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CHAPTER 1

Symmetric bilinear forms

Throughout, K will denote a field of characteristic 6= 2. We are mainly
interested in the cases K = R or C, and sometimes specialize to those two
cases.

1. Quadratic vector spaces

Suppose V is a finite-dimensional vector space over K. For any bilinear
form B : V × V → K, define a linear map

B♭ : V → V ∗, v 7→ B(v, ·).
The bilinear form B is called symmetric if it satisfies B(v1, v2) = B(v2, v1)

for all v1, v2 ∈ V . Since dimV < ∞ this is equivalent to (B♭)∗ = B♭.
The symmetric bilinear form B is uniquely determined by the associated
quadratic form, QB(v) = B(v, v) by the polarization identity,

(1) B(v,w) = 1
2

(

QB(v + w) −QB(v) −QB(w)
)

.

The kernel (also called radical) of B is the subspace

ker(B) = {v ∈ V | B(v, v1) = 0 for all v1 ∈ V },

i.e. the kernel of the linear map B♭. The bilinear form B is called non-
degenerate if ker(B) = 0, i.e. if and only if B♭ is an isomorphism. A vector
space V together with a non-degenerate symmetric bilinear form B will be
referred to as a quadratic vector space. Assume for the rest of this chapter
that (V,B) is a quadratic vector space.

Definition 1.1. A vector v ∈ V is called isotropic if B(v, v) = 0, and
non-isotropic if B(v, v) 6= 0.

For instance, if V = Cn over K = C, with the standard bilinear form
B(z,w) =

∑n
i=1 ziwi, then v = (1, i, 0, . . . , 0) is an isotropic vector. If

V = R2 over K = R, with bilinear form B(x, y) = x1y1 − x2y2, then the set
of isotropic vectors x = (x1, x2) is given by the ‘light cone’ x1 = ±x2.

The orthogonal group O(V ) is the group

(2) O(V ) = {A ∈ GL(V )| B(Av,Aw) = B(v,w) for all v,w ∈ V }.
The subgroup of orthogonal transformations of determinant 1 is denoted
SO(V ), and is called the special orthogonal group.
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2. ISOTROPIC SUBSPACES

For any subspace F ⊂ V , the orthogonal or perpendicular subspace is
defined as

F⊥ = {v ∈ V | B(v, v1) = 0 for all v1 ∈ F}.
The image of B♭(F⊥) ⊂ V ∗ is the annihilator of F . From this one deduces
the dimension formula

(3) dimF + dimF⊥ = dimV

and the identities

(F⊥)⊥ = F, (F1 ∩ F2)
⊥ = F⊥

1 + F⊥
2 , (F1 + F2)

⊥ = F⊥
1 ∩ F⊥

2

for all F,F1, F2 ⊂ V . For any subspace F ⊂ V the restriction of B to F has
kernel ker(B|F×F ) = F ∩ F⊥.

Definition 1.2. A subspace F ⊂ V is called a quadratic subspace if the
restriction of B to F is non-degenerate, that is F ∩ F⊥ = 0.

Using (F⊥)⊥ = F we see that F is quadratic ⇔ F⊥ is quadratic ⇔
F ⊕ F⊥ = V .

As a simple application, one finds that any non-degenerate symmetric
bilinear form B on V can be ’diagonalized’. Let us call a basis ǫ1, . . . , ǫn of
V an orthogonal basis if B(ǫi, ǫj) = 0 for all i 6= j.

Proposition 1.3. Any quadratic vector space (V,B) admits an orthog-
onal basis ǫ1, . . . , ǫn. If K = C one can arrange that B(ǫi, ǫi) = 1 for all i.
If K = R or K = Q, one can arrange that B(ǫi, ǫi) = ±1 for all i.

Proof. The proof is by induction on n = dimV , the case dimV = 1
being obvious. If n > 1 choose any non-isotropic vector ǫ1 ∈ V . The span
of ǫ1 is a quadratic subspace, hence so is span(ǫ1)

⊥. By induction, there is
an orthogonal basis ǫ2, . . . , ǫn of span(ǫ1)

⊥. If K = C (resp. K = R,Q), one
can rescale the ǫi such that B(ǫi, ǫi) = 1 (resp. B(ǫi, ǫi) = ±1). �

We will denote by Kn,m the vector space Kn+m with bilinear form given
by B(ǫi, ǫj) = ±δij , with a + sign for i = 1, . . . , n and a − sign for i =
n + 1, . . . , n + m. If m = 0 we simple write Kn = Kn,0, and refer to the
bilinear form as standard. The Proposition above shows that for K = C,
and quadratic vector space (V,B) is isomorphic to Cn with the standard
bilinear form, while for K = R it is isomorphic to some Rn,m. (Here n,m
are uniquely determined, although it is not entirely obvious at this point.)

2. Isotropic subspaces

Let (V,B) be a quadratic vector space.

Definition 2.1. A subspace F ⊂ V is called isotropic1 if B|F×F = 0,
that is F ⊂ F⊥.

1In some of the literature (e.g. C. Chevalley [?] or L. Grove [?]), a subspace is called
isotropic if it contains at least one non-zero isotropic vector, and totally isotropic if all of
its vectors are isotropic.
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CHAPTER 1. SYMMETRIC BILINEAR FORMS

The polarization identity (1) shows that a subspace F ⊂ V is isotropic
if and only if all of its vectors are isotropic. If F ⊂ V is isotropic, then

(4) dimF ≤ dimV/2

since dimV = dimF + dimF⊥ ≥ 2 dimF .

Proposition 2.2. For isotropic subspaces F,F ′ the following three con-
ditions

(a) F + F ′ is quadratic,
(b) V = F ⊕ (F ′)⊥,
(c) V = F ′ ⊕ F⊥

are equivalent, and imply that dimF = dimF ′. Given an isotropic sub-
space F ⊂ V one can always find an isotropic subspace F ′ satisfying these
conditions.

Proof. We have

(F + F ′) ∩ (F + F ′)⊥ = (F + F ′) ∩ F⊥ ∩ (F ′)⊥

= (F + (F ′ ∩ F⊥)) ∩ (F ′)⊥

= (F ∩ (F ′)⊥) + (F ′ ∩ F⊥).

