CHAPTER 2

Clifford algebras

1. Exterior algebras

1.1. Definition. For any vector space V over a field \mathbb{K} , let $T(V) = \bigoplus_{k \in \mathbb{Z}} T^k(V)$ be the tensor algebra, with $T^k(V) = V \otimes \cdots \otimes V$ the k-fold tensor product. The quotient of T(V) by the two-sided ideal $\mathcal{I}(V)$ generated by all $v \otimes w + w \otimes v$ is the exterior algebra, denoted $\wedge(V)$. The product in $\wedge(V)$ is usually denoted $\alpha_1 \wedge \alpha_2$, although we will frequently omit the wedge sign and just write $\alpha_1 \alpha_2$. Since $\mathcal{I}(V)$ is a graded ideal, the exterior algebra inherits a grading

$$\wedge(V) = \bigoplus_{k \in \mathbb{Z}} \wedge^k(V)$$

where $\wedge^k(V)$ is the image of $T^k(V)$ under the quotient map. Clearly, $\wedge^0(V) = \mathbb{K}$ and $\wedge^1(V) = V$ so that we can think of V as a subspace of $\wedge(V)$. We may thus think of $\wedge(V)$ as the associative algebra linearly generated by V, subject to the relations vw + wv = 0.

We will write $|\phi| = k$ if $\phi \in \wedge^k(V)$. The exterior algebra is *commutative* (in the graded sense). That is, for $\phi_1 \in \wedge^{k_1}(V)$ and $\phi_2 \in \wedge^{k_2}(V)$,

$$[\phi_1, \phi_2] := \phi_1 \phi_2 + (-1)^{k_1 k_2} \phi_2 \phi_1 = 0.$$

If V has finite dimension, with basis e_1, \ldots, e_n , the space $\wedge^k(V)$ has basis

$$e_I = e_{i_1} \cdots e_{i_k}$$

for all ordered subsets $I = \{i_1, \ldots, i_k\}$ of $\{1, \ldots, n\}$. (If k = 0, we put $e_{\emptyset} = 1$.) In particular, we see that dim $\wedge^k(V) = \binom{n}{k}$, and

$$\dim \wedge(V) = \sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

Letting $e^i \in V^*$ denote the dual basis to the basis e_i considered above, we define a dual basis to e_I to be the basis $e^I = e^{i_1} \cdots e^{i_k} \in \wedge(V^*)$.

1.2. Universal property, functoriality. The exterior algebra is characterized by its universal property: If \mathcal{A} is an algebra, and $f: V \to \mathcal{A}$ a linear map with f(v)f(w) + f(w)f(v) = 0 for all $v, w \in V$, then f extends uniquely to an algebra homomorphism $f_{\wedge}: \wedge(V) \to \mathcal{A}$. Thus, is $\widetilde{\wedge}(V)$ is another algebra with a homomorphism $V \to \widetilde{\wedge}(V)$, satisfying this universal

property, then there is a unique isomorphism $\wedge(V) \to \widetilde{\wedge}(V)$ intertwining the two inclusions of V.

Any linear map $L: V \to W$ extends uniquely (by the universal property, applied to L viewed as a map into $V \to \wedge(W)$) to an algebra homomorphism $\wedge(L): \wedge(V) \to \wedge(W)$. One has $\wedge(L_1 \circ L_2) = \wedge(L_1) \circ \wedge(L_2)$. As a special case, taking L to be the zero map $0: V \to V$ the resulting algebra homomorphism $\wedge(L)$ is the *augmentation map* (taking $\phi \in \wedge(V)$ to its component in $\wedge^0(V) \cong \mathbb{K}$). Taking L to be the map $v \mapsto -v$, the map $\wedge(L)$ is the *parity* homomorphism $\Pi \in \operatorname{Aut}(\wedge(V))$, equal to $(-1)^k$ on $\wedge^k(V)$.

The functoriality gives in particular a group homomorphism¹

$$\operatorname{GL}(V) \to \operatorname{Aut}(\wedge(V)), \ g \mapsto \wedge(g)$$

into the group of algebra automorphisms of V. We will often write g in place of $\wedge(g)$, but reserve this notation for invertible transformations since e.g. $\wedge(0) \neq 0$.

As another application of the universal property, suppose V_1, V_2 are two vector spaces, and define $\wedge(V_1) \otimes \wedge(V_2)$ as the tensor product of graded algebras. This tensor product contains $V_1 \oplus V_2$ as a subspace, and satisfies the universal property of the exterior algebra over $V_1 \oplus V_2$. Hence there is a unique algebra isomorphism

$$\wedge (V_1 \oplus V_2) \to \wedge (V_1) \otimes \wedge (V_2)$$

intertwining the inclusions of $V_1 \oplus V_2$. It is clear that this isomorphism preserves gradings.

For $\alpha \in V^*$, define the contraction operators $\iota(\alpha) \in \operatorname{End}(\wedge(V))$ by $\iota(\alpha) = 0$ and

(1)
$$\iota(\alpha)(v_1 \wedge \cdots v_k) = \sum_{i=1}^k (-1)^{i-1} \langle \alpha, v_i \rangle \ v_1 \wedge \cdots \widehat{v_i} \cdots \wedge v_k.$$

On the other hand, for $v \in V$ we have the operator $\epsilon(v) \in \text{End}(\wedge V)$ of exterior multiplication by v. These satisfy the relations

(2)
$$\iota(v)\epsilon(w) + \epsilon(w)\epsilon(v) = 0,$$
$$\iota(\alpha)\iota(\beta) + \iota(\beta)\iota(\alpha) = 0,$$
$$\iota(\alpha)\epsilon(v) + \epsilon(v)\iota(\alpha) = \langle \alpha, v \rangle.$$

For later reference, let us also observe that the kernel of $\iota(\alpha)$ is the exterior algebra over ker $(\alpha) \subset V$; hence $\bigcap_{\alpha \in V^*} \ker(\iota(\alpha)) = 0$.

