
CHAPTER 2

Clifford algebras

1. Exterior algebras

1.1. Definition. For any vector space V over a field K, let T (V ) =⊕
k∈Z

T k(V ) be the tensor algebra, with T k(V ) = V ⊗ · · · ⊗ V the k-fold
tensor product. The quotient of T (V ) by the two-sided ideal I(V ) generated
by all v ⊗ w + w ⊗ v is the exterior algebra, denoted ∧(V ). The product in
∧(V ) is usually denoted α1∧α2, although we will frequently omit the wedge
sign and just write α1α2. Since I(V ) is a graded ideal, the exterior algebra
inherits a grading

∧(V ) =
⊕

k∈Z

∧k(V )

where ∧k(V ) is the image of T k(V ) under the quotient map. Clearly,
∧0(V ) = K and ∧1(V ) = V so that we can think of V as a subspace of
∧(V ). We may thus think of ∧(V ) as the associative algebra linearly gener-
ated by V , subject to the relations vw + wv = 0.

We will write |φ| = k if φ ∈ ∧k(V ). The exterior algebra is commutative
(in the graded sense). That is, for φ1 ∈ ∧k1(V ) and φ2 ∈ ∧k2(V ),

[φ1, φ2] := φ1φ2 + (−1)k1k2φ2φ1 = 0.

If V has finite dimension, with basis e1, . . . , en, the space ∧k(V ) has
basis

eI = ei1 · · · eik
for all ordered subsets I = {i1, . . . , ik} of {1, . . . , n}. (If k = 0, we put
e∅ = 1.) In particular, we see that dim∧k(V ) =

(
n
k

)
, and

dim∧(V ) =

n∑

k=0

(
n

k

)
= 2n.

Letting ei ∈ V ∗ denote the dual basis to the basis ei considered above, we
define a dual basis to eI to be the basis eI = ei1 · · · eik ∈ ∧(V ∗).

1.2. Universal property, functoriality. The exterior algebra is char-
acterized by its universal property : If A is an algebra, and f : V → A a
linear map with f(v)f(w) + f(w)f(v) = 0 for all v,w ∈ V , then f extends
uniquely to an algebra homomorphism f∧ : ∧ (V ) → A. Thus, is ∧̃(V ) is
another algebra with a homomorphism V → ∧̃(V ), satisfying this universal
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2. CLIFFORD ALGEBRAS

property, then there is a unique isomorphism ∧(V ) → ∧̃(V ) intertwining the
two inclusions of V .

Any linear map L : V →W extends uniquely (by the universal property,
applied to L viewed as a map into V → ∧(W )) to an algebra homomorphism
∧(L) : ∧ (V ) → ∧(W ). One has ∧(L1 ◦ L2) = ∧(L1) ◦ ∧(L2). As a special
case, taking L to be the zero map 0: V → V the resulting algebra homomor-
phism ∧(L) is the augmentation map (taking φ ∈ ∧(V ) to its component in
∧0(V ) ∼= K). Taking L to be the map v 7→ −v, the map ∧(L) is the parity
homomorphism Π ∈ Aut(∧(V )), equal to (−1)k on ∧k(V ).

The functoriality gives in particular a group homomorphism 1

GL(V ) → Aut(∧(V )), g 7→ ∧(g)

into the group of algebra automorphisms of V . We will often write g in
place of ∧(g), but reserve this notation for invertible transformations since
e.g. ∧(0) 6= 0.

As another application of the universal property, suppose V1, V2 are two
vector spaces, and define ∧(V1) ⊗ ∧(V2) as the tensor product of graded
algebras. This tensor product contains V1 ⊕ V2 as a subspace, and satisfies
the universal property of the exterior algebra over V1 ⊕V2. Hence there is a
unique algebra isomorphism

∧(V1 ⊕ V2) → ∧(V1) ⊗ ∧(V2)

intertwining the inclusions of V1 ⊕ V2. It is clear that this isomorphism
preserves gradings.

For α ∈ V ∗, define the contraction operators ι(α) ∈ End(∧(V )) by
ι(α)1 = 0 and

(1) ι(α)(v1 ∧ · · · vk) =

k∑

i=1

(−1)i−1〈α, vi〉 v1 ∧ · · · v̂i · · · ∧ vk.

