Lie groups and Lie algebras

Eckhard Meinrenken

Lecture Notes, University of Toronto, Fall 2010

1. TERMINOLOGY AND NOTATION

1.1. Lie groups.

Definition 1.1. A Lie group is a group G, equipped with a manifold structure such that the group operations

Mult:
$$G \times G \to G$$
, $(g_1, g_2) \mapsto g_1 g_2$
Inv: $G \to G$, $g \mapsto g^{-1}$

are smooth. A morphism of Lie groups G, G' is a morphism of groups $\phi \colon G \to G'$ that is smooth.

Remark 1.2. Using the implicit function theorem, one can show that smoothness of Inv is in fact automatic. (Exercise)

The first example of a Lie group is the general linear group

 $\operatorname{GL}(n,\mathbb{R}) = \{A \in \operatorname{Mat}_n(\mathbb{R}) | \det(A) \neq 0\}$

of invertible $n \times n$ matrices. It is an open subset of $\operatorname{Mat}_n(\mathbb{R})$, hence a submanifold, and the smoothness of group multiplication follows since the product map for $\operatorname{Mat}_n(\mathbb{R})$ is obviously smooth.

Our next example is the orthogonal group

$$O(n) = \{ A \in \operatorname{Mat}_n(\mathbb{R}) | A^T A = I \}.$$

To see that it is a Lie group, it suffices to show that O(n) is an embedded submanifold of $Mat_n(\mathbb{R})$. In order to construct submanifold charts, we use the exponential map of matrices

exp:
$$\operatorname{Mat}_n(\mathbb{R}) \to \operatorname{Mat}_n(\mathbb{R}), \quad B \mapsto \exp(B) = \sum_{n=0}^{\infty} \frac{1}{n!} B^n$$

(an absolutely convergent series). One has $\frac{d}{dt}|_{t=0} \exp(tB) = B$, hence the differential of exp at 0 is the identity $\mathrm{id}_{\mathrm{Mat}_n(\mathbb{R})}$. By the inverse function theorem, this means that there is $\epsilon > 0$ such that exp restricts to a diffeomorphism from the open neighborhood $U = \{B : ||B|| < \epsilon\}$ of 0 onto an open neighborhood $\exp(U)$ of *I*. Let

$$\mathfrak{o}(n) = \{ B \in \operatorname{Mat}_n(\mathbb{R}) | B + B^T = 0 \}.$$

We claim that

$$\exp(\mathfrak{o}(n) \cap U) = \mathcal{O}(n) \cap \exp(U),$$

so that exp gives a submanifold chart for O(n) over exp(U). To prove the claim, let $B \in U$. Then

$$\exp(B) \in \mathcal{O}(n) \Leftrightarrow \exp(B)^T = \exp(B)^{-1}$$
$$\Leftrightarrow \exp(B^T) = \exp(-B)$$
$$\Leftrightarrow B^T = -B$$
$$\Leftrightarrow B \in \mathfrak{o}(n).$$

For a more general $A \in O(n)$, we use that the map $\operatorname{Mat}_n(\mathbb{R}) \to \operatorname{Mat}_n(\mathbb{R})$ given by left multiplication is a diffeomorphism. Hence, $A \exp(U)$ is an open neighborhood of A, and we have

$$A \exp(U) \cap \mathcal{O}(n) = A(\exp(U) \cap \mathcal{O}(n)) = A \exp(U \cap \mathfrak{o}(n)).$$

Thus, we also get a submanifold chart near A. This proves that O(n) is a submanifold. Hence its group operations are induced from those of $GL(n, \mathbb{R})$, they are smooth. Hence O(n) is a Lie group. Notice that O(n) is compact (the column vectors of an orthogonal matrix are an orthonomal basis of \mathbb{R}^n ; hence O(n) is a subset of $S^{n-1} \times \cdots S^{n-1} \subset \mathbb{R}^n \times \cdots \mathbb{R}^n$).

A similar argument shows that the special linear group

$$\operatorname{SL}(n,\mathbb{R}) = \{A \in \operatorname{Mat}_n(\mathbb{R}) \mid \det(A) = 1\}$$

is an embedded submanifold of $GL(n, \mathbb{R})$, and hence is a Lie group. The submanifold charts are obtained by exponentiating the subspace

$$\mathfrak{sl}(n,\mathbb{R}) = \{ B \in \operatorname{Mat}_n(\mathbb{R}) | \operatorname{tr}(B) = 0 \},\$$

using the identity det(exp(B)) = exp(tr(B)).

Actually, we could have saved most of this work with O(n), $SL(n, \mathbb{R})$ once we have the following beautiful result of E. Cartan:

Fact: Every closed subgroup of a Lie group is an embedded submanifold, hence is again a Lie group.

We will prove this very soon, once we have developed some more basics of Lie group theory. A closed subgroup of $GL(n, \mathbb{R})$ (for suitable n) is called a *matrix Lie group*. Let us now give a few more examples of Lie groups, without detailed justifications.

- *Examples* 1.3. (a) Any finite-dimensional vector space V over \mathbb{R} is a Lie group, with product Mult given by addition.
 - (b) Let \mathcal{A} be a finite-dimensional associative algebra over \mathbb{R} , with unit $1_{\mathcal{A}}$. Then the group \mathcal{A}^{\times} of invertible elements is a Lie group. More generally, if $n \in \mathbb{N}$ we can create the algebra $\operatorname{Mat}_n(\mathcal{A})$ of matrices with entries in \mathcal{A} , and the general linear group

$$\operatorname{GL}(n,\mathcal{A}) := \operatorname{Mat}_n(\mathcal{A})^{\times}$$

is a Lie group. If \mathcal{A} is *commutative*, one has a determinant map det: $\operatorname{Mat}_n(\mathcal{A}) \to \mathcal{A}$, and $\operatorname{GL}(n, \mathcal{A})$ is the pre-image of \mathcal{A}^{\times} . One may then define a *special linear group*

$$\operatorname{SL}(n, \mathcal{A}) = \{g \in \operatorname{GL}(n, \mathcal{A}) | \det(g) = 1\}.$$

