
CHAPTER 1

Symmetric bilinear forms

Throughout, K will denote a field of characteristic 6= 2. We are mainly
interested in the cases K = R or C, and sometimes specialize to those two
cases.

1. Quadratic vector spaces

Suppose V is a finite-dimensional vector space over K. For any bilinear
form B : V × V → K, define a linear map

B♭ : V → V ∗, v 7→ B(v, ·).
The bilinear form B is called symmetric if it satisfies B(v1, v2) = B(v2, v1)

for all v1, v2 ∈ V . Since dimV < ∞ this is equivalent to (B♭)∗ = B♭.
The symmetric bilinear form B is uniquely determined by the associated
quadratic form, QB(v) = B(v, v) by the polarization identity,

(1) B(v,w) = 1
2

(
QB(v + w) −QB(v) −QB(w)

)
.

The kernel (also called radical) of B is the subspace

ker(B) = {v ∈ V | B(v, v1) = 0 for all v1 ∈ V },
i.e. the kernel of the linear map B♭. The bilinear form B is called non-
degenerate if ker(B) = 0, i.e. if and only if B♭ is an isomorphism. A vector
space V together with a non-degenerate symmetric bilinear form B will be
referred to as a quadratic vector space. Assume for the rest of this chapter
that (V,B) is a quadratic vector space.

Definition 1.1. A vector v ∈ V is called isotropic if B(v, v) = 0, and
non-isotropic if B(v, v) 6= 0.

For instance, if V = Cn over K = C, with the standard bilinear form
B(z,w) =

∑n
i=1 ziwi, then v = (1, i, 0, . . . , 0) is an isotropic vector. If

V = R2 over K = R, with bilinear form B(x, y) = x1y1 − x2y2, then the set
of isotropic vectors x = (x1, x2) is given by the ‘light cone’ x1 = ±x2.

The orthogonal group O(V ) is the group

(2) O(V ) = {A ∈ GL(V )| B(Av,Aw) = B(v,w) for all v,w ∈ V }.
The subgroup of orthogonal transformations of determinant 1 is denoted
SO(V ), and is called the special orthogonal group.
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2. ISOTROPIC SUBSPACES

For any subspace F ⊂ V , the orthogonal or perpendicular subspace is
defined as

F⊥ = {v ∈ V | B(v, v1) = 0 for all v1 ∈ F}.
The image of B♭(F⊥) ⊂ V ∗ is the annihilator of F . From this one deduces
the dimension formula

(3) dimF + dimF⊥ = dimV

and the identities

(F⊥)⊥ = F, (F1 ∩ F2)
⊥ = F⊥

1 + F⊥
2 , (F1 + F2)

⊥ = F⊥
1 ∩ F⊥

2

for all F,F1, F2 ⊂ V . For any subspace F ⊂ V the restriction of B to F has
kernel ker(B|F×F ) = F ∩ F⊥.

Definition 1.2. A subspace F ⊂ V is called a quadratic subspace if the
restriction of B to F is non-degenerate, that is F ∩ F⊥ = 0.

Using (F⊥)⊥ = F we see that F is quadratic ⇔ F⊥ is quadratic ⇔
F ⊕ F⊥ = V .

As a simple application, one finds that any non-degenerate symmetric
bilinear form B on V can be ’diagonalized’. Let us call a basis ǫ1, . . . , ǫn of
V an orthogonal basis if B(ǫi, ǫj) = 0 for all i 6= j.

Proposition 1.3. Any quadratic vector space (V,B) admits an orthog-
onal basis ǫ1, . . . , ǫn. If K = C one can arrange that B(ǫi, ǫi) = 1 for all i.
If K = R or K = Q, one can arrange that B(ǫi, ǫi) = ±1 for all i.

Proof. The proof is by induction on n = dimV , the case dimV = 1
being obvious. If n > 1 choose any non-isotropic vector ǫ1 ∈ V . The span
of ǫ1 is a quadratic subspace, hence so is span(ǫ1)

⊥. By induction, there is
an orthogonal basis ǫ2, . . . , ǫn of span(ǫ1)

⊥. If K = C (resp. K = R,Q), one
can rescale the ǫi such that B(ǫi, ǫi) = 1 (resp. B(ǫi, ǫi) = ±1). �

We will denote by Kn,m the vector space Kn+m with bilinear form given
by B(ǫi, ǫj) = ±δij , with a + sign for i = 1, . . . , n and a − sign for i =
n + 1, . . . , n + m. If m = 0 we simple write Kn = Kn,0, and refer to the
bilinear form as standard. The Proposition above shows that for K = C,
and quadratic vector space (V,B) is isomorphic to Cn with the standard
bilinear form, while for K = R it is isomorphic to some Rn,m. (Here n,m
are uniquely determined, although it is not entirely obvious at this point.)

2. Isotropic subspaces

Let (V,B) be a quadratic vector space.

Definition 2.1. A subspace F ⊂ V is called isotropic1 if B|F×F = 0,
that is F ⊂ F⊥.

1In some of the literature (e.g. C. Chevalley [?] or L. Grove [?]), a subspace is called
isotropic if it contains at least one non-zero isotropic vector, and totally isotropic if all of
its vectors are isotropic.
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CHAPTER 1. SYMMETRIC BILINEAR FORMS

The polarization identity (1) shows that a subspace F ⊂ V is isotropic
if and only if all of its vectors are isotropic. If F ⊂ V is isotropic, then

(4) dimF ≤ dimV/2

since dimV = dimF + dimF⊥ ≥ 2 dimF .

Proposition 2.2. For isotropic subspaces F,F ′ the following three con-
ditions

(a) F + F ′ is quadratic,
(b) V = F ⊕ (F ′)⊥,
(c) V = F ′ ⊕ F⊥

are equivalent, and imply that dimF = dimF ′. Given an isotropic sub-
space F ⊂ V one can always find an isotropic subspace F ′ satisfying these
conditions.

Proof. We have

(F + F ′) ∩ (F + F ′)⊥ = (F + F ′) ∩ F⊥ ∩ (F ′)⊥

= (F + (F ′ ∩ F⊥)) ∩ (F ′)⊥

= (F ∩ (F ′)⊥) + (F ′ ∩ F⊥).

Thus

(F + F ′) ∩ (F + F ′)⊥ = 0 ⇔ F ∩ (F ′)⊥ = 0 and F ′ ∩ F⊥ = 0

⇔ F ∩ (F ′)⊥ = 0, and F + (F ′)⊥ = V.
(5)

This shows (a)⇔(b), and similarly (a)⇔(c). Property (b) shows dimV =
dimF +(dimF ′)⊥ = dimF +dimV −dimF ′, hence dimF = dimF ′. Given
an isotropic subspace F , we find an isotropic subspace F ′ satisfying (c) as
follows. Choose any complement W to F⊥, so that

V = F⊥ ⊕W.

Thus V = F⊥ +W and 0 = F⊥ ∩W . Taking orthogonals, this is equivalent
to 0 = F ∩W⊥ and V = F +W⊥, that is

V = F ⊕W⊥.

Let S : W → F ⊂ F⊥ be the projection along W⊥. Then w − S(w) ∈ W⊥

for all w ∈W . The subspace

F ′ = {w − 1
2S(w)| w ∈W}.

(being the graph of a map W → F⊥) is again a complement to F⊥, and
since for all w ∈

B(w − 1
2S(w), w − 1

2S(w)) = B(w,w − S(w)) + 1
4B(S(w), S(w)) = 0

(the first term vanishes since w − S(w) ∈ W⊥, the second term vanishes
since S(w) ∈ F is isotropic) it follows that F ′ is isotropic. �
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3. SPLIT BILINEAR FORMS

An isotropic subspace is called maximal isotropic if it is not properly
contained in another isotropic subspace. Put differently, an isotropic sub-
space F is maximal isotropic if and only if it contains all v ∈ F⊥ with
B(v, v) = 0.

Proposition 2.3. Suppose F,F ′ are maximal isotropic. Then

(a) the kernel of the restriction of B to F + F ′ equals F ∩ F ′. (In
particular, F + F ′ is quadratic if and only if F ∩ F ′ = 0.)

(b) The images of F,F ′ in the quadratic vector space (F +F ′)/(F ∩F ′)
are maximal isotropic.

(c) dimF = dimF ′.

Proof. Since F is maximal isotropic, it contains all isotropic vectors of
F⊥, and in particular it contains F⊥ ∩ F ′. Thus

F⊥ ∩ F ′ = F ∩ F ′

Similarly F ∩ (F ′)⊥ = F ∩F ′ since F ′ is maximal isotropic. The calculation
(5) hence shows

(F + F ′) ∩ (F + F ′)⊥ = F ∩ F ′,

proving (a). Let W = (F + F ′)/(F ∩ F ′) with the bilinear form BW in-
duced from B, and π : F + F ′ → W the quotient map. Clearly, BW is non-
degenerate, and π(F ), π(F ′) are isotropic. Hence the sumW = π(F )+π(F ′)
is a direct sum, and the two subspaces are maximal isotropic of dimension
1
2 dimW . It follows that dimF = dimπ(F ) + dim(F ∩ F ′) = dimπ(F ′) +
dim(F ∩ F ′) = dimF ′. �

Definition 2.4. The Witt index of a non-degenerate symmetric bilinear
form B is the dimension of a maximal isotropic subspace.

By (4), the maximal Witt index is 1
2 dimV if dimV is even, and 1

2(dimV−
1) if dimV is odd.

3. Split bilinear forms

Definition 3.1. The non-degenerate symmetric bilinear form B on an
even-dimensional vector space V is called split if its Witt index is 1

2 dimV . In
this case, maximal isotropic subspaces are also called Lagrangian subspaces.

Equivalently, the Lagrangian subspaces are characterized by the prop-
erty

F = F⊥.

Split bilinear forms are easily classified:

Proposition 3.2. Let (V,B) be a quadratic vector space with a split
bilinear form. Then there exists a basis e1, . . . , ek, f1, . . . , fk of V in which
the bilinear form is given as follows:

(6) B(ei, ej) = 0, B(ei, fj) = δij , B(fi, fj) = 0.
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CHAPTER 1. SYMMETRIC BILINEAR FORMS

Proof. Choose a pair of complementary Lagrangian subspaces, F,F ′.
Since B defines a non-degenerate pairing between F and F ′, it defines an
isomorphism, F ′ ∼= F ∗. Choose a basis e1, . . . , ek, and let f1, . . . , fk be the
dual basis of F ′ under this identification. Then B(ei, fj) = δij by definition
of dual basis, and B(ei, ej) = B(fi, fj) = 0 since F,F ′ are Lagrangian. �

Our basis e1, . . . , ek, f1, . . . , fk for a quadratic vector space (V,B) with
split bilinear form is not orthogonal. However, it may be replaced by an
orthogonal basis

ǫi = ei +
1
2fi, ǫ̃i = ei − 1

2fi.

In the new basis, the bilinear form reads,

(7) B(ǫi, ǫj) = δij , B(ǫi, ǫ̃j) = 0, B(ǫ̃i, ǫ̃j) = −δij .
Put differently, Proposition 3.2 (and its proof) say that any quadratic

vector space with split bilinear form is isometric to a vector space

V = F ∗ ⊕ F,

where the bilinear form is given by the pairing:

B((µ, v), (µ′, v′)) = 〈µ′, v〉 + 〈µ, v′〉.
The corresponding orthogonal group will be discussed in Section ?? below.
At this point we will only need the following fact:

Lemma 3.3. Let V = F ∗ ⊕ F , with the split bilinear form B given by
the pairing. Then the subgroup O(V )F ⊂ O(V ) fixing F pointwise consists
of transformations of the form

AD : (µ, v) 7→ (µ, v +Dµ)

where D : F ∗ → F is skew-adjoint: D∗ = −D. In particular, O(V )F ⊂
SO(V ).

Proof. A linear transformation A ∈ GL(V ) fixes F pointwise if and
only if it is of the form

A(µ, v) = (Sµ, v +Dµ)

for some linear mapsD : F ∗ → F and S : F ∗ → F ∗. SupposeA is orthogonal.
Then

0 = B(A(µ, 0), A(0, v)) −B((µ, 0), (0, v)) = 〈Sµ− µ, v〉
for all v ∈ F, µ ∈ F ∗; hence S = I. Furthermore

0 = B(A(µ, 0), A(µ′, 0)) −B((µ, 0), (µ′, 0)) = 〈µ,Dµ′〉 + 〈µ′,Dµ〉,
so that D = −D∗. Conversely, it is straightforward to check that transfor-
mations of the form A = AD are orthogonal. �
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4. E.CARTAN-DIEUDONNÉ’S THEOREM

4. E.Cartan-Dieudonné’s Theorem

Throughout this Section, we assume that (V,B) is a quadratic vector
space. The following simple result will be frequently used.

Lemma 4.1. For any A ∈ O(V ), the orthogonal of the space of A-fixed
vectors equals the range of A− I:

ran(A− I) = ker(A− I)⊥.

Proof. For any L ∈ End(V ), the transpose L⊤ relative to B satisfies
ran(L) = ker(L⊤)⊥. We apply this to L = A−I, and observe that ker(A⊤−
I) = ker(A− I) since a vector is fixed under A if and only if it is fixed under
A⊤ = A−1. �

Definition 4.2. An orthogonal transformation R ∈ O(V ) is called a
reflection if its fixed point set ker(R− I) has codimension 1.

Equivalently, ran(R − I) = ker(R − I)⊥ is 1-dimensional. If v ∈ V is a
non-isotropic vector, then the formula

Rv(w) = w − 2
B(v,w)

B(v, v)
v,

defines a reflection, since ran(Rv − I) = span(v) is 1-dimensional.

Proposition 4.3. Any reflection R is of the form Rv, where the non-
isotropic vector v is unique up to a non-zero scalar.

Proof. Suppose R is a reflection, and consider the 1-dimensional sub-
space F = ran(R− I). We claim that F is a quadratic subspace of V . Once
this is established, we obtain R = Rv for any non-zero v ∈ F , since Rv then
acts as −1 on F and as +1 on F⊥. To prove the claim, suppose on the
contrary that F is not quadratic. Since dimF = 1 it is then isotropic. Let
F ′ be an isotropic subspace such that F + F ′ is quadratic. Since R fixes
(F +F ′)⊥ ⊂ F⊥ = ker(R− I), it may be regarded as a reflection of F +F ′.
This reduces the problem to the case dimV = 2, with F ⊂ V maximal
isotropic and R ∈ O(V )F . As we had seen, O(V )F is identified with the
group of skew-symmetric maps F ∗ → F , but for dimF = 1 this group is
trivial. Hence R is the identity, contradicting dim ran(R− I) = 1. �

Some easy properties of reflections are,

(1) det(R) = −1,
(2) R2 = I,
(3) if v is non-isotropic, ARvA

−1 = RAv for all A ∈ O(V ),
(4) distinct reflections R1 6= R2 commute if and only if the lines ran(R1−

I) and ran(R2 − I) are orthogonal.