On the other hand, for v ∈ V we have the operator ǫ(v) ∈ End(∧V ) of
exterior multiplication by v. These satisfy the relations

ι(v)ǫ(w) + ǫ(w)ǫ(v) = 0,

ι(α)ι(β) + ι(β)ι(α) = 0,

ι(α)ǫ(v) + ǫ(v)ι(α) = 〈α, v〉.
(2)

For later reference, let us also observe that the kernel of ι(α) is the exterior
algebra over ker(α) ⊂ V ; hence

⋂
α∈V ∗ ker(ι(α)) = 0.

2. Clifford algebras

2.1. Definition and first properties. Let V be a vector space over
K, with a symmetric bilinear form B : V × V → K (possibly degenerate).

1If A is any algebra, we denote by End(A) (resp. Aut(A)) the vector space homo-
morphisms (res. automorphisms) A → A, while Endalg(A) (resp. Autalg(V )) denotes the
set of algebra homomorphisms (resp. group of algebra automorphisms).
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CHAPTER 2. CLIFFORD ALGEBRAS

Definition 2.1. The Clifford algebra Cl(V ;B) is the quotient

Cl(V ;B) = T (V )/I(V ;B)

where I(V ;B) ⊂ T (V ) is the two-sided ideal generated by all

v ⊗ w + w ⊗ v −B(v,w)1, v, w ∈ V

Clearly, Cl(V ; 0) = ∧(V ). It is not obvious from the definition that
Cl(V ;B) is non-trivial, but this follows from the following Proposition.

Proposition 2.2. The inclusion K → T (V ) descends to an inclusion
K → Cl(V ;B). The inclusion V → T (V ) descends to an inclusion V →
Cl(V ;B).

Proof. Consider the linear map

f : V → End(∧(V )), v 7→ ǫ(v) + 1
2 ι(B

♭(v)).

and its extension to an algebra homomorphism fT : T (V ) → End(∧(V )).
The commutation relations (2) show that f(v)f(w) + f(w)f(v) = B(v,w)1.
Hence fT vanishes on the ideal I(V ;B), and therefore descends to an algebra
homomorphism

(3) fCl : Cl(V ;B) → End(∧(V )),

i.e. fCl ◦ π = fT where π : T (V ) → Cl(V ;B) is the projection. Since
fT (1) = 1, we see that π(1) 6= 0, i.e. the inclusion K →֒ T (V ) descends to
an inclusion K →֒ Cl(V ;B). Similarly, from fT (v).1 = v we see that the
inclusion V →֒ T (V ) descends to an inclusion V →֒ Cl(V ;B). �

The Proposition shows that V is a subspace of Cl(V ;B). We may thus
characterize Cl(V ;B) as the unital associative algebra, with generators v ∈
V and relations

(4) vw + wv = B(v,w)1, v, w ∈ V.

Let T (V ) carry the Z2-grading

T 0̄(V ) =
∞⊕

k=0

T 2k(V ), T 1̄(V ) =
∞⊕

k=0

T 2k+1(V ).

(Here k̄ denotes k mod 2.) Since the elements v⊗w+w⊗ v−B(v,w)1 are
even, the ideal I(V ;B) is Z2 graded, i.e. it is a direct sum of the subspaces

I k̄(V ;B) = I(V ;B)∩T k̄(V ) for k = 0, 1. Hence the Clifford algebra inherits
a Z2-grading,

Cl(V ;B) = Cl0̄(V ;B) ⊕ Cl1̄(V ;B).

The two summands are spanned by products v1 · · · vk with k even, respec-
tively odd. From now on, commutators [·, ·] in the Clifford algebra Cl(V ;B)
will denote Z2-graded commutators. (We will write [·, ·]Cl if there is risk of
confusion.) In this notation, the defining relations for the Clifford algebra
become

[v,w] = B(v,w), v, w ∈ V.
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2. CLIFFORD ALGEBRAS

If dimV = n, and ei are an orthogonal basis of V , then (using the same
notation as for the exterior algebra), the products

eI = ei1 · · · eik , I = {i1, . . . , ik} ⊂ {1, . . . , n},
with the convention e∅ = 1, span Cl(V ;B). We will see in Section 2.4 that
the eI are a basis.