Thus

(F + F ′) ∩ (F + F ′)⊥ = 0 ⇔ F ∩ (F ′)⊥ = 0 and F ′ ∩ F⊥ = 0

⇔ F ∩ (F ′)⊥ = 0, and F + (F ′)⊥ = V.
(5)

This shows (a)⇔(b), and similarly (a)⇔(c). Property (b) shows dimV =
dimF +(dimF ′)⊥ = dimF +dimV −dimF ′, hence dimF = dimF ′. Given
an isotropic subspace F , we find an isotropic subspace F ′ satisfying (c) as
follows. Choose any complement W to F⊥, so that

V = F⊥ ⊕W.

Thus V = F⊥ +W and 0 = F⊥ ∩W . Taking orthogonals, this is equivalent
to 0 = F ∩W⊥ and V = F +W⊥, that is

V = F ⊕W⊥.

Let S : W → F ⊂ F⊥ be the projection along W⊥. Then w − S(w) ∈ W⊥

for all w ∈W . The subspace

F ′ = {w − 1
2S(w)| w ∈W}.

(being the graph of a map W → F⊥) is again a complement to F⊥, and
since for all w ∈

B(w − 1
2S(w), w − 1

2S(w)) = B(w,w − S(w)) + 1
4B(S(w), S(w)) = 0

(the first term vanishes since w − S(w) ∈ W⊥, the second term vanishes
since S(w) ∈ F is isotropic) it follows that F ′ is isotropic. �
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3. SPLIT BILINEAR FORMS

An isotropic subspace is called maximal isotropic if it is not properly
contained in another isotropic subspace. Put differently, an isotropic sub-
space F is maximal isotropic if and only if it contains all v ∈ F⊥ with
B(v, v) = 0.

Proposition 2.3. Suppose F,F ′ are maximal isotropic. Then

(a) the kernel of the restriction of B to F + F ′ equals F ∩ F ′. (In
particular, F + F ′ is quadratic if and only if F ∩ F ′ = 0.)

(b) The images of F,F ′ in the quadratic vector space (F +F ′)/(F ∩F ′)
are maximal isotropic.

(c) dimF = dimF ′.

Proof. Since F is maximal isotropic, it contains all isotropic vectors of
F⊥, and in particular it contains F⊥ ∩ F ′. Thus

F⊥ ∩ F ′ = F ∩ F ′

Similarly F ∩ (F ′)⊥ = F ∩F ′ since F ′ is maximal isotropic. The calculation
(5) hence shows

(F + F ′) ∩ (F + F ′)⊥ = F ∩ F ′,

proving (a). Let W = (F + F ′)/(F ∩ F ′) with the bilinear form BW in-
duced from B, and π : F + F ′ → W the quotient map. Clearly, BW is non-
degenerate, and π(F ), π(F ′) are isotropic. Hence the sumW = π(F )+π(F ′)
is a direct sum, and the two subspaces are maximal isotropic of dimension
1
2 dimW . It follows that dimF = dimπ(F ) + dim(F ∩ F ′) = dimπ(F ′) +
dim(F ∩ F ′) = dimF ′. �

Definition 2.4. The Witt index of a non-degenerate symmetric bilinear
form B is the dimension of a maximal isotropic subspace.

By (4), the maximal Witt index is 1
2 dimV if dimV is even, and 1

2(dimV−
1) if dimV is odd.

3. Split bilinear forms

Definition 3.1. The non-degenerate symmetric bilinear form B on an
even-dimensional vector space V is called split if its Witt index is 1

2 dimV . In
this case, maximal isotropic subspaces are also called Lagrangian subspaces.

Equivalently, the Lagrangian subspaces are characterized by the prop-
erty

F = F⊥.

Split bilinear forms are easily classified:

Proposition 3.2. Let (V,B) be a quadratic vector space with a split
bilinear form. Then there exists a basis e1, . . . , ek, f1, . . . , fk of V in which
the bilinear form is given as follows:

(6) B(ei, ej) = 0, B(ei, fj) = δij , B(fi, fj) = 0.
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CHAPTER 1. SYMMETRIC BILINEAR FORMS

Proof. Choose a pair of complementary Lagrangian subspaces, F,F ′.
Since B defines a non-degenerate pairing between F and F ′, it defines an
isomorphism, F ′ ∼= F ∗. Choose a basis e1, . . . , ek, and let f1, . . . , fk be the
dual basis of F ′ under this identification. Then B(ei, fj) = δij by definition
of dual basis, and B(ei, ej) = B(fi, fj) = 0 since F,F ′ are Lagrangian. �

Our basis e1, . . . , ek, f1, . . . , fk for a quadratic vector space (V,B) with
split bilinear form is not orthogonal. However, it may be replaced by an
orthogonal basis

ǫi = ei + 1
2fi, ǫ̃i = ei − 1

2fi.

In the new basis, the bilinear form reads,

(7) B(ǫi, ǫj) = δij , B(ǫi, ǫ̃j) = 0, B(ǫ̃i, ǫ̃j) = −δij .

Put differently, Proposition 3.2 (and its proof) say that any quadratic
vector space with split bilinear form is isometric to a vector space

V = F ∗ ⊕ F,

where the bilinear form is given by the pairing:

B((µ, v), (µ′, v′)) = 〈µ′, v〉 + 〈µ, v′〉.

The corresponding orthogonal group will be discussed in Section ?? below.
At this point we will only need the following fact:

Lemma 3.3. Let V = F ∗ ⊕ F , with the split bilinear form B given by
the pairing. Then the subgroup O(V )F ⊂ O(V ) fixing F pointwise consists
of transformations of the form

AD : (µ, v) 7→ (µ, v +Dµ)

where D : F ∗ → F is skew-adjoint: D∗ = −D. In particular, O(V )F ⊂
SO(V ).