The last Property may be seen as follows: suppose R1R2 = R2R1 and apply
to v1 ∈ ran(R1 − I). Then R1(R2v1) = −R2v1, which implies that R2v1 is a
multiple of v1; in fact R2v1 = ±v1 since R2 is orthogonal. Since R2v1 = −v1
would imply that R1 = R2, we must have R2v1 = v1, or v1 ∈ ker(R2 − I).
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CHAPTER 1. SYMMETRIC BILINEAR FORMS

For any A ∈ O(V ), let l(A) denote the smallest number l such that
A = R1 · · ·Rl where Ri ∈ O(V ) are reflections. We put l(I) = 0, and
for the time being we put l(A) = ∞ if A cannot be written as such a
product. (The Cartan-Dieudonne theorem below states that l(A) < ∞
always.) The following properties are easily obtained from the definition,
for all A, g,A1, A2 ∈ O(V ),

l(A−1) = l(A),

l(gAg−1) = l(A),

|l(A1) − l(A2)| ≤ l(A1A2) ≤ l(A1) + l(A2),

det(A) = (−1)l(A)

A little less obvious is the following estimate.

Proposition 4.4. There is a lower bound

dim(ran(A− I)) ≤ l(A)

for any A ∈ O(V ).

Proof. Let n(A) = dim(ran(A− I)). If A1, A2 ∈ O(V ), we have

ker(A1A2 − I) ⊇ ker(A1A2 − I) ∩ ker(A1 − I) = ker(A2 − I) ∩ ker(A1 − I)

Taking orthogonals,

ran(A1A2 − I) ⊆ ran(A2 − I) + ran(A1 − I)

which shows
n(A1A2) ≤ n(A1) + n(A2).

Thus, if A = R1 · · ·Rl is a product of l = l(A) reflections, we have

n(A) ≤ n(R1) + . . .+ n(Rl) = l(A). �

The following upper bound for l(A) is much more tricky:

theorem 4.5 (E.Cartan-Dieudonné). Any orthogonal transformation
A ∈ O(V ) can be written as a product of l(A) ≤ dimV reflections.

Proof. By induction, we may assume that the Theorem is true for
quadratic vector spaces of dimension ≤ dimV − 1. We will consider three
cases.

Case 1: ker(A − I) is non-isotropic. Choose any non-isotropic vector
v ∈ ker(A − I). Then A fixes the span of v and restricts to an orthogonal
transformation A1 of V1 = span(v)⊥. Using the induction hypothesis, we
obtain

(8) l(A) = l(A1) ≤ dimV − 1.

Case 2: ran(A− I) is non-isotropic. We claim:

(C) There exists a non-isotropic element w ∈ V such that v = (A−I)w
is non-isotropic.
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4. E.CARTAN-DIEUDONNÉ’S THEOREM

Given v,w as in (C), we may argue as follows. Since v = (A− I)w, and
hence (A+ I)w ∈ span(v)⊥, we have

Rv(A− I)w = −(A− I)w, Rv(A+ I)w = (A+ I)w.

Adding and dividing by 2 we find RvAw = w. Since w is non-isotropic,
this shows that the kernel of RvA− I is non-isotropic. Equation (8) applied
to the orthogonal transformation RvA shows l(RvA) ≤ dimV − 1. Hence
l(A) ≤ dimV . It remains to prove the claim (C). Suppose it is false, so that
we have:

(¬C) The transformation A− I takes the set of non-isotropic elements
into the set of isotropic elements.

Let v = (A − I)w be a non-isotropic element in ran(A − I). By (¬C)
the element w is isotropic. The orthogonal space span(w)⊥ is non-isotropic
for dimensional reasons, hence there exists a non-isotropic element w1 with
B(w,w1) = 0. Then w1, w+w1, w−w1 are all non-isotropic, and by (¬C)
their images

v1 = (A− I)w1, v + v1 = (A− I)(w + w1), v − v1 = (A− I)(w − w1)

are isotropic. But then the polarization identity

QB(v) = 1
2(QB(v + v1) +QB(v − v1)) −QB(v1) = 0

shows that v is isotropic, a contradiction. This proves (C).
Case 3: Both ker(A − I) and ran(A − I) are isotropic. Since these

two subspaces are orthogonal, it follows that they are equal, and are both
Lagrangian. This reduces the problem to the case V = F ∗ ⊕ F , where
F = ker(A − I), that is A ∈ O(V )F . In particular det(A) = 1. Let Rv
be any reflection, then A1 = RvA ∈ O(V ) has det(A1) = −1. Hence
ker(A1 − I) and ran(A1 − I) cannot be both isotropic, and by the first two
cases l(A1) ≤ dimV = 2dimF . But since det(A1) = −1, l(A1) must be
odd, hence l(A1) < dimV and therefore l(A) ≤ dimV . �

Remark 4.6. Our proof of Cartan-Dieudonne’s theorem is a small mod-
ification of Artin’s proof in [?]. If char(K) = 2, the statement of the Cartan-
Dieudonne theorem is still true, except in some very special cases. See
Chevalley [?, page 83].

Example 4.7. Let dimF = 2, and V = F ∗⊕F with bilinear form given
by the pairing. Suppose A ∈ O(V )F , so that A(µ, v) = (µ, v +Dµ) where
D : F ∗ → F is skew-adjoint: D∗ = −D. Assuming D 6= 0 we will show how
to write A as a product of four reflections. Choose a basis e1, e2 of F , with
dual basis f1, f2 of F ∗, such that D has the normal form Df1 = e2, Df2 =
−e1. Let Q ∈ GL(F ) be the diagonal transformation,

Q(e1) = 2e1, Q(e2) = e2
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CHAPTER 1. SYMMETRIC BILINEAR FORMS

and put

g =

(
(Q∗)−1 0

0 Q

)
, .

Then g is a product of two reflections, for example g = R′R where

R =

(
0 I
I 0

)
, R′ = gR.

On the other hand, using QD(Q∗)−1 = 2D we see

gAg−1 =

(
I 0

QD(Q∗)−1 I

)
=

(
I 0

2D I

)
= A2,

or A = gAg−1A−1. Since g = R′R we obtain the desired presentation of A
as a product of 4 reflections:

A = R′R(ARA−1)(AR′A−1).

5. Witt’s Theorem

The following result is of fundamental importance in the theory of qua-
dratic forms.

theorem 5.1 (Witt’s Theorem). Suppose F, F̃ are subspaces of a qua-
dratic vector space (V,B), such that there exists an isometric isomorphism

φ : F → F̃ , i.e. B(φ(v), φ(w)) = B(v,w) for all v,w ∈ F . Then φ extends
to an orthogonal transformation A ∈ O(V ).

Proof. By induction, we may assume that the Theorem is true for
quadratic vector spaces of dimension ≤ dimV − 1. We will consider two
cases.

Case 1: F is non-isotropic. Let v ∈ F be a non-isotropic vector, and
let ṽ = φ(v). Then QB(v) = QB(ṽ) 6= 0, and v+ ṽ and v− ṽ are orthogonal.

The polarization identity QB(v)+QB(Ṽ ) = 1
2(QB(v+ ṽ)+QB(v− ṽ)) show

that are not both isotropic; say w = v + ṽ is non-isotropic. The reflection
Rw satisfies

Rw(v + ṽ) = −(v + ṽ), Rw(v − ṽ) = v − ṽ.

Adding, and dividing by 2 we find that Rw(v) = −ṽ. Let Q = RwRv. Then
Q is an orthogonal transformation with Q(v) = ṽ = φ(v).

Replacing F with F ′ = Q(F ), v with v′ = Q(v) and φ with φ′ = φ◦Q−1,

we may thus assume that F ∩ F̃ contains a non-isotropic vector v such that
φ(v) = v. Let

V1 = span(v)⊥, F1 = F ∩ V1, F̃1 = F̃ ∩ V1

and φ1 : F1 → F̃1 the restriction of φ. By induction, there exists an orthogo-
nal transformation A1 ∈ O(V1) extending φ1. Let A ∈ O(V ) with A(v) = v
and A|V1

= A1; then A extends φ.
Case 2: F is isotropic. Let F ′ be an isotropic complement to F⊥, and

let F̃ ′ be an isotropic complement to F̃⊥. The pairing given by B identifies
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6. ORTHOGONAL GROUPS FOR K = R,C

F ′ ∼= F ∗ and F̃ ′ ∼= F̃ ∗. The isomorphism φ : F → F̃ extends to an isometry
ψ : F ⊕ F ′ → F̃ ⊕ F̃ ′, given by (φ−1)∗ on F ′ ∼= F ∗. By Case 1 above, ψ
extends further to an orthogonal transformation of V . �

Some direct consequences are:

(1) O(V ) acts transitively on the set of isotropic subspaces of any given
dimension.

(2) If F, F̃ are isometric, then so are F⊥, F̃⊥. Indeed, any orthogonal

extension of an isometry φ : F → F̃ restricts to an isometry of their
orthogonals.

(3) Suppose F ⊂ V is a subspace isometric to Kn, with standard bilin-
ear form B(ǫi, ǫj) = δij , and F is maximal relative to this property.

If F ′ ⊂ V is isometric to Kn′

, then there exists an orthogonal trans-
formation A ∈ O(V ) with F ′ ⊂ A(F ). In particular, the dimension
of such a subspace F is an invariant of (V,B).

A subspace W ⊂ V of a quadratic vector space is called anisotropic if
it does not contain isotropic vectors other than 0. In particular, W is a
quadratic subspace.

Proposition 5.2 (Witt decomposition). Any quadratic vector space
(V,B) admits a decomposition V = F ⊕ F ′ ⊕ W where F,F ′ are maxi-
mal isotropic, W is anisotropic, and W⊥ = F ⊕ F ′. If V = F1 ⊕ F ′

1 ⊕W1

is another such decomposition, then there exists A ∈ O(V ) with A(F ) =
F1, A(F ′) = F ′

1, A(W ) = W1.

Proof. To construct such a decomposition, let F be a maximal isotropic
subspace, and F ′ an isotropic complement to F⊥. Then F ⊕F ′ is quadratic,
hence so is W = (F ⊕ F ′)⊥. Since F is maximal isotropic, the subspace
W cannot contain isotropic vectors other than 0. Hence W is anisotropic.
Given another such decomposition V = F1⊕F ′

1⊕W1, choose an isomorphism
F ∼= F1. As we had seen (e.g. in the proof of Witt’s Theorem), this extends
canonically to an isometry φ : F ⊕ F ′ → F1 ⊕ F ′

1. Witt’s Theorem gives an
extension of φ to an orthogonal transformation A ∈ O(V ). It is automatic
that A takes W = (F ⊕ F ′)⊥ to W = (F1 ⊕ F ′

1)
⊥. �

Example 5.3. If K = R, the bilinear form on the anisotropic part of the
Witt decomposition is either positive definite (i.e. QB(v) > 0 for non-zero
v ∈ W ) or negative definite (i.e. QB(v) < 0 for non-zero v ∈ W ). By
Proposition 1.3, any quadratic vector space (V,B) over R is isometric to
Rn,m for some n,m. The Witt decomposition shows that n,m are uniquely
determined by B. Indeed min(n,m) is the Witt index of B, while the sign
of n−m is given by the sign of QB on the anisotropic part.

6. Orthogonal groups for K = R,C

In this Section we discuss the structure of the orthogonal group O(V )
for quadratic vector spaces over K = R or C.

10
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Being a closed subgroup of GL(V ), the orthogonal group O(V ) is a Lie
group. (If K = C it is an algebraic Lie group since the defining equations are
polynomial.) Recall that for a Lie subgroup G ⊂ GL(V ), the corresponding
Lie algebra g is the subspace of all ξ ∈ End(V ) with the property exp(tξ) ∈ G
for all t ∈ K (using the exponential map of matrices). We have:

Proposition 6.1. The Lie algebra of O(V ) is given by

o(V ) = {A ∈ End(V )| B(Av,w) +B(v,Aw) = 0 for all v,w ∈ V },
with bracket given by commutator.

Proof. Suppose A ∈ o(V ), so that exp(tA) ∈ O(V ) for all t. Taking
the t-derivative of B(exp(tA)v, exp(tA)w) = B(v,w) we obtain B(Av,w) +
B(v,Aw) = 0 for all v,w ∈ V . Conversely, given A ∈ gl(V ) with B(Av,w)+
B(v,Aw) = 0 for all v,w ∈ V we have

B(exp(tA)v, exp(tA)w) =

∞∑

k,l=0

tk+l

k!l!
B(Akv,Alw)

=

∞∑

k=0

k∑

i=0

tk

i!(k − i)!
B(Aiv,Ak−iw)

=

∞∑

k=0

tk

k!

k∑

i=0

(
k

i

)
B(Aiv,Ak−iw)

=

∞∑

k=0

tk

k!
B(v,Akw)

k∑

i=0

(−1)i
(
k

i

)

= B(v,w)

since
∑k

i=0(−1)i
(k
i

)
= δk,0. �

Thus A ∈ o(V ) if and only if B♭ ◦A : V → V ∗ is a skew-adjoint map. In
particular

dimK o(V ) = N(N − 1)/2

where N = dimV .
Let us now first discuss the case K = R. We have shown that any

quadratic vector space (V,B) over R is isometric to Rn,m, for unique n,m.
The corresponding orthogonal group will be denoted O(n,m), the special
orthogonal group SO(n,m), and its identity component SO0(n,m). The
dimension of O(n,m) coincides with the dimension of its Lie algebra o(n,m),
N(N − 1)/2 where N = n+m. If m = 0 we will write O(n) = O(n, 0) and
SO(n) = SO(n, 0). These groups are compact, since they are closed subsets
of the unit ball in Mat(n,R).

Lemma 6.2. The groups SO(n) are connected for all n ≥ 1, and have
fundamental group π1(SO(n)) = Z2 for n ≥ 3.