2. Clifford algebras

2.1. Definition and first properties. Let V be a vector space over \mathbb{K} , with a symmetric bilinear form $B: V \times V \to \mathbb{K}$ (possibly degenerate).

¹If \mathcal{A} is any algebra, we denote by End(\mathcal{A}) (resp. Aut(\mathcal{A})) the vector space homomorphisms (res. automorphisms) $\mathcal{A} \to \mathcal{A}$, while End_{alg}(\mathcal{A}) (resp. Aut_{alg}(V)) denotes the set of algebra homomorphisms (resp. group of algebra automorphisms).

DEFINITION 2.1. The Clifford algebra Cl(V; B) is the quotient

$$\operatorname{Cl}(V; B) = T(V) / \mathcal{I}(V; B)$$

where $\mathcal{I}(V; B) \subset T(V)$ is the two-sided ideal generated by all

 $v \otimes w + w \otimes v - B(v, w) 1, v, w \in V$

Clearly, $Cl(V;0) = \wedge(V)$. It is not obvious from the definition that Cl(V; B) is non-trivial, but this follows from the following Proposition.

PROPOSITION 2.2. The inclusion $\mathbb{K} \to T(V)$ descends to an inclusion $\mathbb{K} \to \operatorname{Cl}(V; B)$. The inclusion $V \to T(V)$ descends to an inclusion $V \to \operatorname{Cl}(V; B)$.

PROOF. Consider the linear map

 $f: V \to \operatorname{End}(\wedge(V)), \ v \mapsto \epsilon(v) + \frac{1}{2}\iota(B^{\flat}(v)).$

and its extension to an algebra homomorphism $f_T: T(V) \to \operatorname{End}(\wedge(V))$. The commutation relations (2) show that f(v)f(w) + f(w)f(v) = B(v, w)1. Hence f_T vanishes on the ideal $\mathcal{I}(V; B)$, and therefore descends to an algebra homomorphism

(3)
$$f_{\mathrm{Cl}} \colon \mathrm{Cl}(V; B) \to \mathrm{End}(\wedge(V)),$$

i.e. $f_{\mathrm{Cl}} \circ \pi = f_T$ where $\pi: T(V) \to \mathrm{Cl}(V; B)$ is the projection. Since $f_T(1) = 1$, we see that $\pi(1) \neq 0$, i.e. the inclusion $\mathbb{K} \hookrightarrow T(V)$ descends to an inclusion $\mathbb{K} \hookrightarrow \mathrm{Cl}(V; B)$. Similarly, from $f_T(v).1 = v$ we see that the inclusion $V \hookrightarrow T(V)$ descends to an inclusion $V \hookrightarrow \mathrm{Cl}(V; B)$. \Box

The Proposition shows that V is a subspace of Cl(V; B). We may thus characterize Cl(V; B) as the unital associative algebra, with generators $v \in V$ and relations

(4)
$$vw + wv = B(v, w)1, \quad v, w \in V.$$

Let T(V) carry the \mathbb{Z}_2 -grading

$$T^{\bar{0}}(V) = \bigoplus_{k=0}^{\infty} T^{2k}(V), \ T^{\bar{1}}(V) = \bigoplus_{k=0}^{\infty} T^{2k+1}(V).$$

(Here \bar{k} denotes $k \mod 2$.) Since the elements $v \otimes w + w \otimes v - B(v, w)1$ are even, the ideal $\mathcal{I}(V; B)$ is \mathbb{Z}_2 graded, i.e. it is a direct sum of the subspaces $\mathcal{I}^{\bar{k}}(V; B) = \mathcal{I}(V; B) \cap T^{\bar{k}}(V)$ for k = 0, 1. Hence the Clifford algebra inherits a \mathbb{Z}_2 -grading,

$$\operatorname{Cl}(V; B) = \operatorname{Cl}^0(V; B) \oplus \operatorname{Cl}^1(V; B).$$

The two summands are spanned by products $v_1 \cdots v_k$ with k even, respectively odd. From now on, commutators $[\cdot, \cdot]$ in the Clifford algebra $\operatorname{Cl}(V; B)$ will denote \mathbb{Z}_2 -graded commutators. (We will write $[\cdot, \cdot]_{\operatorname{Cl}}$ if there is risk of confusion.) In this notation, the defining relations for the Clifford algebra become

$$[v,w] = B(v,w), \quad v,w \in V.$$

If dim V = n, and e_i are an orthogonal basis of V, then (using the same notation as for the exterior algebra), the products

 $e_I = e_{i_1} \cdots e_{i_k}, \ I = \{i_1, \dots, i_k\} \subset \{1, \dots, n\},$

with the convention $e_{\emptyset} = 1$, span Cl(V; B). We will see in Section 2.4 that the e_I are a basis.

2.2. Universal property, functoriality. The Clifford algebra is characterized by the following by a universal property:

PROPOSITION 2.3. Let \mathcal{A} be an associative unital algebra, and $f: V \to \mathcal{A}$ a linear map satisfying

$$f(v_1)f(v_2) + f(v_2)f(v_1) = B(v_1, v_2) \cdot 1, \quad v_1, v_2 \in V.$$

Then f extends uniquely to an algebra homomorphism $Cl(V; B) \to A$.

