MAT 1120HF, Assignment 1

Brad Hannigan-Daley

1. Denote by $\psi : \operatorname{Mat}_n(\mathbb{H}) \hookrightarrow \operatorname{Mat}_{2n}(\mathbb{C})$ the map

$$\psi(a+bi+cj+dk) = \left(\begin{array}{cc} a+ib & c+id \\ -c+id & a-ib \end{array}\right)$$

This is easily checked to be an embedding of \mathbb{R} -algebras. Writing a + bi + cj + dk = A + Bj for $A, B \in Mat_n(\mathbb{C})$, we equivalently have

$$\psi(A+Bj) = \left(\begin{array}{cc} A & B\\ -\bar{B} & \bar{A} \end{array}\right).$$

Given an arbitrary $Y = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{Mat}_{2n}(\mathbb{C})$, we have

$$YJ - J\bar{Y} = \begin{pmatrix} -B & A \\ -D & C \end{pmatrix} - \begin{pmatrix} \bar{C} & \bar{D} \\ -\bar{A} & -\bar{B} \end{pmatrix}$$

which is zero if and only if $C = -\bar{B}$ and $D = \bar{A}$, hence the image of ψ is

im
$$\psi = \{Y \in \operatorname{Mat}_{2n}(\mathbb{C}) : YJ = J\overline{Y}\}$$

For $X \in \operatorname{Mat}_n(\mathbb{H})$, let X^{\dagger} denote the quaternionic conjugate transpose of X, so

$$\operatorname{Sp}(n) = \{ X \in \operatorname{Mat}_n(\mathbb{H}) : X^{\dagger} X = I \}.$$

Given $A + Bj \in \operatorname{Mat}_n(\mathbb{H})$, we have

$$(A + Bj)^{\dagger} = A^{\dagger} + (Bj)^{\dagger}$$
$$= A^{\dagger} - jB^{\dagger}$$
$$= A^{\dagger} - B^{T}j$$

hence

$$\psi((A+Bj)^{\dagger}) = \begin{pmatrix} A^{\dagger} & -B^{T} \\ B^{\dagger} & A^{T} \end{pmatrix}$$
$$= \begin{pmatrix} A & B \\ -\bar{B} & \bar{A} \end{pmatrix}^{\dagger}$$
$$= \psi(A+Bj)^{\dagger}.$$

Since $U(2n) = \{Y \in \operatorname{Mat}_{2n}(\mathbb{C}) : Y^{\dagger}Y = I\}$, it follows that ψ gives an isomorphism

$$\psi : \operatorname{Sp}(n) \to \operatorname{im} \psi \cap U(2n).$$

It then suffices to show that im $\psi \cap U(2n) = \operatorname{Sp}(2n, \mathbb{C}) \cap U(2n)$. Let $Y \in U(2n)$. Then

$$\begin{split} Y &\in \operatorname{im} \psi \quad \Leftrightarrow \quad YJ = J\bar{Y} \\ &\Leftrightarrow \quad JY^T = Y^{\dagger}J \text{ (transpose both sides, use } J^T = -J) \\ &\Leftrightarrow \quad YJY^T = J \text{ (}Y \text{ is unitary)} \\ &\Leftrightarrow \quad Y^T \in \operatorname{Sp}(2n, \mathbb{C}) \\ &\Leftrightarrow \quad Y^{\dagger} \in \operatorname{Sp}(2n, \mathbb{C}) \text{ (since } \operatorname{Sp}(2n, \mathbb{C}) \text{ is clearly closed under complex conjugation)} \\ &\Leftrightarrow \quad Y^{-1} \in \operatorname{Sp}(2n, \mathbb{C}) \text{ (}Y \text{ is unitary)} \\ &\Leftrightarrow \quad Y \in \operatorname{Sp}(2n, \mathbb{C}) \end{split}$$

hence im $\psi \cap U(2n) = \operatorname{Sp}(2n, \mathbb{C}) \cap U(2n)$ as desired.

2. (a) Let $U^N = \{g_1 \cdots g_N : g_i \in U\}$, and let $H = \bigcup_{N=0}^{\infty} U^N$. Our goal is then to show that H = G. First, we assume without loss of generality that U is closed under inversion of elements, by otherwise intersecting it with $U^{-1} = \{g^{-1} : g \in U\}$. (The set U^{-1} is an open neighbourhood of e since it is the image of U under the diffeomorphism $G \to G : g \mapsto g^{-1}$.) Then H is precisely the subgroup of G generated by U. Now, for each N, we have

$$U^N = \bigcup_{a \in U} a U^{N-1}$$

As left-multiplication by a is a diffeomorphism of G, and $U = U^1$ is open, by induction we have that each U^N is open in G, hence H is open in G. On the other hand, we can write the complement of H in G as a union of cosets

$$G - H = \bigcup_{a \in G - H} aH.$$

Each of these cosets is open in G since H is, and so G - H is open. It follows that H = G since G is connected.