Proof. A linear transformation A ∈ GL(V ) fixes F pointwise if and
only if it is of the form

A(µ, v) = (Sµ, v +Dµ)

for some linear mapsD : F ∗ → F and S : F ∗ → F ∗. SupposeA is orthogonal.
Then

0 = B(A(µ, 0), A(0, v)) −B((µ, 0), (0, v)) = 〈Sµ− µ, v〉
for all v ∈ F, µ ∈ F ∗; hence S = I. Furthermore

0 = B(A(µ, 0), A(µ′, 0)) −B((µ, 0), (µ′, 0)) = 〈µ,Dµ′〉 + 〈µ′,Dµ〉,

so that D = −D∗. Conversely, it is straightforward to check that transfor-
mations of the form A = AD are orthogonal. �
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4. E.CARTAN-DIEUDONNÉ’S THEOREM

4. E.Cartan-Dieudonné’s Theorem

Throughout this Section, we assume that (V,B) is a quadratic vector
space. The following simple result will be frequently used.

Lemma 4.1. For any A ∈ O(V ), the orthogonal of the space of A-fixed
vectors equals the range of A− I:

ran(A− I) = ker(A− I)⊥.

Proof. For any L ∈ End(V ), the transpose L⊤ relative to B satisfies
ran(L) = ker(L⊤)⊥. We apply this to L = A−I, and observe that ker(A⊤−
I) = ker(A− I) since a vector is fixed under A if and only if it is fixed under
A⊤ = A−1. �

Definition 4.2. An orthogonal transformation R ∈ O(V ) is called a
reflection if its fixed point set ker(R− I) has codimension 1.

Equivalently, ran(R − I) = ker(R − I)⊥ is 1-dimensional. If v ∈ V is a
non-isotropic vector, then the formula

Rv(w) = w − 2
B(v,w)

B(v, v)
v,

defines a reflection, since ran(Rv − I) = span(v) is 1-dimensional.

Proposition 4.3. Any reflection R is of the form Rv, where the non-
isotropic vector v is unique up to a non-zero scalar.

Proof. Suppose R is a reflection, and consider the 1-dimensional sub-
space F = ran(R− I). We claim that F is a quadratic subspace of V . Once
this is established, we obtain R = Rv for any non-zero v ∈ F , since Rv then
acts as −1 on F and as +1 on F⊥. To prove the claim, suppose on the
contrary that F is not quadratic. Since dimF = 1 it is then isotropic. Let
F ′ be an isotropic subspace such that F + F ′ is quadratic. Since R fixes
(F +F ′)⊥ ⊂ F⊥ = ker(R− I), it may be regarded as a reflection of F +F ′.
This reduces the problem to the case dimV = 2, with F ⊂ V maximal
isotropic and R ∈ O(V )F . As we had seen, O(V )F is identified with the
group of skew-symmetric maps F ∗ → F , but for dimF = 1 this group is
trivial. Hence R is the identity, contradicting dim ran(R− I) = 1. �

Some easy properties of reflections are,

(1) det(R) = −1,
(2) R2 = I,
(3) if v is non-isotropic, ARvA

−1 = RAv for all A ∈ O(V ),
(4) distinct reflections R1 6= R2 commute if and only if the lines ran(R1−

I) and ran(R2 − I) are orthogonal.

The last Property may be seen as follows: suppose R1R2 = R2R1 and apply
to v1 ∈ ran(R1 − I). Then R1(R2v1) = −R2v1, which implies that R2v1 is a
multiple of v1; in fact R2v1 = ±v1 since R2 is orthogonal. Since R2v1 = −v1
would imply that R1 = R2, we must have R2v1 = v1, or v1 ∈ ker(R2 − I).
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CHAPTER 1. SYMMETRIC BILINEAR FORMS

For any A ∈ O(V ), let l(A) denote the smallest number l such that
A = R1 · · ·Rl where Ri ∈ O(V ) are reflections. We put l(I) = 0, and
for the time being we put l(A) = ∞ if A cannot be written as such a
product. (The Cartan-Dieudonne theorem below states that l(A) < ∞
always.) The following properties are easily obtained from the definition,
for all A, g,A1, A2 ∈ O(V ),

l(A−1) = l(A),

l(gAg−1) = l(A),

|l(A1) − l(A2)| ≤ l(A1A2) ≤ l(A1) + l(A2),

det(A) = (−1)l(A)

A little less obvious is the following estimate.

Proposition 4.4. There is a lower bound

dim(ran(A− I)) ≤ l(A)

for any A ∈ O(V ).

Proof. Let n(A) = dim(ran(A− I)). If A1, A2 ∈ O(V ), we have

ker(A1A2 − I) ⊇ ker(A1A2 − I) ∩ ker(A1 − I) = ker(A2 − I) ∩ ker(A1 − I)

Taking orthogonals,

ran(A1A2 − I) ⊆ ran(A2 − I) + ran(A1 − I)

which shows
n(A1A2) ≤ n(A1) + n(A2).

Thus, if A = R1 · · ·Rl is a product of l = l(A) reflections, we have

n(A) ≤ n(R1) + . . .+ n(Rl) = l(A). �

The following upper bound for l(A) is much more tricky:

theorem 4.5 (E.Cartan-Dieudonné). Any orthogonal transformation
A ∈ O(V ) can be written as a product of l(A) ≤ dimV reflections.

Proof. By induction, we may assume that the Theorem is true for
quadratic vector spaces of dimension ≤ dimV − 1. We will consider three
cases.

Case 1: ker(A − I) is non-isotropic. Choose any non-isotropic vector
v ∈ ker(A − I). Then A fixes the span of v and restricts to an orthogonal
transformation A1 of V1 = span(v)⊥. Using the induction hypothesis, we
obtain

(8) l(A) = l(A1) ≤ dimV − 1.

Case 2: ran(A− I) is non-isotropic. We claim:

(C) There exists a non-isotropic element w ∈ V such that v = (A−I)w
is non-isotropic.
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4. E.CARTAN-DIEUDONNÉ’S THEOREM

Given v,w as in (C), we may argue as follows. Since v = (A− I)w, and
hence (A+ I)w ∈ span(v)⊥, we have

Rv(A− I)w = −(A− I)w, Rv(A+ I)w = (A+ I)w.

Adding and dividing by 2 we find RvAw = w. Since w is non-isotropic,
this shows that the kernel of RvA− I is non-isotropic. Equation (8) applied
to the orthogonal transformation RvA shows l(RvA) ≤ dimV − 1. Hence
l(A) ≤ dimV . It remains to prove the claim (C). Suppose it is false, so that
we have:

(¬C) The transformation A− I takes the set of non-isotropic elements
into the set of isotropic elements.

