆M has an invariant open neighbour-
hood U with the property that all stabilizer groups Gx, x ∈ U are G-conjugate to
subgroups of H = G.m. In particular, if M is compact there are only finitely many
conjugacy classes of stabilizer groups.

Proof. Identify some neighborhood of the orbit with the model E = G×HW . Let x = g.y
with y ∈ W . Then Gx = Adg(Gy). But Gy is a subgroup of H, since it preserves the
fiber W = Em. �

In the special case that G is abelian (e.g., a torus), the conjugation is trivial. We
hence conclude that for an action of an abelian Lie group on a compact manifold, the
set of stabilizer subgroups H ⊆ G is finite.

Definition 8.26 (Orbit types). For any subgroup H of G one denotes its conjugacy
class by (H), and calls the G-invariant subset

M(H) = {m ∈M |Gm is G-conjugate to H},
the points of orbit type (H). One also defines

MH = {m ∈M |Gm ⊃ H}, MH = {m ∈M |Gm = H}.

Proposition 8.27. The connected components of M(H),MH and MH are smooth
submanifolds of M .

Proof. Any orbit O ⊆ M(H) contains a point m ∈ M with Gm = H. In the model
E = G×H W near O, we have

E(H) = G×H WH = G/H ×WH

since WH is a vector subspace of W , this is clearly a smooth subbundle of E. The
connected components of MH are smooth submanifolds, since for all m ∈MH , a neigh-
borhood is H-equivariantly modeled by the H-action on TmM and (TmM)H is a vector

subspace. The closure M
H

is a union of connected components of MH . Since MH is
open in its closure, it is in particular a submanifold. �
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The decomposition

M =
⋃
(H)

M(H)

is called the orbit type stratification of M . Using the slice theorem, one can show that
it is indeed a stratification in the technical sense. Note that since each M(H)/G is a
(union of) smooth manifolds, it induces a decomposition (in fact, a stratification) of the
(usually singular) orbit space M/G into smooth manifolds.

8.6.2. The slice theorem for Hamiltonian G-manifolds. In symplectic geometry one can
go one step further and try to equip the total space to the normal bundle with a symplec-
tic structure. Thus let (M,ω,Φ) be a Hamiltonian G-space. Assume that m ∈ Φ−1(0)
is in the zero level set. This implies that the orbit is an isotropic submanifold:

TmO ⊆ ker(TmΦ) = TmOω

where the first inclusion holds since Φ vanishes on O. The symplectic vector space

V = (TmO)ω/TmO
with the action of H = Gm is called the symplectic slice representation at m.

To describe a model around the orbit O, consider the T ∗G as a Hamiltonian G×H-
space, with the cotangent lift of the action (g, h) · a = gah−1. It allows us to elevate any
Hamiltonian H-space (N,ωN) to a Hamiltonian G-space (T ∗G×N)//H. We shall apply
this construction to linear symplectic representations.

Definition 8.28. Let H act on a symplectic vector space (V, ωV ) by linear symplec-
tic transformations, and let

ΦV : V → h∗, 〈Φ(v), ξ〉 = −1

2
ω(v, ξ.v)

be its moment map (cf. 7.4.3). The symplectic quotient

E = (T ∗G× V )//H

is called the model defined by V . We let ΦE : E → g∗ be the moment map for
the G-action on E inherited from the cotangent lift of the left-G-action on T ∗G.

The orbit O = G/H is naturally embedded as an isotropic submanifold of E, namely
as the zero section of T ∗G//H = T ∗(G/H). Its symplectic normal bundle in E is an
associated bundle, G×H V .

Remark 8.29. Suppose H is compact. Then we may choose an H-invariant complement
p to h ⊆ g, for example the orthogonal complement for an H-invariant inner product.
Dually we obtain

g∗ = ann(h)⊕ ann(p) = ann(h)⊕ h∗.

Identify T ∗G = G × g∗ using left trivialization. The zero level set for the H-action
consists of points (g, µ, v) such that − prh∗ µ+ΦV (v) = 0. In terms of the decomposition
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of g∗, it consists of points (g,ΦV (v) + ν, v) with ν ∈ ann(h), and is therefore isomorphic
to G× ann(h)× V . Thus

E ∼= G×H (ann(h)× V ).

In this description the moment map ΦE is given by

ΦE([g, ν, v]) = g.(ν + ΦV (v)).

We stress that this identification depends on the choice of splitting.

Theorem 8.30 (Symplectic slice theorem). Let (M,ω,Φ) be a Hamiltonian G-
manifold, and

O = G.m ⊆ Φ−1(0)

an orbit in the zero level set. There exists a G-equivariant symplectomorphism
between neighbourhoods of O in M and in the model E defined by the symplectic
slice representation V = TmOω/TmO of H = Gm, intertwining the two moment
maps.

Proof. This follows from (equivariant version of) the constant rank embedding theorem:
The symplectic normal bundles of O in both spaces are G×H V . �

Remark 8.31. The symplectic slice theorem is extremely useful: For example we obtain
a model for the singularities of M//G in case 0 is a singular value. Indeed, by reduction
in stages we have

(T ∗G× V//H)//G = (T ∗G× V//G)//H = V//H

which shows that the singularities are modeled by symplectic reductions of unitary rep-
resentations. Since the moment map for a unitary representation is homogeneous, the
zero level set Φ−1

V (0) is a cone and hence the singularities are conic singularities. This
discussion can be carried much further, see the paper Sjamaar-Lerman [41].

Proposition 8.32. Let (M,ω,Φ) be a Hamiltonian G-space, H ⊆ G a closed
subgroup. The connected components of MH and MH are symplectic submanifolds
of M . For every connected open subset U ⊆MH , the image Φ(U) is an open subset
of an affine subspace µ+ ann(h)H ⊆ g∗ for some µ ∈ (g∗)H .

Proof. For all m ∈ MH , the tangent space Tm(MH) is equal to (TmM)H . But for any
symplectic representation V of a compact Lie group H, the subspace V H is symplectic.
(Proof: Choose an H-invariant compatible complex structure. Then V H is a complex,
hence symplectic, subspace.) This shows that MH and the open subset MH ⊆ MH are
symplectic.

The second part follows from the local model, or alternatively follows: Let Z = ZG(H)
be the centralizer and K = NG(H) the normalizer of H in G, respectively. Thus Z ⊆
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K ⊆ G and z = kH = gH . Dually, identify z∗ = (k∗)H = (g∗)H . By equivariance of the
moment map, Φ(MH) ⊆ Φ(MH) ⊆ (g∗)H = z∗. The action of K ⊆ G preserves MH .
Its moment map Ψ : MH → k∗ is the restriction of Φ followed by projection g∗ → k∗,
but since it takes values in (k∗)H = z∗ it is actually just the restriction of Φ. Since
ranTmΨ = annk∗(h) = ann(h)H is independent of m ∈ U , we conclude that Φ(U) is an
open neighborhood of Φ(m) in Φ(m) + ann(h)H . �
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9. Hamiltonian torus actions

Throughout this section, we will consider the case that the group G is compact, con-
nected and abelian, i.e. a torus T .

9.1. Duistermaat-Heckman theorem. Let (M,ω,Φ) be a Hamiltonian T -space, and
suppose 0 is a regular value of the moment map. As discussed in Section ??, we have
the local model

Z × t∗, σ = i∗ω + d〈Ψ, α〉
near the zero level set. Suppose for simplicity that the T -action on Z = Φ−1(0) is free,
so that M0 = M//T is a symplectic manifold. Since the coadjoint action on t∗ is trivial,
the reduced spaces of Z × t∗ at nearby values µ are diffeomorphic:

Mµ
∼= Z/T

Writing

σ = π∗ω0 + 〈dΨ, α〉+ 〈Ψ, dα〉
we see that the pullback under jµ : Z → Z × {µ} ⊆ Z × t∗ is given by

j∗µσ = π∗ω0 + 〈µ, dα〉.