2.2. Universal property, functoriality. The Clifford algebra is char-
acterized by the following by a universal property:

Proposition 2.3. Let A be an associative unital algebra, and f : V → A
a linear map satisfying

f(v1)f(v2) + f(v2)f(v1) = B(v1, v2) · 1, v1, v2 ∈ V.

Then f extends uniquely to an algebra homomorphism Cl(V ;B) → A.

Proof. By the universal property of the tensor algebra, f extends to
an algebra homomorphism fT (V ) : T (V ) → A. The property f(v1)f(v2) +
f(v2)f(v1) = B(v1, v2) · 1 shows that f vanishes on the ideal I(V ;B), and
hence descends to the Clifford algebra. Uniqueness is clear, since the Clifford
algebra is generated by elements of V . �

Suppose B1, B2 are symmetric bilinear forms on V1, V2, and f : V1 → V2

is a linear map such that

B2(f(v), f(w)) = B1(v,w), v, w ∈ V1.

Viewing f as a map into Cl(V2;B2), the universal property provides a unique
extension

Cl(f) : Cl(V1;B1) → Cl(V2;B2).

For instance, if F ⊂ V is an isotropic subspace of V , there is an algebra
homomorphism ∧(F ) = Cl(F ) → Cl(V ;B). Clearly, Cl(f1 ◦ f2) = Cl(f1) ◦
Cl(f2). Taking V1 = V2 = V , and restricting attention to invertible linear
maps, one obtains a group homomorphism

O(V ;B) → Aut(Cl(V ;B)), g 7→ Cl(g).

We will usually just write g in place of Cl(g). For example, the involution
v 7→ −v lies in O(V ;B), hence it defines an involutive algebra automorphism
Π of Cl(V ;B) called the parity automorphism. The ±1 eigenspaces are the
even and odd part of the Clifford algebra, respectively.

Suppose again that (V,B1) and (V2, B2) be two vector spaces with sym-
metric bilinear forms, and consider the direct sum (V1⊕V2, B1⊕B2). Then

Cl(V1 ⊕ V2;B1 ⊕B2) = Cl(V1;B1) ⊗ Cl(V2;B2)

as Z2-graded algebras. This follows since Cl(V1;B1) ⊗ Cl(V2;B2) satisfies
the universal property of the Clifford algebra over (V1 ⊕ V2;B1 ⊕ B2). In
particular, if Cl(n,m) denotes the Clifford algebra for K

n,m we have

Cl(n,m) = Cl(1, 0) ⊗ · · · ⊗ Cl(1, 0) ⊗ Cl(0, 1) ⊗ · · · ⊗ Cl(0, 1),

with Z2-graded tensor products.
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CHAPTER 2. CLIFFORD ALGEBRAS

2.3. The Clifford algebras Cl(n,m). Consider the case K = R. For
n,m small one can determine the algebras Cl(n,m) = Cl(Rn,m) by hand.

Proposition 2.4. For K = R, one has the following isomorphisms of
the Clifford algebras Cl(n,m) with n+m ≤ 2, as ungraded algebras:

Cl(0, 1) ∼= C

Cl(1, 0) ∼= R ⊕ R,

Cl(0, 2) ∼= H,

Cl(1, 1) ∼= Mat2(R),

Cl(2, 0) ∼= Mat2(R).

Here C and H are viewed as algebras over R, and Mat2(R) = End(R2) is
the algebra of real 2 × 2-matrices.

Proof. By the universal property, an algebra A of dimension 2n+m is
isomorphic to Cl(n,m) if there exists a linear map f : R

n,m → A satisfying
f(ei)f(ej) + f(ej)f(ei) = ±δij, with a plus sign for i ≤ n and a minus sign
for i > n. We will describe these maps for n +m ≤ 2. For (n,m) = (0, 1)
we take f : R

0,1 → C, 1√
2
e1 7→ i =

√
−1. For (n,m) = (1, 0), we use

f : R
1,0 → R ⊕ R, e1 7→ 1√

2
(1,−1). For (n,m) = (0, 2) we use

f(e1) =
1√
2

( √
−1 0
0

√
−1

)
, f(e2) =

1√
2

(
0 1
−1 0

)