Let v = (A − I)w be a non-isotropic element in ran(A − I). By (¬C)
the element w is isotropic. The orthogonal space span(w)⊥ is non-isotropic
for dimensional reasons, hence there exists a non-isotropic element w1 with
B(w,w1) = 0. Then w1, w+w1, w−w1 are all non-isotropic, and by (¬C)
their images

v1 = (A− I)w1, v + v1 = (A− I)(w + w1), v − v1 = (A− I)(w − w1)

are isotropic. But then the polarization identity

QB(v) = 1
2(QB(v + v1) +QB(v − v1)) −QB(v1) = 0

shows that v is isotropic, a contradiction. This proves (C).
Case 3: Both ker(A − I) and ran(A − I) are isotropic. Since these

two subspaces are orthogonal, it follows that they are equal, and are both
Lagrangian. This reduces the problem to the case V = F ∗ ⊕ F , where
F = ker(A − I), that is A ∈ O(V )F . In particular det(A) = 1. Let Rv

be any reflection, then A1 = RvA ∈ O(V ) has det(A1) = −1. Hence
ker(A1 − I) and ran(A1 − I) cannot be both isotropic, and by the first two
cases l(A1) ≤ dimV = 2dimF . But since det(A1) = −1, l(A1) must be
odd, hence l(A1) < dimV and therefore l(A) ≤ dimV . �

Remark 4.6. Our proof of Cartan-Dieudonne’s theorem is a small mod-
ification of Artin’s proof in [?]. If char(K) = 2, the statement of the Cartan-
Dieudonne theorem is still true, except in some very special cases. See
Chevalley [?, page 83].

Example 4.7. Let dimF = 2, and V = F ∗⊕F with bilinear form given
by the pairing. Suppose A ∈ O(V )F , so that A(µ, v) = (µ, v +Dµ) where
D : F ∗ → F is skew-adjoint: D∗ = −D. Assuming D 6= 0 we will show how
to write A as a product of four reflections. Choose a basis e1, e2 of F , with
dual basis f1, f2 of F ∗, such that D has the normal form Df1 = e2, Df2 =
−e1. Let Q ∈ GL(F ) be the diagonal transformation,

Q(e1) = 2e1, Q(e2) = e2
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CHAPTER 1. SYMMETRIC BILINEAR FORMS

and put

g =

(

(Q∗)−1 0
0 Q

)

, .

Then g is a product of two reflections, for example g = R′R where

R =

(

0 I
I 0

)

, R′ = gR.

On the other hand, using QD(Q∗)−1 = 2D we see

gAg−1 =

(

I 0
QD(Q∗)−1 I

)

=

(

I 0
2D I

)

= A2,

or A = gAg−1A−1. Since g = R′R we obtain the desired presentation of A
as a product of 4 reflections:

A = R′R(ARA−1)(AR′A−1).

5. Witt’s Theorem

The following result is of fundamental importance in the theory of qua-
dratic forms.

theorem 5.1 (Witt’s Theorem). Suppose F, F̃ are subspaces of a qua-
dratic vector space (V,B), such that there exists an isometric isomorphism

φ : F → F̃ , i.e. B(φ(v), φ(w)) = B(v,w) for all v,w ∈ F . Then φ extends
to an orthogonal transformation A ∈ O(V ).

Proof. By induction, we may assume that the Theorem is true for
quadratic vector spaces of dimension ≤ dimV − 1. We will consider two
cases.

Case 1: F is non-isotropic. Let v ∈ F be a non-isotropic vector, and
let ṽ = φ(v). Then QB(v) = QB(ṽ) 6= 0, and v+ ṽ and v− ṽ are orthogonal.

The polarization identity QB(v)+QB(Ṽ ) = 1
2(QB(v+ ṽ)+QB(v− ṽ)) show

that are not both isotropic; say w = v + ṽ is non-isotropic. The reflection
Rw satisfies

Rw(v + ṽ) = −(v + ṽ), Rw(v − ṽ) = v − ṽ.

Adding, and dividing by 2 we find that Rw(v) = −ṽ. Let Q = RwRv. Then
Q is an orthogonal transformation with Q(v) = ṽ = φ(v).

Replacing F with F ′ = Q(F ), v with v′ = Q(v) and φ with φ′ = φ◦Q−1,

we may thus assume that F ∩ F̃ contains a non-isotropic vector v such that
φ(v) = v. Let

V1 = span(v)⊥, F1 = F ∩ V1, F̃1 = F̃ ∩ V1

and φ1 : F1 → F̃1 the restriction of φ. By induction, there exists an orthogo-
nal transformation A1 ∈ O(V1) extending φ1. Let A ∈ O(V ) with A(v) = v
and A|V1

= A1; then A extends φ.
Case 2: F is isotropic. Let F ′ be an isotropic complement to F⊥, and

let F̃ ′ be an isotropic complement to F̃⊥. The pairing given by B identifies
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6. ORTHOGONAL GROUPS FOR K = R,C

F ′ ∼= F ∗ and F̃ ′ ∼= F̃ ∗. The isomorphism φ : F → F̃ extends to an isometry
ψ : F ⊕ F ′ → F̃ ⊕ F̃ ′, given by (φ−1)∗ on F ′ ∼= F ∗. By Case 1 above, ψ
extends further to an orthogonal transformation of V . �

Some direct consequences are:

(1) O(V ) acts transitively on the set of isotropic subspaces of any given
dimension.

(2) If F, F̃ are isometric, then so are F⊥, F̃⊥. Indeed, any orthogonal

extension of an isometry φ : F → F̃ restricts to an isometry of their
orthogonals.

(3) Suppose F ⊂ V is a subspace isometric to Kn, with standard bilin-
ear form B(ǫi, ǫj) = δij , and F is maximal relative to this property.

If F ′ ⊂ V is isometric to Kn′

, then there exists an orthogonal trans-
formation A ∈ O(V ) with F ′ ⊂ A(F ). In particular, the dimension
of such a subspace F is an invariant of (V,B).

