CHAPTER 2

Clifford algebras

1. Exterior algebras

1.1. Definition. For any vector space V over a field K, let T(V) =
@Drcz, TF(V) be the tensor algebra, with T%(V) =V ® --- ® V the k-fold
tensor product. The quotient of T'(V') by the two-sided ideal Z(V') generated
by all v ® w + w ® v is the exterior algebra, denoted A(V'). The product in
A(V) is usually denoted oy A cre, although we will frequently omit the wedge
sign and just write ajae. Since Z(V) is a graded ideal, the exterior algebra
inherits a grading

ANV) =P (V)
keZ

where AF(V) is the image of T*(V) under the quotient map. Clearly,
AO(V) = K and AY(V) = V so that we can think of V as a subspace of
A(V). We may thus think of A(V') as the associative algebra linearly gener-
ated by V, subject to the relations vw + wv = 0.

We will write || = k if ¢ € AF(V). The exterior algebra is commutative
(in the graded sense). That is, for ¢ € AF1(V) and ¢y € AF2(V),

(01, da] := drha + (—1)F1*2050, = 0.

If V has finite dimension, with basis e1,...,e,, the space A¥(V) has
basis

eI:eil”’e’ik

for all ordered subsets I = {iy,...,ix} of {1,...,n}. (If & = 0, we put

n

ep = 1.) In particular, we see that dim AF(V) = (}), and

" /n
d‘ = = n'
im A(V) Z </<;> 2
k=0
Letting ¢’ € V* denote the dual basis to the basis e; considered above, we
define a dual basis to e; to be the basis el = et ---eix € A(V*).

1.2. Universal property, functoriality. The exterior algebra is char-
acterized by its universal property: If A is an algebra, and f: V — A a
linear map with f(v)f(w) + f(w)f(v) = 0 for all v,w € V, then f extends
uniquely to an algebra homomorphism fr: A (V) — A. Thus, is A(V) is
another algebra with a homomorphism V' — A(V), satisfying this universal
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2. CLIFFORD ALGEBRAS

property, then there is a unique isomorphism A(V) — A(V) intertwining the
two inclusions of V.

Any linear map L: V — W extends uniquely (by the universal property,
applied to L viewed as a map into V' — A(W)) to an algebra homomorphism
AL): AN (V) — A(W). One has A(Ly o Ly) = A(Ly) o A(L2). As a special
case, taking L to be the zero map 0: V' — V the resulting algebra homomor-
phism A(L) is the augmentation map (taking ¢ € A(V) to its component in
AO(V) =2 K). Taking L to be the map v — —wv, the map A(L) is the parity
homomorphism TI € Aut(A(V)), equal to (—1)* on AF(V).

The functoriality gives in particular a group homomorphism

GL(V) — Aut(A(V)), g — A(g)

into the group of algebra automorphisms of V. We will often write g in
place of A(g), but reserve this notation for invertible transformations since
e.g. A(0) #0.

As another application of the universal property, suppose Vi, V5 are two
vector spaces, and define A(V}) ® A(V3) as the tensor product of graded
algebras. This tensor product contains Vi @ V5 as a subspace, and satisfies
the universal property of the exterior algebra over V; @ V5. Hence there is a
unique algebra isomorphism

AV & Va) — A(V1) @ A(Va)

intertwining the inclusions of Vi @ V5. It is clear that this isomorphism
preserves gradings.

For o € V*, define the contraction operators t(a) € End(A(V)) by
t()l =0 and

1

k
(1) ta)(vg A-eog) = Z(—l)i_l(a,vi> VI A0 A\ Vg
i=1

On the other hand, for v € V we have the operator €(v) € End(AV) of
exterior multiplication by v. These satisfy the relations

t(v)e(w) + e(w)e(v) =0,
(2) U@)u(B) + 1(B)e(e) =0,
t(a)e(v) + e(v)i(a) = (e, v).
For later reference, let us also observe that the kernel of «(«) is the exterior

algebra over ker(a) C V; hence [ ¢y ker(¢(a)) = 0.

2. Clifford algebras

2.1. Definition and first properties. Let V' be a vector space over
K, with a symmetric bilinear form B: V x V — K (possibly degenerate).