PROOF. By the universal property of the tensor algebra, f extends to an algebra homomorphism $f_{T(V)}: T(V) \to \mathcal{A}$. The property $f(v_1)f(v_2) + f(v_2)f(v_1) = B(v_1, v_2) \cdot 1$ shows that f vanishes on the ideal $\mathcal{I}(V; B)$, and hence descends to the Clifford algebra. Uniqueness is clear, since the Clifford algebra is generated by elements of V.

Suppose B_1, B_2 are symmetric bilinear forms on V_1, V_2 , and $f: V_1 \to V_2$ is a linear map such that

$$B_2(f(v), f(w)) = B_1(v, w), v, w \in V_1.$$

Viewing f as a map into $Cl(V_2; B_2)$, the universal property provides a unique extension

$$\operatorname{Cl}(f) \colon \operatorname{Cl}(V_1; B_1) \to \operatorname{Cl}(V_2; B_2).$$

For instance, if $F \subset V$ is an isotropic subspace of V, there is an algebra homomorphism $\wedge(F) = \operatorname{Cl}(F) \to \operatorname{Cl}(V; B)$. Clearly, $\operatorname{Cl}(f_1 \circ f_2) = \operatorname{Cl}(f_1) \circ$ $\operatorname{Cl}(f_2)$. Taking $V_1 = V_2 = V$, and restricting attention to invertible linear maps, one obtains a group homomorphism

 $O(V; B) \to Aut(Cl(V; B)), g \mapsto Cl(g).$

We will usually just write g in place of $\operatorname{Cl}(g)$. For example, the involution $v \mapsto -v$ lies in O(V; B), hence it defines an involutive algebra automorphism Π of $\operatorname{Cl}(V; B)$ called the *parity automorphism*. The ± 1 eigenspaces are the even and odd part of the Clifford algebra, respectively.

Suppose again that (V,B_1) and (V_2,B_2) be two vector spaces with symmetric bilinear forms, and consider the direct sum $(V_1 \oplus V_2, B_1 \oplus B_2)$. Then

$$\operatorname{Cl}(V_1 \oplus V_2; B_1 \oplus B_2) = \operatorname{Cl}(V_1; B_1) \otimes \operatorname{Cl}(V_2; B_2)$$

as \mathbb{Z}_2 -graded algebras. This follows since $\operatorname{Cl}(V_1; B_1) \otimes \operatorname{Cl}(V_2; B_2)$ satisfies the universal property of the Clifford algebra over $(V_1 \oplus V_2; B_1 \oplus B_2)$. In particular, if $\operatorname{Cl}(n,m)$ denotes the Clifford algebra for $\mathbb{K}^{n,m}$ we have

$$\operatorname{Cl}(n,m) = \operatorname{Cl}(1,0) \otimes \cdots \otimes \operatorname{Cl}(1,0) \otimes \operatorname{Cl}(0,1) \otimes \cdots \otimes \operatorname{Cl}(0,1),$$

with \mathbb{Z}_2 -graded tensor products.

2.3. The Clifford algebras Cl(n,m). Consider the case $\mathbb{K} = \mathbb{R}$. For n,m small one can determine the algebras $Cl(n,m) = Cl(\mathbb{R}^{n,m})$ by hand.

PROPOSITION 2.4. For $\mathbb{K} = \mathbb{R}$, one has the following isomorphisms of the Clifford algebras Cl(n,m) with $n + m \leq 2$, as ungraded algebras:

$$Cl(0,1) \cong \mathbb{C}$$
$$Cl(1,0) \cong \mathbb{R} \oplus \mathbb{R},$$
$$Cl(0,2) \cong \mathbb{H},$$
$$Cl(1,1) \cong Mat_2(\mathbb{R})$$
$$Cl(2,0) \cong Mat_2(\mathbb{R})$$

Here \mathbb{C} and \mathbb{H} are viewed as algebras over \mathbb{R} , and $\operatorname{Mat}_2(\mathbb{R}) = \operatorname{End}(\mathbb{R}^2)$ is the algebra of real 2×2 -matrices.

PROOF. By the universal property, an algebra \mathcal{A} of dimension 2^{n+m} is isomorphic to $\operatorname{Cl}(n,m)$ if there exists a linear map $f: \mathbb{R}^{n,m} \to \mathcal{A}$ satisfying $f(e_i)f(e_j) + f(e_j)f(e_i) = \pm \delta_{ij}$, with a plus sign for $i \leq n$ and a minus sign for i > n. We will describe these maps for $n + m \leq 2$. For (n,m) = (0,1)we take $f: \mathbb{R}^{0,1} \to \mathbb{C}, \ \frac{1}{\sqrt{2}}e_1 \mapsto i = \sqrt{-1}$. For (n,m) = (1,0), we use $f: \mathbb{R}^{1,0} \to \mathbb{R} \oplus \mathbb{R}, \ e_1 \mapsto \frac{1}{\sqrt{2}}(1,-1)$. For (n,m) = (0,2) we use

$$f(e_1) = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{-1} & 0\\ 0 & \sqrt{-1} \end{pmatrix}, \quad f(e_2) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}$$

(The matrices represent the first two of the standard unit quaternions $i, j, k = ij \in \mathcal{H}$.) For (n, m) = (1, 1) the relevant map is

$$f(e_1) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}, \quad f(e_2) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix}$$

The case (n, m) = (2, 0) is left as an exercise.