 $\mathbf{2}$

(c) We mostly have in mind the cases $\mathcal{A} = \mathbb{R}, \mathbb{C}, \mathbb{H}$. Here \mathbb{H} is the algebra of quaternions (due to Hamilton). Recall that $\mathbb{H} = \mathbb{R}^4$ as a vector space, with elements $(a, b, c, d) \in \mathbb{R}^4$ written as

$$x = a + ib + jc + kd$$

with imaginary units i, j, k. The algebra structure is determined by

$$i^2 = j^2 = k^2 = -1, \ ij = k, \ jk = i, \ ki = j.$$

Note that \mathbb{H} is non-commutative (e.g. ji = -ij), hence $SL(n, \mathbb{H})$ is not defined. On the other hand, one can define complex conjugates

$$\overline{x} = a - ib - jc - kd$$

and

$$x|^2 := x\overline{x} = a^2 + b^2 + c^2 + d^2$$

defines a norm $x \mapsto |x|$, with $|x_1x_2| = |x_1||x_2|$ just as for complex or real numbers. The spaces $\mathbb{R}^n, \mathbb{C}^n, \mathbb{H}^n$ inherit norms, by putting

$$||x||^2 = \sum_{i=1}^n |x_i|^2, \ x = (x_1, \dots, x_n).$$

The subgroups of $\operatorname{GL}(n, \mathbb{R})$, $\operatorname{GL}(n, \mathbb{C})$, $\operatorname{GL}(n, \mathbb{H})$ preserving this norm (in the sense that ||Ax|| = ||x|| for all x) are denoted

and are called the *orthogonal*, unitary, and symplectic group, respectively. Since the norms of \mathbb{C}, \mathbb{H} coincide with those of $\mathbb{C} \cong \mathbb{R}^2, \mathbb{H} = \mathbb{C}^2 \cong \mathbb{R}^4$, we have

$$U(n) = GL(n, \mathbb{C}) \cap O(2n), \quad Sp(n) = GL(n, \mathbb{H}) \cap O(4n).$$

In particular, all of these groups are compact. One can also define

$$SO(n) = O(n) \cap SL(n, \mathbb{R}), SU(n) = U(n) \cap SL(n, \mathbb{C}),$$

these are called the *special orthogonal* and *special unitary* groups. The groups SO(n), SU(n), Sp(n) are often called the *classical groups* (but this term is used a bit loosely).

(d) For any Lie group G, its univeral cover \widetilde{G} is again a Lie group. The universal cover $\widetilde{SL}(2,\mathbb{R})$ is an example of a Lie group that is not isomorphic to a matrix Lie group.

1.2. Lie algebras.

Definition 1.4. A Lie algebra is a vector space \mathfrak{g} , together with a bilinear map $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ satisfying anti-symmetry

$$[\xi,\eta] = -[\eta,\xi] \text{ for all } \xi,\eta \in \mathfrak{g},$$

and the Jacobi identity,

$$[\xi, [\eta, \zeta]] + [\eta, [\zeta, \xi]] + [\zeta, [\xi, \eta]] = 0 \text{ for all } \xi, \eta, \zeta \in \mathfrak{g}.$$

The map $[\cdot, \cdot]$ is called the Lie bracket. A morphism of Lie algebras $\mathfrak{g}_1, \mathfrak{g}_2$ is a linear map $\phi: \mathfrak{g}_1 \to \mathfrak{g}_2$ preserving brackets.

The space

$$\mathfrak{gl}(n,\mathbb{R}) = \operatorname{Mat}_n(\mathbb{R})$$

is a Lie algebra, with bracket the commutator of matrices. (The notation indicates that we think of $Mat_n(\mathbb{R})$ as a Lie algebra, not as an algebra.)

A Lie subalgebra of $\mathfrak{gl}(n,\mathbb{R})$, i.e. a subspace preserved under commutators, is called a *matrix* Lie algebra. For instance,

$$\mathfrak{sl}(n,\mathbb{R}) = \{B \in \operatorname{Mat}_n(\mathbb{R}) \colon \operatorname{tr}(B) = 0\}$$

and

$$\mathfrak{o}(n) = \{ B \in \operatorname{Mat}_n(\mathbb{R}) \colon B^T = -B \}$$

are matrix Lie algebras (as one easily verifies). It turns out that every finite-dimensional real Lie algebra is isomorphic to a matrix Lie algebra (*Ado's theorem*), but the proof is not easy.

The following examples of finite-dimensional Lie algebras correspond to our examples for Lie groups. The origin of this correspondence will soon become clear.

Examples 1.5. (a) Any vector space V is a Lie algeba for the zero bracket.

- (b) Any associative algebra \mathcal{A} can be viewed as a Lie algebra under commutator. Replacing \mathcal{A} with matrix algebras over \mathcal{A} , it follows that $\mathfrak{gl}(n, \mathcal{A}) = \operatorname{Mat}_n(\mathcal{A})$, is a Lie algebra, with bracket the commutator. If \mathcal{A} is commutative, then the subspace $\mathfrak{sl}(n, \mathcal{A}) \subset \mathfrak{gl}(n, \mathcal{A})$ of matrices of trace 0 is a Lie subalgebra.
- (c) We are mainly interested in the cases $\mathcal{A} = \mathbb{R}, \mathbb{C}, \mathbb{H}$. Define an inner product on $\mathbb{R}^n, \mathbb{C}^n, \mathbb{H}^n$ by putting

$$\langle x, y \rangle = \sum_{i=1}^{n} \overline{x}_i y_i,$$

and define $\mathfrak{o}(n)$, $\mathfrak{u}(n)$, $\mathfrak{sp}(n)$ as the matrices in $\mathfrak{gl}(n,\mathbb{R})$, $\mathfrak{gl}(n,\mathbb{C})$, $\mathfrak{gl}(n,\mathbb{H})$ satisfying

$$\langle Bx, y \rangle = -\langle x, By \rangle$$

for all x, y. These are all Lie algebras called the (infinitesimal) orthogonal, unitary, and symplectic Lie algebras. For \mathbb{R}, \mathbb{C} one can impose the additional condition $\operatorname{tr}(B) =$ 0, thus defining the special orthogonal and special unitary Lie algebras $\mathfrak{so}(n), \mathfrak{su}(n)$. Actually,

$$\mathfrak{so}(n) = \mathfrak{o}(n)$$

sunce $B^T = -B$ already implies tr(B) = 0.