The t-valued 2-form 〈µ, dα〉 is basic for the projection Z → Z/T , since it is T -invariant
and

ι(ξZ)dα = L(ξZ)α− dξ = 0.

Hence it descends to a t-valued 2-form M0 = Z/T denoted

Fα ∈ Ω2(M0, t).

This is the curvature form of the connection α. As a consequence we find that the
symplectic form on Mµ = Z/T changes according to

ωµ = ω0 + 〈µ, Fα〉
Observe that this change is linear in µ. This result depends on our identification of
Mµ
∼= M0. This identification is not natural, since it depends on the symplectomorphism

of neighbourhoods of Z in M and in the model Z × t∗. But any two such identifications
are related by an isotopy of M0. Since cohomology classes are stable under isotopies,
it makes sense to compare cohomology classes, and the above discussion proves the
following result.

Theorem 9.1 (Duistermaat-Heckman). The cohomology class of the symplectic
form changes according to

[ωµ] = [ω0] + 〈µ, c〉
where c ∈ H∗(M0)⊗ t is the first Chern class of the torus bundle Φ−1(0)→M0.

In particular this change is linear in µ. As a consequence one has:
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Corollary 9.2. Let (M,ω,Φ) be a Hamiltonian T -space, and let U be a connected
component of the set of regular values of Φ. Suppose the T -action on Φ−1(U) is
free. Then the volume function U → R, µ 7→ Vol(Mµ) is given by a polynomial of
degree at most k = 1

2
dimM − dimT .

Proof. The reduced spaces have dimension

dimMµ = dimZ − dimT = dimM − 2 dimT = 2k.

Let us prove polynomiality near a given point µ0 ∈ U . Replacing Φ with Φ−µ0, we may
assume µ0 = 0. The volume of reduced spaces near µ0 = 0 is obtained by integrating

1

k!
[ωµ]k =

1

k!
([ω0] + 〈µ, c〉)k

over Z/T . As a function of µ ∈ t∗, this expression is a polynomial on t∗ of degree k,
hence so is its integration. �

The assumption that the T -action on Φ−1(U) is free is somewhat strong. One obtains
a more general version of the theorem by considering the Liouville volume form 1

n!
ωn on

M and the associated measure on M .

Definition 9.3. Let (M,ω,Φ) be a compact Hamiltonian T -space. The push-
forward measure

% = Φ∗

∣∣∣∣ 1

n!
ωn
∣∣∣∣

on t∗ is called the Duistermaat-Heckman measure.

Remark 9.4. We recall that a measure % on a topological space X may be defined as a
continuous linear functional on the space of compactly supported continuous functions,
usually written as an integral

〈%, f〉 =

∫
X

f %.

For Rn one has the translation invariant measure |dx| as in the definition of Riemann’s
integral. Similarly, on vector spaces one can consider translation invariant measures;
these are unique up to a constant. At another extreme, given x0 ∈ X one can consider
the delta-measure δx0 given by f 7→ f(x0).

For a continuous proper map Φ: X → Y to another topological space, one defines a
push-forward measure Φ∗% by

∫
Y
g(Φ∗%) =

∫
X

(Φ∗g)%. If X, Y are manifolds, Φ is smooth,
and % is a smooth measure, then Φ∗% is a smooth measure over the set of regular values
of Φ. By contrast, if Φ is a constant map onto a point y0, then Φ∗% will be a mukltiple
of the delta-measure at y0.
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Hence, the Duistermaat-Heckman measure % on t∗ is smooth on the set of regular
values of Φ. In other words, on each such component it is given by a smooth function
times a ‘constant’ measure m on t∗. If the T -action on Φ−1(U) is free, then this function
is just the volume function µ 7→Mµ, up to a constant depending on the choice of m.

Exercise 9.5. Verify this claim, using the normal form.

For other components, the DH measure is ‘essentially’ the volume function, but Mµ

must now be interpreted as an orbifold.

Theorem 9.6 (Duistermaat-Heckman). Let (M,ω,Φ) be a compact Hamiltonian
T -space. On each component of the set of regular values of Φ, the measure % is a
polynomial function of degree ≤ k = 1

2
dimM − dimT times the constant measure

on t∗.

Exercise 9.7. Use the local model to prove this theorem.

Example 9.8 (Archimedes ?). Consider the 2-sphere S2 ⊆ R3 with its standard rotation
invariant volume form ω of total integral 4π. Letting Φ: S2 → R be projection to the
z-axis, π(x, y, z) = z, we obtain the measure

% = Φ∗|ω|

supported on [−1, 1], given by the constant measure 2π|dz| on (−1, 1). This is easily
checked in cylindrical coordinates,where

ω = dφ ∧ dz.

It may be seen as a special case of Duistermaat-Heckman since Φ can be regarded as the
moment map for a Hamiltonian circle action on S2.

9.2. The Atiyah-Guillemin-Sternberg convexity theorem. The convexity theo-
rem for Hamiltonian T -spaces was proved independently by Atiyah [4] and Guillemin-
Sternberg [18]. The argument presented below is similar to that in [18], see also [19].

9.2.1. Motivation. As a motivating example, which on first sight seems quite unrelated
to symplectic geometry, consider the following problem about complex self-adjoint (i.e.,
Hermitian) matrices. Let λ = (λ1, . . . , λn) ∈ Rn be an n-tuple of real numbers, and let
O(λ) be the set of all self-adjoint complex n× n-matrices having eigenvalues λ1, . . . , λn.
Let π : O(λ)→ Rn be the projection to the diagonal.

Theorem 9.9. The image π(O(λ)) is the convex hull

∆ = hull{(λσ(1), . . . , λσ(n)), σ ∈ Sn}
where Sn is the permutation group.
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This and related results were proved by Schur and Horn, later greatly generalized by
Kostant and Heckman.

The relation to symplectic geometry is as follows. First, instead of self-adjoint matrices
we can equivalently consider skew-adjoint matrices, i.e. the Lie algebra g of G = U(n).
Since all matrices with given eigenvalues are conjugate, O(λ) is an orbit for the action
of U(n). Using the inner product

(A,B) = tr(A†B) = − tr(AB)

we can also view it as a coadjoint orbit.
The projection π is just orthogonal projection onto the diagonal matrices, which are

a maximal commutative subalgebra t ⊆ g. Using the inner product to identify t ∼= t∗ it
becomes the moment map

Φ: O → t∗

for the induced T ⊆ G action. For this reason the Schur-Horn theorem can be viewed as
a convexity theorem for Hamiltonian torus actions on coadjoint orbits of U(n). Nothing
is special about U(n), analogous results hold for arbitrary compact groups. That is, if
G is a compact Lie group and T ⊆ G its maximal torus, then the image of O ⊆ g∗

under projection g∗ → t∗ is a convex polytope given as the convex hull of O ∩ t∗. In
fact, as it turns out, this type of result generalizes to moment map images for arbitrary
Hamiltonian T -spaces.

9.2.2. Moment map images of symplectic torus representations. We need the notion of
weights for a symplectic torus representation. Let T be a torus, and Λ ⊆ t its integral
lattice:

Λ = {ξ ∈ t| exp(ξ) = e}.
A unitary representation of T on C is the same as a group morphism

T → U(1) ∼= S1 = R/Z
Its differential defines a map t→ R, which restricts to a morphism of lattices, α : Λ→ Z
called the weight of the representation. One calls

Λ∗ = Hom(Λ,Z) ⊆ t∗

the weight lattice. Conversely, given α ∈ Λ∗ one defines a 1-dimensional representation
Cα by

exp(ξ) · z = e2πi〈α,ξ〉 z.