A subspace W ⊂ V of a quadratic vector space is called anisotropic if
it does not contain isotropic vectors other than 0. In particular, W is a
quadratic subspace.

Proposition 5.2 (Witt decomposition). Any quadratic vector space
(V,B) admits a decomposition V = F ⊕ F ′ ⊕ W where F,F ′ are maxi-
mal isotropic, W is anisotropic, and W⊥ = F ⊕ F ′. If V = F1 ⊕ F ′

1 ⊕W1

is another such decomposition, then there exists A ∈ O(V ) with A(F ) =
F1, A(F ′) = F ′

1, A(W ) = W1.

Proof. To construct such a decomposition, let F be a maximal isotropic
subspace, and F ′ an isotropic complement to F⊥. Then F ⊕F ′ is quadratic,
hence so is W = (F ⊕ F ′)⊥. Since F is maximal isotropic, the subspace
W cannot contain isotropic vectors other than 0. Hence W is anisotropic.
Given another such decomposition V = F1⊕F ′

1⊕W1, choose an isomorphism
F ∼= F1. As we had seen (e.g. in the proof of Witt’s Theorem), this extends
canonically to an isometry φ : F ⊕ F ′ → F1 ⊕ F ′

1. Witt’s Theorem gives an
extension of φ to an orthogonal transformation A ∈ O(V ). It is automatic
that A takes W = (F ⊕ F ′)⊥ to W = (F1 ⊕ F ′

1)
⊥. �

Example 5.3. If K = R, the bilinear form on the anisotropic part of the
Witt decomposition is either positive definite (i.e. QB(v) > 0 for non-zero
v ∈ W ) or negative definite (i.e. QB(v) < 0 for non-zero v ∈ W ). By
Proposition 1.3, any quadratic vector space (V,B) over R is isometric to
Rn,m for some n,m. The Witt decomposition shows that n,m are uniquely
determined by B. Indeed min(n,m) is the Witt index of B, while the sign
of n−m is given by the sign of QB on the anisotropic part.

6. Orthogonal groups for K = R,C

In this Section we discuss the structure of the orthogonal group O(V )
for quadratic vector spaces over K = R or C.

12
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Being a closed subgroup of GL(V ), the orthogonal group O(V ) is a Lie
group. (If K = C it is an algebraic Lie group since the defining equations are
polynomial.) Recall that for a Lie subgroup G ⊂ GL(V ), the corresponding
Lie algebra g is the subspace of all ξ ∈ End(V ) with the property exp(tξ) ∈ G
for all t ∈ K (using the exponential map of matrices). We have:

Proposition 6.1. The Lie algebra of O(V ) is given by

o(V ) = {A ∈ End(V )| B(Av,w) +B(v,Aw) = 0 for all v,w ∈ V },
with bracket given by commutator.

Proof. Suppose A ∈ o(V ), so that exp(tA) ∈ O(V ) for all t. Taking
the t-derivative of B(exp(tA)v, exp(tA)w) = B(v,w) we obtain B(Av,w) +
B(v,Aw) = 0 for all v,w ∈ V . Conversely, given A ∈ gl(V ) with B(Av,w)+
B(v,Aw) = 0 for all v,w ∈ V we have

B(exp(tA)v, exp(tA)w) =

∞
∑

k,l=0

tk+l

k!l!
B(Akv,Alw)

=

∞
∑

k=0

k
∑

i=0

tk

i!(k − i)!
B(Aiv,Ak−iw)

=

∞
∑

k=0

tk

k!

k
∑

i=0

(

k

i

)

B(Aiv,Ak−iw)

=

∞
∑

k=0

tk

k!
B(v,Akw)

k
∑

i=0

(−1)i
(

k

i

)

= B(v,w)

since
∑k

i=0(−1)i
(k

i

)

= δk,0. �

Thus A ∈ o(V ) if and only if B♭ ◦A : V → V ∗ is a skew-adjoint map. In
particular

dimK o(V ) = N(N − 1)/2

where N = dimV .
Let us now first discuss the case K = R. We have shown that any

quadratic vector space (V,B) over R is isometric to Rn,m, for unique n,m.
The corresponding orthogonal group will be denoted O(n,m), the special
orthogonal group SO(n,m), and its identity component SO0(n,m). The
dimension of O(n,m) coincides with the dimension of its Lie algebra o(n,m),
N(N − 1)/2 where N = n+m. If m = 0 we will write O(n) = O(n, 0) and
SO(n) = SO(n, 0). These groups are compact, since they are closed subsets
of the unit ball in Mat(n,R).

Lemma 6.2. The groups SO(n) are connected for all n ≥ 1, and have
fundamental group π1(SO(n)) = Z2 for n ≥ 3.

13
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Proof. The defining action of SO(n) on Rn restricts to a transitive
action on the unit sphere Sn−1, with stabilizer at (0, . . . , 0, 1) equal to SO(n−
1). Hence, for n ≥ 2 the Lie group SO(n) is the total space of a principal
fiber bundle over Sn−1, with fiber SO(n− 1). This shows by induction that
SO(n) is connected. The long exact sequence of homotopy groups

· · · → π2(S
n−1) → π1(SO(n− 1)) → π1(SO(n)) → π1(S

n−1)

shows furthermore that the map π1(SO(n − 1)) → π1(SO(n)) is an isomor-
phism for n > 3 (since π2(S

n−1) = 0 in that case). But π1(SO(3)) = Z2,
since SO(3) is diffeomorphic to RP (3) = S3/Z2 (see below). �

The groups SO(3) and SO(4) have a well-known relation with the group
SU(2) of complex 2 × 2-matrices X satisfying X† = X−1 and detX = 1.
Recall that the center of SU(2) is Z2 = {+I,−I}.

Proposition 6.3. There are isomorphisms of Lie groups,

SO(3) = SU(2)/Z2, SO(4) = (SU(2) × SU(2))/Z2

where in the second equality the quotient is by the diagonal subgroup Z2 ⊂
Z2 × Z2.

Proof. Consider the algebra of quaternions H ∼= C2 ∼= R4,

H =

{

X =

(

z w
−w z

)

, z, w ∈ C

}

.