Exercise 1.6. Show that Sp(n) can be characterized as follows. Let $J \in U(2n)$ be the unitary matrix

$$\left(\begin{array}{cc} 0 & I_n \\ -I_n & 0 \end{array}\right)$$

where I_n is the $n \times n$ identity matrix. Then

$$\operatorname{Sp}(n) = \{ A \in \operatorname{U}(2n) | \overline{A} = JAJ^{-1} \}.$$

Here \overline{A} is the componentwise complex conjugate of A.

Exercise 1.7. Let $R(\theta)$ denote the 2 × 2 rotation matrix

$$R(\theta) = \left(\begin{array}{cc} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{array}\right).$$

Show that for all $A \in SO(2m)$ there exists $O \in SO(2m)$ such that OAO^{-1} is of the block diagonal form

$$\left(\begin{array}{ccccc} R(\theta_1) & 0 & 0 & \cdots & 0 \\ 0 & R(\theta_2) & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & R(\theta_m) \end{array}\right).$$

For $A \in SO(2m + 1)$ one has a similar block diagonal presentation, with $m \ 2 \times 2$ blocks $R(\theta_i)$ and an extra 1 in the lower right corner. Conclude that SO(n) is connected.

Exercise 1.8. Let G be a connected Lie group, and U an open neighborhood of the group unit e. Show that any $g \in G$ can be written as a product $g = g_1 \cdots g_N$ of elements $g_i \in U$.

Exercise 1.9. Let $\phi: G \to H$ be a morphism of connected Lie groups, and assume that the differential $d_e \phi: T_e G \to T_e H$ is bijective (resp. surjective). Show that ϕ is a covering (resp. surjective). Hint: Use Exercise 1.8.

2. The covering $SU(2) \rightarrow SO(3)$

The Lie group SO(3) consists of rotations in 3-dimensional space. Let $D \subset \mathbb{R}^3$ be the closed ball of radius π . Any element $x \in D$ represents a rotation by an angle ||x|| in the direction of x. This is a 1-1 correspondence for points in the interior of D, but if $x \in \partial D$ is a boundary point then x, -x represent the same rotation. Letting \sim be the equivalence relation on D, given by antipodal identification on the boundary, we have $D^3/ \sim = \mathbb{R}P(3)$. Thus

$$SO(3) = \mathbb{R}P(3)$$

(at least, topogically). With a little extra effort (which we'll make below) one can make this into a diffeomorphism of manifolds.

By definition

$$SU(2) = \{A \in Mat_2(\mathbb{C}) | A^{\dagger} = A^{-1}, \det(A) = 1\}.$$

Using the formula for the inverse matrix, we see that SU(2) consists of matrices of the form

$$SU(2) = \left\{ \left(\begin{array}{cc} z & -\overline{w} \\ w & \overline{z} \end{array} \right) \mid |w|^2 + |z|^2 = 1 \right\}$$

That is, $SU(2) = S^3$ as a manifold. Similarly,

$$\mathfrak{su}(2) = \left\{ \left(\begin{array}{cc} it & -\overline{u} \\ u & -it \end{array} \right) \mid t \in \mathbb{R}, \ u \in \mathbb{C} \right\}$$

gives an identification $\mathfrak{su}(2) = \mathbb{R} \oplus \mathbb{C} = \mathbb{R}^3$. Note that for a matrix *B* of this form, $\det(B) = t^2 + |u|^2$, so that det corresponds to $|| \cdot ||^2$ under this identification.

 $\mathbf{6}$

The group SU(2) acts linearly on the vector space $\mathfrak{su}(2)$, by matrix conjugation: $B \mapsto ABA^{-1}$. Since the conjugation action preserves det, we obtain a linear action on \mathbb{R}^3 , preserving the norm. This defines a Lie group morphism from SU(2) into O(3). Since SU(2) is connected, this must take values in the identity component:

$$\phi \colon \mathrm{SU}(2) \to \mathrm{SO}(3).$$

The kernel of this map consists of matrices $A \in SU(2)$ such that $ABA^{-1} = B$ for all $B \in \mathfrak{su}(2)$. Thus, A commutes with all skew-adjoint matrices of trace 0. Since A commutes with multiples of the identity, it then commutes with all skew-adjoint matrices. But since $\operatorname{Mat}_n(\mathbb{C}) = \mathfrak{u}(n) \oplus$ $\mathfrak{iu}(n)$ (the decomposition into skew-adjoint and self-adjoint parts), it then follows that A is a multiple of the identity matrix. Thus ker $(\phi) = \{I, -I\}$ is discrete. Since $d_e \phi$ is an isomorphism, it follows that the map ϕ is a double covering. This exhibits $\operatorname{SU}(2) = S^3$ as the double cover of SO(3).