'If A is any algebra, we denote by End(A) (resp. Aut(A)) the vector space homo-
morphisms (res. automorphisms) A — A, while Endaig(A) (resp. Autag(V)) denotes the
set of algebra homomorphisms (resp. group of algebra automorphisms).
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CHAPTER 2. CLIFFORD ALGEBRAS

DEFINITION 2.1. The Clifford algebra C1(V; B) is the quotient
CI(V;B)=T(V)/Z(V;B)
where Z(V; B) C T(V) is the two-sided ideal generated by all
vRw+w®v— Bv,w)l, v,weV

Clearly, C1(V;0) = A(V). It is not obvious from the definition that
Cl(V; B) is non-trivial, but this follows from the following Proposition.

PROPOSITION 2.2. The inclusion K — T(V) descends to an inclusion
K — CI(V;B). The inclusion V. — T(V') descends to an inclusion V. —
Cl(V; B).
PRrOOF. Consider the linear map
f:V = End(A(V)), v e(v) + 2B (v)).
and its extension to an algebra homomorphism fr: T(V) — End(A(V)).
The commutation relations (2) show that f(v)f(w)+ f(w)f(v) = B(v,w)1.

Hence fp vanishes on the ideal Z(V'; B), and therefore descends to an algebra
homomorphism

(3) far: CI(V; B) — End(A(V)),
ie. fciom = fp where m: T(V) — CI(V;B) is the projection. Since
fr(1) =1, we see that m(1) # 0, i.e. the inclusion K — T'(V) descends to

an inclusion K — CI(V; B). Similarly, from fr(v).1 = v we see that the
inclusion V' — T'(V') descends to an inclusion V' — CI(V; B). O

The Proposition shows that V' is a subspace of C1(V; B). We may thus
characterize C1(V'; B) as the unital associative algebra, with generators v €
V' and relations

(4) vw +wv = B(v,w)l, v,w e V.
Let T(V) carry the Zs-grading

(V) = éT%(V), THV) = é TRV,
k=0 k=0

(Here k denotes k mod 2.) Since the elements v @ w +w ®@v — B(v,w)1 are
even, the ideal Z(V'; B) is Zy graded, i.e. it is a direct sum of the subspaces
TF(V:B) = Z(V; B)NT*(V) for k = 0, 1. Hence the Clifford algebra inherits
a Zo-grading, ) )
CI(V;B) = C1%V; B) @ C1Y(V; B).
The two summands are spanned by products vy --- v with k even, respec-
tively odd. From now on, commutators [-, -] in the Clifford algebra C1(V; B)
will denote Zg-graded commutators. (We will write [, -]¢y if there is risk of
confusion.) In this notation, the defining relations for the Clifford algebra
become
[v,w] = B(v,w), v,w e V.
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2. CLIFFORD ALGEBRAS

If dim V' = n, and e; are an orthogonal basis of V', then (using the same
notation as for the exterior algebra), the products

er=¢e; e, I={i,...,ix} C{1,...,n},

with the convention ey = 1, span CI(V; B). We will see in Section 2.4 that
the e; are a basis.

2.2. Universal property, functoriality. The Clifford algebra is char-
acterized by the following by a universal property:

PROPOSITION 2.3. Let A be an associative unital algebra, and f: V — A
a linear map satisfying

f(1)f(v2) + f(v2)f(v1) = B(vi,v2) - 1, v1,02 € V.
Then f extends uniquely to an algebra homomorphism Cl(V;B) — A.

PROOF. By the universal property of the tensor algebra, f extends to
an algebra homomorphism fpy): T(V) — A. The property f(v1)f(v2) +
f(va)f(v1) = B(vy,v2) - 1 shows that f vanishes on the ideal Z(V; B), and
hence descends to the Clifford algebra. Uniqueness is clear, since the Clifford
algebra is generated by elements of V. O

Suppose Bi, By are symmetric bilinear forms on V1, Vs, and f: V4 — V5
is a linear map such that

B2(f(v)7f(w)) = Bl(vvw)7 v, W € Vl-

Viewing f as a map into Cl(Va; By), the universal property provides a unique
extension

CI(f): Cl(V1; B1) — Cl(Va; Ba).
For instance, if F© C V is an isotropic subspace of V, there is an algebra
homomorphism A(F) = CI(F) — CI(V; B). Clearly, Cl(f1 o fa) = Cl(f1) o
Cl(fy). Taking Vi = Vo = V, and restricting attention to invertible linear
maps, one obtains a group homomorphism

O(V;B) — Aut(Cl(V; B)), g +— Cl(g).