By Schur’s Lemma, any unitary representation of T on a Hermitian vector space V splits
into a direct sum of 1-dimensional representations18, Thus

V ∼= ⊕nj=1Cαj

18Proof: The elements of T act as commuting operators on V . Hence they have a joint eigenvector
v. The span of v is T -invariant, hence so is its orthogonal complement V ′. Now proceed by induction:
Pick a joint eigenvector in V ′, etc.
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where αj are called the weights of V . Given a symplectic vector space V with a symplec-
tic T -representation, one chooses a G-invariant compatible complex structure J , which
makes V into a unitary T -representation. The weights αj for this representation are
independent of the choice of J , since any two J ’s are deformation equivalent.19 They are
called the weights of the symplectic T -representation.

Lemma 9.10. Let (V, ωV ,ΦV ) be a symplectic T -representation with moment map
(see Proposition 7.20)

〈ΦV (v), ξ〉 = −1

2
ω(v, ξ v).

The image of the moment map ΦV is a convex, rational polyhedral cone spanned
by minus the weights αj ∈ Λ∗ of the representation:

ΦV (V ) = − cone{α1, . . . , αn}
The map ΦV is open as a map onto its image, and has path connected fibers. Every
open neighborhood of 0 contains a T -invariant open neighborhood U such that ΦV |U
has path connected fibers.

Here we use the following notation, for any subset S = {v1, . . . , vk} of vectors in a real
vector space:

cone(S) = {t1v1 + . . . tkvk| vi ∈ S, ti ≥ 0}
(the convex cone generated by S).

Proof. By the discussion above, we may assume that V =
⊕

Cαj as a T -representation,
where each summand carries the standard symplectic structure on C ∼= R2. The moment
map for the S1 = R/Z-action on C = R2 is −π|z|2. Hence, the moment map for the
T -action on Cα for α ∈ Λ∗ is φα : Cα → t∗,

〈Φα, ξ〉 = −π〈α, ξ〉|z|2.
The moment map for the T -action on V =

⊕
Cαj becomes

〈ΦV , ξ〉 = −π
n∑
j−1

|zj|2αj.

from this, we readily read off the moment map image. The second claim follows by
writing ΦV as a composition of the map

Φ0 : (z1, . . . , zn) 7→ (|z1|2, . . . , |zn|2)

(which is easily seen to be open to its image, since the map z 7→ |z|2 is) with the linear
map (t1, . . . , tn) 7→ −π

∑
j tjαj.

19Proof: Recall that an inner product on V determines an ω-compatible complex structure in a
canonical way. Taking the metric to be invariant (as one may, by averaging), the resulting J will be
invariant. The interpolation between any two J ’s is obtained by interpolating between the associated
metrics.
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To see that the fibers are connected, we want to show the set of solutions z to∑
|zj|2αj = µ is connected, for any given µ. For this, it suffices to show that the

solutions set of
∑
xjαj = µ, xj ≥ 0 is connected. But this solution set is convex, and

hence is connected. The same argument works if we require
∑
|zj|2 < ε, leading to the

extra condition
∑
xj < ε. �

9.2.3. Local convexity. In order to understand how images of moment maps for Hamil-
tonian T -spaces look like, we first have to understand how they look like “locally”. We
will work with the symplectic slice theorem, Theorem 8.30, giving a local model for the
T -action near any orbit O = T · m0. This theorem uses the assumption O ⊆ Φ−1(0),
but this can be arranged by adding a constant to the moment map. Letting H = Tm0

be the stabilizer, we arrive at the model

E = (T × t∗ × V )//H

where V = (Tm0O)ω/Tm0O is a symplectic H-representation, and T × t∗ may be thought
of as the cotangent bundle of T , or as a quotient of t × t∗. The moment map for the
H-action on T ∗ × t∗ × V is

(t, τ, v) 7→ − prh∗(τ) + ΦV (v);

its zero level set is given by the condition prh∗(τ) = ΦV (v). On the other hand, the
moment map

ΦE : E → t∗

for the T -action on E is induced from the map (t, τ, v) 7→ Φ(m0) + τ . This shows that
the image of the moment map ΦE is given by

ΦE(E) = Φ(m0) + (prh∗)
−1(ΦV (V )).

Lemma 9.11. The image ΦE(E) ⊆ t∗ of the moment map for the local model is
the affine polyhedral cone

(26) Cm0 = Φ(m0)− (prh∗)
−1 cone{β1, . . . , βk}

Here βi ∈ h∗ are the weights for the Ho-action on V . The map ΦE is open as a
map onto its image, and has connected fibers. Every neighborhood of O = G/H in
E contains a T -invariant neighborhood U such that ΦE|U has connected fibers.

Proof. The map ΦV is also the moment map for the identity component Ho ⊆ H,
itself a torus. Hence, by Lemma 9.10 its image is of the form − cone{β1, . . . , βk} where
β1, . . . , βk ∈ h∗ are the weights for the H-action on V . The description of ΦE(E) follows.
The connectivity properties of fibers are similarly obtained from those of ΦV . �

We find it useful to make the following definition, for any Hamiltonian T -space (M,ω,Φ)
and any m0 ∈M :
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Definition 9.12. [40] The affine cone

Cm0 = Φ(m0)− (prh∗)
−1(cone{β1, . . . , βk})

where βi ∈ h∗ are the weights of the Ho-action on the symplectic vector space
Tm(T ·m0)ω/Tm(T ·m0), is called the local moment cone at m0 ∈M .

Note that the local moment cone always contains the affine subspace

Φ(m0) + ann(tm0) ⊆ t∗.

To summarize the discussion, we obtain:

Theorem 9.13 (Local convexity theorem). Let (M,ω,Φ) be a Hamiltonian T -
space, m0 ∈ M . Then there exists a T -invariant open neighborhood U of T ·m0

such that

• Φ|U is an open map to Cm0,
• the fibers of Φ|U are connected.

In the first item, the openness refers to the relative topology of Cm0 . In particular,
Φ(U) is an open neighborhood of the vertex m0 ∈ Cm0 .

9.2.4. The global convexity theorem. The global version of the convexity theorem is the
following result, obtained independently by Atiyah [4] and Guillemin-Sternberg [18]

Theorem 9.14 (Atiyah, Guillemin-Sternberg). Let (M,ω,Φ) be a compact con-
nected Hamiltonian T -space. Then all fibers of Φ are connected, and

∆ = Φ(M)

is a convex polytope. In fact, it is the convex hull of the image of the fixed point
set:

Φ(M) = hull(Φ(MT )).

Example 9.15. Consider the complex projective space M = CP (n) with its standard
Fubini-Study symplectic structure (as a symplectic reduction of Cn). The moment map
for the U(n+ 1)-action is Ψ: CP (n)→ u(n+ 1)∗ ∼= u(n+ 1) where

Ψ([z])ij = c
1

||z||2
zizj,

where c is a non-zero scalar depending on the choice of identification u(n+1)∗ ∼= u(n+1).
Restrict to the action of U(1)n ⊆ U(n + 1), corresponding to diagonal matrices with
entries (1, u1, . . . , un) down the diagonal where |ui| = 1. The corresponding moment
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map is

[z] 7→ c
1

||z||2
(|z1|2, . . . , |zn|2).

Ignoring c, its image is the standard n-simplex in Rn, spanned by the origin together
with the standard basis vectors:

(0, . . . , 0), (1, 0, . . . , 0), (0, 1, . . . , 0), (0, 0, . . . , 1).

(1
, 3)
-

(114)↑-
(3
,
4)

X
Example 9.16. Let G be a compact connected Lie group, and T ⊆ G a torus (e.g., a
maximal torus). Recall that coadjoint orbits O ⊆ g∗ are Hamiltonian G-spaces, with
moment map the inclusion O ↪→ g∗. Restricting the action, it becomes a Hamiltonian
T -space, with moment map the inclusion followed by projection g∗ → t∗ (dual to t ↪→ g).
The convexity theorem says that prt∗(O) ⊆ t∗ is a convex polytope, and is the convex
hull of prt∗(OT ). If T is a maximal torus, it is known that gT is exactly t. Dually, (g∗)T

is identified with t∗. In terms of this inclusiion t → g∗, we have that OT = O ∩ t∗, and
the polytope is

∆ = hull(O ∩ t∗).