Exercise 2.1. Give an explicit construction of a double covering of SO(4) by SU(2) × SU(2). Hint: Represent the quaternion algebra \mathbb{H} as an algebra of matrices $\mathbb{H} \subset Mat_2(\mathbb{C})$, by

$$x = a + ib + jc + kd \mapsto x = \left(\begin{array}{cc} a + ib & c + id \\ -c + id & a - ib \end{array}\right)$$

Note that $|x|^2 = \det(x)$, and that $SU(2) = \{x \in \mathbb{H} | \det(x) = 1\}$. Use this to define an action of $SU(2) \times SU(2)$ on \mathbb{H} preserving the norm.

3. The Lie Algebra of a Lie group

3.1. Review: Tangent vectors and vector fields. We begin with a quick reminder of some manifold theory, partly just to set up our notational conventions.

Let M be a manifold, and $C^{\infty}(M)$ its algebra of smooth real-valued functions. For $m \in M$, we define the tangent space $T_m M$ to be the space of directional derivatives:

$$T_m M = \{ v \in \operatorname{Hom}(C^{\infty}(M), \mathbb{R}) | v(fg) = v(f)g + v(g)f \}.$$

Here v(f) is local, in the sense that v(f) = v(f') if f' - f vanishes on a neighborhood of m.

Example 3.1. If $\gamma: J \to M, J \subset \mathbb{R}$ is a smooth curve we obtain tangent vectors to the curve,

$$\dot{\gamma}(t) \in T_{\gamma(t)}M, \ \dot{\gamma}(t)(f) = \frac{\partial}{\partial t}|_{t=0}f(\gamma(t)).$$

Example 3.2. We have $T_x \mathbb{R}^n = \mathbb{R}^n$, where the isomorphism takes $a \in \mathbb{R}^n$ to the corresponding velocity vector of the curve x + ta. That is,

$$v(f) = \frac{\partial}{\partial t}\Big|_{t=0} f(x+ta) = \sum_{i=1}^{n} a_i \frac{\partial f}{\partial x_i}.$$

A smooth map of manifolds $\phi: M \to M'$ defines a *tangent map*:

$$d_m\phi: T_mM \to T_{\phi(m)}M', \ (d_m\phi(v))(f) = v(f \circ \phi).$$

The locality property ensures that for an open neighborhood $U \subset M$, the inclusion identifies $T_m U = T_m M$. In particular, a coordinate chart $\phi: U \to \phi(U) \subset \mathbb{R}^n$ gives an isomorphism

$$\mathbf{d}_m\phi\colon T_mM=T_mU\to T_{\phi(m)}\phi(U)=T_{\phi(m)}\mathbb{R}^n=\mathbb{R}^n.$$

Hence $T_m M$ is a vector space of dimension $n = \dim M$. The union $TM = \bigcup_{m \in M} T_m M$ is a vector bundle over M, called the tangent bundle. Coordinate charts for M give vector bundle charts for TM. For a smooth map of manifolds $\phi: M \to M'$, the entirety of all maps $d_m \phi$ defines a smooth vector bundle map

$$\mathrm{d}\phi\colon TM\to TM'.$$

A vector field on M is a derivation $X: C^{\infty}(M) \to C^{\infty}(M)$. That is, it is a linear map satisfying

$$X(fg) = X(f)g + fX(g).$$

The space of vector fields is denoted $\mathfrak{X}(M) = \operatorname{Der}(C^{\infty}(M))$. Vector fields are local, in the sense that for any open subset U there is a well-defined restriction $X|_U \in \mathfrak{X}(U)$ such that $X|_U(f|_U) = (X(f))|_U$. For any vector field, one obtains tangent vectors $X_m \in T_m M$ by $X_m(f) = X(f)|_m$. One can think of a vector field as an assignment of tangent vectors, depending smoothly on m. More precisely, a vector field is a smooth section of the tangent bundle TM. In local coordinates, vector fields are of the form $\sum_i a_i \frac{\partial}{\partial x_i}$ where the a_i are smooth functions.

It is a general fact that the commutator of derivations of an algebra is again a derivation. Thus, $\mathfrak{X}(M)$ is a Lie algebra for the bracket

$$[X,Y] = X \circ Y - Y \circ X.$$

In general, smooth maps $\phi: M \to M'$ of manifolds do not induce maps of the Lie algebras of vector fields (unless ϕ is a diffeomorphism). One makes the following definition.

Definition 3.3. Let $\phi: M \to N$ be a smooth map. Vector fields X, Y on M, N are called ϕ -related, written $X \sim_{\phi} Y$, if

$$X(f \circ \phi) = Y(f) \circ \phi$$

for all $f \in C^{\infty}(M')$.

In short, $X \circ \phi^* = \phi^* \circ Y$ where $\phi^* \colon C^{\infty}(N) \to C^{\infty}(M), f \mapsto f \circ \phi$. One has $X \sim_{\phi} Y$ if and only if $Y_{\phi(m)} = d_m \phi(X_m)$. From the definitions, one checks

$$X_1 \sim_{\phi} Y_1, \ X_2 \sim_{\phi} Y_2 \ \Rightarrow \ [X_1, X_2] \sim_{\phi} [Y_1, Y_2].$$

Example 3.4. Let $j: S \hookrightarrow M$ be an embedded submanifold. We say that a vector field X is tangent to S if $X_m \in T_m S \subset T_m M$ for all $m \in S$. We claim that if two vector fields are tangent to S then so is their Lie bracket. That is, the vector fields on M that are tangent to S form a Lie subalgebra.

Indeed, the definition means that there exists a vector field $X_S \in \mathfrak{X}(S)$ such that $X_S \sim_j X$. Hence, if X, Y are tangent to S, then $[X_S, Y_S] \sim_j [X, Y]$, so $[X_S, Y_S]$ is tangent.

Similarly, the vector fields vanishing on S are a Lie subalgebra.

Let $X \in \mathfrak{X}(M)$. A curve $\gamma(t), t \in J \subset \mathbb{R}$ is called an *integral curve* of X if for all $t \in J$,

$$\dot{\gamma}(t) = X_{\gamma(t)}.$$

In local coordinates, this is an ODE $\frac{dx_i}{dt} = a_i(x(t))$. The existence and uniqueness theorem for ODE's (applied in coordinate charts, and then patching the local solutions) shows that for any $m \in M$, there is a unique maximal integral curve $\gamma(t)$, $t \in J_m$ with $\gamma(0) = m$.