We will usually just write g in place of Cl(g). For example, the involution
v — —uv lies in O(V; B), hence it defines an involutive algebra automorphism
IT of CI(V; B) called the parity automorphism. The +1 eigenspaces are the
even and odd part of the Clifford algebra, respectively.

Suppose again that (V By) and (Va, Bg) be two vector spaces with sym-
metric bilinear forms, and consider the direct sum (V3 @ Vs, By @® By). Then

Cl(‘/l &) ‘/2; B & Bg) = Cl(‘/l7 Bl) & CI(V27 BQ)

as Zg-graded algebras. This follows since Cl(Vi; By) ® Cl(Va; Bg) satisfies
the universal property of the Clifford algebra over (V4 @ Va; By @ Bs). In
particular, if Cl(n,m) denotes the Clifford algebra for K™ we have

Cl(n,m) =C1(1,0) ® --- ® CI(1,0) ® C1(0,1) ® - - - ® C1(0, 1),
with Zo-graded tensor products.
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CHAPTER 2. CLIFFORD ALGEBRAS

2.3. The Clifford algebras Cl(n,m). Consider the case K = R. For
n,m small one can determine the algebras Cl(n,m) = CI(R™™) by hand.

PROPOSITION 2.4. For K = R, one has the following isomorphisms of
the Clifford algebras Cl(n,m) with n +m < 2, as ungraded algebras:

C1(0,1) =
C1(1,0) = @R,
C ( ) g 7

Cl(1,1) = Mato(R),

C1(2,0) = Mato(R).

Here C and H are viewed as algebras over R, and Maty(R) = End(R?) is
the algebra of real 2 x 2-matrices.

PROOF. By the universal property, an algebra A of dimension 2" is
isomorphic to Cl(n,m) if there exists a linear map f: R™™ — A satisfying
f(ei)f(ej) + f(ej)f(ei) = £6;;, with a plus sign for i < n and a minus sign
for i > n. We will describe these maps for n +m < 2. For (n,m) = (0,1)
we take f: ROl — C, %61 — i = y/—1. For (n,m) = (1,0), we use

fRY SROR, e — %(1,—1). For (n,m) = (0,2) we use

= (5T ) = (%))

(The matrices represent the first two of the standard unit quaternions i, j, k =
ij € H.) For (n,m) = (1,1) the relevant map is

=44 =5 (2 7)

The case (n,m) = (2,0) is left as an exercise. O

The full classification of the Clifford algebras Cl(n,m) may be found
in the book by Lawson-Michelsohn [?] or in the monograph by Budinich-
Trautman [?]. The Clifford algebras exhibit a remarkable mod 8 periodic-
ity,

Cl(n + 8,m) = Mat6(Cl(n,m)) = Cl(n,m + 8)
which is related to the mod 8 periodicity in real K-theory [?].

For K = C the pattern is simpler. Denote by Cl(n) the Clifford algebra
of C™.

PROPOSITION 2.5. One has the following isomorphisms of algebras over
C,

Ci(2m) = Matam (C), Cl(2m + 1) = Matom (C) & Matam (C).

This will become clear later when we discuss the spinor module for Clif-
ford algebras in the split case. The mod 2 periodicity of the Clifford algebras

Cl(n + 2) = Mata(Cl(n))
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2. CLIFFORD ALGEBRAS

is related to the mod 2 periodicity in complex K-theory [?].

2.4. Symbol map and quantization map. Returning to the algebra
homomorphism fo: CI(V; B) — End(AV) (see (3)), given on generators by
far(v) = €(v) + $u(B"(v)), one defines the symbol map,

o: Cl(V;B) = A(V), z— fal(z).1
where 1 € AO(V) = K.