(b) By the inverse function theorem, there is a neighbourhood $U \subset G$ of the identity element e_G which is mapped diffeomorphically by φ to $\varphi(U) \subset H$. In particular, the image of φ contains this open neighbourhood $\varphi(U)$ of e_H ; since φ is a group homomorphism and H is connected, it follows immediately by the result of part a) that φ is surjective.

Let $h \in H$ and let $K = \ker \varphi$. Choose any $g \in G$ with $\varphi(g) = h$. We claim that $h\varphi(U)$ is evenly covered by the sheets zgU for $z \in K$; that is,

i.
$$\varphi^{-1}(h\varphi(U)) = \bigcup_{z \in K} zgU$$

ii. $wgU \cap zgU = \emptyset$ for $w, z \in K$ with $w \neq z$

iii. each zgU is mapped diffeomorphically by φ to $h\varphi(U)$.

First,

$$\varphi^{-1}(h\varphi(U)) = \{x \in G : \varphi(x) = \varphi(gu) \mid \exists u \in U\}$$
$$= \{x \in G : Kx = Kgu \mid \exists u \in U\}$$
$$= \{x \in G : x = zgu \mid \exists z \in K, u \in U\}$$
$$= \bigcup_{z \in K} zgU.$$

Next, suppose $w, z \in K$ with $wgU \cap zgU \neq \emptyset$. Then for some $u, v \in U$, we have wgu = zgv; applying φ we have $\varphi(u) = \varphi(v)$ since $w, z \in K$, hence u = v since φ is injective on U, and so w = v. So the sets zgU are indeed disjoint.

The last of the three claims follows from the commutativity of the following diagram:

Hence $h\varphi(U)$ is indeed evenly covered by the sheets zgU. Since these $h\varphi(U)$ cover H, we conclude that φ is a covering map.

- 3. If A, B ∈ Mat₂(ℂ) with A = exp(B), then the eigenvalues of A are {exp λ : λ an eigenvalue of B}, since this is clearly true for B in Jordan canonical form and exp commutes with conjugation of matrices. Assume for contradiction that A = exp(B) with A as given in the problem, and B ∈ sl₂(ℝ). As trB = 0, the eigenvalues of B are of the form λ, -λ, and since A = exp(B) we have e^λ = e^{-λ} = 1. In particular, λ ≠ 0. Then the eigenvalues of B are distinct, so B is diagonalizable (over ℂ), and hence A is diagonalizable: if b = PDP⁻¹ for diagonal D, then A = P exp(D)P⁻¹ and exp(D) is diagonal. The given A is not diagonalizable, however, as it is a nontrivial Jordan block. This gives the desired contradiction.
- 4. We use the embedding $\psi : \mathbb{H} \hookrightarrow \operatorname{Mat}_2(\mathbb{C})$ from problem 1:

$$z + wj \mapsto \begin{pmatrix} z & w \\ -\bar{w} & \bar{z} \end{pmatrix}.$$

The norm on \mathbb{H} is then given by the determinant, and we have $\mathrm{SU}(2)$ identified with the unit ball in \mathbb{H} under this identification. Consider the action of $\mathrm{SU}(2) \times \mathrm{SU}(2)$ on \mathbb{H} given by $(A_1, A_2)x = A_1xA_2^{-1}$. Clearly this action is smooth. Since this action preserves the determinant, it defines a map of Lie groups $\varphi : \mathrm{SU}(2) \times \mathrm{SU}(2) \to O(\mathbb{H})$. Indeed, since $\mathrm{SU}(2)$ is connected, so is $\mathrm{SU}(2) \times \mathrm{SU}(2)$, and hence φ sends $\mathrm{SU}(2) \times \mathrm{SU}(2)$ into the identity component $\mathrm{SO}(\mathbb{H}) \cong \mathrm{SO}(4)$.

Let $(A_1, A_2) \in \ker \varphi$. Then, in particular, we have $A_1 I A_2^{-1} = I$, hence $A_1 = A_2$. Moreover, A_1 must be in the centre of SU(2), hence a scalar multiple of the identity, hence $\pm I$. Then ker φ is cyclic of order 2. In particular it is zero-dimensional, so ker $d_e \varphi = 0$, i.e. $d_e \varphi$ is injective. We have $\dim(\mathrm{SU}(2) \times \mathrm{SU}(2)) = 3 + 3 = 6$ and $\dim(\mathrm{SO}(4)) = \binom{4}{2} = 6$, so $d_e \varphi$ is an isomorphism. Then by the result of problem 2.b), φ is a covering map. It is a double cover since ker φ is of order 2.