For example, if G = U(n), with T ⊆ U(n) the diagonal matrices, the coadjoint orbits are
identified with self-adjoint matrices with a given set of eigenvalues, andO∩t∗ corresponds
to diagonal matrices with entries these eigenvalues (in any order). As a standard example
, for n = 3, consider the (co)-adjoint orbit of the matrix A = i diag(λ1, λ2, λ3) ∈ u(3) for
some λ1 > λ2 > λ3. This is of the form O = U(3)/T . The T -fixed points are given by
diagonal matrices with entries any permutation of λ1, λ2, λ3; there are six of them. The
image of the moment map is the convex hull of these points; note that it is contained
in the 2-dimensional affine subspace of R3 defined by x1 + x2 + x3 = λ1 + λ2 + λ3. The
resulting polytope looks something like this:
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-.
Here the vertices correspond to the fixed points. The edges correspond to matrices with
spectrum {λ1, λ2, λ3}, having one of the standard basis vectors e1, e2, e3 as an eigenvector,
with eigenvalue from this set. (There are 9 possibilities, but 3 of those edges lie in the
interior of the polytope.

Example 9.17 (Sub-example). Recall that the Grassmannian

Gr(2, 4)

of 2-dimensional subspaces in C4 is a coadjoint orbit O under the action of SU(4). Under
the identification of su(4)∗ ∼= su(4) with the space of trace-free self-adjoint 4×4-matrices,
we may take O to be the set of matrices A with eigenvalues ±1, each with multiplicity 2.
The correspondence with Gr(2, 4) assigns to any such matrix the space E = ker(A+ I).

Let T ⊆ G be the maximal torus, consisting of diagonal matrices diag(z1, z2, z3, z4)
with |zi| = 1 and

∏
zi = 1. A choice of lattice basis identifies t = R3, hence ∆ will be a

convex polytope in t∗ = R3.
For I ⊆ {1, 2, 3, 4} let CI be the corresponding coordinate subspace. The fixed point

set for the action on the Grassmannian are the coordinate subspaces such that I has
cardinality 2. There are six of them:

C(1,2), C(1,3), C(1,4), C(2,3), C(2,4), C(3,4).

If I, J have cardinality 2, I ∩ J has cardinality 1, then I ∪ J has cardinality 3, and the
2-dimensional subspaces E satisfying

CI∩J ( E ( CI+J

are preserved under a 2-dimensional subgroup of T . Thus TE is 2-dimensional, for E
is viewed as a point of Gr(2, 4). This corresponds to edges in the polytope, connecting
the vertices I, J . (For example, C(1,2),C(1,3) are connected by a 1=parameter family of
2-dimensional subspaces of C(1,2,3), all containing the axis C(1).

Finally, a 2-dimensional subspace E containing a coordinate line C(i) but not contained
in any 3-dimensional coordinate subspace has a 1-dimensional stabilizer, and corresponds
to a face of the polytope. Likewise, 2-dimensional subspaces that are contained in a
3-dimensional coordinate subspace (but not containing a lower-dimensional coordinate
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subspace) have 1-dimensional stabilizer as well. The resulting polytope is an octahedron
(6 vertices, 12 edges, and 8 faces).

(1
, 3)
-

(114)↑-
(3
,
4)

X

We shall outline two proofs of global convexity. The first is due to Condevaux-Dazord-
Molino [8], the second due to Guillemin-Sternberg. (Atiyah’s argument is very instructive
as well, but we won’t explain it here.)

Remark 9.18. A general local-to-global-principle, deducing the global convexity result
from local convexity (and generalizing the argument in [8]), was formulated by Hilgert-
Neeb-Planck [20]. See also [14, 22] for further developments.

9.2.5. Condevaux-Dazord-Molino argument. The first step is the following stability prop-
erty of local moment cones.

Proposition 9.19 (Condevaux-Dazord-Molino [8], Sjamaar [40]). Let (M,ω,Φ)
be a Hamiltonian T -space. Then all points in a path component of a given fiber
Φ−1(µ) have the same local moment cones:

Φ(m1) = Φ(m0) ⇒ Cm0 = Cm1 .

Proof. Consider first the linear version: Given a representation of T on V = Cn with
weights α1, . . . , αn, and given any v ∈ Φ−1(0), we will show that

Cv = C0 = − cone{α1, . . . , αn}.

Recall that the moment map is given by

Φ(z1, . . . , zn) = −π
∑
i

|zi|2αi,
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Let H = Tv, with Lie algebra h obtained from the weights as

ann(h) = span{αi| |zi|2 6= 0}.
Renumbering the coordinates, we may assume that αi ∈ ann(h) for i ≤ k and αi 6∈

ann(h) for i > k. Let V ′ ∼= Ck, V ′′ ∼= Vn−k be the corresponding coordinate subspaces.
Since exp(ξ) acts by scalars e2πi〈αi,ξ〉 on the i-th summand of Cn, we see that V ′ is

exactly the subspace fixed by Ho (the identity component of H). In particular,

T · v ⊆ V ′ ⊕ {0}.
The symplectic normal space

W = Tv(T · v)ω/Tv(T · v)

is the direct sum W = W ′ ⊕ W ′′, where W ′ is the symplectic normal space of T · v
as a submanifold of V ′ while W ′′ = V ′′ regarded as an H-representation. Since Ho

acts trivially on V ′, the corresponding weights for the action of H (if any) are all zero.
On the other hand, the normal weights for the Ho-action on V ′′ are the projections
βi = prh∗(αi), i > k. This shows that

Cv = − pr−1
h∗ cone{βk+1, . . . , βn}

which we may also write as

Cv = ann(h)− cone{αk+1, . . . , αn}.

But ann(h) = span{α1, . . . , αk}. Using again the condition Φ(v) = 0, we have
∑k

i=1 |z|2iαi =
0. Hence, each αi with i ≤ k is a positive linear combination of −α1, . . . ,−αk. This
shows

ann(h) = span{α1, . . . , αk} = − cone{α1, . . . , αk}
and completes the proof of Cv = C0. The proof for linear T -actions implies the analogous
result for the local models E = (T × t∗ × V )//H; the general case follows by passing to
the local models. �

Proof of global convexity theorem, Theorem 9.14 (after [8]). We may assume, with no loss
of generality, that the generic stabilizer for the T -action on M is trivial. This then means
that the local moment cones have dimension equal to dimT .

Introduce an equivalence relation on M , by declaring m0 ∼ m1 whenever m0,m1 are
in the same path component of a fiber of Φ. Let

M̌ = M/ ∼
the set of equivalence classes, with quotient map denoted π : M → M̌ . The moment
map descends to a map on the quotient:

Φ̌ : M̌ → t∗.

By Proposition 9.19 the local moment cone Cm of m ∈ M depends only on its image
x = m̌ ∈ M̌ , and will be denoted Cx.
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Claim. The quotient M̌ is Hausdorff space, and admits a finite covering by ‘charts’
Ǔ around points x ∈ M̌ such that Φ̌ restricts to a bijection from Ǔ onto an open
neighborhood of the vertex Φ̌(x) inside Cx. (Using the relative topology).

Proof of claim: By compactness, each fiber Φ−1(µ) has a finite number of components,
corresponding to the elements x ∈ Φ̌−1(µ). Choose disjoint open neighbourhoods U1

x

of these components. By compactness, and using the local convexity theorem, each
component π−1(x) ⊆ Φ−1(µ) may be covered by finitely many open subsets

Ui ⊆ U1
x

with the property that Φ|Ui has connected fibers and Φ(Ui) is an open neighborhood of
the vertex of Cx. Let Ox ⊆ Cx be an open neighborhood of the vertex, with the property
that Ox ⊆ Φ(Ui) for all i, and also Ox ⊆ Φ(Ui ∩ Uj) for every pair i, j such that Ui ∩ Uj
meets π−1(x). Let

Ux =
⋃
i

Ui ∩ π−1(O).