For any X ∈ H let ||X|| = (|z|2 + |w|2)
1
2 . Note that X†X = XX† = ||X||2 I

for all X ∈ H. Define a symmetric R-bilinear form on H by

B(X1,X2) = 1
2 tr(X†

1X2).

The identification H ∼= R4 takes this to the standard bilinear form on R4

since B(X,X) = 1
2 ||X||2 tr(I) = ||X||2. The unit sphere S3 ⊂ H, charac-

terized by ||X||2 = 1 is the group SU(2) = {X| X† = X−1, det(X) = 1}.
Define an action of SU(2) × SU(2) on H by

(X1,X2) ·X = X1XX
−1
2 .

This action preserves the bilinear form on H ∼= R4, and hence defines a
homomorphism SU(2)× SU(2) → SO(4). The kernel of this homomorphism
is the finite subgroup {±(I, I)} ∼= Z2. (Indeed, X1XX

−1
2 = X for all X

implies in particular X1 = XX2X
−1 for all invertible X. But this is only

possible if X1 = X2 = ±I.) Since dim SO(4) = 6 = 2dim SU(2), and
since SO(4) is connected, this homomorphism must be onto. Thus SO(4) =
(SU(2) × SU(2))/{±(I, I)}.

Similarly, identify R3 ∼= {X ∈ H| tr(X) = 0} = span(I)⊥. The conjuga-
tion action of SU(2) on H preserves this subspace; hence we obtain a group
homomorphism SU(2) → SO(3). The kernel of this homomorphism is Z2

∼=
{±I} ⊂ SU(2). Since SO(3) is connected and dim SO(3) = 3 = dimSU(2),
it follows that SO(3) = SU(2)/{±I}. �

14
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To study the more general groups SO(n,m) and O(n,m), we recall the
polar decomposition of matrices. Let

Sym(k) = {A| A⊤ = A} ⊂ gl(k,R)

be the space of real symmetric k × k-matrices, and Sym+(k) its subspace
of positive definite matrices. As is well-known, the exponential map for
matrices restricts to a diffeomorphism,

exp: Sym(k) → Sym+(k),

with inverse log : Sym+(k) → Sym(k). Furthermore, the map

O(k) × Sym(k) → GL(k,R), (O,X) 7→ OeX

is a diffeomorphism. The inverse map

GL(k,R) → O(k) × Sym(k), 7→ (A|A|−1, log |A|),
where |A| = (A⊤A)1/2, is called the polar decomposition for GL(k,R). We
will need the following simple observation:

Lemma 6.4. Suppose X ∈ Sym(k) is non-zero. Then the closed subgroup
of GL(k,R) generated by eX is non-compact.

Proof. Replacing X with −X if necessary, we may assume ||eX || > 1.
But then ||enX || = ||eX ||n goes to ∞ for n→ ∞. �

This shows that O(k) is a maximal compact subgroup of GL(k,R). The
polar decomposition for GL(k,R) restricts to a polar decomposition for any
closed subgroup G that is invariant under the involution A 7→ A⊤. Let

K = G ∩ O(k,R), P = G ∩ Sym+(k), p = g ∩ Sym(k).

The diffeomorphism exp: Sym(k) → Sym+(k) restricts to a diffeomorphism
exp: p → P , with inverse the restriction of log. Hence the polar decompo-
sition for GL(k,R) restricts to a diffeomorphism

K × p → G

whose inverse is called the polar decomposition of G. (It is a special case
of a Cartan decomposition.) Using Lemma 6.4, we see that K is a maximal
compact subgroup of G. Since p is just a vector space, K is a deformation
retract of G.

We will now apply these considerations to G = O(n,m). Let B0 be the
standard bilinear form on Rn+m, and define the endomorphism τ by

B(v,w) = B0(τv,w).

Thus τ acts as the identity on Rn ⊕0 and as minus the identity 0⊕Rm, and
an endomorphism of Rn+m commutes with τ if and only if it preserves the
direct sum decomposition Rn+m = Rn ⊕ Rm. A matrix A ∈ Mat(n+m,R)
lies in O(n,m) if and only if A⊤τA = τ , where ⊤ denotes as before the usual
transpose of matrices, i.e. the transpose relative to B0 (not relative to B).
Similarly X ∈ o(n,m) if and only if X⊤τ + τX = 0.
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Remark 6.5. In block form we have

τ =

(

In 0
0 −Im

)

For A ∈ Mat(n+m,R) in block form

(9) A =

(

a b
c d

)

we have A ∈ O(n,m) if and only if

(10) a⊤a = I + c⊤c, d⊤d = I + b⊤b, a⊤b = c⊤d.

Similarly, for X ∈ Mat(n+m,R), written in block form

(11) X =

(

α β
γ δ

)

we have X ∈ o(n,m) if and only if

(12) α⊤ = −α, β⊤ = γ, δ⊤ = −δ.
Since O(n,m) is invariant under A 7→ A⊤, (and likewise for the spe-

cial orthogonal group and its identity component) the polar decomposition
applies. We find:

Proposition 6.6. Relative to the polar decomposition of GL(n+m,R),
the maximal subgroups of

G = O(n,m), SO(n,m), SO0(n,m),

are, respectively,

K = O(n) × O(m), S(O(n) × O(m)), SO(n) × SO(m).

(Here S(O(n) × O(m)) are elements of (O(n) × O(m)) of determinant 1.)
In all of these cases, the space p in the Cartan decomposition is given by
matrices of the form

p =

{(

0 x
x⊤ 0

)}

where x is an arbitrary n×m-matrix.

Proof. We start with G = O(n,m). Elements in K = G ∩ O(n +m)
are characterized by A⊤τA = τ and A⊤A = I. The two conditions give
Aτ = τA, so that A is a block diagonal element of O(n + m). Hence
A ∈ O(n)×O(m) ⊂ O(n,m). This shows K = O(n)×O(m). Elements X ∈
p = o(n,m)∩Sym(n+m) satisfyX⊤τ+τX = 0 andX⊤ = X, hence they are
symmetric block off-diagonal matrices. This proves our characterization of p,
and proves the polar decomposition for O(n,m). The polar decompositions
for SO(n,m) is an immediate consequence, and the polar decomposition
for SO0(n,m) follows since SO(n) × SO(m) is the identity component of
S(O(n) × O(m)). �

16



CHAPTER 1. SYMMETRIC BILINEAR FORMS

Corollary 6.7. Unless n = 0 or m = 0 the group O(n,m) has four
connected components and SO(n,m) has two connected components.