11



6. ORTHOGONAL GROUPS FOR K = R,C

Proof. The defining action of SO(n) on Rn restricts to a transitive
action on the unit sphere Sn−1, with stabilizer at (0, . . . , 0, 1) equal to SO(n−
1). Hence, for n ≥ 2 the Lie group SO(n) is the total space of a principal
fiber bundle over Sn−1, with fiber SO(n− 1). This shows by induction that
SO(n) is connected. The long exact sequence of homotopy groups

· · · → π2(S
n−1) → π1(SO(n− 1)) → π1(SO(n)) → π1(S

n−1)

shows furthermore that the map π1(SO(n − 1)) → π1(SO(n)) is an isomor-
phism for n > 3 (since π2(S

n−1) = 0 in that case). But π1(SO(3)) = Z2,
since SO(3) is diffeomorphic to RP (3) = S3/Z2 (see below). �

The groups SO(3) and SO(4) have a well-known relation with the group
SU(2) of complex 2 × 2-matrices X satisfying X† = X−1 and detX = 1.
Recall that the center of SU(2) is Z2 = {+I,−I}.

Proposition 6.3. There are isomorphisms of Lie groups,

SO(3) = SU(2)/Z2, SO(4) = (SU(2) × SU(2))/Z2

where in the second equality the quotient is by the diagonal subgroup Z2 ⊂
Z2 × Z2.

Proof. Consider the algebra of quaternions H ∼= C2 ∼= R4,

H =

{
X =

(
z w

−w z

)
, z, w ∈ C

}
.

For any X ∈ H let ||X|| = (|z|2 + |w|2)
1
2 . Note that X†X = XX† = ||X||2 I

for all X ∈ H. Define a symmetric R-bilinear form on H by

B(X1,X2) = 1
2 tr(X†

1X2).

The identification H ∼= R4 takes this to the standard bilinear form on R4

since B(X,X) = 1
2 ||X||2 tr(I) = ||X||2. The unit sphere S3 ⊂ H, charac-

terized by ||X||2 = 1 is the group SU(2) = {X| X† = X−1, det(X) = 1}.
Define an action of SU(2) × SU(2) on H by

(X1,X2) ·X = X1XX
−1
2 .

This action preserves the bilinear form on H ∼= R4, and hence defines a
homomorphism SU(2)× SU(2) → SO(4). The kernel of this homomorphism
is the finite subgroup {±(I, I)} ∼= Z2. (Indeed, X1XX

−1
2 = X for all X

implies in particular X1 = XX2X
−1 for all invertible X. But this is only

possible if X1 = X2 = ±I.) Since dim SO(4) = 6 = 2dim SU(2), and
since SO(4) is connected, this homomorphism must be onto. Thus SO(4) =
(SU(2) × SU(2))/{±(I, I)}.

Similarly, identify R3 ∼= {X ∈ H| tr(X) = 0} = span(I)⊥. The conjuga-
tion action of SU(2) on H preserves this subspace; hence we obtain a group
homomorphism SU(2) → SO(3). The kernel of this homomorphism is Z2

∼=
{±I} ⊂ SU(2). Since SO(3) is connected and dim SO(3) = 3 = dimSU(2),
it follows that SO(3) = SU(2)/{±I}. �

12
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To study the more general groups SO(n,m) and O(n,m), we recall the
polar decomposition of matrices. Let

Sym(k) = {A| A⊤ = A} ⊂ gl(k,R)

be the space of real symmetric k × k-matrices, and Sym+(k) its subspace
of positive definite matrices. As is well-known, the exponential map for
matrices restricts to a diffeomorphism,

exp: Sym(k) → Sym+(k),

with inverse log : Sym+(k) → Sym(k). Furthermore, the map

O(k) × Sym(k) → GL(k,R), (O,X) 7→ OeX

is a diffeomorphism. The inverse map

GL(k,R) → O(k) × Sym(k), 7→ (A|A|−1, log |A|),
where |A| = (A⊤A)1/2, is called the polar decomposition for GL(k,R). We
will need the following simple observation:

Lemma 6.4. Suppose X ∈ Sym(k) is non-zero. Then the closed subgroup
of GL(k,R) generated by eX is non-compact.

Proof. Replacing X with −X if necessary, we may assume ||eX || > 1.
But then ||enX || = ||eX ||n goes to ∞ for n→ ∞. �

This shows that O(k) is a maximal compact subgroup of GL(k,R). The
polar decomposition for GL(k,R) restricts to a polar decomposition for any
closed subgroup G that is invariant under the involution A 7→ A⊤. Let

K = G ∩ O(k,R), P = G ∩ Sym+(k), p = g ∩ Sym(k).

The diffeomorphism exp: Sym(k) → Sym+(k) restricts to a diffeomorphism
exp: p → P , with inverse the restriction of log. Hence the polar decompo-
sition for GL(k,R) restricts to a diffeomorphism

K × p → G

whose inverse is called the polar decomposition of G. (It is a special case
of a Cartan decomposition.) Using Lemma 6.4, we see that K is a maximal
compact subgroup of G. Since p is just a vector space, K is a deformation
retract of G.

We will now apply these considerations to G = O(n,m). Let B0 be the
standard bilinear form on Rn+m, and define the endomorphism τ by

B(v,w) = B0(τv,w).

Thus τ acts as the identity on Rn⊕0 and as minus the identity 0⊕Rm, and
an endomorphism of Rn+m commutes with τ if and only if it preserves the
direct sum decomposition Rn+m = Rn ⊕ Rm. A matrix A ∈ Mat(n+m,R)
lies in O(n,m) if and only if A⊤τA = τ , where ⊤ denotes as before the usual
transpose of matrices, i.e. the transpose relative to B0 (not relative to B).
Similarly X ∈ o(n,m) if and only if X⊤τ + τX = 0.

13
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Remark 6.5. In block form we have

τ =

(
In 0
0 −Im

)

For A ∈ Mat(n+m,R) in block form

(9) A =

(
a b
c d

)

we have A ∈ O(n,m) if and only if

(10) a⊤a = I + c⊤c, d⊤d = I + b⊤b, a⊤b = c⊤d.

Similarly, for X ∈ Mat(n+m,R), written in block form

(11) X =

(
α β
γ δ

)

we have X ∈ o(n,m) if and only if

(12) α⊤ = −α, β⊤ = γ, δ⊤ = −δ.
Since O(n,m) is invariant under A 7→ A⊤, (and likewise for the spe-

cial orthogonal group and its identity component) the polar decomposition
applies. We find:

Proposition 6.6. Relative to the polar decomposition of GL(n+m,R),
the maximal subgroups of

G = O(n,m), SO(n,m), SO0(n,m),

are, respectively,

K = O(n) × O(m), S(O(n) × O(m)), SO(n) × SO(m).

(Here S(O(n) × O(m)) are elements of (O(n) × O(m)) of determinant 1.)
In all of these cases, the space p in the Cartan decomposition is given by
matrices of the form

p =

{(
0 x
x⊤ 0

)}

where x is an arbitrary n×m-matrix.

Proof. We start with G = O(n,m). Elements in K = G ∩ O(n +m)
are characterized by A⊤τA = τ and A⊤A = I. The two conditions give
Aτ = τA, so that A is a block diagonal element of O(n + m). Hence
A ∈ O(n)×O(m) ⊂ O(n,m). This shows K = O(n)×O(m). Elements X ∈
p = o(n,m)∩Sym(n+m) satisfyX⊤τ+τX = 0 andX⊤ = X, hence they are
symmetric block off-diagonal matrices. This proves our characterization of p,
and proves the polar decomposition for O(n,m). The polar decompositions
for SO(n,m) is an immediate consequence, and the polar decomposition
for SO0(n,m) follows since SO(n) × SO(m) is the identity component of
S(O(n) × O(m)). �
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Corollary 6.7. Unless n = 0 or m = 0 the group O(n,m) has four
connected components and SO(n,m) has two connected components.

We next describe the space P = exp(p).

Proposition 6.8. The space P = exp(p) ⊂ G consists of matrices

P =

{(
(I + bb⊤)1/2 b

b⊤ (I + b⊤b)1/2

)}

where b ranges over all n×m-matrices. In fact,

log

(
(I + bb⊤)1/2 b

b⊤ (I + b⊤b)1/2

)
=

(
0 x
x⊤ 0

)

where x and b are related as follows,

(13) b =
sinh(xx⊤)

xx⊤
x, x =

arsinh((bb⊤)1/2)

(bb⊤)1/2
b.

Note that xx⊤ (resp. bb⊤) need not be invertible. The quotient sinh(xx⊤)
xx⊤

is to be interpreted as f(xx⊤) where f(z) is the entire holomorphic function
sinh z
z , and f(xx⊤) is given in terms of the spectral theorem or equivalently

in terms of the power series expansion of f .

Proof. Let X =

(
0 x
x⊤ 0

)
. By induction on k,

X2k =

(
(xx⊤)k 0

0 (x⊤x)k

)
, X2k+1 =

(
0 (xx⊤)kx

x(x⊤x)k 0

)
.

This gives

exp(X) =

(
cosh(xx⊤) sinh(xx⊤)

xx⊤
x

x sinh(x⊤x)
x⊤x

cosh(x⊤x)

)
,

which is exactly the form of elements in P with b = sinh(xx⊤)
xx⊤

x. The equation

cosh(xx⊤) = (1+ bb⊤)1/2 gives sinh(xx⊤) = (bb⊤)1/2. Plugging this into the
formula for b, we obtain the second equation in (13). �

For later reference, we mention one more simple fact about the orthog-
onal and special orthogonal groups. Let Z2 be the center of GL(n +m,R)
consisting of ±I.

Proposition 6.9. For all n,m, the center of the group O(n,m) is Z2.
Except in the cases (n,m) = (0, 2), (2, 0), the center of SO(n,m) is Z2 if −I
lies in SO(n,m), and is trivial otherwise. The statement for the identity
component is similar.

The proof is left as an exercise. (Note that the elements of the center
of G commute in particular with the diagonal elements of G. In the case of
hand, one uses this fact to argue that the central elements are themselves
diagonal, and finally that they are multiples of the identity.)
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The discussion above carries over to K = C, with only minor modi-
fications. It is enough to consider the case V = Cn, with the standard
symmetric bilinear form. Again, our starting point is the polar decomposi-
tion, but now for complex matrices. Let Herm(n) = {A| A† = A} be the
space of Hermitian n × n matrices, and Herm+(n) the subset of positive
definite matrices. The exponential map gives a diffeomorphism

Herm(n) → Herm+(n), X 7→ eX .

This is used to show that the map

U(n) × Herm(n) → GL(n,C), (U,X) 7→ UeX

is a diffeomorphism; the inverse map takes A to (Ae−X ,X) with X =
1
2 log(A†A). The polar decomposition of GL(n,C) gives rise to polar de-
compositions of any closed subgroup G ⊂ GL(n,C) that is invariant under
the involution †. In particular, this applies to O(n,C) and SO(n,C). In-
deed, if A ∈ O(n,C), the matrix A†A lies in O(n,C) ∩ Herm(n), and hence
its logarithm X = 1

2 log(A†A) lies in o(n,C) ∩ Herm(n). But clearly,

O(n,C) ∩ U(n) = O(n,R),

SO(n,C) ∩ U(n) = SO(n,R)

while
o(n,C) ∩ Herm(n) =

√
−1o(n,R).

Hence, the maps (U,X) 7→ UeX restrict to polar decompositions

O(n,R) ×
√
−1o(n,R) → O(n,C),

SO(n,R) ×
√
−1o(n,R) → SO(n,C),

which shows that the algebraic topology of the complex orthogonal and spe-
cial orthogonal group coincides with that of its real counterparts. Arguing
as in the real case, the center of O(n,C) is given by {+I,−I} while the
center of SO(n,C) is trivial for n odd and {+I,−I} for n even, provided
n ≥ 3.

7. Lagrangian Grassmannians

If (V,B) is a quadratic vector space with split bilinear form, denote
by Lag(V ) the set of Lagrangian subspaces. Recall that any such V is
isomorphic to Kn,n where dimV = 2n. For K = R we have the following
result.

theorem 7.1. Let V = Rn,n with the standard basis satisfying (7). Then
the maximal compact subgroup O(n) × O(n) of O(n, n) acts transitively on
the space Lag(Rn,n) of Lagrangian subspaces, with stabilizer at

(14) L0 = span{ǫ1 + ǫ̃1, . . . , ǫn + ǫ̃n}
the diagonal subgroup O(n)∆. Thus

Lag(Rn,n) ∼= O(n) × O(n)/O(n)∆ ∼= O(n).
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In particular, it is a compact space with two connected components.

Proof. Let B0 be the standard positive definite bilinear form on the
vector space Rn,n = R2n, with corresponding orthogonal group O(2n). In-
troduce an involution τ ∈ O(2n), by

B(v,w) = B0(τv,w).

That is τǫi = ǫi, τ ǫ̃i = −ǫ̃i. Then the maximal compact subgroup O(n) ×
O(n) consists of all those transformations A ∈ O(n, n) which commute with
τ . At the same time, O(n)× O(n) is characterized as the orthogonal trans-
formations in O(2n) commuting with τ .

The ±1 eigenspaces V± of τ are both anisotropic, i.e. they do not contain
any isotropic vectors. Hence, for any L ⊂ Rn,n is Lagrangian, then τ(L) is
transverse to L:

L ∩ τ(L) = (L ∩ V+) ⊕ (L ∩ V−) = 0.

For any L, we may choose a basis v1, . . . , vn that is orthonormal relative
to B0. Then v1, . . . , vn, τ(v1), . . . , τ(vn) is a B0-orthonormal basis of Rn,n.
If L′ is another Lagrangian subspace, with B0-orthonormal basis v′1, . . . , v

′
n,

then the orthogonal transformation A ∈ O(2n) given by

Avi = v′i, Aτ(vi) = τ(v′i), i = 1, . . . , n

commutes with τ , hence A ∈ O(n) × O(n). This shows that O(n) × O(n)
acts transitively on Lag(Rn,n). For the Lagrangian subspace (14), with
vi = 1√

2
(ǫi+ ǫ̃i), the stabilizer of L0 under the action of O(n)×O(n) consists

of those transformations A ∈ O(n) × O(n) for which v′1, . . . , v
′
n is again a

B0-orthonormal basis of L0. But this is just the diagonal subgroup O(n)∆ ⊂
O(n) × O(n). Finally, since the multiplication map

(O(n) × {1}) × O(n)∆ → O(n) × O(n)

is a bijection, the quotient is just O(n). �

Theorem 7.1 does not, as it stands, hold for other fields K. Indeed, for
V = Kn,n the group O(n,K)×O(n,K) takes (14) to a Lagrangian subspace
transverse to V+ = Kn ⊕ 0, V− = 0 ⊕ Kn, and any Lagrangian subspace
transverse to V+, V− is of this form. However, there may be other Lagrangian
subspaces: E.g. if K = C and n = 2, the span of ǫ1 +

√
−1ǫ2 and ǫ̃1 +

√
−1ǫ̃2

is a Lagrangian subspace that is not transverse to V±. Nonetheless, there is
a good description of the space Lag in the complex case K = C.

theorem 7.2. Let V = C2m with the standard bilinear form. The ac-
tion of the maximal compact subgroup O(2m) ⊂ O(2m,C) on Lag(V ) is
transitive, with stabilizer at the Lagrangian subspace

L0 = span{ǫ1 −
√
−1ǫm+1, . . . , ǫm −

√
−1ǫ2m}

the unitary group U(m). That is, Lag(C2m) is a homogeneous space

Lag(C2m) ∼= O(2m)/U(m);

17



7. LAGRANGIAN GRASSMANNIANS

In particular, it is a compact and has two connected components.