PROPOSITION 2.6. The symbol map is an isomorphism of vector spaces.
In low degrees,

a(l) =1
a(v) =
o(vive) = vy Avg + B(vl,vg)
o (v1v203) = v1 A va A vz + 5 (B(v2,v3)v1 — B(v1,v3)v2 + B(v1,v2)v3).
PROOF. Let e¢; € V be an orthogonal basis. Since the operators f(e;)
commute (in the grade sense), we find
o(ei, ---ei,) =ei, N+ Nei,

for i1 < -+ < ip. This directly shows that the symbol map is an isomor-
phism: It takes the element e; € Cl(V;B) to the corresponding element
er € A(V). The formulas in low degrees are obtained by straightforward
calculation. O

The inverse map is called the quantization map
q: N(V)— ClV;B).
In terms of the basis, g(er) = es. In low degrees,
q(1) =1,
q(v) = v,
q(v1 Avg) = vivg — —B(vl,vg)
q(v1 A vy Avg) = vivgvg — 5(B(v2, v3)v1 — B(v1,v3)v2 + B(v1,02)03).

If K has characteristic 0 (so that division by all non-zero integers is defined),
the quantization map has the following alternative description.

PROPOSITION 2.7. Suppose K has characteristic 0. Then the quantiza-
tion map is given by graded symmetrization That is, for vi,...,vx € V,

q(vr A+ A wg) = Z sign(s)vs(1) « ** Vs(k)-
sES

Here &y is the group of permutations of 1,...,k and sign(s) = £1 is the
parity of a permutation s.
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CHAPTER 2. CLIFFORD ALGEBRAS

PRrOOF. By linearity, it suffices to check for the case that the v; are
elements of an orthonormal basis ey, ..., e, of V, that is v; = ¢;; (the indices
i; need not be ordered or distinct). If the i; are all distinct, then the
e;; Clifford commute in the graded sense, and the right hand side equals
eiy -~ ey, € CI(V; B), which coincides with the left hand side. If any two e;;
coincide, then both sides are zero. O

2.5. Z-filtration. The increasing filtration
Tioy(V) CTy(V) C -
with T (V) = D, < T7 (V) descends to a filtration
Clioy(V;B) C Cliy (V5 B) C -

of the Clifford algebra, with Cly,(V; B) the image of T(;) (V) under the
quotient map. Equivalently, Cl(k)(V; B) consists of linear combinations of
products vy - - - v; with [ < k (including scalars, viewed as products of length
0). The filtration is compatible with product map, that is,

Cl(kl)(V, B)Cl(k2)(V, B) C Cl(k1+k2)(V; B)

Thus, CI(V;B) is a filtered algebra. Let gr(C1(V;B)) be the associated
graded algebra.

PROPOSITION 2.8. The symbol map induces an isomorphism of associ-
ated graded algebras

gr(o): gr(CIV;B)) — A(V).

PROOF. The symbol map and the quantization map are filtration pre-
serving, hence they descend to isomorphisms of the associated graded vector
spaces. Let mcy: T(V) — CL(V; B) and wa: T'(V) — A(V) be the quotient
maps. By definition of the symbol map, the composition oo mcy: Tix) (V) —
A(V') coincides with 7a: T3y (V) — A(V) up to lower order terms. Passing
to the associated graded maps, this gives

gr(o) o gr(mal) = 7a-

Since m¢y is a surjective algebra homomorphism, so is gr(mcy). It hence
follows that gr(o) is an algebra homomorphism as well. (]

Note that the symbol map o: CI(V; B) — A(V) preserves the Zy-grading.
The even (resp. odd) elements of C1(V; B) are linear combinations of prod-
ucts vy - - - v with k even (resp. odd). The filtration is also compatible with
the Zs-grading, that is, each Cl(k)(V; B) is a Zg-graded subspace. In fact,

Cl?%)(V; B) = Cl?2k+1)(V; B),

(5) - N
Cl%2k+1)(v§ B) = Cl%2k+2)(v% B).
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2. CLIFFORD ALGEBRAS

2.6. Transposition. An anti-automorphism of an algebra A is an in-
vertible linear map f: A — A with the property f(ab) = f(b)f(a) for all
a,b € A. Put differently, if A°P is A with the opposite algebra structure
@ -op b := ba, an anti-automorphism is an algebra isomorphism A — AP.