Definition 3.5. A vector field X is complete if for all $m \in M$, the maximal integral curve with $\gamma(0) = m$ is defined for all $t \in \mathbb{R}$.

In this case, one obtains a *smooth* map

$$\Phi \colon \mathbb{R} \times M \to M, \ (t,m) \mapsto \Phi_t(m)$$

such that $\gamma(t) = \Phi_{-t}(m)$ is the integral curve through m. The uniqueness property gives

$$\Phi_0 = \mathrm{Id}, \quad \Phi_{t_1+t_2} = \Phi_{t_1} \circ \Phi_{t_2}$$

i.e. $t \mapsto \Phi_t$ is a group homomorphism. Conversely, given such a group homomorphism such that the map Φ is smooth, one obtains a vector field X by setting

$$X = \frac{\partial}{\partial t}|_{t=0}\Phi^*_{-t},$$

as operators on functions. That is, $X(f)(m) = \frac{\partial}{\partial t}|_{t=0} f(\Phi_{-t}(m))$.¹

The Lie bracket of vector fields measure the non-commutativity of their flows. In particular, if X, Y are complete vector fields, with flows Φ_t^X , Φ_s^Y , then [X, Y] = 0 if and only if

$$\Phi^X_t \circ \Phi^Y_s = \Phi^Y_s \circ \Phi^X_t$$

In this case, X + Y is again a complete vector field with flow $\Phi_t^{X+Y} = \Phi_t^X \circ \Phi_t^Y$. (The right hand side defines a flow since the flows of X, Y commute, and the corresponding vector field is identified by taking a derivative at t = 0.)

3.2. The Lie algebra of a Lie group. Let G be a Lie group, and TG its tangent bundle. For all $a \in G$, the left, right translations

$$L_a \colon G \to G, \ g \mapsto ag$$
$$R_a \colon G \to G, \ g \mapsto ga$$

are smooth maps. Their differentials at e define isomorphisms $d_g L_a : T_g G \to T_{ag} G$, and similarly for R_a . Let

 $\mathfrak{g} = T_e G$

be the tangent space to the group unit.

A vector field $X \in \mathfrak{X}(G)$ is called left-invariant if

 $X \sim_{L_a} X$

for all $a \in G$, i.e. if it commutes with L_a^* . The space $\mathfrak{X}^L(G)$ of left-invariant vector fields is thus a Lie subalgebra of $\mathfrak{X}(G)$. Similarly the space of right-invariant vector fields $\mathfrak{X}^R(G)$ is a Lie subalgebra.

$$X.f = \frac{\partial}{\partial t}|_{t=0}\Phi_t.f = \frac{\partial}{\partial t}|_{t=0}(\Phi_t^{-1})^*f.$$

If Φ_t is a flow, we have $\Phi_t^{-1} = \Phi_{-t}$.

¹The minus sign is convention, but it is motivated as follows. Let Diff(M) be the infinite-dimensional group of diffeomorphisms of M. It acts on $C^{\infty}(M)$ by $\Phi f = f \circ \Phi^{-1} = (\Phi^{-1})^* f$. Here, the inverse is needed so that $\Phi_1.\Phi_2.f = (\Phi_1\Phi_2).f$. We think of vector fields as 'infinitesimal flows', i.e. informally as the tangent space at id to Diff(M). Hence, given a curve $t \mapsto \Phi_t$ through $\Phi_0 = \text{id}$, smooth in the sense that the map $\mathbb{R} \times M \to M$, $(t,m) \mapsto \Phi_t(m)$ is smooth, we define the corresponding vector field $X = \frac{\partial}{\partial t}|_{t=0}\Phi_t$ in terms of the action on functions: as

Lemma 3.6. The map

$$\mathfrak{X}^L(G) \to \mathfrak{g}, \ X \mapsto X_e$$

is an isomorphism of vector spaces. (Similarly for $\mathfrak{X}^{R}(G)$.)

Proof. For a left-invariant vector field, $X_a = (d_e L_a)X_e$, hence the map is injective. To show that it is surjective, let $\xi \in \mathfrak{g}$, and put $X_a = (d_e L_a)\xi \in T_aG$. We have to show that the map $G \to TG$, $a \mapsto X_a$ is smooth. It is the composition of the map $G \to G \times \mathfrak{g}$, $g \mapsto (g, \xi)$ (which is obviously smooth) with the map $G \times \mathfrak{g} \to TG$, $(g,\xi) \mapsto d_e L_g(\xi)$. The latter map is the restriction of d Mult: $TG \times TG \to TG$ to $G \times \mathfrak{g} \subset TG \times TG$, and hence is smooth. \Box

We denote by $\xi^L \in \mathfrak{X}^L(G), \ \xi^R \in \mathfrak{X}^R(G)$ the left, right invariant vector fields defined by $\xi \in \mathfrak{g}$. Thus

$$\xi^L|_e = \xi^R|_e = \xi$$

Definition 3.7. The Lie algebra of a Lie group G is the vector space $\mathfrak{g} = T_e G$, equipped with the unique bracket such that

$$[\xi,\eta]^L = [\xi^L,\eta^L], \ \ \xi \in \mathfrak{g}.$$

Remark 3.8. If you use the right-invariant vector fields to define the bracket on \mathfrak{g} , we get a minus sign. Indeed, note that $\operatorname{Inv}: G \to G$ takes left translations to right translations. Thus, ξ^R is Inv-related to some left invariant vector field. Since $d_e \operatorname{Inv} = -\operatorname{Id}$, we see $\xi^R \sim_{\operatorname{Inv}} -\xi^L$. Consequently,

$$[\xi^R, \eta^R] \sim_{\text{Inv}} [-\xi^L, -\eta^L] = [\xi, \eta]^L.$$

But also $-[\xi,\eta]^R \sim_{\text{Inv}} [\xi,\eta]^L$, hence we get

$$[\xi^R,\zeta^R]=-[\xi,\zeta]^R.$$

The construction of a Lie algebra is compatible with morphisms. That is, we have a *functor* from Lie groups to finite-dimensional Lie algebras.