Then Ux is an open neighborhood of π−1(x), with Φ(Ux) = O, and Φ|Ux has connected
fibers. We let Ǔx = π(Ux). By construction, Φ̌ restricts to a bijection Ǔx → O. The
Ux corresponding to distinct elements of π−1(µ) are disjoint; as a consequence the cor-
responding sets Ǔx for distinct elements of π−1(µ) are disjoint. 20 This implies the
Hausdorff property, and finishes the proof of the claim.

We might call M̌ a polyhedral manifold of dimension dimT . It is not technically a
‘manifold with corners’, since the cones are not spanned by linearly independent vectors
in general, but we may still speak of smooth functions etc on M̌ . The map Φ̌ is a
morphism of affine polyhedral manifolds of the same dimension, and has maximal rank
everywhere. Hence, it is a local diffeomorphism onto its image.

To prove the convexity theorem, it remains to show that Φ̌ is actually a bijection
onto its image. (This will then show that the image is a compact and locally convex
polyhedral subset of t∗, and hence is convex.) This fact is certainly unsurprising since
we are dealing with an affine map, and since M̌ is compact. The detailed arguments in
[8] are somewhat technical, though, and we will skip this part. �

21

9.2.6. Guillemin-Sternberg argument. The original argument of Guillemin-Sternberg [18]
proceeded by first proving connectivity of the fibers of Φ. In turn, this was shown by
looking at Morse

20In more detail, if xn is a sequence with xn → x, and mn ∈ π−1(xn), we claim that mn ∈ Ux for n
sufficiently large. If not, we could construct a subsequence with mn 6∈ Ux for all n. A subsequence of
this subsequence converges. But then the limit m∞ most be in M −Ux, a contradiction to π(m∞) = x.

21This is roughly how far we got in Fall 2024. The rest of these notes are from 2000, and have not
been revised.
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We now come to the key observation of . Given ξ ∈ t consider the corresponding
component Φξ = 〈Φ, ξ〉 of the moment map. A value s ∈ R is called a local minimum
for Φξ if there exists m ∈M with Φξ(m) = s and Φξ ≥ s on some neighborhood.

Lemma 9.20 (Guillemin-Sternberg). Let (M,ω,Φ) be a compact connected Hamiltonian
T -space. Then all fibers of Φ are connected. Moreover, the function Φξ has a unique
local minimum/maximum.

We will prove this Lemma in the next section. For any subset S ⊆ t∗ and µ ∈ t∗ let

coneµ(S) = {µ+ t(ν − µ)| ν ∈ S}
be the cone over S at µ.

Proof of global convexity, after Guillemin-Sternberg. Since local convexity of a compact
set implies global convexity it suffices to prove

(27) Cm = coneΦ(m)(∆).

The inclusion ⊃ follows from local convexity. To see the opposite inclusion, we define,
for all ξ ∈ t, the affine linear functional fξ = 〈·, ξ〉 − 〈µ, ξ〉 on t∗. We have to show that
for all ξ,

fξ|Cm ≥ 0⇒ fξ|∆ ≥ 0.

But fξ ≥ 0 on Cm means, by the model, that 〈µ, ξ〉 is a local minimum for Φξ. By the
lemma, this has to be a global minimum, or equivalently fξ ≥ 0 on ∆. �

We obtain the following description of the faces and the “fine structure” of ∆. Let
H ⊆ T be in the (finite) list of stabilizer groups, and MH the points with stabilizer
H. Recall again that MH is an open subset of the symplectic submanifold MH . Each
connected component of MH is a Hamiltonian T -space in its own right, with H acting
trivially. Thus its moment map image is a convex polytope of dimension dim(T/H)
inside an affine subspace µ+ ann(h), with the corresponding component of MH mapping
to its interior. That is, the (open) faces of ∆ correspond to orbit type strata, and in
particular the vertices of ∆ correspond to fixed points MT . That is,

∆ = hull(Φ(MT ))

is the convex hull of the fixed point set. Note however that some of the polytopes Φ(MH)
get mapped to the interior of ∆. Thus ∆ gets subdivided into polyhedral subregions,
consisting of regular values of Φ.

Theorem 9.21. Let (M,ω,Φ) be a Hamiltonian T -space, with T acting effectively,
and ∆ ⊆ t∗ its moment polytope. For any closed face ∆i of ∆ of codimension
di, the pre-image Φ−1(∆i) is symplectic, and is a connected component of the
fixed point set for some di-dimensional stabilizer group Hi ⊆ T where hi is the
subspace orthogonal to ∆i. In particular, the vertices of ∆ correspond to fixed
point manifolds.
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Proof. We note that each Φ−1(∆i) ⊆M is closed and connected, by connectedness of the
fibers of Φ. Hence it is a connected component of some MHi , where ann(hi) is parallel
to ∆i. �

In particular, Hamiltonian torus actions on compact symplectic manifolds are never
fixed point free. (This shows immediately that the standard 2k-torus action on itself
cannot be Hamiltonian.)

Exercise 9.22. Let (M,ω,Φ) be a compact, connected Hamiltonian T -space where T acts
effectively. Let M∗ = M{e} be the subset on which the action is free. Show that M∗ is
connected, and that its image Φ(M∗) is precisely the interior of the moment polytope
∆ = Φ(M).

Let us assume that the image of Φ contains regular values. The images of the fixed
point manifolds for non-trivial stabilizer algebras define a subdivison of the polytope ∆
into chambers, given as the connected components of the set of regular values of Φ. By
the Duistermaat-Heckman theorem, the Duistermaat-Heckman measure

% = Φ∗

∣∣∣ωn
n!

∣∣∣
is polynomial on each of these chambers.

Remark 9.23. Duistermaat-Heckman [13] used this fact to derive a remarkable “exact
integration formula”, which we will in Section 9.4.

9.3. Some basic Morse-Bott theory. The proof of the fact that every component
f = Φξ of the moment map has a unique local minimum relies on the idea of viewing f
as a Morse-Bott function. For any function f ∈ C∞(M,R) on a manifold M , the set of
critical points is the closed subset

C = {m| df(m) = 0}.
For all m ∈ C there is a well-defined symmetric bilinear form on TmM , called the Hessian

d2f(m)(Xm, Ym) = (LX LY f)(m)

for all X, Y ∈ Vect(M). In local coordinates, the Hessian is simply given by the matrix
of second derivatives of f .

The function f is called a Morse function if C is discrete and for all m ∈ C the Hessian
is non-degenerate. More generally, f is called Morse-Bott if the connected components
Cj of C = {m| df(m) = 0} are smooth manifolds, and for all m ∈ Cj we have

ker(d2f(m)) = TmCj.
Given a Riemannian metric on M , consider the negative gradient flow of f , i.e. the
flow F t of the vector field −∇(f) ∈ Vect(M). For all connected components Cj we can
consider the sets

W j
+ = {m ∈M, lim

t→∞
F t(m) ∈ Cj}
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and

W j
− = {m ∈M, lim

t→∞
F t(m) ∈ Cj}.

If f is Morse-Bott then all W j
± are smooth manifolds, and one has natural finite decom-

positions

M = ∪jW j
− = ∪jW j

+

into unstable/stable manifolds. The dimension of W j
− (resp. W j

+) is equal to the di-

mension of Cj plus the dimension of the negative eigenspace of Hess(f), denoted nj±.
Thus

nj∓ = codim(W j
±).

The number nj− is called the index of Cj.

Proposition 9.24. If none of the indices nj− is equal to 1, there exists a unique critical

manifold of index 0, i.e. a unique local minimum of f . If moreover all nj+ 6= 1 then all
level sets f−1(c) are connected.