The tensor algebra carries a unique involutive anti-automorphism that
is equal to the identity on V. C T(V). It is called the canonical anti-
automorphism or transposition, and is given by

(M@ - Qu) =@ Dy

Since transposition preserves the ideal Z(V') defining the exterior algebra, it
descends to an anti-automorphism of the exterior algebra, ¢ — ¢'. In fact,
since transposition is given by a permutation of length (k—1)4---+241=
k(k —1)/2, we have

¢l = (—1)FED26 6 e ARV,

Given a symmetric bilinear form B ob V' the transposition anti-automorphism
of the tensor algebra also preserves the ideal Z(V'; B), and hence descends to
an anti-automorphism of C1(V; B), still called canonical anti-automorphism
or transposition, with

(vl---vk)T = Vg V1.
The symbol map and its inverse, the quantization map ¢: A (V) — Cl(V; B)
intertwines the transposition maps for A(V') and C1(V; B). This information
is sometimes useful for computations.

EXAMPLE 2.9. Suppose ¢ € A¥(V), and consider the square of q(¢).
The element q(¢)? € CI(V) is even, and is hence contained in Cl((]Zk)(V).
But (q(¢)*)" = (¢(¢)")? = q(¢)? since q(¢)" = q(¢") = £q(). It follows
that

9(¢)* € q( A (V)@ A (V)@ - @ AT(V)),
where r is the largest number with 2r < k.

2.7. Chirality element, trace. Let dimV = n. Then any generator
Lp € det(V) := A™(V) quantizes to given an element I' = ¢(I'y). This
element (or suitable normalizations of this element) is called the chirality
element of the Clifford algebra. The square I'? of the chirality element is
always a scalar, as is immediate by choosing an orthogonal basis e;, and
letting I' = ey - - - €,,. In fact, since I'T = (—=1)*"~D/2T we have

n
12 = (—=1)"= 227" T Bless ).

i=1
In the case K = C and V = C" we can always normalize I" to satisfy
I'? = 1; this normalization determines I' up to sign. For any v € V, we have
I'v = (—1)"" %I, as one checks e.g. using an orthogonal basis. (If v = e;,
then v anti-commutes with all e; for j # ¢ in the product I' = e; - - - e,,, and
commutes with e;. Hence we obtain n — 1 sign changes.)
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oIl if n is odd
I'v = ) )
—vI'  if nis even

Thus, if n is odd then T lies in the center of C1(V; B), viewed as an ordinary
algebra. In the case that n is even, we obtain

(z) = Tal ™,

for all z € CI(V; B), i.e. the chirality element implements the parity auto-
morphism.

For any Zo-graded algebra A and vector space Y, a Y-valued super-trace
on A is a linear map try: A — Y vanishing on the subspace [A, A] spanned
by super-commutators: That is, trs([z,y]) = 0 for z,y € A.

PRrROPOSITION 2.10. Suppose n =dimV < oco. The linear map
trg: CLI(V; B) — det(V)

given as the quotient map to Cly,)(V'; B)/Cly—1y(V; B) = A™(V) = det(V),
is a super-trace on Cl(V; B).

PROOF. Let e; be an orthogonal basis, and e; the assocated basis of
Cl(V;B). Then trg(er) = 0 unless I = {1,...,n}. The product es, ey is
of the form ere; = cex where K = (I UJ) — (INJ) and ¢ € K. Hence
trs(eres) = 0 = trg(eyer) unless INJ =0 and TUJ = {1,...,n}. Butin
case I NJ =0, ey, ey super-commute: [er,e;] = 0. O

The Clifford algebra also carries an ordinary trace, vanishing on ordinary
commutators.