Proof. Let τ : v 7→ v be complex conjugation in V = C2m, so that
〈v,w〉 = B(v,w) is the standard Hermitian inner product on C2m. Then
τ ∈ O(4m,R) is a real orthogonal transformation of C2m ∼= R4m. Let V± ⊂
C2m be the ±1 eigenspaces of τ ; thus V+ = R2m (viewed as a real subspace)
and V− =

√
−1R2m. Note that V± do not contain non-zero isotropic vectors.

Hence, for L ∈ Lag(V ) we have L ∩ τ(L) 6= 0, and hence V = L ⊕ τ(L)
is a direct sum. Let v1, . . . , vn be a basis of L that is orthonormal for
the Hermitian inner product. Then v1, . . . , vn, v1, . . . , vn is an orthonormal
basis of V . Given another Lagrangian subspace L′ with orthonormal basis
v1,

′ , . . . , v′n, the unitary transformation A ∈ U(2m) with Avi = v′i and
Avi = v′i commutes with τ , hence it is contained in O(2m) ⊂ U(2m). This
shows that O(2m) acts transitively. Note that any unitary transformation
U : L→ L′ between Lagrangian subspaces extends uniquely to an element A
of the maximal compact subgroup O(2m) ⊂ O(2m,C), where Av = Uv for
v ∈ L and Aτv = τUv for τv ∈ τL. In particular, the stabilizer in O(2m)
of L0 is the unitary group U(L0) ∼= U(n). �

Remark 7.3. The orbit of L0 under O(m,C) × O(m,C) is open and
dense in Lag(C2m), and as in the real case is identified with O(m,C). Thus,
Lag(C2m) is a smooth compactification of the complex Lie group O(m,C).

Theorem 7.2 has a well-known geometric interpretation. View C2m as
the complexification of R2m. Recall that an orthogonal complex structure on
R2m is an automorphism J ∈ O(2m) with J2 = −I. We denote by J0 the
standard complex structure.

Let J (2m) denote the space of all orthogonal complex structures. It car-
ries a transitive action of O(2m), with stabilizer at J0 equal to U(m). Hence
the space of orthogonal complex structures is identified with the complex
Lagrangian Grassmannian:

J (2m) = O(2m)/U(m) = Lag(C2m).

Explicitly, this correspondence takes J ∈ J (2m) to its +
√
−1 eigenspace

L = ker(J −
√
−1I).

This has complex dimension m since C2m = L⊕ L, and it is isotropic since
v ∈ L implies

B(v, v) = B(Jv, Jv) = B(
√
−1v,

√
−1v) = −B(v, v).

Any Lagrangian subspace L determines J , as follows: Given w ∈ R2n, we
may uniquely write w = v + v where v ∈ L. Define a linear map J by
Jw := −2 Im(v). Then v = w −

√
−1Jw. Since L is Lagrangian, we have

0 = B(v, v) = B(w −
√
−1Jw,w −

√
−1Jw)

= B(w,w) −B(Jw, Jw) − 2
√
−1B(w, Jw),
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which shows that J ∈ O(2m) and that B(w, Jw) = 0 for all w. Multiplying
the definition of J by

√
−1, we get

√
−1v =

√
−1w + Jw

which shows that J(Jw) = −w. Hence J is an orthogonal complex structure.

Remark 7.4. There are parallel results in symplectic geometry, for vec-
tor spaces V with a non-degenerate skew -symmetric linear form ω. If K = R,
any such V is identified with R2n = Cn with the standard symplectic form,
L0 = Rn ⊂ Cn is a Lagrangian subspace, and the action of U(n) ⊂ Sp(V, ω)
on L0 identifies

Lagω(R2n) ∼= U(n)/O(n)

For the space Lag(V ) of complex Lagrangian Grassmannian subspaces of
the complex symplectic vector space C2n ∼= Hn one has

Lagω(C2n) ∼= Sp(n)/U(n)

where Sp(n) is the compact symplectic group (i.e. the quaternionic unitary
group). See e.g. [?, p.67].
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CHAPTER 2

Clifford algebras

1. Exterior algebras

1.1. Definition. For any vector space V over a field K, let T (V ) =⊕
k∈Z

T k(V ) be the tensor algebra, with T k(V ) = V ⊗ · · · ⊗ V the k-fold
tensor product. The quotient of T (V ) by the two-sided ideal I(V ) generated
by all v ⊗ w + w ⊗ v is the exterior algebra, denoted ∧(V ). The product in
∧(V ) is usually denoted α1∧α2, although we will frequently omit the wedge
sign and just write α1α2. Since I(V ) is a graded ideal, the exterior algebra
inherits a grading

∧(V ) =
⊕

k∈Z

∧k(V )

where ∧k(V ) is the image of T k(V ) under the quotient map. Clearly,
∧0(V ) = K and ∧1(V ) = V so that we can think of V as a subspace of
∧(V ). We may thus think of ∧(V ) as the associative algebra linearly gener-
ated by V , subject to the relations vw + wv = 0.

We will write |φ| = k if φ ∈ ∧k(V ). The exterior algebra is commutative
(in the graded sense). That is, for φ1 ∈ ∧k1(V ) and φ2 ∈ ∧k2(V ),

[φ1, φ2] := φ1φ2 + (−1)k1k2φ2φ1 = 0.

If V has finite dimension, with basis e1, . . . , en, the space ∧k(V ) has
basis

eI = ei1 · · · eik
for all ordered subsets I = {i1, . . . , ik} of {1, . . . , n}. (If k = 0, we put
e∅ = 1.) In particular, we see that dim∧k(V ) =

(
n
k

)
, and

dim∧(V ) =

n∑

k=0

(
n

k

)
= 2n.

Letting ei ∈ V ∗ denote the dual basis to the basis ei considered above, we
define a dual basis to eI to be the basis eI = ei1 · · · eik ∈ ∧(V ∗).

1.2. Universal property, functoriality. The exterior algebra is char-
acterized by its universal property : If A is an algebra, and f : V → A a
linear map with f(v)f(w) + f(w)f(v) = 0 for all v,w ∈ V , then f extends
uniquely to an algebra homomorphism f∧ : ∧ (V ) → A. Thus, is ∧̃(V ) is
another algebra with a homomorphism V → ∧̃(V ), satisfying this universal
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property, then there is a unique isomorphism ∧(V ) → ∧̃(V ) intertwining the
two inclusions of V .

Any linear map L : V →W extends uniquely (by the universal property,
applied to L viewed as a map into V → ∧(W )) to an algebra homomorphism
∧(L) : ∧ (V ) → ∧(W ). One has ∧(L1 ◦ L2) = ∧(L1) ◦ ∧(L2). As a special
case, taking L to be the zero map 0: V → V the resulting algebra homomor-
phism ∧(L) is the augmentation map (taking φ ∈ ∧(V ) to its component in
∧0(V ) ∼= K). Taking L to be the map v 7→ −v, the map ∧(L) is the parity
homomorphism Π ∈ Aut(∧(V )), equal to (−1)k on ∧k(V ).

The functoriality gives in particular a group homomorphism 1

GL(V ) → Aut(∧(V )), g 7→ ∧(g)

into the group of algebra automorphisms of V . We will often write g in
place of ∧(g), but reserve this notation for invertible transformations since
e.g. ∧(0) 6= 0.

As another application of the universal property, suppose V1, V2 are two
vector spaces, and define ∧(V1) ⊗ ∧(V2) as the tensor product of graded
algebras. This tensor product contains V1 ⊕ V2 as a subspace, and satisfies
the universal property of the exterior algebra over V1 ⊕V2. Hence there is a
unique algebra isomorphism

∧(V1 ⊕ V2) → ∧(V1) ⊗ ∧(V2)

intertwining the inclusions of V1 ⊕ V2. It is clear that this isomorphism
preserves gradings.

For α ∈ V ∗, define the contraction operators ι(α) ∈ End(∧(V )) by
ι(α)1 = 0 and

(15) ι(α)(v1 ∧ · · · vk) =

k∑

i=1

(−1)i−1〈α, vi〉 v1 ∧ · · · v̂i · · · ∧ vk.

On the other hand, for v ∈ V we have the operator ǫ(v) ∈ End(∧V ) of
exterior multiplication by v. These satisfy the relations

ι(v)ǫ(w) + ǫ(w)ǫ(v) = 0,

ι(α)ι(β) + ι(β)ι(α) = 0,

ι(α)ǫ(v) + ǫ(v)ι(α) = 〈α, v〉.
(16)

For later reference, let us also observe that the kernel of ι(α) is the exterior
algebra over ker(α) ⊂ V ; hence

⋂
α∈V ∗ ker(ι(α)) = 0.

2. Clifford algebras

2.1. Definition and first properties. Let V be a vector space over
K, with a symmetric bilinear form B : V × V → K (possibly degenerate).

1If A is any algebra, we denote by End(A) (resp. Aut(A)) the vector space homo-
morphisms (res. automorphisms) A → A, while Endalg(A) (resp. Autalg(V )) denotes the
set of algebra homomorphisms (resp. group of algebra automorphisms).
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Definition 2.1. The Clifford algebra Cl(V ;B) is the quotient

Cl(V ;B) = T (V )/I(V ;B)

where I(V ;B) ⊂ T (V ) is the two-sided ideal generated by all

v ⊗ w +w ⊗ v − 2B(v,w)1, v, w ∈ V

Clearly, Cl(V ; 0) = ∧(V ). It is not obvious from the definition that
Cl(V ;B) is non-trivial, but this follows from the following Proposition.

Proposition 2.2. The inclusion K → T (V ) descends to an inclusion
K → Cl(V ;B). The inclusion V → T (V ) descends to an inclusion V →
Cl(V ;B).

Proof. Consider the linear map

f : V → End(∧(V )), v 7→ ǫ(v) + ι(B♭(v)).

and its extension to an algebra homomorphism fT : T (V ) → End(∧(V )).
The commutation relations (16) show that f(v)f(w)+f(w)f(v) = 2B(v,w)1.
Hence fT vanishes on the ideal I(V ;B), and therefore descends to an algebra
homomorphism

(17) fCl : Cl(V ;B) → End(∧(V )),

i.e. fCl ◦ π = fT where π : T (V ) → Cl(V ;B) is the projection. Since
fT (1) = 1, we see that π(1) 6= 0, i.e. the inclusion K →֒ T (V ) descends to
an inclusion K →֒ Cl(V ;B). Similarly, from fT (v).1 = v we see that the
inclusion V →֒ T (V ) descends to an inclusion V →֒ Cl(V ;B). �

The Proposition shows that V is a subspace of Cl(V ;B). We may thus
characterize Cl(V ;B) as the unital associative algebra, with generators v ∈
V and relations

(18) vw + wv = 2B(v,w)1, v, w ∈ V.
Let T (V ) carry the Z2-grading

T 0̄(V ) =

∞⊕

k=0

T 2k(V ), T 1̄(V ) =

∞⊕

k=0

T 2k+1(V ).

(Here k̄ denotes k mod 2.) Since the elements v⊗w+w⊗v−2B(v,w)1 are
even, the ideal I(V ;B) is Z2 graded, i.e. it is a direct sum of the subspaces

I k̄(V ;B) = I(V ;B)∩T k̄(V ) for k = 0, 1. Hence the Clifford algebra inherits
a Z2-grading,

Cl(V ;B) = Cl0̄(V ;B) ⊕ Cl1̄(V ;B).

The two summands are spanned by products v1 · · · vk with k even, respec-
tively odd. From now on, commutators [·, ·] in the Clifford algebra Cl(V ;B)
will denote Z2-graded commutators. (We will write [·, ·]Cl if there is risk of
confusion.) In this notation, the defining relations for the Clifford algebra
become

[v,w] = 2B(v,w), v, w ∈ V.

25



2. CLIFFORD ALGEBRAS

If dimV = n, and ei are an orthogonal basis of V , then (using the same
notation as for the exterior algebra), the products

eI = ei1 · · · eik , I = {i1, . . . , ik} ⊂ {1, . . . , n},
with the convention e∅ = 1, span Cl(V ;B). We will see in Section 2.5 that
the eI are a basis.

2.2. Universal property, functoriality. The Clifford algebra is char-
acterized by the following by a universal property:

Proposition 2.3. Let A be an associative unital algebra, and f : V → A
a linear map satisfying

f(v1)f(v2) + f(v2)f(v1) = 2B(v1, v2) · 1, v1, v2 ∈ V.

Then f extends uniquely to an algebra homomorphism Cl(V ;B) → A.

Proof. By the universal property of the tensor algebra, f extends to
an algebra homomorphism fT (V ) : T (V ) → A. The property f(v1)f(v2) +
f(v2)f(v1) = 2B(v1, v2) · 1 shows that f vanishes on the ideal I(V ;B), and
hence descends to the Clifford algebra. Uniqueness is clear, since the Clifford
algebra is generated by elements of V . �

Suppose B1, B2 are symmetric bilinear forms on V1, V2, and f : V1 → V2

is a linear map such that

B2(f(v), f(w)) = B1(v,w), v, w ∈ V1.

Viewing f as a map into Cl(V2;B2), the universal property provides a unique
extension

Cl(f) : Cl(V1;B1) → Cl(V2;B2).

For instance, if F ⊂ V is an isotropic subspace of V , there is an algebra
homomorphism ∧(F ) = Cl(F ) → Cl(V ;B). Clearly, Cl(f1 ◦ f2) = Cl(f1) ◦
Cl(f2). Taking V1 = V2 = V , and restricting attention to invertible linear
maps, one obtains a group homomorphism

O(V ;B) → Aut(Cl(V ;B)), g 7→ Cl(g).