Theorem 3.9. For any morphism of Lie groups $\phi: G \to G'$, the tangent map $d_e \phi: \mathfrak{g} \to \mathfrak{g}'$ is a morphism of Lie algebras. For all $\xi \in \mathfrak{g}$, $\xi' = d_e \phi(\xi)$ one has

$$\xi^L \sim_{\phi} (\xi')^L, \ \xi^R \sim_{\phi} (\xi')^R$$

Proof. Suppose $\xi \in \mathfrak{g}$, and let $\xi' = d_e \phi(\xi) \in \mathfrak{g}'$. The property $\phi(ab) = \phi(a)\phi(b)$ shows that $L_{\phi(a)} \circ \phi = \phi \circ L_a$. Taking the differential at e, and applying to ξ we find $(d_e L_{\phi(a)})\xi' = (d_a \phi)(d_e L_a(\xi))$ hence $(\xi')_{\phi(a)}^L = (d_a \phi)(\xi_a^L)$. That is $\xi^L \sim_{\phi} (\xi')^L$. The proof for right-invariant vector fields is similar. Since the Lie brackets of two pairs of ϕ -related vector fields are again ϕ -related, it follows that $d_e \phi$ is a Lie algebra morphism.

Remark 3.10. Two special cases are worth pointing out.

(a) Let V be a finite-dimensional (real) vector space. A representation of a Lie group G on V is a Lie group morphism $G \to \operatorname{GL}(V)$. A representation of a Lie algebra \mathfrak{g} on V is a Lie algebra morphism $\mathfrak{g} \to \mathfrak{gl}(V)$. The Theorem shows that the differential of any Lie group representation is a representation of its a Lie algebra.

- (b) An *automorphism of a Lie group* G is a Lie group morphism $\phi: G \to G$ from G to itself,
- with ϕ a diffeomorphism. An *automorphism of a Lie group* horphism ϕ . Of ϕ of none of to itself, with ϕ a diffeomorphism. An *automorphism of a Lie algebra* is an invertible morphism from \mathfrak{g} to itself. By the Theorem, the differential of any Lie group automorphism is an automorphism of its Lie algebra. As an example, SU(n) has a Lie group automorphism given by complex conjugation of matrices; its differential is a Lie algebra automorphism of $\mathfrak{su}(n)$ given again by complex conjugation.

Exercise 3.11. Let $\phi: G \to G$ be a Lie group automorphism. Show that its fixed point set is a closed subgroup of G, hence a Lie subgroup. Similarly for Lie algebra automorphisms. What is the fixed point set for the complex conjugation automorphism of SU(n)?

4. The exponential map

Theorem 4.1. The left-invariant vector fields ξ^L are complete, i.e. they define a flow Φ_t^{ξ} such that

$$\xi^L = \frac{\partial}{\partial t}|_{t=0} (\Phi_{-t}^{\xi})^*.$$

Letting $\phi^{\xi}(t)$ denote the unique integral curve with $\phi^{\xi}(0) = e$. It has the property

$$\phi^{\xi}(t_1 + t_2) = \phi^{\xi}(t_1)\phi^{\xi}(t_2),$$

and the flow of ξ^L is given by right translations:

$$\Phi_t^{\xi}(g) = g\phi^{\xi}(-t).$$

Similarly, the right-invariant vector fields ξ^R are complete. $\phi^{\xi}(t)$ is an integral curve for ξ^R as well, and the flow of ξ^R is given by left translations, $g \mapsto \phi^{\xi}(-t)g$.

Proof. If $\gamma(t)$, $t \in J \subset \mathbb{R}$ is an integral curve of a left-invariant vector field ξ^L , then its left translates $a\gamma(t)$ are again integral curves. In particular, for $t_0 \in J$ the curve $t \mapsto \gamma(t_0)\gamma(t)$ is again an integral curve. Hence it coincides with $\gamma(t_0 + t)$ for all $t \in J \cap (J - t_0)$. In this way, an integral curve defined for small |t| can be extended to an integral curve for all t, i.e. ξ^L is complete.

Since ξ^L is left-invariant, so is its flow Φ_t^{ξ} . Hence

$$\Phi_t^{\xi}(g) = \Phi_t^{\xi} \circ L_g(e) = L_g \circ \Phi_t^{\xi}(e) = g \Phi_t^{\xi}(e) = g \phi^{\xi}(-t).$$

The property $\Phi_{t_1+t_2}^{\xi} = \Phi_{t_1}^{\xi} \Phi_{t_2}^{\xi}$ shows that $\phi^{\xi}(t_1+t_2) = \phi^{\xi}(t_1)\phi^{\xi}(t_2)$. Finally, since $\xi^L \sim_{\text{Inv}} -\xi^R$, the image

$$Inv(\phi^{\xi}(t)) = \phi^{\xi}(t)^{-1} = \phi^{\xi}(-t)$$

is an integral curve of $-\xi^R$. Equivalently, $\phi^{\xi}(t)$ is an integral curve of ξ^R .

Since left and right translations commute, it follows in particular that

$$[\xi^L, \eta^R] = 0.$$

Definition 4.2. A 1-parameter subgroup of G is a group homomorphism $\phi \colon \mathbb{R} \to G$.