Proof. The condition nj− 6= 1 means that all W+
j of positive index have codimension at

least 2, so that their complement is connected. Hence there is a unique stable manifold
W+
j with n−j = 0. If in addition nj+ 6= 1, the set M∗ obtained from M by removing all

M j
+ with nj− > 0 and all M j

− with nj+ > 0 is open, dense and connected in M . Notice
that M∗ consists of all points which flow to the (unique) minimum of f for t→∞ and to
the (unique) maximum of f for t→ −∞. If min(f) < c < max(f) then every trajectory
of the gradient flow of a point in M∗ intersects f−1(c) in a unique point. Therefore the
map

(f−1(c) ∩M∗)× R→M∗, (m, t)→ F t(m)

is a diffeomorphism, and in particular f−1(c)∩M∗ is connected. To prove the proposition
it suffices to show that f−1(c)∩M∗ is dense in f−1(c). Let m ∈ f−1(c) and U a connected
open neighborhood of m. Since c is neither maximum or minimum, U ∩M∗ meets both
the sets where f < c and f > c, and since it is connected it meets f−1(c). �

Returning to the symplectic geometry context, we need to show:

Theorem 9.25. Let (M,ω,Φ) be a Hamiltonian G-space, ξ ∈ g. Then f =
Φξ is a Morse-Bott function. Moreover all critical manifolds Cj are symplectic
submanifolds of M , and the indices nj− are all even.

Proof. Let H ⊆ G be the closure of the 1-parameter subgroup generated by ξ. Then H
is a torus. The critical set of f is given by the condition

0 = d〈Φ, ξ〉(m) = ι(ξM(m))ωm.
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Since ω is non-degenerate, it is precisely the set of zeroes of the vector field ξM , or
equivalently the fixed point set for the 1-parameter subgroup {exp(tξ)| t ∈ R} ⊆ G. Let

H = {exp(tξ)| t ∈ R}.
then H is abelian and connected, hence is a torus, and C is just the set of fixed points
for this torus action. Let m ∈ C, and equip TmM = V with an H-invariant compatible
complex structure. As a unitary representation, V is equivalent to V = ⊕Cαj where
αj are the weights for the action. By the equivariant Darboux-theorem, V serves as a
model for the H-action near m. In particular the fixed point manifold C = MH gets
modeled by the space of fixed vectors V H , which is a complex, hence also symplectic
subspace. This shows that all Cj are symplectic manifolds. Moreover the moment map
in this model is (a constant plus)

z 7→ π
∑
j

|zj|2αj = π
∑
j

(q2
j + p2

j) αj,

in particular

f = π
∑
j

|zj|2αj = π
∑
j

(q2
j + p2

j) 〈αj, ξ〉.

From this it is evident that f is Morse-Bott and that all indices are even. �

The fact that all indices are even has very strong implications in Morse theory: It
implies that the so-called lacunary principle applies, and the Morse-Bott polynomial is
equal to the Poincare polynomial. (I.e. the Morse inequalities are equalities – Morse
functions for which this is the case are called perfect.) This gives a powerful tool to
calculate the cohomology of Hamiltonian G-spaces: in particular for isolated fixed points,
this gives

dimHk(M,Q) = #{ critical points of index k };
in particular all cohomology sits in even degree if all indices are even.

Corollary 9.26. Suppose M admits a Morse-Bott function f such that the minimum of
f is an isolated point and all nj− 6= 1. Then M is simply connected.

Proof. Given any m ∈ X and a loop γ ∈ X based at m, one can always perturb γ so
that it does not meet the stable manifolds of index > 0. Applying the gradient flow to
γ contracts γ to the minimum. �

Examples are coadjoint orbits of a compact Lie group (the fact that coadjoint orbits are
compact submanifolds of a vector space allows one to show that for generic components of
the moment map the minimum is isolated.) Thus coadjoint orbits are simply connected.
(We remark that this is not true in general for conjugacy classes.). Let G/Gµ be a
coadjoint orbit where G is compact, connected. View Gµ as the fiber over the identity
coset. Given any two points in Gµ they can be joined by a path in G. The projection to
G/Gµ is a closed path, hence can be contracted. Lifting the contraction to G produces
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a path in Gµ connecting the two points. Thus all stabilizer groups for the (co)-adjoint
action are connected.

9.4. Localization formulas. Let (M,ω,Φ) be a compact Hamiltonian T -space. For
simplicity we assume that the set MT of fixed points is finite. (This is for example the
case for the action of a maximal torus T ⊆ G on a coadjoint orbit O = G · µ.) Given
p ∈MT let a1(p), . . . , an(p) ∈ Λ∗ ⊆ t∗ be the weights for the action on TpM .

Theorem 9.27 (Duistermaat-Heckman). Let ξ ∈ tC be such that 〈aj(p), ξ〉 6= 0
for all p, j. Then one has the exact integration formula∫

M

e〈Φ,ξ〉
ωn

n!
=
∑
p∈MT

e〈Φ(p),ξ〉∏
j〈aj(p), ξ〉

.

One way of looking at this result is to say that the stationary phase approximation
for the integral

∫
M
eit〈Φ,ξ〉 ω

n

n!
is exact!

Our proof of the DH-formula will follow an argument of Berline-Vergne [7]. Notice
first that the integrand is just the top form degree part of

eω+〈Φ,ξ〉 = e〈Φ,ξ〉
n∑
j=0

ωj

j!
∈ Ω∗(M).

Consider the derivation

dξ : Ω∗(M)→ Ω∗(M), dξ := d− ι(ξM).

The differential form ω + 〈Φ, ξ〉 is dξ-closed, i.e. killed by dξ:

dξ(ω + 〈Φ, ξ〉) = −ι(ξM)ω + d〈Φ, ξ〉 = 0.

Moreover α := eω+〈Φ,ξ〉 is dξ-closed as well. Berline-Vergne prove the following general-
ization of the DH-formula:

Theorem 9.28. Let M be a compact, oriented T -manifold with isolated fixed point
set. Given p ∈ MT let aj(p) be the weights for the action on TpM , defined with
respect to some choice of T -invariant complex structure on TpM . Suppose ξM 6= 0
on M\MT . Then for all forms α ∈ Ω∗(M) such that dξα = 0, one has the
integration formula ∫

M

α[dimM ] =
∑
p∈MT

α[0](p)∏
j〈aj(p), ξ〉

.

In the proof we will use the useful notion of real blow-ups. Consider first the case of a
real vector space V . Let

S(V ) = V \{0}/R>0
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be its sphere, thought of as the space of rays based at 0. Define V̂ as the subset of
V × S(V ),

V̂ := {(v, x) ∈ V × S(V )| v lies on the ray parametrized by x}.

Then V̂ is a manifold with boundary. (In fact, if one introduces an inner product on

V then V̂ = S(V ) × R≥0). There is a natural smooth map π : V̂ → V which is a
diffeomorphism away from S(V ). If M is a manifold and m ∈ M , one can define its

blow-up π : M̂ → M by using a coordinate chart based at m. Just as in the complex
category, one shows that this is independent of the choice of chart (although this is
actually not important for our purposes).

Suppose now that M is a T -space as above. Let π : M̂ → M be the manifold with
boundary obtained by real blow-up at all the fixed points MT . The T -action on M lifts
to a T -action on M̂ with no fixed points. In particular ξM̂ has no zeroes. Choose an

invariant Riemannian metric g on M̂ , and define

θ :=
g(ξM̂ , ·)
g(ξM̂ , ξM̂)

∈ Ω1(M̂).