We will usually just write g in place of Cl(g). For example, the involution
v 7→ −v lies in O(V ;B), hence it defines an involutive algebra automorphism
Π of Cl(V ;B) called the parity automorphism. The ±1 eigenspaces are the
even and odd part of the Clifford algebra, respectively.

Suppose again that (V,B1) and (V2, B2) be two vector spaces with sym-
metric bilinear forms, and consider the direct sum (V1⊕V2, B1⊕B2). Then

Cl(V1 ⊕ V2;B1 ⊕B2) = Cl(V1;B1) ⊗ Cl(V2;B2)

as Z2-graded algebras. This follows since Cl(V1;B1) ⊗ Cl(V2;B2) satisfies
the universal property of the Clifford algebra over (V1 ⊕ V2;B1 ⊕ B2). In
particular, if Cl(n,m) denotes the Clifford algebra for Kn,m we have

Cl(n,m) = Cl(1, 0) ⊗ · · · ⊗ Cl(1, 0) ⊗ Cl(0, 1) ⊗ · · · ⊗ Cl(0, 1),

with Z2-graded tensor products.
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2.3. The Clifford algebras Cl(n,m). Consider the case K = R. For
n,m small one can determine the algebras Cl(n,m) = Cl(Rn,m) by hand.

Proposition 2.4. For K = R, one has the following isomorphisms of
the Clifford algebras Cl(n,m) with n+m ≤ 2, as ungraded algebras:

Cl(0, 1) ∼= C

Cl(1, 0) ∼= R ⊕ R,

Cl(0, 2) ∼= H,

Cl(1, 1) ∼= Mat2(R),

Cl(2, 0) ∼= Mat2(R).

Here C and H are viewed as algebras over R, and Mat2(R) = End(R2) is
the algebra of real 2 × 2-matrices.

Proof. By the universal property, an algebra A of dimension 2n+m is
isomorphic to Cl(n,m) if there exists a linear map f : Rn,m → A satisfying
f(ei)f(ej) + f(ej)f(ei) = ±2δij , with a plus sign for i ≤ n and a minus sign
for i > n. We will describe these maps for n +m ≤ 2. For (n,m) = (0, 1)
we take f : R0,1 → C, e1 7→ i =

√
−1. For (n,m) = (1, 0), we use f : R1,0 →

R ⊕ R, e1 7→ (1,−1). For (n,m) = (0, 2) we use

f(e1) =

( √
−1 0
0

√
−1

)
, f(e2) =

(
0 1
−1 0

)

(The matrices represent the first two of the standard unit quaternions i, j, k =
ij ∈ H.) For (n,m) = (1, 1) the relevant map is

f(e1) =

(
0 1
1 0

)
, f(e2) =

(
0 −1
1 0

)

The case (n,m) = (2, 0) is left as an exercise. �

The full classification of the Clifford algebras Cl(n,m) may be found
in the book by Lawson-Michelsohn [?] or in the monograph by Budinich-
Trautman [?]. The Clifford algebras exhibit a remarkable mod 8 periodic-
ity,

Cl(n+ 8,m) ∼= Mat16(Cl(n,m)) ∼= Cl(n,m+ 8)

which is related to the mod 8 periodicity in real K-theory [?].

2.4. The Clifford algebras Cl(n). For K = C the pattern is simpler.
Denote by Cl(n) the Clifford algebra of Cn.

Proposition 2.5. One has the following isomorphisms of algebras over
C,

Cl(2m) = Mat2m(C), Cl(2m+ 1) = Mat2m(C) ⊕ Mat2m(C).

More precisely, Cl(2m) = End(∧Cm) as a Z2-graded algebra, where the
exterior algebra ∧Cm carries its usual Z2-grading.
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Proof. Consider first C2. The map f : C2 → End(C2),

f(e1) =

(
0 1
1 0

)
, f(e2) =

(
0

√
−1

−
√
−1 0

)

extends to an isomorphism Cl(2) → End(C2). The resulting Z2-grading on
End(C2) is induced by the Z2-grading on C2 where the first component is
even and the second is odd. Equivalently, it corresponds to the identification
C2 ∼= ∧C. This shows Cl(2) ∼= End(∧C) as Z2-graded vector algebras. For
C2m = C2 ⊕ · · · ⊕ C2 we hence obtain

Cl(2m) = Cl(2) ⊗ · · · ⊗ Cl(2)

∼= End(∧C) ⊗ · · · ⊗ End(∧C)

= End(∧C ⊗ · · · ⊗ ∧C)

= End(∧Cm),

as Z2-graded algebras. The even subalgebra Cl0̄(2m) preserves the Z2-
grading on ∧Cm, hence we have an isomorphism

Cl0̄(2m) → End((∧Cm)0̄) ⊕ End((∧Cm)1̄) = Mat2m−1(C) ⊕ Mat2m−1(C)

as ungraded algebras. On the other hand, there is an (ungraded) isomor-

phism of algebras Cl(2m − 1) → Cl0̄(2m), given on generators by ei 7→√
−1 eie2m for i < 2m. �

The mod 2 periodicity

Cl(n+ 2) ∼= Mat2(Cl(n))

appearent in this classification result is related to the mod 2 periodicity in
complex K-theory [?]. For later reference, let us highlight the isomorphism
(of ungraded algebras)

(19) Cl(n) → Cl0̄(n+ 1), ei 7→
√
−1eien+1

used in this argument.

2.5. Symbol map and quantization map. Returning to the algebra
homomorphism fCl : Cl(V ;B) → End(∧V ) (see (17)), given on generators

by fCl(v) = ǫ(v) + ι(B♭(v)), one defines the symbol map,

σ : Cl(V ;B) → ∧(V ), x 7→ fCl(x).1

where 1 ∈ ∧0(V ) = K.

Proposition 2.6. The symbol map is an isomorphism of vector spaces.
In low degrees,

σ(1) = 1

σ(v) = v

σ(v1v2) = v1 ∧ v2 +B(v1, v2),

σ(v1v2v3) = v1 ∧ v2 ∧ v3 +B(v2, v3)v1 −B(v1, v3)v2 +B(v1, v2)v3.
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Proof. Let ei ∈ V be an orthogonal basis. Since the operators f(ei)
commute (in the grade sense), we find

σ(ei1 · · · eik) = ei1 ∧ · · · ∧ eik ,
for i1 < · · · < ik. This directly shows that the symbol map is an isomor-
phism: It takes the element eI ∈ Cl(V ;B) to the corresponding element
eI ∈ ∧(V ). The formulas in low degrees are obtained by straightforward
calculation. �

The inverse map is called the quantization map

q : ∧ (V ) → Cl(V ;B).

In terms of the basis, q(eI) = eI . In low degrees,

q(1) = 1,

q(v) = v,

q(v1 ∧ v2) = v1v2 −B(v1, v2),

q(v1 ∧ v2 ∧ v3) = v1v2v3 −B(v2, v3)v1 +B(v1, v3)v2 −B(v1, v2)v3.

If K has characteristic 0 (so that division by all non-zero integers is defined),
the quantization map has the following alternative description.

Proposition 2.7. Suppose K has characteristic 0. Then the quantiza-
tion map is given by graded symmetrization. That is, for v1, . . . , vk ∈ V ,

q(v1 ∧ · · · ∧ vk) =
1

k!

∑

s∈Sk

sign(s)vs(1) · · · vs(k).

Here Sk is the group of permutations of 1, . . . , k and sign(s) = ±1 is the
parity of a permutation s.

Proof. By linearity, it suffices to check for the case that the vj are
elements of an orthonormal basis e1, . . . , en of V , that is vj = eij (the indices
ij need not be ordered or distinct). If the ij are all distinct, then the
eij Clifford commute in the graded sense, and the right hand side equals
ei1 · · · eik ∈ Cl(V ;B), which coincides with the left hand side. If any two eij
coincide, then both sides are zero. �

2.6. Z-filtration. The increasing filtration

T(0)(V ) ⊂ T(1)(V ) ⊂ · · ·
with T(k)(V ) =

⊕
j≤k T

j(V ) descends to a filtration

Cl(0)(V ;B) ⊂ Cl(1)(V ;B) ⊂ · · ·
of the Clifford algebra, with Cl(k)(V ;B) the image of T(k)(V ) under the
quotient map. Equivalently, Cl(k)(V ;B) consists of linear combinations of
products v1 · · · vl with l ≤ k (including scalars, viewed as products of length
0). The filtration is compatible with product map, that is,

Cl(k1)(V ;B)Cl(k2)(V ;B) ⊂ Cl(k1+k2)(V ;B).
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Thus, Cl(V ;B) is a filtered algebra. Let gr(Cl(V ;B)) be the associated
graded algebra.

Proposition 2.8. The symbol map induces an isomorphism of associ-
ated graded algebras

gr(σ) : gr(Cl(V ;B)) → ∧(V ).

Proof. The symbol map and the quantization map are filtration pre-
serving, hence they descend to isomorphisms of the associated graded vector
spaces. Let πCl : T (V ) → Cl(V ;B) and π∧ : T (V ) → ∧(V ) be the quotient
maps. By definition of the symbol map, the composition σ ◦πCl : T(k)(V ) →
∧(V ) coincides with π∧ : T(k)(V ) → ∧(V ) up to lower order terms. Passing
to the associated graded maps, this gives

gr(σ) ◦ gr(πCl) = π∧.

Since πCl is a surjective algebra homomorphism, so is gr(πCl). It hence
follows that gr(σ) is an algebra homomorphism as well. �

Note that the symbol map σ : Cl(V ;B) → ∧(V ) preserves the Z2-grading.
The even (resp. odd) elements of Cl(V ;B) are linear combinations of prod-
ucts v1 · · · vk with k even (resp. odd). The filtration is also compatible with
the Z2-grading, that is, each Cl(k)(V ;B) is a Z2-graded subspace. In fact,

Cl0̄(2k)(V ;B) = Cl0̄(2k+1)(V ;B),

Cl1̄(2k+1)(V ;B) = Cl1̄(2k+2)(V ;B).
(20)

2.7. Transposition. An anti-automorphism of an algebra A is an in-
vertible linear map f : A → A with the property f(ab) = f(b)f(a) for all
a, b ∈ A. Put differently, if Aop is A with the opposite algebra structure
a ·op b := ba, an anti-automorphism is an algebra isomorphism A → Aop.

The tensor algebra carries a unique involutive anti-automorphism that
is equal to the identity on V ⊂ T (V ). It is called the canonical anti-
automorphism or transposition, and is given by

(v1 ⊗ · · · ⊗ vk)
⊤ = vk ⊗ · · · ⊗ v1.

Since transposition preserves the ideal I(V ) defining the exterior algebra, it
descends to an anti-automorphism of the exterior algebra, φ 7→ φ⊤. In fact,
since transposition is given by a permutation of length (k−1)+ · · ·+2+1 =
k(k − 1)/2, we have

φ⊤ = (−1)k(k−1)/2φ, φ ∈ ∧k(V ).

Given a symmetric bilinear formB ob V the transposition anti-automorphism
of the tensor algebra also preserves the ideal I(V ;B), and hence descends to
an anti-automorphism of Cl(V ;B), still called canonical anti-automorphism
or transposition, with

(v1 · · · vk)⊤ = vk · · · v1.
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The symbol map and its inverse, the quantization map q : ∧(V ) → Cl(V ;B)
intertwines the transposition maps for ∧(V ) and Cl(V ;B). This information
is sometimes useful for computations.

Example 2.9. Suppose φ ∈ ∧k(V ), and consider the square of q(φ).

The element q(φ)2 ∈ Cl(V ) is even, and is hence contained in Cl0̄(2k)(V ).

But (q(φ)2)⊤ = (q(φ)⊤)2 = q(φ)2 since q(φ)⊤ = q(φ⊤) = ±q(φ). It follows
that

q(φ)2 ∈ q
(
∧0 (V ) ⊕ ∧4(V ) ⊕ · · · ⊕ ∧4r(V )

)
,

where r is the largest number with 2r ≤ k.

2.8. Chirality element, trace. Let dimV = n. Then any generator
Γ∧ ∈ det(V ) := ∧n(V ) quantizes to given an element Γ = q(Γ∧). This
element (or suitable normalizations of this element) is called the chirality
element of the Clifford algebra. The square Γ2 of the chirality element is
always a scalar, as is immediate by choosing an orthogonal basis ei, and
letting Γ = e1 · · · en. In fact, since Γ⊤ = (−1)n(n−1)/2Γ we have

Γ2 = (−1)n(n−1)/2
n∏

i=1

B(ei, ei).

In the case K = C and V = Cn we can always normalize Γ to satisfy
Γ2 = 1; this normalization determines Γ up to sign. For any v ∈ V , we have
Γv = (−1)n−1vΓ, as one checks e.g. using an orthogonal basis. (If v = ei,
then v anti-commutes with all ej for j 6= i in the product Γ = e1 · · · en, and
commutes with ei. Hence we obtain n− 1 sign changes.)

Γv =

{
vΓ if n is odd

−vΓ if n is even

Thus, if n is odd then Γ lies in the center of Cl(V ;B), viewed as an ordinary
algebra. In the case that n is even, we obtain

Π(x) = ΓxΓ−1,

for all x ∈ Cl(V ;B), i.e. the chirality element implements the parity auto-
morphism.

For any Z2-graded algebra A and vector space Y , a Y -valued super-trace
on A is a linear map trs : A → Y vanishing on the subspace [A,A] spanned
by super-commutators: That is, trs([x, y]) = 0 for x, y ∈ A.

Proposition 2.10. Suppose n = dimV <∞. The linear map

trs : Cl(V ;B) → det(V )

given as the quotient map to Cl(n)(V ;B)/Cl(n−1)(V ;B) ∼= ∧n(V ) = det(V ),
is a super-trace on Cl(V ;B).
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Proof. Let ei be an orthogonal basis, and eI the assocated basis of
Cl(V ;B). Then trs(eI) = 0 unless I = {1, . . . , n}. The product eI , eJ is
of the form eIeJ = ceK where K = (I ∪ J) − (I ∩ J) and c ∈ K. Hence
trs(eIeJ) = 0 = trs(eJeI) unless I ∩ J = ∅ and I ∪ J = {1, . . . , n}. But in
case I ∩ J = ∅, eI , eJ super-commute: [eI , eJ ] = 0. �

The Clifford algebra also carries an ordinary trace, vanishing on ordinary
commutators.