We have seen that every $\xi \in \mathfrak{g}$ defines a 1-parameter group, by taking the integral curve through e of the left-invariant vector field ξ^L . Every 1-parameter group arises in this way:

Proposition 4.3. If ϕ is a 1-parameter subgroup of G, then $\phi = \phi^{\xi}$ where $\xi = \dot{\phi}(0)$. One has $\phi^{s\xi}(t) = \phi^{\xi}(st)$.

The map

$$\mathbb{R} \times \mathfrak{g} \to G, \ (t,\xi) \mapsto \phi^{\xi}(t)$$

is smooth.

Proof. Let $\phi(t)$ be a 1-parameter group. Then $\Phi_t(g) := g\phi(-t)$ defines a flow. Since this flow commutes with left translations, it is the flow of a left-invariant vector field, ξ^L . Here ξ is determined by taking the derivative of $\Phi_{-t}(e) = \phi(t)$ at t = 0: $\xi = \dot{\phi}(0)$. This shows $\phi = \phi^{\xi}$. As an application, since $\psi(t) = \phi^{\xi}(st)$ is a 1-parameter group with $\dot{\psi}^{\xi}(0) = s\dot{\phi}^{\xi}(0) = s\xi$, we have $\phi^{\xi}(st) = \phi^{s\xi}(t)$. Smoothness of the map $(t,\xi) \mapsto \phi^{\xi}(t)$ follows from the smooth dependence of solutions of ODE's on parameters.

Definition 4.4. The exponential map for the Lie group G is the smooth map defined by

$$\exp\colon \mathfrak{g} \to G, \ \xi \mapsto \phi^{\xi}(1),$$

where $\phi^{\xi}(t)$ is the 1-parameter subgroup with $\dot{\phi}^{\xi}(0) = \xi$.

Proposition 4.5. We have

$$\phi^{\xi}(t) = \exp(t\xi).$$

If $[\xi, \eta] = 0$ then

$$\exp(\xi + \eta) = \exp(\xi) \exp(\eta).$$

Proof. By the previous Proposition, $\phi^{\xi}(t) = \phi^{t\xi}(1) = \exp(t\xi)$. For the second claim, note that $[\xi, \eta] = 0$ implies that ξ^L, η^L commute. Hence their flows $\Phi^{\xi}_t, \Phi^{\eta}_t$, and $\Phi^{\xi}_t \circ \Phi^{\eta}_t$ is the flow of $\xi^L + \eta^L$. Hence it coincides with $\Phi^{\xi+\eta}_t$. Applying to e, we get $\phi^{\xi}(t)\phi^{\eta}(t) = \phi^{\xi+\eta}(t)$. Now put t = 1.

In terms of the exponential map, we may now write the flow of ξ^L as $\Phi_t^{\xi}(g) = g \exp(-t\xi)$, and similarly for the flow of ξ^R . That is,

$$\xi^{L} = \frac{\partial}{\partial t}|_{t=0} R^{*}_{\exp(t\xi)}, \quad \xi^{R} = \frac{\partial}{\partial t}|_{t=0} L^{*}_{\exp(t\xi)}.$$

Proposition 4.6. The exponential map is natural with respect to Lie group homomorphisms $\phi: G \to H$. That is,

$$\phi(\exp(\xi)) = \exp((d_e\phi)(\xi)), \quad \xi \in \mathfrak{g}.$$

Proof. $t \mapsto \phi(\exp(t\xi))$ is a 1-parameter subgroup of H, with differential at e given by

$$\frac{d}{dt}\Big|_{t=0}\phi(\exp(t\xi)) = \mathbf{d}_e\phi(\xi)$$

Hence $\phi(\exp(t\xi)) = \exp(td_e\phi(\xi))$. Now put t = 1.

Proposition 4.7. Let $G \subset GL(n, \mathbb{R})$ be a matrix Lie group, and $\mathfrak{g} \subset \mathfrak{gl}(n, \mathbb{R})$ its Lie algebra. Then exp: $\mathfrak{g} \to G$ is just the exponential map for matrices,

$$\exp(\xi) = \sum_{n=0}^{\infty} \frac{1}{n!} \xi^n.$$

Furthermore, the Lie bracket on \mathfrak{g} is just the commutator of matrices.

Proof. By the previous Proposition, applied to the inclusion of G in $GL(n, \mathbb{R})$, the exponential map for G is just the restriction of that for $GL(n, \mathbb{R})$. Hence it suffices to prove the claim for $G = GL(n, \mathbb{R})$. The function $\sum_{n=0}^{\infty} \frac{t^n}{n!} \xi^n$ is a 1-parameter group in $GL(n, \mathbb{R})$, with derivative at 0 equal to $\xi \in \mathfrak{gl}(n, \mathbb{R})$. Hence it coincides with $\exp(t\xi)$. Now put t = 1.

Proposition 4.8. For a matrix Lie group $G \subset GL(n, \mathbb{R})$, the Lie bracket on $\mathfrak{g} = T_I G$ is just the commutator of matrices.

Proof. It suffices to prove for $G = \operatorname{GL}(n, \mathbb{R})$. Using $\xi^L = \frac{\partial}{\partial t}\Big|_{t=0} R^*_{\exp(t\xi)}$ we have

$$\begin{split} &\frac{\partial}{\partial s}\Big|_{s=0}\frac{\partial}{\partial t}\Big|_{t=0}(R^*_{\exp(-t\xi)}R^*_{\exp(-s\eta)}R^*_{\exp(t\xi)}R^*_{\exp(s\eta)}\\ &=\frac{\partial}{\partial s}\Big|_{s=0}(R^*_{\exp(-s\eta)}\xi^LR^*_{\exp(s\eta)}-\xi^L)\\ &=\xi^L\eta^L-\eta^L\xi^L\\ &=[\xi,\eta]^L. \end{split}$$

On the other hand, write

$$R^*_{\exp(-t\xi)}R^*_{\exp(-s\eta)}R^*_{\exp(t\xi)}R^*_{\exp(s\eta)} = R^*_{\exp(-t\xi)\exp(-s\eta)\exp(t\xi)\exp(s\eta)}$$