We next describe the space P = exp(p).

Proposition 6.8. The space P = exp(p) ⊂ G consists of matrices

P =

{(

(I + bb⊤)1/2 b

b⊤ (I + b⊤b)1/2

)}

where b ranges over all n×m-matrices. In fact,

log

(

(I + bb⊤)1/2 b

b⊤ (I + b⊤b)1/2

)

=

(

0 x
x⊤ 0

)

where x and b are related as follows,

(13) b =
sinh(xx⊤)

xx⊤
x, x =

arsinh((bb⊤)1/2)

(bb⊤)1/2
b.

Note that xx⊤ (resp. bb⊤) need not be invertible. The quotient sinh(xx⊤)
xx⊤

is to be interpreted as f(xx⊤) where f(z) is the entire holomorphic function
sinh z

z , and f(xx⊤) is given in terms of the spectral theorem or equivalently
in terms of the power series expansion of f .

Proof. Let X =

(

0 x
x⊤ 0

)

. By induction on k,

X2k =

(

(xx⊤)k 0
0 (x⊤x)k

)

, X2k+1 =

(

0 (xx⊤)kx
x(x⊤x)k 0

)

.

This gives

exp(X) =

(

cosh(xx⊤) sinh(xx⊤)
xx⊤ x

x sinh(x⊤x)
x⊤x

cosh(x⊤x)

)

,

which is exactly the form of elements in P with b = sinh(xx⊤)
xx⊤ x. The equation

cosh(xx⊤) = (1+ bb⊤)1/2 gives sinh(xx⊤) = (bb⊤)1/2. Plugging this into the
formula for b, we obtain the second equation in (13). �

For later reference, we mention one more simple fact about the orthog-
onal and special orthogonal groups. Let Z2 be the center of GL(n +m,R)
consisting of ±I.

Proposition 6.9. For all n,m, the center of the group O(n,m) is Z2.
Except in the cases (n,m) = (0, 2), (2, 0), the center of SO(n,m) is Z2 if −I
lies in SO(n,m), and is trivial otherwise. The statement for the identity
component is similar.

The proof is left as an exercise. (Note that the elements of the center
of G commute in particular with the diagonal elements of G. In the case of
hand, one uses this fact to argue that the central elements are themselves
diagonal, and finally that they are multiples of the identity.)
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The discussion above carries over to K = C, with only minor modi-
fications. It is enough to consider the case V = Cn, with the standard
symmetric bilinear form. Again, our starting point is the polar decomposi-
tion, but now for complex matrices. Let Herm(n) = {A| A† = A} be the
space of Hermitian n × n matrices, and Herm+(n) the subset of positive
definite matrices. The exponential map gives a diffeomorphism

Herm(n) → Herm+(n), X 7→ eX .

This is used to show that the map

U(n) × Herm(n) → GL(n,C), (U,X) 7→ UeX

is a diffeomorphism; the inverse map takes A to (Ae−X ,X) with X =
1
2 log(A†A). The polar decomposition of GL(n,C) gives rise to polar de-
compositions of any closed subgroup G ⊂ GL(n,C) that is invariant under
the involution †. In particular, this applies to O(n,C) and SO(n,C). In-
deed, if A ∈ O(n,C), the matrix A†A lies in O(n,C) ∩ Herm(n), and hence
its logarithm X = 1

2 log(A†A) lies in o(n,C) ∩ Herm(n). But clearly,

O(n,C) ∩ U(n) = O(n,R),

SO(n,C) ∩ U(n) = SO(n,R)

while
o(n,C) ∩ Herm(n) =

√
−1o(n,R).

Hence, the maps (U,X) 7→ UeX restrict to polar decompositions

O(n,R) ×
√
−1o(n,R) → O(n,C),

SO(n,R) ×
√
−1o(n,R) → SO(n,C),

which shows that the algebraic topology of the complex orthogonal and spe-
cial orthogonal group coincides with that of its real counterparts. Arguing
as in the real case, the center of O(n,C) is given by {+I,−I} while the
center of SO(n,C) is trivial for n odd and {+I,−I} for n even, provided
n ≥ 3.

7. Lagrangian Grassmannians

If (V,B) is a quadratic vector space with split bilinear form, denote
by Lag(V ) the set of Lagrangian subspaces. Recall that any such V is
isomorphic to Kn,n where dimV = 2n. For K = R we have the following
result.

theorem 7.1. Let V = Rn,n with the standard basis satisfying (7). Then
the maximal compact subgroup O(n) × O(n) of O(n, n) acts transitively on
the space Lag(Rn,n) of Lagrangian subspaces, with stabilizer at

(14) L0 = span{ǫ1 + ǫ̃1, . . . , ǫn + ǫ̃n}
the diagonal subgroup O(n)∆. Thus

Lag(Rn,n) ∼= O(n) × O(n)/O(n)∆ ∼= O(n).

18
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In particular, it is a compact space with two connected components.

Proof. Let B0 be the standard positive definite bilinear form on the
vector space Rn,n = R2n, with corresponding orthogonal group O(2n). In-
troduce an involution τ ∈ O(2n), by

B(v,w) = B0(τv,w).

That is τǫi = ǫi, τ ǫ̃i = −ǫ̃i. Then the maximal compact subgroup O(n) ×
O(n) consists of all those transformations A ∈ O(n, n) which commute with
τ . At the same time, O(n)× O(n) is characterized as the orthogonal trans-
formations in O(2n) commuting with τ .

The ±1 eigenspaces V± of τ are both anisotropic, i.e. they do not contain
any isotropic vectors. Hence, for any L ⊂ Rn,n is Lagrangian, then τ(L) is
transverse to L:

L ∩ τ(L) = (L ∩ V+) ⊕ (L ∩ V−) = 0.