PROPOSITION 2.11. The formula
tr: CI(V; B) = K, 1+ o(z)[qg

defines an (ordinary) trace on Cl(V;B), that is tr(xy) = tr(yx) for all
x,y € C(V;B). For dimV < oo, the trace and the super-trace are related
by the formula,

trg(I'z) = tr(z) T

where T' = q(T'A) is the chirality element in the Clifford algebra defined by a
choice of generator of det(V').

PROOF. Again, we use an orthogonal basis e; of V. The definition gives
tr(eg) = 1, while tr(ey) = 0 for I # (). Consider a product ere; = cer where
K=({IUJ)—(INJ)and c € K. The set K is non-empty (i.e. tr(ere;s) = 0)
unless I = J, but in the latter case the trace property is trivial. To check
the formula relating trace and super-trace we may assume 'y = e; with
I ={1,...,n}. For x = e; we see that try(I'z) vanishes unless J = (), in
which case it is I's. O
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2.8. Lie derivatives and contractions. Let V' be a vector space,
and a € V*. Then the map ¢(a): V — K, v +— (o, v) extends uniquely to a
degree —1 derivation of the tensor algebra T'(V'), called contraction, by

k

) (v ® - ®@vg) = Z(—l)i_l<a,1)i> V-0 @ Uk
i=1

The contraction operators preserve the ideal Z(V') defining the exterior alge-
bra, and descend to the contraction operators on A(V). Given a symmetric
bilinear form B on V, the contraction operators also preserve the ideal
Z(V; B) since

t(a)(v1 ® vg +va @1 — B(vy,v2)) = 0. v,vp € V.

It follows that ¢(«) descends to an odd derivation of C1(V; B) of filtration
degree —1, with

k
(6) la)(vy - -vg) = Z(—l)i_1<a7 vy - Dy - g

Similarly, any A € gl(V) = End(V) extends to a derivation L4 of degree 0
on T'(V), called Lie derivative:

LA(Ul - ® vg) Zvl - ®@ Ly UZ) - Q V.

L 4 preserves the ideal Z(V'), and hence descends to a derivation of A(V'). If
A € o(V; B), that is B(Av1,v2) + B(v1, Ave) = 0 for all vy, va, then L4 also
preserves the ideal Z(V; B) and consequently descends to an even derivation
of CI(V; B), of filtration degree 0.

One has (on the tensor algebra, and hence also on the exterior and
Clifford algebras)

[L(al)v L(OQ)] =0, [LAleA2] = L[Al,Ag}v [LA7 L(Oé)] = L(A.Oé),
where A.cc = —A*«a with A* the dual map. This proves the first part of:

PROPOSITION 2.12. The map A — L, a — («a) defines an action
of the graded Lie algebra o(V; B) x V* (where elements of V* have degree
—1) on CI(V; B) by derivations. The symbol map intertwines this with the
corresponding action by derivations of A(V').

PRrROOF. It suffices to check on elements ¢ = vy A--- Avg € A(V) where

v1,. ..,V are pairwise orthogonal. Then ¢(¢) = vy - - - vg, and the quantiza-
tion of ¢(a))¢ (given by (1)) coincides with ¢(c)(q(¢)) (given by (6)). The
argument for the Lie derivatives is similar. O

Any element v € V defines a derivation of C1(V;B) by graded com-
mutator: z — [v,z]. For generators w € V, we have [v,w] = B(v,w) =
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(B°(v), w). This shows that this derivation agrees with the contraction by
B’ (v):

(7) [0, ] = «(B(v))

As a simple application, we find:

LEMMA 2.13. The super-center of the Zo-graded algebra C1(V'; B) is the
exterior algebra over rad(B) = ker B”.

PROOF. Indeed, suppose z lies in the super-center. Then 0 = [v, ]
(B (v))z for all v € V. Hence o(z) is annihilated by all contractions B®(v)
and is therefore an element of the exterior algebra over ann(ran(B’))
ker(B”). Consequently = = q(o(z)) is in Cl(ker(B”)) = A(ker(B")). O

9

=1

2.9. The homomorphism A?V — o(V; B). Consider next the deriva-
tions of C1(V; B) defined by elements of q(A%2V). Define a map