Then θ satisfies ι(ξM̂)θ = 1 and d2
ξθ = LξM θ = 0. Therefore

γ :=
θ

dξθ
=

θ

dθ − 1
= −θ ∧

∑
j

(dθ)j

is a well-defined form satisfying dξγ = 1. The key idea of Berline-Vergne is to use this
form for partial integration:∫

M

α =

∫
M̂

π∗α

=

∫
M̂

π∗α ∧ dξγ

=

∫
M̂

dξ(π
∗α ∧ γ)

=

∫
M̂

d(π∗α ∧ γ)

=
∑
p∈MT

∫
S(TpM)

π∗α ∧ γ

=
∑
p∈MT

α[0](p)

∫
S(TpM)

γ

Thus, to complete the proof we have to carry out the remaining integral over the sphere.
We will do this by a trick, defining a dξ-closed form α where we can actually compute
the integral by hand.
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Consider the T -action on TpM =
∑n

j=1 Caj(p) for a given p ∈ MT . Introduce coor-

dinates rj ≥ 0, tj ∈ [0, 1] by zj = rj e
2πitj . Given ε > 0 let χ ∈ C∞(R≥0) be a cut-off

function, with χ(r) = 1 for r ≤ ε and σ = 0 for ε ≥ 2. Define a form

α =
n∏
j=1

(−dξ(χ(rj) dtj)) =
n∏
j=1

(
〈aj(p), ξ〉 − χ′(rj)drj ∧ dtj

)
.

Note that this form is well-defined (even though the coordinates are not globally well-
defined), compactly supported and dξ-closed. Its integral is equal to∫

TpM

α =
n∏
j=1

(−χ′(rj)drj) = 1.

On the other hand α[0] =
∏n

j=1(〈aj(p), ξ〉).
Choosing ε sufficiently small, we can consider α as a form on M , vanishing at all the

other fixed points. Applying the localization formula we find

1 =

∫
M

α =
n∏
j=1

(〈aj(p), ξ〉)
∫
S(TpM)

γ,

thus ∫
S(TpM)

γ =
1∏n

j=1〈aj(p), ξ〉
.

Q.E.D.
The above discussion extends to non-isolated fixed points, in this case the product∏n
j=1〈aj(p), ξ〉 is replaced by the equivariant Euler class of the normal bundle of the

fixed point manifold.
One often applies the Duistermaat-Heckman theorem in order to compute Liouville

volumes of symplectic manifolds with Hamiltonian group action. Consider for example
a Hamiltonian S1 = R/Z-action with isolated fixed points. Identify Lie(S1), so that the
integral lattice and its dual are just Λ = Z, Λ∗ = Z. Let H = 〈Φ, ξ〉 where ξ corresponds
to 1 ∈ R. By Duistermaat-Heckman,∫

M

etH
ωn

n!
=

1

tn

∑
p∈MS1

etH(p)∏
j aj(p)

.

Notice by the way that the individual terms on the right hand side are singular for t = 0.
This implies very subtle relationships between the weight, for example one must have∑

p∈MS1

H(p)k∏
j aj(p)

= 0
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for all k < n. For the volume one reads off,

Vol(M) =
1

n!

∑
p∈MS1

H(p)n∏
j aj(p)

.

9.5. Frankel’s theorem. As we have seen, Hamiltonian torus actions are very special
in many respects: In particular they always have fixed points. It is a classical result
of Frankel [15] (long before moment maps were invented) that on Kähler manifolds the
converse is true:

Theorem 9.29. Let M be a compact Kähler manifold, with Kähler form ω. Con-
sider a symplectic S1-action on M with at least one fixed point. Then the action
is Hamiltonian.

Proof. Let dimM = 2n. We need one non-trivial result from complex geometry, which
is a particular case of the hard Lefschetz theorem: Wedge product with ωn−1 induces an
isomorphism in cohomology,

∧ [ω]n−1 : H1(M) ∼= H2n−1(M).

Let X ∈ Vect(M) be the vector field corresponding to 1 ∈ R = Lie(S1). We need to
show that ιXω is exact. By hard Lefschetz, this is equivalent to showing that ιXω

n is
exact. Let m ∈ MS1

be a fixed point. In a neighborhood of m we can identify M as
a T -space with TmM . Let σ ∈ Ω2n(TmM) be an invariant form supported in an ε-ball
around TmM , normalized so that

∫
TmM

σ =
∫
M
ωn. Choosing ε sufficiently small we

can view σ as a form on M . Since σ and ωn have the same integral, it follows that
ωn − σ = dβ for some invariant form β ∈ ω2n−1M .Then

ι(X)(σ − ωn) = ι(X)dβ = LXβ − dι(X)β = −dι(X)β,

showing that ι(X)(σ − ωn) is exact. We thus need to show that ι(X)σ is exact. This,
however, follows from the Poincare lemma since it is supported in a ball around m, where
one can just apply the homotopy operator. �

9.6. Delzant spaces.

Definition 9.30. A Hamiltonian T -space (M,ω,Φ) with proper moment map Φ is called
multiplicity-free if all reduced space Mµ are either empty or 0-dimensional. We call
(M,ω,Φ) a Delzant-space if in addition M is connected, the moment map is proper, and
the number of orbit type strata is finite.22

Thus, if T acts effectively, (M,ω,Φ) is Delzant if and only if dimM = 2 dimT .

22The finiteness assumption is not very important, and is of course automatic if M is compact.
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Examples 9.31. (a) M = Cn with the standard action of T = (S1)n. The moment
map image is the positive orthant Rn

+ ⊆ Rn ∼= t∗. More abstractly, if V is a
Hermitian vector space, the action of the maximal torus T ⊆ U(V ) on V is
Delzant.

(b) M = CP (n) with the action of T = (S1)n+1/S1 (quotient by diagonal subgroup)
coming from the action of (S1)n+1 on Cn+1. The moment map image is a sim-
plex, given as the intersection of the positive orthant Rn+1

+ with the hyperplane∑n
i=0 ti = π. More generally, if V is a Hermitian vector space, the action of the

maximal torus T ⊆ U(V ) on the projectivization P (V ) is Delzant.
(c) M = T ∗(T ) with the cotangent lift of the left-action of T on itself. The moment

map image is all of t∗. We will call this, from now on, the standard T -action on
T ∗(T ).

(d) Suppose (M,ω,Φ) is a Delzant T -space, and H ⊆ T is a subgroup acting freely
on the level set of µ ∈ h∗. Then the H-reduced space (Mµ, ωµ,Φµ) is Delzant.
The moment map image Φ(Mµ) ∈ t∗ is the intersection of Φ(M) with the affine
subspace pr−1

h∗ (µ). We can view Mµ as a Delzant T/H-space, after choosing a
moment map for the T/H-action; such a choice amounts to choosing a point in
pr−1

h∗ (µ).

The moment map images for Delzant spaces can be characterized as follows. Let Λ ⊆ t
be the integral lattice, i.e. the kernel of exp : t → T . Let ∆ ⊆ t∗ be a rational convex
polyhedral set of dimension d = dimT , with k boundary hyperplanes. That is, ∆ is of
the form

(28) ∆ =
k⋂
i=1

Hvi,λi

where vi ∈ Λ are primitive lattice vectors and λi ∈ R, and

Hvi,λi = {µ ∈ t∗|〈µ, vi〉 ≤ λi}.
For any subset I ⊆ {1, . . . , k} let ∆I be the set of all µ with 〈µ, vi〉 = λi for i ∈ I. We
set ∆∅ = int(∆).

Definition 9.32. The polyhedral set ∆ ⊆ t∗ is called Delzant if for all I with ∆I 6= ∅, the
vectors vi, i ∈ I are linearly independent, and

spanZ{vi| i ∈ I} = Λ ∩ spanR{vi| i ∈ I}.

Remark 9.33. For compact polyhedral sets, (that is, polytopes) it is enough to check the
Delzant condition at the vertices. The Delzant condition means in particular that each
vi has to be a primitive normal vector, i.e. is not of the form vi = a v′i where v′i ∈ Λ and
a ∈ Z>0.

Example 9.34. Let T = (S1)2 and identify t = t∗ = R2 and Λ ∼= Λ∗ = Z2. The polytope
with vertices at (0, 0), (0, 1), (1, 0) is Delzant. However, the polytope with vertices at
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(0, 0), (0, 2), (1, 0) is not Delzant. Indeed, for the vertex at (1, 0) the two primitive
normal vectors are v1 = (0,−1) and v2 = (2, 1), and they do not span the lattice Z2.