For any L, we may choose a basis v1, . . . , vn that is orthonormal relative
to B0. Then v1, . . . , vn, τ(v1), . . . , τ(vn) is a B0-orthonormal basis of Rn,n.
If L′ is another Lagrangian subspace, with B0-orthonormal basis v′1, . . . , v

′
n,

then the orthogonal transformation A ∈ O(2n) given by

Avi = v′i, Aτ(vi) = τ(v′i), i = 1, . . . , n

commutes with τ , hence A ∈ O(n) × O(n). This shows that O(n) × O(n)
acts transitively on Lag(Rn,n). For the Lagrangian subspace (14), with
vi = 1√

2
(ǫi + ǫ̃i), the stabilizer of L0 under the action of O(n)×O(n) consists

of those transformations A ∈ O(n) × O(n) for which v′1, . . . , v
′
n is again a

B0-orthonormal basis of L0. But this is just the diagonal subgroup O(n)∆ ⊂
O(n) × O(n). Finally, since the multiplication map

(O(n) × {1}) × O(n)∆ → O(n) × O(n)

is a bijection, the quotient is just O(n). �

Theorem 7.1 does not, as it stands, hold for other fields K. Indeed, for
V = Kn,n the group O(n,K)×O(n,K) takes (14) to a Lagrangian subspace
transverse to V+ = Kn ⊕ 0, V− = 0 ⊕ Kn, and any Lagrangian subspace
transverse to V+, V− is of this form. However, there may be other Lagrangian
subspaces: E.g. if K = C and n = 2, the span of ǫ1 +

√
−1ǫ2 and ǫ̃1 +

√
−1ǫ̃2

is a Lagrangian subspace that is not transverse to V±. Nonetheless, there is
a good description of the space Lag in the complex case K = C.

theorem 7.2. Let V = C2m with the standard bilinear form. The ac-
tion of the maximal compact subgroup O(2m) ⊂ O(2m,C) on Lag(V ) is
transitive, with stabilizer at the Lagrangian subspace

L0 = span{ǫ1 −
√
−1ǫm+1, . . . , ǫm −

√
−1ǫ2m}

the unitary group U(m). That is, Lag(C2m) is a homogeneous space

Lag(C2m) ∼= O(2m)/U(m);
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In particular, it is a compact and has two connected components.

Proof. Let τ : v 7→ v be complex conjugation in V = C2m, so that
〈v,w〉 = B(v,w) is the standard Hermitian inner product on C2m. Then
τ ∈ O(4m,R) is a real orthogonal transformation of C2m ∼= R4m. Let V± ⊂
C2m be the ±1 eigenspaces of τ ; thus V+ = R2m (viewed as a real subspace)
and V− =

√
−1R2m. Note that V± do not contain non-zero isotropic vectors.

Hence, for L ∈ Lag(V ) we have L ∩ τ(L) 6= 0, and hence V = L ⊕ τ(L)
is a direct sum. Let v1, . . . , vn be a basis of L that is orthonormal for
the Hermitian inner product. Then v1, . . . , vn, v1, . . . , vn is an orthonormal
basis of V . Given another Lagrangian subspace L′ with orthonormal basis
v1,

′ , . . . , v′n, the unitary transformation A ∈ U(2m) with Avi = v′i and
Avi = v′i commutes with τ , hence it is contained in O(2m) ⊂ U(2m). This
shows that O(2m) acts transitively. Note that any unitary transformation
U : L→ L′ between Lagrangian subspaces extends uniquely to an element A
of the maximal compact subgroup O(2m) ⊂ O(2m,C), where Av = Uv for
v ∈ L and Aτv = τUv for τv ∈ τL. In particular, the stabilizer in O(2m)
of L0 is the unitary group U(L0) ∼= U(n). �

Remark 7.3. The orbit of L0 under O(m,C) × O(m,C) is open and
dense in Lag(C2m), and as in the real case is identified with O(m,C). Thus,
Lag(C2m) is a smooth compactification of the complex Lie group O(m,C).

Theorem 7.2 has a well-known geometric interpretation. View C2m as
the complexification of R2m. Recall that an orthogonal complex structure on
R2m is an automorphism J ∈ O(2m) with J2 = −I. We denote by J0 the
standard complex structure.

Let J (2m) denote the space of all orthogonal complex structures. It car-
ries a transitive action of O(2m), with stabilizer at J0 equal to U(m). Hence
the space of orthogonal complex structures is identified with the complex
Lagrangian Grassmannian:

J (2m) = O(2m)/U(m) = Lag(C2m).

Explicitly, this correspondence takes J ∈ J (2m) to its +
√
−1 eigenspace

L = ker(J −
√
−1I).

This has complex dimension m since C2m = L⊕ L, and it is isotropic since
v ∈ L implies

B(v, v) = B(Jv, Jv) = B(
√
−1v,

√
−1v) = −B(v, v).

Any Lagrangian subspace L determines J , as follows: Given w ∈ R2n, we
may uniquely write w = v + v where v ∈ L. Define a linear map J by
Jw := −2 Im(v). Then v = w −

√
−1Jw. Since L is Lagrangian, we have

0 = B(v, v) = B(w −
√
−1Jw,w −

√
−1Jw)

= B(w,w) −B(Jw, Jw) − 2
√
−1B(w, Jw),
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which shows that J ∈ O(2m) and that B(w, Jw) = 0 for all w. Multiplying
the definition of J by

√
−1, we get

√
−1v =

√
−1w + Jw

which shows that J(Jw) = −w. Hence J is an orthogonal complex structure.

Remark 7.4. There are parallel results in symplectic geometry, for vec-
tor spaces V with a non-degenerate skew -symmetric linear form ω. If K = R,
any such V is identified with R2n = Cn with the standard symplectic form,
L0 = Rn ⊂ Cn is a Lagrangian subspace, and the action of U(n) ⊂ Sp(V, ω)
on L0 identifies

Lagω(R2n) ∼= U(n)/O(n)

For the space Lag(V ) of complex Lagrangian Grassmannian subspaces of
the complex symplectic vector space C2n ∼= Hn one has

Lagω(C2n) ∼= Sp(n)/U(n)

where Sp(n) is the compact symplectic group (i.e. the quaternionic unitary
group). See e.g. [?, p.67].
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