The full classification of the Clifford algebras Cl(n,m) may be found in the book by Lawson-Michelsohn [?] or in the monograph by Budinich-Trautman [?]. The Clifford algebras exhibit a remarkable mod 8 periodicity,

 $\operatorname{Cl}(n+8,m) \cong \operatorname{Mat}_{16}(\operatorname{Cl}(n,m)) \cong \operatorname{Cl}(n,m+8)$

which is related to the mod 8 periodicity in real K-theory [?].

For $\mathbb{K} = \mathbb{C}$ the pattern is simpler. Denote by $\mathbb{C}l(n)$ the Clifford algebra of \mathbb{C}^n .

PROPOSITION 2.5. One has the following isomorphisms of algebras over \mathbb{C} ,

$$\mathbb{C}l(2m) = \operatorname{Mat}_{2^m}(\mathbb{C}), \quad \mathbb{C}l(2m+1) = \operatorname{Mat}_{2^m}(\mathbb{C}) \oplus \operatorname{Mat}_{2^m}(\mathbb{C}).$$

This will become clear later when we discuss the spinor module for Clifford algebras in the split case. The mod 2 periodicity of the Clifford algebras

$$\mathbb{C}l(n+2) \cong \operatorname{Mat}_2(\mathbb{C}l(n))$$

is related to the mod 2 periodicity in complex K-theory [?].

2.4. Symbol map and quantization map. Returning to the algebra homomorphism f_{Cl} : $\text{Cl}(V; B) \to \text{End}(\wedge V)$ (see (3)), given on generators by $f_{\text{Cl}}(v) = \epsilon(v) + \frac{1}{2}\iota(B^{\flat}(v))$, one defines the symbol map,

$$\sigma \colon \operatorname{Cl}(V; B) \to \wedge(V), \ x \mapsto f_{\operatorname{Cl}}(x).1$$

where $1 \in \wedge^0(V) = \mathbb{K}$.

PROPOSITION 2.6. The symbol map is an isomorphism of vector spaces. In low degrees,

$$\begin{aligned} \sigma(1) &= 1\\ \sigma(v) &= v\\ \sigma(v_1v_2) &= v_1 \wedge v_2 + \frac{1}{2}B(v_1, v_2),\\ \sigma(v_1v_2v_3) &= v_1 \wedge v_2 \wedge v_3 + \frac{1}{2}(B(v_2, v_3)v_1 - B(v_1, v_3)v_2 + B(v_1, v_2)v_3). \end{aligned}$$

PROOF. Let $e_i \in V$ be an orthogonal basis. Since the operators $f(e_i)$ commute (in the grade sense), we find

$$\sigma(e_{i_1}\cdots e_{i_k})=e_{i_1}\wedge\cdots\wedge e_{i_k},$$

for $i_1 < \cdots < i_k$. This directly shows that the symbol map is an isomorphism: It takes the element $e_I \in \operatorname{Cl}(V; B)$ to the corresponding element $e_I \in \wedge(V)$. The formulas in low degrees are obtained by straightforward calculation.

The inverse map is called the *quantization map*

$$q: \land (V) \to \operatorname{Cl}(V; B).$$

In terms of the basis, $q(e_I) = e_I$. In low degrees,

$$q(1) = 1,$$

$$q(v) = v,$$

$$q(v_1 \land v_2) = v_1 v_2 - \frac{1}{2} B(v_1, v_2),$$

$$q(v_1 \land v_2 \land v_3) = v_1 v_2 v_3 - \frac{1}{2} (B(v_2, v_3) v_1 - B(v_1, v_3) v_2 + B(v_1, v_2) v_3)$$

If \mathbb{K} has characteristic 0 (so that division by all non-zero integers is defined), the quantization map has the following alternative description.

PROPOSITION 2.7. Suppose K has characteristic 0. Then the quantization map is given by graded symmetrization. That is, for $v_1, \ldots, v_k \in V$,

$$q(v_1 \wedge \dots \wedge v_k) = \frac{1}{k!} \sum_{s \in \mathfrak{S}_k} \operatorname{sign}(s) v_{s(1)} \cdots v_{s(k)}.$$

Here \mathfrak{S}_k is the group of permutations of $1, \ldots, k$ and $\operatorname{sign}(s) = \pm 1$ is the parity of a permutation s.

PROOF. By linearity, it suffices to check for the case that the v_j are elements of an orthonormal basis e_1, \ldots, e_n of V, that is $v_j = e_{i_j}$ (the indices i_j need not be ordered or distinct). If the i_j are all distinct, then the e_{i_j} Clifford commute in the graded sense, and the right hand side equals $e_{i_1} \cdots e_{i_k} \in \operatorname{Cl}(V; B)$, which coincides with the left hand side. If any two e_{i_j} coincide, then both sides are zero.

2.5. Z-filtration. The increasing filtration

$$T_{(0)}(V) \subset T_{(1)}(V) \subset \cdots$$

with $T_{(k)}(V) = \bigoplus_{j \le k} T^j(V)$ descends to a filtration

$$\operatorname{Cl}_{(0)}(V; B) \subset \operatorname{Cl}_{(1)}(V; B) \subset \cdots$$

of the Clifford algebra, with $\operatorname{Cl}_{(k)}(V; B)$ the image of $T_{(k)}(V)$ under the quotient map. Equivalently, $\operatorname{Cl}_{(k)}(V; B)$ consists of linear combinations of products $v_1 \cdots v_l$ with $l \leq k$ (including scalars, viewed as products of length 0). The filtration is compatible with product map, that is,

$$\operatorname{Cl}_{(k_1)}(V;B)\operatorname{Cl}_{(k_2)}(V;B) \subset \operatorname{Cl}_{(k_1+k_2)}(V;B).$$

Thus, Cl(V; B) is a *filtered algebra*. Let gr(Cl(V; B)) be the associated graded algebra.