Proposition 2.11. The formula

tr : Cl(V ;B) → K, x 7→ σ(x)[0]

defines an (ordinary) trace on Cl(V ;B), that is tr(xy) = tr(yx) for all
x, y ∈ Cl(V ;B). The trace satisfies tr(x⊤) = tr(x) and tr(1) = 1. For
dimV <∞, the trace and the super-trace are related by the formula,

trs(Γx) = tr(x) Γ∧

where Γ = q(Γ∧) is the chirality element in the Clifford algebra defined by a
choice of generator of det(V ).

Proof. Again, we use an orthogonal basis ei of V . The definition gives
tr(e∅) = 1, while tr(eI) = 0 for I 6= ∅. Consider a product eIeJ = ceK where
K = (I ∪J)− (I∩J) and c ∈ K. The set K is non-empty (i.e. tr(eIeJ) = 0)
unless I = J , but in the latter case the trace property is trivial. To check
the formula relating trace and super-trace we may assume Γ∧ = eI with
I = {1, . . . , n}. For x = eJ we see that trs(Γx) vanishes unless J = ∅, in
which case it is Γ∧. �

2.9. Extension of the bilinear form. The symmetric bilinear form
on V extends to a symmetric bilinear form on the exterior algebra ∧(V ), by
setting B(φ,ψ) = 0 for |φ| 6= |ψ| and

B(v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk) = det
(
B(vi, wj)i,j

)
.

On the other hand, using the trace on Cl(V ;B) we also have an extension
to the Clifford algebra:

B(x, y) = tr(x⊤y).

Proposition 2.12. The quantization map q intertwines the bilinear
forms on ∧(V ), Cl(V ;B).

Proof. We check in an orthogonal basis ei of V . Indeed, for I 6= J
B(eI , eJ) vanishes in ∧(V ), but also in Cl(V ;B) since e⊤I eJ = ±eIeJ has
trace zero. On the other hand, taking I = J = {i1, . . . , ik} we get B(eI , eI) =∏k
j=1B(eij , eij ) in both the Clifford and exterior algebras. �
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2.10. Lie derivatives and contractions. Let V be a vector space,
and α ∈ V ∗. Then the map ι(α) : V → K, v 7→ 〈α, v〉 extends uniquely to a
degree −1 derivation of the tensor algebra T (V ), called contraction, by

ι(α)(v1 ⊗ · · · ⊗ vk) =
k∑

i=1

(−1)i−1〈α, vi〉 v1 ⊗ · · · v̂i · · · ⊗ vk

The contraction operators preserve the ideal I(V ) defining the exterior alge-
bra, and descend to the contraction operators on ∧(V ). Given a symmetric
bilinear form B on V , the contraction operators also preserve the ideal
I(V ;B) since

ι(α)(v1 ⊗ v2 + v2 ⊗ v1 − 2B(v1, v2)) = 0. v1, v2 ∈ V.

It follows that ι(α) descends to an odd derivation of Cl(V ;B) of filtration
degree −1, with

(21) ι(α)(v1 · · · vk) =
k∑

i=1

(−1)i−1〈α, vi〉v1 · · · v̂i · · · vk.

Similarly, any A ∈ gl(V ) = End(V ) extends to a derivation LA of degree 0
on T (V ), called Lie derivative:

LA(v1 ⊗ · · · ⊗ vk) =

k∑

i=1

v1 ⊗ · · · ⊗ LA(vi) ⊗ · · · ⊗ vk.

LA preserves the ideal I(V ), and hence descends to a derivation of ∧(V ). If
A ∈ o(V ;B), that is B(Av1, v2) +B(v1, Av2) = 0 for all v1, v2, then LA also
preserves the ideal I(V ;B) and consequently descends to an even derivation
of Cl(V ;B), of filtration degree 0.

One has (on the tensor algebra, and hence also on the exterior and
Clifford algebras)

[ι(α1), ι(α2)] = 0, [LA1
, LA2

] = L[A1,A2], [LA, ι(α)] = ι(A.α),

where A.α = −A∗α with A∗ the dual map. This proves the first part of:

Proposition 2.13. The map A 7→ LA, α 7→ ι(α) defines an action
of the graded Lie algebra o(V ;B) ⋉ V ∗ (where elements of V ∗ have degree
−1) on Cl(V ;B) by derivations. The symbol map intertwines this with the
corresponding action by derivations of ∧(V ).

Proof. It suffices to check on elements φ = v1 ∧ · · · ∧ vk ∈ ∧(V ) where
v1, . . . , vk are pairwise orthogonal. Then q(φ) = v1 · · · vk, and the quantiza-
tion of ι(α)φ (given by (15)) coincides with ι(α)(q(φ)) (given by (21)). The
argument for the Lie derivatives is similar. �

Any element v ∈ V defines a derivation of Cl(V ;B) by graded com-
mutator: x 7→ [v, x]. For generators w ∈ V , we have [v,w] = 2B(v,w) =
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2〈B♭(v), w〉. This shows that this derivation agrees with the contraction by

2B♭(v):

(22) [v, ·] = 2ι(B♭(v))

As a simple application, we find:

Lemma 2.14. The super-center of the Z2-graded algebra Cl(V ;B) is the
exterior algebra over rad(B) = kerB♭.

Proof. Indeed, suppose x lies in the super-center. Then 0 = [v, x] =
2ι(B♭(v))x for all v ∈ V . Hence σ(x) is annihilated by all contractions

B♭(v)), and is therefore an element of the exterior algebra over ann(ran(B♭)) =

ker(B♭). Consequently x = q(σ(x)) is in Cl(ker(B♭)) = ∧(ker(B♭)). �

2.11. The homomorphism ∧2V → o(V ;B). Consider next the deriva-
tions of Cl(V ;B) defined by elements of q(∧2V ). Define a map

(23) ∧2V → o(V ;B), λ 7→ Aλ

where Aλ(v) = −2ι(B♭(v))λ. This does indeed lie in o(V ;B), since

B(Aλ(v), w) = −2ι(B♭(w))Aλ(v) = −2ι(B♭(w))ι(B♭(v))λ

is anti-symmetric in v,w. We have [q(λ), v] = −[v, q(λ)] = −2ι(B♭(v))λ =
Aλ(v) for all v ∈ V , hence

(24) [q(λ), ·] = LAλ

since both sides are derivations which agree on generators. Define a bracket
{·, ·} on ∧2(V ) by

(25) {λ, λ′} = LAλ
λ′.

The calculation

[q(λ), q(λ′)] = LAλ
q(λ′) = q(LAλ

λ′) = q({λ, λ′})
shows that q intertwines {·, ·} with the Clifford commutator; in particular
{·, ·} is a Lie bracket. Furthermore, from

[q(λ), [q(λ′), v]] − [q(λ′), [q(λ), v]] = [[q(λ), q(λ′)], v] = [q({λ, λ′}), v]
we see that [Aλ, Aλ′ ] = A{λ,λ′}, that is, the map λ 7→ Aλ is a Lie algebra
homomorphism. To summarize:

Proposition 2.15. The formula (25) defines a Lie bracket on ∧2(V ).
Relative to this bracket, the map

∧2(V ) ⋊ V [1] → o(V ;B) ⋊ V ∗[1], (λ, v) 7→ (Aλ, B
♭(v))

is a homomorphism of graded Lie algebras. (The symbol [1] indicates a degree
shift: We assign degree −1 to the elements of V, V ∗ while ∧2(V ), o(V ;B)
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are assigned degree 0.) It intertwines the actions on Cl(V ;B) by derivations,
producing a commutative diagram of Z2-graded Lie algebras,

∧2(V ) ⋊ V [1] −−−−→ o(V ;B) ⋊ V ∗[1]
yq

y

Cl(V ;B) −−−−→
ad

Der(Cl(V ;B))

Note that we can also think of ∧2(V ) ⋊ V [1] as a graded subspace of
∧(V )[2], using the standard grading on ∧(V ) shifted down by 2. We will
see in the following Section 3 that the graded Lie bracket on this subspace
extends to a graded Lie bracket on all of ∧(V )[2].

2.12. A formula for the Clifford product. It is sometimes useful
to express the Clifford multiplication

mCl : Cl(V ⊕ V ) = Cl(V ) ⊗ Cl(V ) → Cl(V )

in terms of the exterior algebra multiplication,

m∧ : ∧ (V ⊕ V ) = ∧(V ) ⊗ ∧(V ) → ∧(V ).

Recall that by definition of the isomorphism ∧(V ⊕ V ) = ∧(V ) ⊗ ∧(V ), if
φ,ψ ∈ ∧(V ∗), the element φ ⊗ ψ ∈ ∧(V ∗) ⊗ ∧(V ∗) is identified with the
element (φ⊕ 0) ∧ (0 ⊕ ψ) ∈ ∧(V ∗ ⊕ V ∗). Similarly for the Clifford algebra.

Let ei ∈ V be an orthogonal basis, ei ∈ V ∗ the dual basis, and eI ∈
∧(V ), eI ∈ ∧(V ∗) the corresponding dual bases indexed by subsets I ⊂
{1, . . . , n}. Then the element

Ψ =
∑

I

eI ⊗B♭((eI)
⊤) ∈ ∧(V ∗) ⊗ ∧(V ∗)

is independent of the choice of bases.

Proposition 2.16. Under the quantization map, the exterior algebra
product and the Clifford product are related as follows:

mCl ◦ q = q ◦m∧ ◦ ι(Ψ)

Proof. Let Vi be the 1-dimensional subspace spanned by ei. Then
∧(V ) is the graded tensor product over all ∧(Vi), and similarly Cl(V ) is the
graded tensor product over all Cl(Vi). The formula for Ψ factorizes as

(26) Ψ =

n∏

i=1

(
1 − ei ⊗B♭(ei)

)
.

It hence suffices to prove the formula for the case V = V1. We have,

q ◦m∧ ◦ ι
(
1 − e1 ⊗B♭(e1)

)
(e1 ⊗ e1) = q ◦m∧

(
e1 ⊗ e1 +B(e1, e1)

)

= q
(
B(e1, e1)

)

= e1e1.

�
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If char(K) = 0, we may also write the element Ψ as an exponential:

Ψ = exp
(
−
∑

i

ei ⊗B♭(ei)
)
.

This follows by rewriting (26) as
∏
i exp

(
− ei ⊗ B♭(ei)

)
, and then writing

the product of exponentials as an exponential of a sum.

3. The Clifford algebra as a quantization of the exterior algebra

Using the quantization map, the Clifford algebra Cl(V ;B) may be thought
of as ∧(V ) with a new associative product. We can make more precise
(following Kostant-Sternberg [?]) in which sense the Clifford algebra is a
quantization of the exterior algebra.

3.1. Differential operators. We begin with a review of some back-
ground from classical mechanics. Let Rn be the configuation space of a
particle, with coordinates q1, . . . , qn, and R2n = T ∗Rn the phase space,
with coordinates q1, . . . , qn, p1, . . . , pn. The Poisson bracket of two func-
tions f, g ∈ C∞(R2n) on phase space is given by the formula

{f, g} =
n∑

i=1

( ∂f
∂pi

∂g

∂qi
− ∂g

∂pi

∂f

∂qi

)
.

It is a Lie bracket, with the additional property

{f, gh} = {f, g}h+ g{f, h}.
(That is, {f, ·} is a derivation of the algebra of functions.). Let us denote
by Qk the functions f on phase space that are homogeneous polynomials
of degree k in the p coordinate, and put Q =

⊕∞
k=0 Qk. Then Q is a

commutative (in the usual sense) graded algebra, and under the Poisson
bracket, {Qk,Ql} ⊂ Qk+l−1.

Now let D(k) denote the degree k differential operators on C∞(Rn), and

D =
⋃∞
k=0 D(k). Then D(k) is a filtered algebra, that is, D(k) ⊂ D(k+1) for

all k and D(k)D(l) ⊂ D(k+l). Elements of D(k) are of the form

D =
∑

|I|≤k
aI(q)∂I

where the sum is over multi-indices I = (i1, . . . , in) with ij ≥ 0, and |I| =∑
ij , and ∂I = ( ∂

∂q1
)i1 · · · ( ∂

∂qn
)in . The symbol of such an operator is the

function
∑

|I|≤k aI(q)p
I where pI = pi11 · · · pik . It defines an isomorphism

σ : D → Q
of vector spaces, preserving filtrations. The (degree k) principal symbol is
the leading term,

σk(D) =
∑

|I|≤k
aI(q)p

I
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Thus D ∈ D(k), σk(D) = 0 implies that D ∈ D(k−1). If D1,D2 have degree
k1, k2, one has σk1+k2(D1 ◦ D2) = σk1(D1)σk2(D2). The principal symbol
therefore defines an isomorphism of graded algebras,

gr(D) → Q.
The degree k1+k2 principal symbol of the commutator [D1,D2] = D1◦D2−
D2 ◦D1 is zero. Hence [D1,D2] has degree k1 + k2 − 1. A calculation of the
leading terms shows

σk1+k2−1([D1,D2]) = {σk1(D1), σk2(D2)}.
In this sense, the algebra Q is the ‘classical limit’ of the algebra D of differen-
tial operators: Under the symbol map, commutators go to Poisson brackets
‘modulo lower order terms’.

3.2. Graded Poisson algebras. The symbol map for Clifford algebras
may be put into a similar framework, but in a super-context. Recall that is
V =

⊕
k∈Z

V k is a graded vector space, then V [n] for l ∈ Z denotes V with

the shifted grading V [n]k = V k+n. Thus, if f ∈ V has degree |f | for the
original grading, then it has degree |f | − n as an element of V [n].

For the following notion, see e.g. Cattaneo-Fiorenza-Longini, ‘graded
Poisson algebras’ (Preprint, 2005).

Definition 3.1. A graded Poisson algebra of degree n is a commutative
graded algebra P =

⊕
k∈Z

Pk, together with a bilinear map {·, ·} : P ×P →
P (called Poisson bracket) such that

(1) The space P[n] is a graded Lie algebra, with bracket {·, ·}.
(2) The map f 7→ {f, ·} defines a graded Lie algebra homomorphism

P[n] → Der(P).

That is, for any f ∈ Pk, the map {f, ·} is a degree k − n derivation of
the algebra structure. Note that any Poisson bracket on a graded algebra
is uniquely determined by its values on generators for the algebra. The
defining conditions are

{f1, {f2, f3}} = {{f1, f2}, f3} + (−1)(|f1|−n)(|f2|−n)f1{f2, f3}
{f1, f2} = −(−1)(|f1|−n) (|f2|−n){f2, f1},

{f1, f2f3} = {f1, f2}f3 + (−1)(|f1|−n)|f2|f2{f1, f3}.
Example 3.2. The algebra Q from the last Section may be viewed as

a graded Poisson algebra of degree 4 after doubling the degrees: P2k = Qk

and P2k+1 = 0.