(The matrices represent the first two of the standard unit quaternions i, j, k =
ij ∈ H.) For (n,m) = (1, 1) the relevant map is

f(e1) =
1√
2

(
0 1
1 0

)
, f(e2) =

1√
2

(
0 −1
1 0

)

The case (n,m) = (2, 0) is left as an exercise. �

The full classification of the Clifford algebras Cl(n,m) may be found
in the book by Lawson-Michelsohn [?] or in the monograph by Budinich-
Trautman [?]. The Clifford algebras exhibit a remarkable mod 8 periodic-
ity,

Cl(n+ 8,m) ∼= Mat16(Cl(n,m)) ∼= Cl(n,m+ 8)

which is related to the mod 8 periodicity in real K-theory [?].
For K = C the pattern is simpler. Denote by Cl(n) the Clifford algebra

of C
n.

Proposition 2.5. One has the following isomorphisms of algebras over
C,

Cl(2m) = Mat2m(C), Cl(2m+ 1) = Mat2m(C) ⊕ Mat2m(C).

This will become clear later when we discuss the spinor module for Clif-
ford algebras in the split case. The mod 2 periodicity of the Clifford algebras

Cl(n+ 2) ∼= Mat2(Cl(n))
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is related to the mod 2 periodicity in complex K-theory [?].

2.4. Symbol map and quantization map. Returning to the algebra
homomorphism fCl : Cl(V ;B) → End(∧V ) (see (3)), given on generators by

fCl(v) = ǫ(v) + 1
2 ι(B

♭(v)), one defines the symbol map,

σ : Cl(V ;B) → ∧(V ), x 7→ fCl(x).1

where 1 ∈ ∧0(V ) = K.

Proposition 2.6. The symbol map is an isomorphism of vector spaces.
In low degrees,

σ(1) = 1

σ(v) = v

σ(v1v2) = v1 ∧ v2 + 1
2B(v1, v2),

σ(v1v2v3) = v1 ∧ v2 ∧ v3 + 1
2(B(v2, v3)v1 −B(v1, v3)v2 +B(v1, v2)v3).

Proof. Let ei ∈ V be an orthogonal basis. Since the operators f(ei)
commute (in the grade sense), we find

σ(ei1 · · · eik) = ei1 ∧ · · · ∧ eik ,
for i1 < · · · < ik. This directly shows that the symbol map is an isomor-
phism: It takes the element eI ∈ Cl(V ;B) to the corresponding element
eI ∈ ∧(V ). The formulas in low degrees are obtained by straightforward
calculation. �

The inverse map is called the quantization map

q : ∧ (V ) → Cl(V ;B).

In terms of the basis, q(eI) = eI . In low degrees,

q(1) = 1,

q(v) = v,

q(v1 ∧ v2) = v1v2 − 1
2B(v1, v2),

q(v1 ∧ v2 ∧ v3) = v1v2v3 − 1
2(B(v2, v3)v1 −B(v1, v3)v2 +B(v1, v2)v3).

If K has characteristic 0 (so that division by all non-zero integers is defined),
the quantization map has the following alternative description.

Proposition 2.7. Suppose K has characteristic 0. Then the quantiza-
tion map is given by graded symmetrization. That is, for v1, . . . , vk ∈ V ,

q(v1 ∧ · · · ∧ vk) =
1

k!

∑

s∈Sk

sign(s)vs(1) · · · vs(k).

Here Sk is the group of permutations of 1, . . . , k and sign(s) = ±1 is the
parity of a permutation s.
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CHAPTER 2. CLIFFORD ALGEBRAS

Proof. By linearity, it suffices to check for the case that the vj are
elements of an orthonormal basis e1, . . . , en of V , that is vj = eij (the indices
ij need not be ordered or distinct). If the ij are all distinct, then the
eij Clifford commute in the graded sense, and the right hand side equals
ei1 · · · eik ∈ Cl(V ;B), which coincides with the left hand side. If any two eij
coincide, then both sides are zero. �

2.5. Z-filtration. The increasing filtration

T(0)(V ) ⊂ T(1)(V ) ⊂ · · ·

with T(k)(V ) =
⊕

j≤k T
j(V ) descends to a filtration

Cl(0)(V ;B) ⊂ Cl(1)(V ;B) ⊂ · · ·
of the Clifford algebra, with Cl(k)(V ;B) the image of T(k)(V ) under the
quotient map. Equivalently, Cl(k)(V ;B) consists of linear combinations of
products v1 · · · vl with l ≤ k (including scalars, viewed as products of length
0). The filtration is compatible with product map, that is,

Cl(k1)(V ;B)Cl(k2)(V ;B) ⊂ Cl(k1+k2)(V ;B).