PROPOSITION 2.8. The symbol map induces an isomorphism of associated graded algebras

$$\operatorname{gr}(\sigma) \colon \operatorname{gr}(\operatorname{Cl}(V; B)) \to \wedge(V).$$

PROOF. The symbol map and the quantization map are filtration preserving, hence they descend to isomorphisms of the associated graded vector spaces. Let $\pi_{\text{Cl}}: T(V) \to \text{Cl}(V; B)$ and $\pi_{\wedge}: T(V) \to \wedge(V)$ be the quotient maps. By definition of the symbol map, the composition $\sigma \circ \pi_{\text{Cl}}: T_{(k)}(V) \to \wedge(V)$ coincides with $\pi_{\wedge}: T_{(k)}(V) \to \wedge(V)$ up to lower order terms. Passing to the associated graded maps, this gives

$$\operatorname{gr}(\sigma) \circ \operatorname{gr}(\pi_{\operatorname{Cl}}) = \pi_{\wedge}.$$

Since π_{Cl} is a surjective algebra homomorphism, so is $\text{gr}(\pi_{\text{Cl}})$. It hence follows that $\text{gr}(\sigma)$ is an algebra homomorphism as well.

Note that the symbol map $\sigma \colon \operatorname{Cl}(V; B) \to \wedge(V)$ preserves the \mathbb{Z}_2 -grading. The even (resp. odd) elements of $\operatorname{Cl}(V; B)$ are linear combinations of products $v_1 \cdots v_k$ with k even (resp. odd). The filtration is also compatible with the \mathbb{Z}_2 -grading, that is, each $\operatorname{Cl}_{(k)}(V; B)$ is a \mathbb{Z}_2 -graded subspace. In fact,

(5)
$$Cl^{0}_{(2k)}(V;B) = Cl^{0}_{(2k+1)}(V;B),$$
$$Cl^{\bar{1}}_{(2k+1)}(V;B) = Cl^{\bar{1}}_{(2k+2)}(V;B).$$

2. CLIFFORD ALGEBRAS

2.6. Transposition. An anti-automorphism of an algebra \mathcal{A} is an invertible linear map $f: \mathcal{A} \to \mathcal{A}$ with the property f(ab) = f(b)f(a) for all $a, b \in \mathcal{A}$. Put differently, if \mathcal{A}^{op} is \mathcal{A} with the opposite algebra structure $a \cdot_{\text{op}} b := ba$, an anti-automorphism is an algebra isomorphism $\mathcal{A} \to \mathcal{A}^{\text{op}}$.

The tensor algebra carries a unique involutive anti-automorphism that is equal to the identity on $V \subset T(V)$. It is called the *canonical antiautomorphism* or *transposition*, and is given by

$$(v_1 \otimes \cdots \otimes v_k)^\top = v_k \otimes \cdots \otimes v_1.$$

Since transposition preserves the ideal $\mathcal{I}(V)$ defining the exterior algebra, it descends to an anti-automorphism of the exterior algebra, $\phi \mapsto \phi^{\top}$. In fact, since transposition is given by a permutation of length $(k-1) + \cdots + 2 + 1 = k(k-1)/2$, we have

$$\phi^{\top} = (-1)^{k(k-1)/2} \phi, \quad \phi \in \wedge^k(V).$$

Given a symmetric bilinear form B ob V the transposition anti-automorphism of the tensor algebra also preserves the ideal $\mathcal{I}(V; B)$, and hence descends to an anti-automorphism of Cl(V; B), still called *canonical anti-automorphism* or *transposition*, with

$$(v_1\cdots v_k)^{\top} = v_k\cdots v_1.$$

The symbol map and its inverse, the quantization map $q: \wedge(V) \to \operatorname{Cl}(V; B)$ intertwines the transposition maps for $\wedge(V)$ and $\operatorname{Cl}(V; B)$. This information is sometimes useful for computations.

EXAMPLE 2.9. Suppose $\phi \in \wedge^k(V)$, and consider the square of $q(\phi)$. The element $q(\phi)^2 \in \operatorname{Cl}(V)$ is even, and is hence contained in $\operatorname{Cl}^{\bar{0}}_{(2k)}(V)$. But $(q(\phi)^2)^{\top} = (q(\phi)^{\top})^2 = q(\phi)^2$ since $q(\phi)^{\top} = q(\phi^{\top}) = \pm q(\phi)$. It follows that

$$q(\phi)^2 \in q(\wedge^0(V) \oplus \wedge^4(V) \oplus \cdots \oplus \wedge^{4r}(V)),$$

where r is the largest number with $2r \leq k$.