Example 3.3. Suppose (g, [·, ·]g) is any Lie algebra, and let P = S(g)
be the symmetric algebra, with grading

S(g)2k = Sk(g), S(g)2k+1 = 0.

Then S(g) carries a graded Poisson bracket of degee 2, given on generators by
the Lie bracket {ξ1, ξ2} = [ξ1, ξ2]g. Conversely, if V is any vector space, then
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the structure of a graded Poisson algebra of degree 2 on S(V ) is equivalent
to a Lie algebra structure on V .

Suppose now [?] that A is an Z2-graded algebra, equipped with a fil-
tration A(k) that is compatible with the Z2-grading in the sense that each
A(k) is a Z2-graded subspace, and the induced Z2-grading on the associ-
ated graded algebra gr(A) is just the mod 2 reduction of the Z-grading.
Explicitly, this means

(27) A0̄
(2k) = A0̄

(2k+1), A1̄
(2k+1) = A1̄

(2k+2).

Suppose furthermore that gr(A) is graded commutative. In other words,
the multiplication in A is commutative ‘up to lower order terms’. Thus
[A(k),A(l)] ⊂ A(k+l−1). Taking parity into account, we see that in fact

[A(k),A(l)] ⊂ A(k+l−2).

Hence we can define a degree −2 bracket on gr(A) as follows,

{f, g} := [x, y]A mod A(k+l−3)

for x ∈ A(k) and y ∈ A(l), where f ∈ gr(A)k, g ∈ gr(A)l are the images in
the associated graded algebra. It is easy to see that {·, ·} is a graded Poisson
bracket of degree -2. (More generally, if [A(k),A(l)] ⊂ A(k+l−2r) a similar
prescription gives a graded Poisson bracket of degree 2r.)

3.3. Poisson structures on ∧(V ). Any symmetric bilinear form B
on a vector space induces on A = ∧(V ) the structure of a graded Poisson
algebra of degree 2. The Poisson bracket is given on generators v,w ∈ V =
∧1(V ) by

{v,w} = 2B(v,w).

In this way, one obtains a one-to-one correspondence between Poisson brack-
ets (of degree -2) on ∧(V ) and symmetric bilinear forms B. Clearly, this
Poisson bracket is induceded from the commutator on the Clifford algebra
under the identification ∧(V ) = gr(Cl(V ;B)).

For any φ ∈ ∧k(V ), we may consider the corresponding derivation
{φ, ·} ∈ Derk−2(∧(V )). Let us consider some basic examples:

First, the Poisson bracket with v ∈ V is a contraction:

1
2{v, ·} = ι(B♭(v)),

since both sides are derivations given by B(v,w) on generators w ∈ V . Next,
for λ ∈ ∧2(V ) we have

{λ, ·} = LAλ
,

since both sides are derivations given by Aλ(w) on generators w ∈ V . In
particular, we recover our definition {λ, λ′} = LAλ

λ′ of the Lie bracket
on ∧2(V ), and the graded Lie algebra ∧2(V ) ⋊ V becomes a graded Lie
subalgebra,

∧2(V ) ⋊ V ⊂ ∧(V )[2]
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where ∧(V )[2] carries the graded Lie bracket {·, ·}. Under the quantiza-
tion map, this graded Lie subalgebra becomes a (super-)Lie subalgebra of
Cl(V ;B) under the commutator bracket. That is, for quadratic elements
the quantization map takes Poisson brackets to commutators. This is no
longer true, in general, for higher order elements.

Example 3.4. Let φ ∈ ∧3(V ), so that {φ, φ} ∈ ∧4(V ). As we saw in
Example ??, the quantization of φ satisfies [q(φ), q(φ)] = 2q(φ)2 ∈ q(∧0(V )⊕
∧4(V )). The leading term is the Poisson bracket, hence the difference with
q({φ, φ}) is a scalar:

[q(φ), q(φ)] − q({φ, φ}) ∈ K.

In general, this scalar is non-zero. For instance, if V = R3 with standard
bilinear product, and φ = e1∧e2∧e3 (the volume element) then [q(φ), q(φ)] =
2q(φ)2 = 2(e1e2e3)

2 = −2.

If the bilinear formB is non-dgenerate, then the map ∧(V )[2] → Der(∧(V ))
given by the Poisson bracket is injective. Indeed for φ ∈ ∧k(V ) we have, on
generators v ∈ V ,

{φ, v} = −(−1)k{v, φ} = −(−1)k 1
2 ι(B

♭(v))φ.

This vanishes for all v ∈ V if and only if φ = 0. Derivations of the form
{φ, ·} are called inner derivations of the Poisson algebra ∧(V ). Note that
the inner derivations are derivations not only of the product but also of the
bracket.

Disregarding the bracket, the full space of derivations of ∧(V ) (viewed
simply as a graded algebra) is much larger. Assume dimV <∞, and let the
commutative Lie algebra V ∗[1] act on ∧(V ) by contractions. Let ∧(V ) ⊗
V ∗[1] carry the Lie bracket

[φ⊗ α,ψ ⊗ β] = (φ ∧ ι(α)ψ) ⊗ β − (−1)|φ|(ι(β)φ ∧ ψ) ⊗ α.

Proposition 3.5. For dim(V ) <∞, the linear map

(28) ∧(V ) ⊗ V ∗[1] → Der(∧(V )), φ =
∑

a

φa ⊗ ea 7→ Dφ = ǫ(φa)ι(e
a),

is an isomorphism of graded Lie algebras.

Proof. The map (28) is 1-1, since φa is recovered from the derivation
Dφ as φa = Dφ(ea). Conversely, if D ∈ Der(∧(V )) is any derivation and
φ is defined by φa = D(ea), then D = Dφ since both derivations agree on
generators ea. The description of the Lie bracket as a semi-direct product
is equivalent to

[φ,ψ] =
∑

a

(Dφ(ψa) − (−1)|φ||ψ|Dψ(φa)) ⊗ ea = [Dφ,Dψ](ea) ⊗ ea.

Hence [Dφ,Dψ ] = D[φ,ψ]. �
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For instance, any endomorphism A ∈ End(V ) extends uniquely to a
derivation DA

∑
a ǫ(A(ea)) ι(e

a) ∈ Der0(∧(V )), and A 7→ DA is a Lie algebra
homomorphism. Given a non-dgenerate symmetric bilinear form B, the
derivation DA is inner if and only if A ∈ o(V ;B). In this case we have
DA = {λ, ·} where λ ∈ ∧2(V ) is characterized by 2ι(B♭(v))λ = −A(v) for
all v ∈ V .

4. Spin groups

For any quadratic vector space (V,B) over K, one can define a Clifford
group Γ(V ) ⊂ Cl(V ;B), which is an extension of the orthogonal group by
non-zero scalars K×. If K = R or K = C, one may reduce the kernel of the
extension of the orthogonal group to Z2 ⊂ K×, thus arriving at the Pin and
Spin groups.

Throughout, we will assume that the bilinear form B on V is non-
degenerate. We will write Cl(V ) in place of Cl(V ;B).

4.1. The Clifford group and the spin group. Recall that Π: Cl(V ) →
Cl(V ), x 7→ (−1)|x|x denotes the parity automorphism of the Clifford alge-
bra. Let Cl(V )× be the group of invertible elements in Cl(V ).

Definition 4.1. The Clifford group Γ(V ) is the subgroup of Cl(V )×,
consisting of all x ∈ Cl(V )× such that Ax(v) := Π(x)vx−1 ∈ V for all
v ∈ V ⊂ Cl(V ).

Hence, by definition the Clifford group comes with a natural represen-

tation, Γ(V ) → GL(V ), x 7→ Ax. Let SΓ(V ) = Γ(V ) ∩ Cl0̄(V )× denote the
special Clifford group.

theorem 4.2. The canonical representation of the Clifford group takes
values in O(V ), and defines an exact sequence,

1 −→ K× −→ Γ(V ) −→ O(V ) −→ 1.

It restricts to a similar exact sequence for the special Clifford group,

1 −→ K× −→ SΓ(V ) −→ SO(V ) −→ 1.

The elements of Γ(V ) are all products x = v1 · · · vk where v1, . . . , vk ∈ V
are non-isotropic. SΓ(V ) consists of similar products, with k even. The
corresponding element Ax is a product of reflections:

Av1···vk
= Rv1 · · ·Rvk

.

Proof. Let x ∈ Cl(V ). The transformation Ax is trivial if and only if
Π(x)v = vx for all v ∈ V , i.e. if and only if [v, x] = 0 for all v ∈ V . That
is, it is the intersection of the center K ⊂ Cl(V ) with Γ(V ). This shows
that the kernel of the homomorphism Γ(V ) → GL(V ) is the group K× of
invertible scalars.
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Applying −Π to the definition of Ax, we obtain Ax(v) = xvΠ(x)−1 =
AΠ(x)(v). This shows AΠ(x) = Ax for x ∈ Γ(V ). For x ∈ Γ(V ) and v,w ∈ V
we have,

2B(Ax(v), Ax(w)) =
(
Ax(v)Ax(w) +Ax(w)Ax(v)

= Ax(v)AΠ(x)(w) +Ax(w)AΠ(x)(v)

= Π(x)(vw + wv)Π(x−1)

= 2B(v,w)Π(x)Π(x−1)

= 2B(v,w).

This proves that Ax ∈ O(V ) for all x ∈ Γ(V ). Suppose now that v ∈ V is
non-isotropic. If w ∈ V is orthogonal to v, then

Av(w) = Π(v)wv−1 = −Π(v)v−1w = vv−1w = w.

Since
Av(v) = Π(v)vv−1 = Π(v) = −v

this shows that Av = Rv is the reflection defined by v. More generally, it
follows that for all non-isotropic vectors v1, . . . , bk,

Av1···vk
= Rv1 · · ·Rvk

.

By the E. Cartan-Dieudonné theorem, any A ∈ O(V ) is of this form. This
shows the map x 7→ Ax is onto O(V ), and that Γ(V ) is generated by the
non-isotropic vectors in V . �

Since all x ∈ Γ(V ) can be written in the form x = v1 · · · vk with non-
isotropic vectors vi, it follows that the element x⊤x lies in K×. This defines
the norm homomorphism

N : Γ(V ) → K×, x 7→ x⊤x.

It has the obvious property

N(λx) = λ2
N(x)

for λ ∈ K×. If K = R, any x can be rescaled to satisfy N(x) = ±1. One
defines, 2

Definition 4.3. Suppose K = R. The Pin group Pin(V ) is the pre-
image of {1,−1} under the norm homomorphism N : Γ(V ) → K×. Its inter-
section with SΓ(V ) is called the Spin group, and is denoted Spin(V ).

Since N(λ) = λ2 for λ ∈ K×, the only scalars in Pin(V ) are ±1. Hence,
the exact sequence for the Clifford group restricts to an exact sequence,

1 −→ Z2 −→ Pin(V ) −→ O(V ) −→ 1,

so that Pin(V ) is a double cover of O(V ). Similarly,

1 −→ Z2 −→ Spin(V ) −→ SO(V ) −→ 1,

2The definition also makes sense for arbitrary fields. However, the natural represen-
tation need not be onto. Cf. Grove [?, p. 78].

41



4. SPIN GROUPS

defines a double cover of SO(V ). Elements in Pin(V ) are products x =
v1 · · · vk with B(vi, vi) = ±1. The group Spin(V ) consists of similar prod-
ucts, with k even.

For V = Rn,m, with the scalar product of signature n,m, let Spin(V ) =
Spin(n,m) and Pin(V ) = Pin(n,m). Also, let Spin0(n,m) denote the
preimage of the identity component, SO0(n,m). As usual, we will write
Pin(n) = Pin(n, 0) and Spin(n) = Spin(n, 0).

theorem 4.4. Let K = R, and V ∼= Rn,m. If n ≥ 2 or m ≥ 2, the group
Spin0(V ) is connected.

Proof. The pre-image of the group unit e ∈ SO0(V ) in Spin(V ) are the
elements +1,−1 ∈ Cl(V ). To show that Spin0(V ) is connected, it suffices
to show that ±1 are in the same connected component. Let

v(θ) ∈ V, 0 ≤ θ ≤ π

be a continuous family of non-isotropic vectors with the property

v(π) = −v(0).
Such a family exists, since V contains a 2-dimensional subspace isomorphic
to R2,0 or R0,2. We may normalize the vectors v(θ) to satisfy

B(v(θ), v(θ)) = ±1.

Then v(θ)v(0) ∈ Spin(V ) ⊂ Cl0̄(V ) equals ±1 for θ = 0, and ∓1 for θ =
π. This shows that 1 and −1 are in the same component of Spin0(V ), as
desired. �

Since π1(SO(n)) = Z2 for n ≥ 3, the connected double cover Spin(n)
is the universal cover in that case. In low dimensions, we had determined
these universal covers to be

Spin(3) = SU(2), Spin(4) = SU(2) × SU(2).

It can also be shown that Spin(5) = Sp(2) (the group of norm-preserving
automorphisms of the quaternionic vector space H2) and Spin(6) = SU(4).
3 For n ≥ 7, the groups Spin(n) are all simple and non-isomorphic to the
other classical groups.

The groups Spin0(n,m) are usually not simply connected. Indeed since
since SO0(n,m) has maximal compact subgroup SO(n) × SO(m), the fun-
damental group is

π1(SO0(n,m)) = π1(SO(n)) × π1(SO(m))

3The last two isomorphisms are obtained using the spin representations. (Cf. Adams,
lectures on exceptional Lie groups, p.31.) E.g.: Spin(6) has the two half-spin representa-
tions, both of which are irreducible representations of dimension 4. This gives homomor-
phisms Spin(6) → SU(4), which must be isomorphisms by dimension count. Similarly,
for Spin(5) wa have the spin representation on C4 (obtained by restriction of any of the
two half-spin representations of Spin(6)). We will show later that this spin representa-
tion is of quaternioinc type, so that it is a H-linear represenbation on H2. This defines a
homomorphism Spin(5) → Sp(2), which is an isomorphism by dimension count.
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Hence, only in the cases n ≥ 3, m = 0, 1 or n = 0, 1, m ≥ 3 we obtain
π1(SO0(n,m)) = Z2, and only in those cases Spin0(n,m) is a universal cover.