Thus, Cl(V ;B) is a filtered algebra. Let gr(Cl(V ;B)) be the associated
graded algebra.

Proposition 2.8. The symbol map induces an isomorphism of associ-
ated graded algebras

gr(σ) : gr(Cl(V ;B)) → ∧(V ).

Proof. The symbol map and the quantization map are filtration pre-
serving, hence they descend to isomorphisms of the associated graded vector
spaces. Let πCl : T (V ) → Cl(V ;B) and π∧ : T (V ) → ∧(V ) be the quotient
maps. By definition of the symbol map, the composition σ ◦πCl : T(k)(V ) →
∧(V ) coincides with π∧ : T(k)(V ) → ∧(V ) up to lower order terms. Passing
to the associated graded maps, this gives

gr(σ) ◦ gr(πCl) = π∧.

Since πCl is a surjective algebra homomorphism, so is gr(πCl). It hence
follows that gr(σ) is an algebra homomorphism as well. �

Note that the symbol map σ : Cl(V ;B) → ∧(V ) preserves the Z2-grading.
The even (resp. odd) elements of Cl(V ;B) are linear combinations of prod-
ucts v1 · · · vk with k even (resp. odd). The filtration is also compatible with
the Z2-grading, that is, each Cl(k)(V ;B) is a Z2-graded subspace. In fact,

Cl0̄(2k)(V ;B) = Cl0̄(2k+1)(V ;B),

Cl1̄(2k+1)(V ;B) = Cl1̄(2k+2)(V ;B).
(5)
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2.6. Transposition. An anti-automorphism of an algebra A is an in-
vertible linear map f : A → A with the property f(ab) = f(b)f(a) for all
a, b ∈ A. Put differently, if Aop is A with the opposite algebra structure
a ·op b := ba, an anti-automorphism is an algebra isomorphism A → Aop.

The tensor algebra carries a unique involutive anti-automorphism that
is equal to the identity on V ⊂ T (V ). It is called the canonical anti-
automorphism or transposition, and is given by

(v1 ⊗ · · · ⊗ vk)
⊤ = vk ⊗ · · · ⊗ v1.

Since transposition preserves the ideal I(V ) defining the exterior algebra, it
descends to an anti-automorphism of the exterior algebra, φ 7→ φ⊤. In fact,
since transposition is given by a permutation of length (k−1)+ · · ·+2+1 =
k(k − 1)/2, we have

φ⊤ = (−1)k(k−1)/2φ, φ ∈ ∧k(V ).

Given a symmetric bilinear formB ob V the transposition anti-automorphism
of the tensor algebra also preserves the ideal I(V ;B), and hence descends to
an anti-automorphism of Cl(V ;B), still called canonical anti-automorphism
or transposition, with

(v1 · · · vk)
⊤ = vk · · · v1.

The symbol map and its inverse, the quantization map q : ∧(V ) → Cl(V ;B)
intertwines the transposition maps for ∧(V ) and Cl(V ;B). This information
is sometimes useful for computations.

Example 2.9. Suppose φ ∈ ∧k(V ), and consider the square of q(φ).

The element q(φ)2 ∈ Cl(V ) is even, and is hence contained in Cl0̄(2k)(V ).

But (q(φ)2)⊤ = (q(φ)⊤)2 = q(φ)2 since q(φ)⊤ = q(φ⊤) = ±q(φ). It follows
that

q(φ)2 ∈ q
(
∧0 (V ) ⊕ ∧4(V ) ⊕ · · · ⊕ ∧4r(V )

)
,

where r is the largest number with 2r ≤ k.