(8) A2V — o(V;B), A Ay

where Ay (v) = —«(B’(v))\. This does indeed lie in o(V; B), since
B(A\(v),w) = —u(B’(w)) Ax(v) = —u(B’(w))u(B’ (v))A

is anti-symmetric in v, w. We have:

(9) [g(N), -] = La,

since both sides are derivations extending the map v — Ay (v) on generators.
Define a bracket {-,-} on A%2(V) by

(10) MNP =La N,
The calculation

[a(N), g(N)] = La,q(X) = q(La,N) = q({A, N'})

shows that ¢ intertwines {-,-} with the Clifford commutator; in particular
{-,-} is a Lie bracket. Furthermore, from

[Q()‘)7 [Q()\/);UH - [Q()‘,)ﬂ [Q()‘)vv]] = [[Q()‘)7Q()‘/)]7v] = [Q({)V )‘/})70]

we see that [Ay, Ay] = Agy ay, that is, the map A\ +— Ay is a Lie algebra
homomorphism. To summarize:

PROPOSITION 2.14. The formula (10) defines a Lie bracket on A*(V).
Relative to this bracket, the map

AN2(V)x V(1] = o(V;B) x V1], (Av) — (A, B’(v))

is a homomorphism of graded Lie algebras. (The symbol [1] indicates a degree
shift: We assign degree —1 to the elements of V,V* while A2(V), o(V;B)
are assigned degree 0.) It intertwines the derivation actions of q(\),v on
Cl(V; B) by Clifford commutator with the action by Lie derivatives and con-
tractions.
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Note that we can also think of A?(V) x V[1] as a graded subspace of
A(V)[2], using the standard grading on A(V') shifted down by 2. We will
see in the following Section 77 that the graded Lie bracket on this subspace
extends to a graded Lie bracket on all of A(V)[2].

2.10. A formula for the Clifford product. It is sometimes useful
to express the Clifford multiplication

mer: CLLV @ V) =Cl(V) ® Cl(V) — CL(V)
in terms of the exterior algebra multiplication,
ma: AN(VaV)=AV)AV)— AV).

Recall that by definition of the isomorphism A(V & V) = A(V) @ A(V), if
¢, € AN(V™), the element ¢ @ ¢ € A(V*) @ A(V*) is identified with the
element (¢ ®0) A (0@ ¢) € A(V* @ V*). Similarly for the Clifford algebra.

Let e; € V be an orthogonal basis, e/ € V* the dual basis, and e; €
A(V), el € A(V*) the corresponding dual bases indexed by subsets I C
{1,...,n}. Then the element

1
- Z = e @B ((e)T) € A(VF) @ A(VF)
I
is independent of the choice of bases.

ProrosITION 2.15. Under the quantization map, the exterior algebra
product and the Clifford product are related as follows:

Mmoo q = qomp o ()
PROOF. Let V; be the 1-dimensional subspace spanned by e;. Then

A(V) is the graded tensor product over all A(V;), and similarly C1(V') is the
graded tensor product over all C1(V;). The formula for ¥ factorizes as

n
(11) v=]](1-3¢eB ).
i=1
It hence suffices to prove the formula for the case V' = V;. We have,
qompo L(l - %61 & Bb(€1))(€1 ®ey) =qo mA(€1 ®er + %3(61,61))

= q(3B(e1,€1))
= e1eq.

If char(K) = 0, we may also write the element ¥ as an exponential:
U=exp(—3 Zei ® Bb(ei)).
i

This follows by rewriting (11) as [, exp (— 3¢’ ® B’(e;)), and then writing
the product of exponentials as an exponential of a sum.
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REMARK 2.16. Consider the addition map
Add: VeV =V, vewr— v+ w.
This map is linear, and hence to an algebra homomorphism
AAdd): A (Ve V) — AV).
In terms of the identification A(V @ V) = A(V) @ A(V), this is exactly the

map mu. The dual map Add*: V* — V* @ V* is the diagonal inclusion.
The composition

mer=comgroq: AN(VaV)—AV)
has the property,
map o L(Add™(a)) = (a) o mq
for all « € V*. Hence, by Lemma 77, there exists a unique element ¥ €

A(V* @ V*) such that mcy = ma o ¢(¥), and this is the element determined
in the Proposition.
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