Let us now turn to the case K = C, so that V ∼= Cn with the standard
bilinear form. In that case, we can rescale any x ∈ Γ(V ) = Γ(n,C) to satisfy
N(x) = +1. Hence define4

Pin(n,C) = {x ∈ Γ(n,C))|N(x) = +1}
and Spin(n,C) = Pin(n,C) ∩ SΓ(n,C).

Proposition 4.5. Pin(n,C) and Spin(n,C) are double covers of O(n,C)
and SO(n,C). Furthermore, Spin(n,C) is connected and simply connected,
i.e. it is the universal cover of SO(n,C).

Proof. The first part is clear, since the condition N(x) = 1 determines
the scalar multiple of x up to a sign. The second part follows by the same
argument as in the real case, or alternatively by observing that ±1 are in
the same component of Spin(n,R) ⊂ Spin(n,C). �

Assume K = R or K = C. Recall the isomorphism λ : o(V ) → ∧2(V ),
and let

γ = q ◦ λ : o(V ) → Cl(V ).

Then A(v) = [γ(A), v] for v ∈ V , and accordingly

exp(A)(v) = e[γ(A),·]v = eγ(A)ve−γ(A).

Here

e[γ(A),·]v =
∞∑

n=0

1

n!
[γ(A), [γ(A), [· · · [γ(A)︸ ︷︷ ︸

n times

, v] · · · ]]]

and eγ(A) =
∑∞

n=0
1
n! γ(A)n. By definition of the Clifford group, this shows

that eγ(A) ∈ SΓ(V ). The element γ(A) satisfies γ(A)⊤ = −γ(A). Hence,

(eγ(A))⊤ = eγ(A)⊤ = e−γ(A),

and therefore N(eγ(A)) = 1. That is,

eγ(A) ∈ Spin(V )

Since θ 7→ eθγ(A) defines a curve in Spin(V ), connecting 1 with eγ(A), it

follows that eγ(A) is in the identity component Spin0(V ).
In other words, the group Spin(V ) ⊂ Cl(V )× constructed above has

Lie algebra γ(o(V )) ⊂ Cl0̄(V ). Indeed, if K = R and the bilinear form B
is positive definite, we can directly define Spin(V ) as the set of elements

eγ(o(V )). This follows because Spin(V ), as a double cover of the compact
group SO(V ), is compact, and for compact Lie groups the exponential map
is onto.

4There seem to be no standard conventions for the definitions for the complex case.
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Example 4.6. Let V = R2 with the standard bilinear form, and consider
the element A ∈ o(V ) defined by λ(A) = e1 ∧ e2. Then γ(A) = e1e2. Since
(e1e2)

2 = −1, the 1-parameter group of elements

x(θ) = exp(θ/2e1e2) ∈ Spin(V ).

is given by the formula,

x(θ) = cos(θ/2) + sin(θ/2)e1e2,

in particular x(θ + 2π) = −x(θ). To find its action on V , we compute

x(θ)e1x(−θ) = (cos(θ/2) + sin(θ/2)e1e2)e1(cos(θ/2) − sin(θ/2)e1e2)

= (cos(θ/2)e1 − sin(θ/2)e2)(cos(θ/2) − sin(θ/2)e1e2)

= (cos2(θ/2) − sin2(θ/2))e1 − 2 sin(θ/2) cos(θ/2)e2

= cos(θ)e1 − sin(θ)e2

This verifies that Ax(θ) is given as rotations by θ.

4.2. The groups Pinc(V ) and Spinc(V ). Let V be a vector space over
K = R, with a positive definite symmetric bilinear form B. Denote by V C

the complexification of V . The complex conjugation mapping v 7→ v extends
to an anti-linear algebra automorphism x 7→ x of the complexified Clifford
algebra

Cl(V C) = Cl(V )C.

Proposition 4.7. The Clifford algebra Cl(V C) with involution x∗ = x⊤

is a C∗-algebra. That is, it admits a norm || · || relative to which it is a
Banach algebra, and such that the C∗-identity ||x∗x|| = ||x||2 is satisfied.

Proof. It suffices to find a Hilbert space H with a faithful ∗-homomorphism
π : Cl(V C) → End(H). Indeed, given π one obtains a C∗-norm on Cl(V C)
(necessarily unique, by a standard fact on C∗-algebras) by ||x|| = ||π(x)||.
Denote by tr : Cl(V C) → C the normalized trace (cf. Proposition ??) with
tr(I) = 1. We can take H simply to be Cl(V C) itself, with Hermitian inner
product 〈x, y〉 = tr(x∗y), and with π the action by multiplication. �

Remark 4.8. The C∗-norm on the Clifford algebra is explicitly given
by the formula,

||a|| = lim
n→∞

(
tr(a∗a)n

) 1
2n
.

(If dimV is even, this may be obtained by identifying the Clifford algebra
with a matrix algebra.)

Suppose x ∈ Γ(V C) ⊂ Cl(V C)×, defining a transformation Ax(v) =

(−1)|x|xvx−1 of V C as before.

Lemma 4.9. The element x ∈ Γ(V C) satisfies Ax(v)
∗ = Ax(v

∗) for all
v ∈ V C, if and only if x∗x is a positive real number.
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Proof. For all x ∈ Γ(V C) and all v ∈ V C, we have

Ax(v)
∗ = (−1)|x|(x−1)∗v∗x∗ = A(x−1)∗(v

∗).

This coincides with Ax(v
∗) for all v if and only if x = λ(x−1)∗ for some

λ ∈ C×, i.e. if and only if x∗x ∈ C×. Since x∗x is a positive element, this
condition is equivalent to x∗x ∈ R>0. �

Definition 4.10. We define

Γc(V ) = {x ∈ Γ(V C)| x∗x ∈ R>0}
Pinc(V ) = {x ∈ Γ(V C)| x∗x = 1}.

The group Spinc(V ) consists of the even elements in Pinc(V ).

By construction, x ∈ Γ(V C) lies in Γc(V ) if and only if the automorphism
Ax of V C preserves the real subspace V . That is, Γc(V ) is the inverse image
of O(V ) ⊂ O(V C) in Γ(V C). The exact sequence for Γ(V C) restricts to an
exact sequence,

1 → C× → Γc(V ) → O(V ) → 1.

Similarly, using C× ∩ Pinc(V ) = C× ∩ Spinc(V ) = U(1), we have exact
sequences

1 → U(1) → Pinc(V ) → O(V ) → 1,

1 → U(1) → Spinc(V ) → SO(V ) → 1.

Remark 4.11. Of course, one could directly define these groups as the
subgroup generated by Pin(V ) resp. Spin(V ) together with U(1). More
precisely, Spinc(V ) is the quotient of Spin(V ) × U(1) by the relation

(x, eiψ) ∼ (−x,−eiψ)

and similarly for Pinc(V ).

The norm homomorphism for Γ(V C) restricts to a group homomorphism,

N : Pinc(V ) → U(1), x 7→ x⊤x.

Together with the map to O(V ) this defines exact sequences,

1 → Z2 → Pinc(V ) → O(V ) × U(1) → 1,

1 → Z2 → Spinc(V ) → SO(V ) × U(1) → 1

One of the motivations for the group Spinc(V ) is the following ‘lifting
problem’. Suppose J is an orthogonal complex structure on V , that is,
J ∈ O(V ) and J2 = −I. Such a J exists if and only if n = dimV is even,
and turns V into a vector space over C, with scalar multiplication

(a+
√
−1b)x = ax+ bJx.

Let UJ(V ) ⊂ SO(V ) be the corresponding unitary group (i.e. the elements
of SO(V ) preserving J).
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theorem 4.12. The inclusion UJ(V ) →֒ SO(V ) admits a unique lift to
a group homomorphism UJ(V ) →֒ Spinc(V ), in such a way that the com-
position with the map to U(1) is the map UJ(V ) → U(1), A 7→ detJ(A)
(complex determinant).

Proof. We may choose an orthogonal basis e1, . . . , e2n of V , with the
property J(ei) = en+i for i = 1, . . . , n. This identifies V ∼= Ck, and UJ(V )
with U(k).

We are trying to construct a lift of the map

U(k) → SO(2k) × U(1), A 7→ (A, detC(A))

to the double cover. Since U(k) is connected, if such a lift exists then it is
unique. To prove existence, it suffices to check that any loop representing a
generator of π1(U(k)) ∼= Z lifts to a loop in Spinc(V ). Since the inclusion
U(1) → U(k) induces an isomorphism of fundamental groups, it is enough
to check this for k = 1, i.e. n = 2. Hence, our task is to lift the map

U(1) → SO(2) × U(1), eiθ 7→ (R(θ), eiθ)

to the double cover, Spin(V )×U(1)/Z2. We had found in example 4.6 that
the curve R(θ) lifts to

x(θ) = exp(θ/2e1e2) = cos(θ/2) + sin(θ/2) e1e2

with property x(θ + 2π) = −x(θ). The desired lift is explicitly given as,

eiθ 7→
[(
x(θ), eiθ/2

)]
.

where the brackets indicate the equivalence relation (x, eiψ) ∼= (−x,−eiψ).
�

Remark 4.13. The two possible square roots of detC(A) for A ∈ U(k)
define a double cover of U(k),

Ũ(k) = {(A, z) ∈ U(k) × C×| z2 = detC(A)}.
While the inclusion U(k) →֒ SO(2k) does not live to the Spin group, the
above proof shows that there exists a lift for this double cover (i.e. the
double cover is identified with the pre-image of U(k)).

5. Appendix: Graded algebras, graded derivations

A Z-graded vector space is a vector space V with a direct sum decompo-
sition V =

⊕
k∈Z

V k. We will write |v| = k for the degree of homogeneous

elements v ∈ V k. For n ∈ Z we denote by V [n] the vector space V with
the shifted grading V [n]k = V k+n. Thus, elements of degree k in V have
degree k − n in V [n]. Directs sums of graded vector spaces, and quotients
by (compatibly) graded subspaces are graded vector spaces in the obvious
way. The tensor product of two graded vector spaces V ⊗W is a graded
vector space, with (V ⊗W )k =

⊕
l∈Z

V l ⊗W k−l.
A Z-graded algebra is a graded vector space A =

⊕
k∈Z

Ak, with an

associative algebra structure satisfying AkAl ⊂ Ak+l for all k, l. If A =
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⊕Ak and B =
⊕
Bk are graded algebras, then the graded tensor product

is a graded algebra for the product

(a1 ⊗ b1)(a2 ⊗ b2) = (−1)|b1||a2|(a1a2 ⊗ b1b2).

A Z-graded Lie algebra is a graded vector space g, equipped with a
bilinear bracket [·, ·] : g⊗ g → g with [gk, gl] ⊂ gk+l, such that the bracket is
graded skew-symmetric and satisfies the Jacobi identity in the graded sense.
That is,

[x, y] = −(−1)|x||y|[y, x],

[x, [y, z]] = [[x, y], z] + (−1)|x||y|[y, [x, z]].
Given two graded Lie algebras g, k, their tensor product is a graded Lie
algebra for the bracket

[x⊗ u, y ⊗ v] = (−1)|u||y|[x, y] ⊗ [u, v].

For instance, any graded algebra A becomes a graded Lie algebra under the
graded commutator, [a, b] = ab − (−1)|a||b|ba. The graded algebra is called
commutative is this bracket is trivial.

Remark 5.1 (Degree doubling). The signs in the definition of commuta-
tors, tensor products, etc. of Z-graded objects are instances of the super-sign
convention: Whenever an object of degree k moves past an object of degree
l, a sign (−1)kl appears. For instance, the algebra ∧(V ) is commutative in
this graded sense, and ∧(V ⊕W ) = ∧(V ) ⊗ ∧(W ) as algebras only if one
uses the graded tensor product.

On the other hand, the corresponding statements for the symmetric al-
gebra do not involve signs. Nevertheless, this fits into the above framework
after doubling degrees, i.e. putting S(V )2k = Sk(V ), S(V )2k+1 = 0. Simi-
larly, if g is an ordinary Lie algebra, with a grading such that [gk, gl] ⊂ gk+l,
it becomes a graded Lie algebra in our sense after doubling degrees.

Suppose A is a Z-graded algebra. An endomorphism D ∈ Endn(A) of

degree n = |D| (i.e. D(A•) ⊂ A•+|D|) is called a derivation of degree n if

D(ab) = D(a)b+ (−1)|a||D|aD(b).

We denote by Dern(A) the space of derivations of degree n. Some basic
properties of derivations are

(1) Any D ∈ Derk(A) vanishes on 1. This is immediate from the
definition, applied to a = b = 1.

(2) Derivations are determined by their values on algebra generators.
(3) IfD1,D2 are derivations of degree k1, k2 their (graded) commutator

[D1,D2] is a derivation of degree k1 + k2. Hence
⊕

k Derk(A) is a
graded Lie algebra.

(4) If A is graded commutative, then
⊕

k Derk(A) is a left-module
under A.

(5) Any a ∈ Ak defines a graded derivation of degree k, by Z-graded
commutator: D = [a, ·]. Derivations of this type are called inner.
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Given a graded Lie algebra g, one may similarly define a space Dern(g) ⊂
Endn(g) of degree n = |D| Lie algebra derivations by the requirement

D[x, y] = [Dx, y] + (−1)|D||x|[x,Dy].

Again,
⊕

k∈Z
Derk(g) is a graded Lie algebra under graded commutator, and

there is a natural homomorphism of graded Lie algebras g →⊕
k∈Z

Derk(g)
given by x 7→ [x, ·].

In all of the above, one may replace the Z-grading with a Z2-grading. We
will use superscripts 0̄, 1̄ to indicate the even, odd components. In particular,
a Z2-graded vector space is a vector space with a direct sum decomposition
V = V 0̄⊕V 1̄. Replacing Z with Z2 in all of the above one defines Z2-graded
algebras, Lie algebras, derivations and so on. It is common to refer to the
Z2-graded objects as super -objects.

Any Z-graded vector space V =
⊕

k∈Z
V k inherits a Z2-grading by mod

2 reduction, i.e.

V 0̄ =
⊕

k∈Z

V 2k, V 1̄ =
⊕

k∈Z

V 2k+1.

Definition 5.2. A graded super-space is a super-vector space V , to-
gether with a grading V =

⊕
k∈Z

such that the Z2-grading is the mod 2
reduction of the Z-grading. A filtered super-space is a super-graded vector
space W , equipped with a filtration

W =
⋃

k∈Z

W(k), W(k) ⊂W(k+1)

such that the associated graded space gr(W ) with the induced Z2-grading
is a graded super-space.

The definition of filtered super-space means that

W 0̄
(2k) = W 0̄

(2k+1), W 1̄
(2k+1) = W 1̄

(2k+2)

for all k.
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