2.7. Chirality element, trace. Let $\dim V = n$. Then any generator $\Gamma_{\wedge} \in \det(V) := \wedge^n(V)$ quantizes to given an element $\Gamma = q(\Gamma_{\wedge})$. This element (or suitable normalizations of this element) is called the *chirality* element of the Clifford algebra. The square Γ^2 of the chirality element is always a scalar, as is immediate by choosing an orthogonal basis e_i , and letting $\Gamma = e_1 \cdots e_n$. In fact, since $\Gamma^{\top} = (-1)^{n(n-1)/2}\Gamma$ we have

$$\Gamma^2 = (-1)^{n(n-1)/2} 2^{-n} \prod_{i=1}^n B(e_i, e_i).$$

In the case $\mathbb{K} = \mathbb{C}$ and $V = \mathbb{C}^n$ we can always normalize Γ to satisfy $\Gamma^2 = 1$; this normalization determines Γ up to sign. For any $v \in V$, we have $\Gamma v = (-1)^{n-1} v \Gamma$, as one checks e.g. using an orthogonal basis. (If $v = e_i$, then v anti-commutes with all e_j for $j \neq i$ in the product $\Gamma = e_1 \cdots e_n$, and commutes with e_i . Hence we obtain n-1 sign changes.)

$$\Gamma v = \begin{cases} v\Gamma & \text{if } n \text{ is odd} \\ -v\Gamma & \text{if } n \text{ is even} \end{cases}$$

Thus, if n is odd then Γ lies in the center of Cl(V; B), viewed as an ordinary algebra. In the case that n is even, we obtain

$$\Pi(x) = \Gamma x \Gamma^{-1}$$

for all $x \in Cl(V; B)$, i.e. the chirality element *implements* the parity automorphism.

For any \mathbb{Z}_2 -graded algebra \mathcal{A} and vector space Y, a Y-valued super-trace on \mathcal{A} is a linear map $\operatorname{tr}_s \colon \mathcal{A} \to Y$ vanishing on the subspace $[\mathcal{A}, \mathcal{A}]$ spanned by super-commutators: That is, $\operatorname{tr}_s([x, y]) = 0$ for $x, y \in \mathcal{A}$.

PROPOSITION 2.10. Suppose $n = \dim V < \infty$. The linear map

 $\operatorname{tr}_s \colon \operatorname{Cl}(V; B) \to \det(V)$

given as the quotient map to $\operatorname{Cl}_{(n)}(V; B)/\operatorname{Cl}_{(n-1)}(V; B) \cong \wedge^n(V) = \det(V)$, is a super-trace on $\operatorname{Cl}(V; B)$.

PROOF. Let e_i be an orthogonal basis, and e_I the assocated basis of $\operatorname{Cl}(V; B)$. Then $\operatorname{tr}_s(e_I) = 0$ unless $I = \{1, \ldots, n\}$. The product e_I, e_J is of the form $e_I e_J = ce_K$ where $K = (I \cup J) - (I \cap J)$ and $c \in \mathbb{K}$. Hence $\operatorname{tr}_s(e_I e_J) = 0 = \operatorname{tr}_s(e_J e_I)$ unless $I \cap J = \emptyset$ and $I \cup J = \{1, \ldots, n\}$. But in case $I \cap J = \emptyset$, e_I, e_J super-commute: $[e_I, e_J] = 0$.

The Clifford algebra also carries an *ordinary trace*, vanishing on ordinary commutators.

PROPOSITION 2.11. The formula

tr:
$$\operatorname{Cl}(V; B) \to \mathbb{K}, x \mapsto \sigma(x)_{[0]}$$

defines an (ordinary) trace on $\operatorname{Cl}(V; B)$, that is $\operatorname{tr}(xy) = \operatorname{tr}(yx)$ for all $x, y \in \operatorname{Cl}(V; B)$. For dim $V < \infty$, the trace and the super-trace are related by the formula,

$$\operatorname{tr}_s(\Gamma x) = \operatorname{tr}(x)\,\Gamma_\wedge$$

where $\Gamma = q(\Gamma_{\wedge})$ is the chirality element in the Clifford algebra defined by a choice of generator of det(V).

PROOF. Again, we use an orthogonal basis e_i of V. The definition gives $\operatorname{tr}(e_{\emptyset}) = 1$, while $\operatorname{tr}(e_I) = 0$ for $I \neq \emptyset$. Consider a product $e_I e_J = c e_K$ where $K = (I \cup J) - (I \cap J)$ and $c \in \mathbb{K}$. The set K is non-empty (i.e. $\operatorname{tr}(e_I e_J) = 0$) unless I = J, but in the latter case the trace property is trivial. To check the formula relating trace and super-trace we may assume $\Gamma_{\wedge} = e_I$ with $I = \{1, \ldots, n\}$. For $x = e_J$ we see that $\operatorname{tr}_s(\Gamma x)$ vanishes unless $J = \emptyset$, in which case it is Γ_{\wedge} .

2. CLIFFORD ALGEBRAS

2.8. Lie derivatives and contractions. Let V be a vector space, and $\alpha \in V^*$. Then the map $\iota(\alpha) \colon V \to \mathbb{K}, v \mapsto \langle \alpha, v \rangle$ extends uniquely to a degree -1 derivation of the tensor algebra T(V), called *contraction*, by

$$\iota(\alpha)(v_1\otimes\cdots\otimes v_k)=\sum_{i=1}^k(-1)^{i-1}\langle\alpha,v_i\rangle\ v_1\otimes\cdots\widehat{v_i}\cdots\otimes v_k$$

The contraction operators preserve the ideal $\mathcal{I}(V)$ defining the exterior algebra, and descend to the contraction operators on $\wedge(V)$. Given a symmetric bilinear form B on V, the contraction operators also preserve the ideal $\mathcal{I}(V; B)$ since

$$\iota(\alpha)(v_1 \otimes v_2 + v_2 \otimes v_1 - B(v_1, v_2)) = 0. \ v_1, v_2 \in V.$$