2.7. Chirality element, trace. Let dimV = n. Then any generator
Γ∧ ∈ det(V ) := ∧n(V ) quantizes to given an element Γ = q(Γ∧). This
element (or suitable normalizations of this element) is called the chirality
element of the Clifford algebra. The square Γ2 of the chirality element is
always a scalar, as is immediate by choosing an orthogonal basis ei, and
letting Γ = e1 · · · en. In fact, since Γ⊤ = (−1)n(n−1)/2Γ we have

Γ2 = (−1)n(n−1)/22−n
n∏

i=1

B(ei, ei).

In the case K = C and V = C
n we can always normalize Γ to satisfy

Γ2 = 1; this normalization determines Γ up to sign. For any v ∈ V , we have
Γv = (−1)n−1vΓ, as one checks e.g. using an orthogonal basis. (If v = ei,
then v anti-commutes with all ej for j 6= i in the product Γ = e1 · · · en, and
commutes with ei. Hence we obtain n− 1 sign changes.)
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Γv =

{
vΓ if n is odd

−vΓ if n is even

Thus, if n is odd then Γ lies in the center of Cl(V ;B), viewed as an ordinary
algebra. In the case that n is even, we obtain

Π(x) = ΓxΓ−1,

for all x ∈ Cl(V ;B), i.e. the chirality element implements the parity auto-
morphism.

For any Z2-graded algebra A and vector space Y , a Y -valued super-trace
on A is a linear map trs : A → Y vanishing on the subspace [A,A] spanned
by super-commutators: That is, trs([x, y]) = 0 for x, y ∈ A.

Proposition 2.10. Suppose n = dimV <∞. The linear map

trs : Cl(V ;B) → det(V )

given as the quotient map to Cl(n)(V ;B)/Cl(n−1)(V ;B) ∼= ∧n(V ) = det(V ),
is a super-trace on Cl(V ;B).

Proof. Let ei be an orthogonal basis, and eI the assocated basis of
Cl(V ;B). Then trs(eI) = 0 unless I = {1, . . . , n}. The product eI , eJ is
of the form eIeJ = ceK where K = (I ∪ J) − (I ∩ J) and c ∈ K. Hence
trs(eIeJ) = 0 = trs(eJeI) unless I ∩ J = ∅ and I ∪ J = {1, . . . , n}. But in
case I ∩ J = ∅, eI , eJ super-commute: [eI , eJ ] = 0. �

The Clifford algebra also carries an ordinary trace, vanishing on ordinary
commutators.

Proposition 2.11. The formula

tr : Cl(V ;B) → K, x 7→ σ(x)[0]

defines an (ordinary) trace on Cl(V ;B), that is tr(xy) = tr(yx) for all
x, y ∈ Cl(V ;B). For dimV < ∞, the trace and the super-trace are related
by the formula,

trs(Γx) = tr(x) Γ∧

where Γ = q(Γ∧) is the chirality element in the Clifford algebra defined by a
choice of generator of det(V ).

Proof. Again, we use an orthogonal basis ei of V . The definition gives
tr(e∅) = 1, while tr(eI) = 0 for I 6= ∅. Consider a product eIeJ = ceK where
K = (I ∪J)− (I∩J) and c ∈ K. The set K is non-empty (i.e. tr(eIeJ) = 0)
unless I = J , but in the latter case the trace property is trivial. To check
the formula relating trace and super-trace we may assume Γ∧ = eI with
I = {1, . . . , n}. For x = eJ we see that trs(Γx) vanishes unless J = ∅, in
which case it is Γ∧. �
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2.8. Lie derivatives and contractions. Let V be a vector space,
and α ∈ V ∗. Then the map ι(α) : V → K, v 7→ 〈α, v〉 extends uniquely to a
degree −1 derivation of the tensor algebra T (V ), called contraction, by

ι(α)(v1 ⊗ · · · ⊗ vk) =

k∑

i=1

(−1)i−1〈α, vi〉 v1 ⊗ · · · v̂i · · · ⊗ vk

The contraction operators preserve the ideal I(V ) defining the exterior alge-
bra, and descend to the contraction operators on ∧(V ). Given a symmetric
bilinear form B on V , the contraction operators also preserve the ideal
I(V ;B) since

ι(α)(v1 ⊗ v2 + v2 ⊗ v1 −B(v1, v2)) = 0. v1, v2 ∈ V.