The Delzant condition for ∆I 6= ∅ says that
∑

j∈I sjvj ∈ Λ ⇔ sj ∈ Z for all j ∈ I, or
equivalently,

exp(
∑
j∈I

sjvj) = 1⇔ sj = 0 mod Z for all j ∈ I.

Thus if we define a Lie group morphism

φ∆ : (S1)k → T, [(s1, . . . , sk)] 7→ exp(
k∑
i=1

sivi)

and let

(S1)I = {[(s1, . . . , sk)] ∈ (S1)k| sj = 0 modZ for j 6∈ I}
be the product of S1-factors corresponding to indices j ∈ I, the Delzant condition is
equivalent to saying that φ∆ restricts to an inclusion φ∆ : (S1)I ↪→ T. The image
HI = φ∆((S1)I) ⊆ T is obtained by exponentiating hI = spanR{vj| j ∈ I}; by definition
it is the subspace perpendicular to ∆I ⊆ t∗.

Theorem 9.35. Let (M,ω,Φ) be a Delzant T -space with effective T -action. Then
∆ = Φ(M) is a Delzant polyhedron. For all open faces F ⊆ ∆, the pre-image
Φ−1(F ) is a connected component of the orbit type stratum MH ⊆ M for H =
exp(hF ), where hF ⊆ t is the subspace perpendicular to F . In particular, all
stabilizer groups are connected.

Proof. Let µ ∈ F , O = T.m ∈ Φ−1(µ) an orbit, and H = Tm the stabilizer group. We
had seen that the coneµ(∆) is equal to the local moment cone

Cm = µ+ (pr∗h)
−1(C),

where C ⊆ h∗ is the cone spanned by the weights α1, . . . , αk ∈ h∗ for the H-action on
the symplectic vector space V = Tm(O)ω/Tm(O). By dimension count, k = dimC V =
1
2

dimM − dim(T/H) = dimH. It follows that αi are a basis of h∗. Since ann(h) ⊆ t∗ is
the maximal linear subspace inside the cone (prh∗)

−1(C), it must coincide with the space
parallel to F . That is, h = hF .

The action of H on V must be effective since the T -action on E is effective. Thus
H acts as a compact abelian subgroup of U(V ) of dimension dimH = dimC V . So its
identity component H0 is a maximal torus. But it is a well-known fact from Lie group
theory that maximal tori are maximal abelian, so H = H0. In particular, we have shown
that all points in Φ−1(F ) have the same stabilizer group.

It follows that the map H → (S1)k defined by the roots is an isomorphism. This
means that α1, . . . , αk are a basis for the weight lattice weight lattice (Λ ∩ h)∗ in h∗.
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Equivalently, the dual basis w1, . . . , wk ∈ h are a basis for Λ ∩ h. We have

C = cone{α1, . . . , αn} = {ν ∈ h∗| 〈ν, wi〉 ≥ 0},
which identifies the {w1, . . . , wk} with {vi| i ∈ I}. �

Delzant gave an explicit recipe for constructing a Delzant space with moment polytope
a given Delzant polyhedron. The following version of Delzant’s construction is due to
Eugene Lerman.

Let (S1)k act on the cotangent bundle T ∗(T ) via the composition of φ∆ with the
standard T -action on T ∗(T ). In the left trivialization T ∗(T ) = T × t∗, a moment map
for the T -action is projection to t∗. Hence

Ψ∆(t, µ) =
k∑
j=1

〈µ, vj〉ej −
∑
j

λj ej

is a moment map for the action of (S1)k. Let (S1)k act on Ck in the standard way, with
moment map π

∑
j |zj|2 ej.

Definition 9.36. For any polyhedron ∆ let D∆ be the symplectic quotient

D∆ = (T ∗(T )× Ck)//(S1)k,

by the diagonal action, with T -action induced from the standard T -action on T ∗(T ).

Theorem 9.37. Suppose ∆ is a Delzant polyhedron. Then the action of (S1)k on
the zero level set of (T ∗(T )×Ck) is free, and the quotient D∆ is a Delzant-T -space.
The moment map image of D∆ is exactly ∆.

Proof. Let ((t, µ), z) in the zero level set. Thus

〈µ, vi〉 = λi − π|zi|2.
If zi 6= 0 then the ith factor of (S1)k acts freely at ((t, µ), z). Thus we need only worry
about the set I of indices i with zi = 0. For these indices 〈µ, vi〉 = λi. Let (S1)I be the
product of copies of S1 corresponding to these indices. By the Delzant condition, φ∆

restricts to an embedding (S1)I → T . Since T acts freely on T ∗(T ), so does (S1)I . This
shows that the action is free, and D∆ is a smooth symplectic manifold. To identify the
image of the T -moment map note that, given µ ∈ t∗, one can find t, z with ((t, µ), z) is
in the zero level set if and only if 〈µ, vi〉 ≤ λi. �

Definition 9.38 (Lerman [25]). Let ∆ be a Delzant polyhedron, and (M,ω,Φ) a Hamil-
tonian T -space. The cut space defined by ∆ is the symplectic quotient

M∆ = (M ×D−∆)//T

with T -action induced from the action on the first factor.
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It is immediate that T ∗(T )∆ = D∆: In particular, T ∗(S1)[0,∞)
∼= C. We will now use

these two facts to prove:

Theorem 9.39 (Delzant [11]). Every Delzant space (M,ω,Φ) is determined by its
moment polyhedron ∆ = Φ(M), up to equivariant symplectomorphism intertwining
the moment maps.

Proof. Usually this is proved using a Čech theoretic argument. Below we sketch a more
elementary (?) approach. The idea is to present M as a symplectic cut M̃∆ of a con-
nected, multiplicity free Hamiltonian T -space M̃ with free T -action. Since the action of
T on M̃ is free, the map Φ̃ is a Lagrangian fibration over its image. Thus we can intro-
duce action-angle variables which identifies M̃ as an open subset of T ∗(T ). Therefore,
M = M̃∆ = T ∗(T )∆ = D∆.

We now indicate how to construct such a space M̃ . Let i1 ∈ {1, . . . , k} be an index such
that ∆i1 6= 0, and S = Φ−1(∆i1) the symplectic submanifold obtained as its preimage. It
is a connected component of the fixed point set of Hi1 , and has codimension 2. Let νS =
TSω be its symplectic normal bundle. After choosing a compatible complex structure it
can be viewed as a Hermitian line bundle. Let Q ⊆ νS be the unit circle bundle inside
Q. It is a T -equivariant principal S1-bundle, and νS = Q×S1 C. Let πQ : Q→ S be the
projection map. Let α ∈ Ω1(Q)T be a T -invariant connection 1-form, and consider the
closed 2-form

ωQ×C := π∗QωS + ωC + πd(|z|2α).

It is easy to check that this 2-form is basic for the S1-action, so it descends to a closed
2-form

ωνS ∈ Ω2(νS).

Furthermore, ωνS is non-degenerate near S = Q/S1. It follows that there exists an
equivariant symplectomorphism between open neighborhoods of S in M and in νS. Now
νS = (Q×R)[0,∞) (cut with respect to the S1-action), where Q×R is equipped with the
2-form

ωQ×R = π∗QωS + ωC + d(sα).

We have a natural diffeomorphism between Q× R>0 and νS\S, preserving 2-forms. We
can thus glue M\S with a small neighborhood of Q in Q×R−, to obtain a new connected
multiplicity free Hamiltonian T -space (M1, ω1,Φ1) with one orbit type stratum less. The
original space is obtained from M1 by cutting,

M = (M1)H1

where H1 is the affine half-space 〈µ, vi〉 ≥ λi. Continuing in this fashion, construct
spaces M1,M2, . . . ,Mn = M̃ where n is the number of faces of ∆. We have

M = (M1)H1 = (M2)H1∩H2 = . . . = (Mn)∆,
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The final space Mn = M̃ no longer has 1-dimensional stabilizer groups, so the T -action
is free as required. �
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