It follows that $\iota(\alpha)$ descends to an odd derivation of $\operatorname{Cl}(V; B)$ of filtration degree -1, with

(6)
$$\iota(\alpha)(v_1\cdots v_k) = \sum_{i=1}^k (-1)^{i-1} \langle \alpha, v_i \rangle v_1 \cdots \widehat{v_i} \cdots v_k.$$

Similarly, any $A \in \mathfrak{gl}(V) = \operatorname{End}(V)$ extends to a derivation L_A of degree 0 on T(V), called *Lie derivative*:

$$L_A(v_1 \otimes \cdots \otimes v_k) = \sum_{i=1}^k v_1 \otimes \cdots \otimes L_A(v_i) \otimes \cdots \otimes v_k.$$

 L_A preserves the ideal $\mathcal{I}(V)$, and hence descends to a derivation of $\wedge(V)$. If $A \in \mathfrak{o}(V; B)$, that is $B(Av_1, v_2) + B(v_1, Av_2) = 0$ for all v_1, v_2 , then L_A also preserves the ideal $\mathcal{I}(V; B)$ and consequently descends to an even derivation of $\operatorname{Cl}(V; B)$, of filtration degree 0.

One has (on the tensor algebra, and hence also on the exterior and Clifford algebras)

$$[\iota(\alpha_1), \iota(\alpha_2)] = 0, \ [L_{A_1}, L_{A_2}] = L_{[A_1, A_2]}, \ [L_A, \iota(\alpha)] = \iota(A.\alpha),$$

where $A = -A^* \alpha$ with A^* the dual map. This proves the first part of:

PROPOSITION 2.12. The map $A \mapsto L_A$, $\alpha \mapsto \iota(\alpha)$ defines an action of the graded Lie algebra $\mathfrak{o}(V; B) \ltimes V^*$ (where elements of V^* have degree -1) on $\operatorname{Cl}(V; B)$ by derivations. The symbol map intertwines this with the corresponding action by derivations of $\wedge(V)$.

PROOF. It suffices to check on elements $\phi = v_1 \wedge \cdots \wedge v_k \in \wedge(V)$ where v_1, \ldots, v_k are pairwise orthogonal. Then $q(\phi) = v_1 \cdots v_k$, and the quantization of $\iota(\alpha)\phi$ (given by (1)) coincides with $\iota(\alpha)(q(\phi))$ (given by (6)). The argument for the Lie derivatives is similar.

Any element $v \in V$ defines a derivation of Cl(V; B) by graded commutator: $x \mapsto [v, x]$. For generators $w \in V$, we have [v, w] = B(v, w) = $\langle B^{\flat}(v), w \rangle$. This shows that this derivation agrees with the contraction by $B^{\flat}(v)$:

(7)
$$[v,\cdot] = \iota(B^{\flat}(v))$$

As a simple application, we find:

LEMMA 2.13. The super-center of the \mathbb{Z}_2 -graded algebra $\operatorname{Cl}(V; B)$ is the exterior algebra over $\operatorname{rad}(B) = \ker B^{\flat}$.

PROOF. Indeed, suppose x lies in the super-center. Then $0 = [v, x] = \iota(B^{\flat}(v))x$ for all $v \in V$. Hence $\sigma(x)$ is annihilated by all contractions $B^{\flat}(v)$, and is therefore an element of the exterior algebra over $\operatorname{ann}(\operatorname{ran}(B^{\flat})) = \operatorname{ker}(B^{\flat})$. Consequently $x = q(\sigma(x))$ is in $\operatorname{Cl}(\operatorname{ker}(B^{\flat})) = \wedge(\operatorname{ker}(B^{\flat}))$.

2.9. The homomorphism $\wedge^2 V \to \mathfrak{o}(V; B)$. Consider next the derivations of $\operatorname{Cl}(V; B)$ defined by elements of $q(\wedge^2 V)$. Define a map

(8)
$$\wedge^2 V \to \mathfrak{o}(V;B), \ \lambda \mapsto A_{\lambda}$$

where $A_{\lambda}(v) = -\iota(B^{\flat}(v))\lambda$. This does indeed lie in $\mathfrak{o}(V; B)$, since

$$B(A_{\lambda}(v), w) = -\iota(B^{\flat}(w))A_{\lambda}(v) = -\iota(B^{\flat}(w))\iota(B^{\flat}(v))\lambda$$

is anti-symmetric in v, w. We have:

$$(9) \qquad \qquad [q(\lambda), \cdot] = L_A$$

since both sides are derivations extending the map $v \mapsto A_{\lambda}(v)$ on generators. Define a bracket $\{\cdot, \cdot\}$ on $\wedge^2(V)$ by

(10)
$$\{\lambda, \lambda'\} = L_{A_{\lambda}} \lambda'.$$

The calculation

$$[q(\lambda), q(\lambda')] = L_{A_{\lambda}}q(\lambda') = q(L_{A_{\lambda}}\lambda') = q(\{\lambda, \lambda'\})$$

shows that q intertwines $\{\cdot, \cdot\}$ with the Clifford commutator; in particular $\{\cdot, \cdot\}$ is a Lie bracket. Furthermore, from

$$[q(\lambda), [q(\lambda'), v]] - [q(\lambda'), [q(\lambda), v]] = [[q(\lambda), q(\lambda')], v] = [q(\{\lambda, \lambda'\}), v]$$

we see that $[A_{\lambda}, A_{\lambda'}] = A_{\{\lambda, \lambda'\}}$, that is, the map $\lambda \mapsto A_{\lambda}$ is a Lie algebra homomorphism. To summarize:

PROPOSITION 2.14. The formula (10) defines a Lie bracket on $\wedge^2(V)$. Relative to this bracket, the map

$$\wedge^2(V) \rtimes V[1] \to \mathfrak{o}(V; B) \rtimes V^*[1], \quad (\lambda, v) \mapsto (A_\lambda, B^\flat(v))$$

is a homomorphism of graded Lie algebras. (The symbol [1] indicates a degree shift: We assign degree -1 to the elements of V, V^* while $\wedge^2(V)$, $\mathfrak{o}(V; B)$ are assigned degree 0.) It intertwines the derivation actions of $q(\lambda), v$ on $\operatorname{Cl}(V; B)$ by Clifford commutator with the action by Lie derivatives and contractions. Note that we can also think of $\wedge^2(V) \rtimes V[1]$ as a graded subspace of $\wedge(V)[2]$, using the standard grading on $\wedge(V)$ shifted down by 2. We will see in the following Section ?? that the graded Lie bracket on this subspace extends to a graded Lie bracket on all of $\wedge(V)[2]$.

2.10. A formula for the Clifford product. It is sometimes useful to express the Clifford multiplication

 $m_{\rm Cl}: {\rm Cl}(V \oplus V) = {\rm Cl}(V) \otimes {\rm Cl}(V) \to {\rm Cl}(V)$

in terms of the exterior algebra multiplication,

$$m_{\wedge} \colon \wedge (V \oplus V) = \wedge (V) \otimes \wedge (V) \to \wedge (V).$$

Recall that by definition of the isomorphism $\wedge (V \oplus V) = \wedge (V) \otimes \wedge (V)$, if $\phi, \psi \in \wedge (V^*)$, the element $\phi \otimes \psi \in \wedge (V^*) \otimes \wedge (V^*)$ is identified with the element $(\phi \oplus 0) \wedge (0 \oplus \psi) \in \wedge (V^* \oplus V^*)$. Similarly for the Clifford algebra.

Let $e_i \in V$ be an orthogonal basis, $e^i \in V^*$ the dual basis, and $e_I \in \land(V)$, $e^I \in \land(V^*)$ the corresponding dual bases indexed by subsets $I \subset \{1, \ldots, n\}$. Then the element

$$\Psi = \sum_{I} \frac{1}{(-2)^{|I|}} e^{I} \otimes B^{\flat}((e_{I})^{\top}) \in \wedge(V^{*}) \otimes \wedge(V^{*})$$

is independent of the choice of bases.

PROPOSITION 2.15. Under the quantization map, the exterior algebra product and the Clifford product are related as follows:

$$m_{\rm Cl} \circ q = q \circ m_{\wedge} \circ \iota(\Psi)$$

PROOF. Let V_i be the 1-dimensional subspace spanned by e_i . Then $\wedge(V)$ is the graded tensor product over all $\wedge(V_i)$, and similarly $\operatorname{Cl}(V)$ is the graded tensor product over all $\operatorname{Cl}(V_i)$. The formula for Ψ factorizes as

(11)
$$\Psi = \prod_{i=1}^{n} \left(1 - \frac{1}{2} e^i \otimes B^{\flat}(e_i) \right)$$

It hence suffices to prove the formula for the case $V = V_1$. We have,

$$q \circ m_{\wedge} \circ \iota \left(1 - \frac{1}{2}e^{1} \otimes B^{\flat}(e_{1})\right)(e_{1} \otimes e_{1}) = q \circ m_{\wedge}\left(e_{1} \otimes e_{1} + \frac{1}{2}B(e_{1}, e_{1})\right)$$
$$= q\left(\frac{1}{2}B(e_{1}, e_{1})\right)$$
$$= e_{1}e_{1}.$$

If $char(\mathbb{K}) = 0$, we may also write the element Ψ as an exponential:

$$\Psi = \exp\left(-\frac{1}{2}\sum_{i}e^{i}\otimes B^{\flat}(e_{i})\right).$$

This follows by rewriting (11) as $\prod_i \exp\left(-\frac{1}{2}e^i \otimes B^{\flat}(e_i)\right)$, and then writing the product of exponentials as an exponential of a sum.

CHAPTER 2. CLIFFORD ALGEBRAS

REMARK 2.16. Consider the addition map

 $\mathrm{Add} \colon V \oplus V \to V, \ v \oplus w \mapsto v + w.$

This map is linear, and hence to an algebra homomorphism

$$\wedge$$
(Add): \wedge ($V \oplus V$) \rightarrow \wedge (V).

In terms of the identification $\wedge (V \oplus V) = \wedge (V) \otimes \wedge (V)$, this is exactly the map m_{\wedge} . The dual map Add^{*}: $V^* \to V^* \oplus V^*$ is the diagonal inclusion. The composition

$$\tilde{m}_{\mathrm{Cl}} = \sigma \circ m_{\mathrm{Cl}} \circ q \colon \wedge (V \oplus V) \to \wedge (V)$$

has the property,

$$\tilde{m}_{\mathrm{Cl}} \circ \iota(\mathrm{Add}^*(\alpha)) = \iota(\alpha) \circ \tilde{m}_{\mathrm{Cl}}$$

for all $\alpha \in V^*$. Hence, by Lemma ??, there exists a unique element $\Psi \in \wedge (V^* \oplus V^*)$ such that $\tilde{m}_{\text{Cl}} = m_{\wedge} \circ \iota(\Psi)$, and this is the element determined in the Proposition.