It follows that ι(α) descends to an odd derivation of Cl(V ;B) of filtration
degree −1, with

(6) ι(α)(v1 · · · vk) =

k∑

i=1

(−1)i−1〈α, vi〉v1 · · · v̂i · · · vk.

Similarly, any A ∈ gl(V ) = End(V ) extends to a derivation LA of degree 0
on T (V ), called Lie derivative:

LA(v1 ⊗ · · · ⊗ vk) =

k∑

i=1

v1 ⊗ · · · ⊗ LA(vi) ⊗ · · · ⊗ vk.

LA preserves the ideal I(V ), and hence descends to a derivation of ∧(V ). If
A ∈ o(V ;B), that is B(Av1, v2) +B(v1, Av2) = 0 for all v1, v2, then LA also
preserves the ideal I(V ;B) and consequently descends to an even derivation
of Cl(V ;B), of filtration degree 0.

One has (on the tensor algebra, and hence also on the exterior and
Clifford algebras)

[ι(α1), ι(α2)] = 0, [LA1
, LA2

] = L[A1,A2], [LA, ι(α)] = ι(A.α),

where A.α = −A∗α with A∗ the dual map. This proves the first part of:

Proposition 2.12. The map A 7→ LA, α 7→ ι(α) defines an action
of the graded Lie algebra o(V ;B) ⋉ V ∗ (where elements of V ∗ have degree
−1) on Cl(V ;B) by derivations. The symbol map intertwines this with the
corresponding action by derivations of ∧(V ).

Proof. It suffices to check on elements φ = v1 ∧ · · · ∧ vk ∈ ∧(V ) where
v1, . . . , vk are pairwise orthogonal. Then q(φ) = v1 · · · vk, and the quantiza-
tion of ι(α)φ (given by (1)) coincides with ι(α)(q(φ)) (given by (6)). The
argument for the Lie derivatives is similar. �

Any element v ∈ V defines a derivation of Cl(V ;B) by graded com-
mutator: x 7→ [v, x]. For generators w ∈ V , we have [v,w] = B(v,w) =
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〈B♭(v), w〉. This shows that this derivation agrees with the contraction by
B♭(v):

(7) [v, ·] = ι(B♭(v))

As a simple application, we find:

Lemma 2.13. The super-center of the Z2-graded algebra Cl(V ;B) is the
exterior algebra over rad(B) = kerB♭.

Proof. Indeed, suppose x lies in the super-center. Then 0 = [v, x] =

ι(B♭(v))x for all v ∈ V . Hence σ(x) is annihilated by all contractions B♭(v)),

and is therefore an element of the exterior algebra over ann(ran(B♭)) =

ker(B♭). Consequently x = q(σ(x)) is in Cl(ker(B♭)) = ∧(ker(B♭)). �

2.9. The homomorphism ∧2V → o(V ;B). Consider next the deriva-
tions of Cl(V ;B) defined by elements of q(∧2V ). Define a map

(8) ∧2V → o(V ;B), λ 7→ Aλ

where Aλ(v) = −ι(B♭(v))λ. This does indeed lie in o(V ;B), since

B(Aλ(v), w) = −ι(B♭(w))Aλ(v) = −ι(B♭(w))ι(B♭(v))λ

is anti-symmetric in v,w. We have:

(9) [q(λ), ·] = LAλ

since both sides are derivations extending the map v 7→ Aλ(v) on generators.
Define a bracket {·, ·} on ∧2(V ) by

(10) {λ, λ′} = LAλ
λ′.

The calculation

[q(λ), q(λ′)] = LAλ
q(λ′) = q(LAλ

λ′) = q({λ, λ′})
shows that q intertwines {·, ·} with the Clifford commutator; in particular
{·, ·} is a Lie bracket. Furthermore, from

[q(λ), [q(λ′), v]] − [q(λ′), [q(λ), v]] = [[q(λ), q(λ′)], v] = [q({λ, λ′}), v]
we see that [Aλ, Aλ′ ] = A{λ,λ′}, that is, the map λ 7→ Aλ is a Lie algebra
homomorphism. To summarize:

Proposition 2.14. The formula (10) defines a Lie bracket on ∧2(V ).
Relative to this bracket, the map

∧2(V ) ⋊ V [1] → o(V ;B) ⋊ V ∗[1], (λ, v) 7→ (Aλ, B
♭(v))

is a homomorphism of graded Lie algebras. (The symbol [1] indicates a degree
shift: We assign degree −1 to the elements of V, V ∗ while ∧2(V ), o(V ;B)
are assigned degree 0.) It intertwines the derivation actions of q(λ), v on
Cl(V ;B) by Clifford commutator with the action by Lie derivatives and con-
tractions.
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Note that we can also think of ∧2(V ) ⋊ V [1] as a graded subspace of
∧(V )[2], using the standard grading on ∧(V ) shifted down by 2. We will
see in the following Section ?? that the graded Lie bracket on this subspace
extends to a graded Lie bracket on all of ∧(V )[2].

2.10. A formula for the Clifford product. It is sometimes useful
to express the Clifford multiplication

mCl : Cl(V ⊕ V ) = Cl(V ) ⊗ Cl(V ) → Cl(V )

in terms of the exterior algebra multiplication,

m∧ : ∧ (V ⊕ V ) = ∧(V ) ⊗ ∧(V ) → ∧(V ).

Recall that by definition of the isomorphism ∧(V ⊕ V ) = ∧(V ) ⊗ ∧(V ), if
φ,ψ ∈ ∧(V ∗), the element φ ⊗ ψ ∈ ∧(V ∗) ⊗ ∧(V ∗) is identified with the
element (φ⊕ 0) ∧ (0 ⊕ ψ) ∈ ∧(V ∗ ⊕ V ∗). Similarly for the Clifford algebra.

Let ei ∈ V be an orthogonal basis, ei ∈ V ∗ the dual basis, and eI ∈
∧(V ), eI ∈ ∧(V ∗) the corresponding dual bases indexed by subsets I ⊂
{1, . . . , n}. Then the element

Ψ =
∑

I

1

(−2)|I|
eI ⊗B♭((eI)

⊤) ∈ ∧(V ∗) ⊗ ∧(V ∗)

is independent of the choice of bases.

Proposition 2.15. Under the quantization map, the exterior algebra
product and the Clifford product are related as follows:

mCl ◦ q = q ◦m∧ ◦ ι(Ψ)

Proof. Let Vi be the 1-dimensional subspace spanned by ei. Then
∧(V ) is the graded tensor product over all ∧(Vi), and similarly Cl(V ) is the
graded tensor product over all Cl(Vi). The formula for Ψ factorizes as

(11) Ψ =

n∏

i=1

(
1 − 1

2e
i ⊗B♭(ei)

)
.

It hence suffices to prove the formula for the case V = V1. We have,

q ◦m∧ ◦ ι
(
1 − 1

2e
1 ⊗B♭(e1)

)
(e1 ⊗ e1) = q ◦m∧

(
e1 ⊗ e1 + 1

2B(e1, e1)
)

= q
(

1
2B(e1, e1)

)

= e1e1.

�

If char(K) = 0, we may also write the element Ψ as an exponential:

Ψ = exp
(
− 1

2

∑

i

ei ⊗B♭(ei)
)
.

This follows by rewriting (11) as
∏

i exp
(
− 1

2e
i ⊗B♭(ei)

)
, and then writing

the product of exponentials as an exponential of a sum.
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Remark 2.16. Consider the addition map

Add: V ⊕ V → V, v ⊕w 7→ v + w.

This map is linear, and hence to an algebra homomorphism

∧(Add): ∧ (V ⊕ V ) → ∧(V ).

In terms of the identification ∧(V ⊕ V ) = ∧(V ) ⊗ ∧(V ), this is exactly the
map m∧. The dual map Add∗ : V ∗ → V ∗ ⊕ V ∗ is the diagonal inclusion.
The composition

m̃Cl = σ ◦mCl ◦ q : ∧ (V ⊕ V ) → ∧(V )

has the property,
m̃Cl ◦ ι(Add∗(α)) = ι(α) ◦ m̃Cl

for all α ∈ V ∗. Hence, by Lemma ??, there exists a unique element Ψ ∈
∧(V ∗ ⊕ V ∗) such that m̃Cl = m∧ ◦ ι(Ψ), and this is the element determined
in the Proposition.
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