Since the Lie group exponential map for $GL(n, \mathbb{R})$ coincides with the exponential map for matrices, we may use Taylor's expansion,

$$\exp(-t\xi)\exp(-s\eta)\exp(t\xi)\exp(s\eta) = I + st(\xi\eta - \eta\xi) + \dots = \exp(st(\xi\eta - \eta\xi)) + \dots$$

where \ldots denotes terms that are cubic or higher in s, t. Hence

$$R^*_{\exp(-t\xi)\exp(-s\eta)\exp(t\xi)\exp(s\eta)} = R^*_{\exp(st(\xi\eta - \eta\xi)} + \dots$$

and consequently

$$\frac{\partial}{\partial s}\Big|_{s=0}\frac{\partial}{\partial t}\Big|_{t=0}R^*_{\exp(-t\xi)\exp(-s\eta)\exp(t\xi)\exp(s\eta)} = \frac{\partial}{\partial s}\Big|_{s=0}\frac{\partial}{\partial t}\Big|_{t=0}R^*_{\exp(st(\xi\eta-\eta\xi))} = (\xi\eta-\eta\xi)^L.$$

We conclude that $[\xi,\eta] = \xi\eta - \eta\xi.$

Remark 4.9. Had we defined the Lie algebra using right-invariant vector fields, we would have obtained *minus* the commutator of matrices. Nonetheless, some authors use that convention.

The exponential map gives local coordinates for the group G on a neighborhood of e:

Proposition 4.10. The differential of the exponential map at the origin is $d_0 \exp = \operatorname{id}$. As a consequence, there is an open neighborhood U of $0 \in \mathfrak{g}$ such that the exponential map restricts to a diffeomorphism $U \to \exp(U)$.

Proof. Let $\gamma(t) = t\xi$. Then $\dot{\gamma}(0) = \xi$ since $\exp(\gamma(t)) = \exp(t\xi)$ is the 1-parameter group, we have

$$(\mathbf{d}_0 \exp)(\xi) = \frac{\partial}{\partial t}|_{t=0} \exp(t\xi) = \xi.$$

Exercise 4.11. Show hat the exponential map for SU(n), SO(n) U(n) are surjective. (We will soon see that the exponential map for any compact, connected Lie group is surjective.)

Exercise 4.12. A matrix Lie group $G \subset \operatorname{GL}(n, \mathbb{R})$ is called *unipotent* if for all $A \in G$, the matrix A - I is nilpotent (i.e. $(A - I)^r = 0$ for some r). The prototype of such a group are the upper triangular matrices with 1's down the diagonal. Show that for a connected unipotent matrix Lie group, the exponential map is a diffeomorphism.

Exercise 4.13. Show that exp: $\mathfrak{gl}(2,\mathbb{C}) \to \operatorname{GL}(2,\mathbb{C})$ is surjective. More generally, show that the exponential map for $\operatorname{GL}(n,\mathbb{C})$ is surjective. (Hint: First conjugate the given matrix into Jordan normal form).

Exercise 4.14. Show that exp: $\mathfrak{sl}(2,\mathbb{R}) \to \mathrm{SL}(2,\mathbb{R})$ is not surjective, by proving that the matrices $\begin{pmatrix} -1 & \pm 1 \\ 0 & -1 \end{pmatrix} \in \mathrm{SL}(2,\mathbb{R})$ are not in the image. (Hint: Assuming these matrices are of the form $\exp(B)$, what would the eigenvalues of *B* have to be?) Show that these two matrices represent *all* conjugacy classes of elements that are not in the image of exp. (Hint: Find a classification of the conjugacy classes of $\mathrm{SL}(2,\mathbb{R})$, e.g. in terms of eigenvalues.)

5. CARTAN'S THEOREM ON CLOSED SUBGROUPS

Using the exponential map, we are now in position to prove Cartan's theorem on closed subgroups.

Theorem 5.1. Let H be a closed subgroup of a Lie group G. Then H is an embedded submanifold, and hence is a Lie subgroup.

We first need a Lemma. Let V be a Euclidean vector space, and S(V) its unit sphere. For $v \in V \setminus \{0\}$, let $[v] = \frac{v}{||v||} \in S(V)$.

Lemma 5.2. Let $v_n, v \in V \setminus \{0\}$ with $\lim_{n\to\infty} v_n = 0$. Then

$$\lim_{n \to \infty} [v_n] = [v] \Leftrightarrow \exists a_n \in \mathbb{N} \colon \lim_{n \to \infty} a_n v_n = v.$$

Proof. The implication \Leftarrow is obvious. For the opposite direction, suppose $\lim_{n\to\infty} [v_n] = [v]$. Let $a_n \in \mathbb{N}$ be defined by $a_n - 1 < \frac{||v||}{||v_n||} \le a_n$. Since $v_n \to 0$, we have $\lim_{n\to\infty} a_n \frac{||v_n||}{||v||} = 1$, and

$$a_n v_n = \left(a_n \frac{||v_n||}{||v||}\right) [v_n] ||v|| \to [v] ||v|| = v.$$

Proof of E. Cartan's theorem. It suffices to construct a submanifold chart near $e \in H$. (By left translation, one then obtains submanifold charts near arbitrary $a \in H$.) Choose an inner product on \mathfrak{g} .

We begin with a candidate for the Lie algebra of H. Let $W \subset \mathfrak{g}$ be the subset such that $\xi \in W$ if and only if either $\xi = 0$, or $\xi \neq 0$ and there exists $\xi_n \neq 0$ with

$$\exp(\xi_n) \in H, \ \xi_n \to 0, \ [\xi_n] \to [\xi].$$

We will now show the following:

- (i) $\exp(W) \subset H$,
- (ii) W is a subspace of \mathfrak{g} ,

(iii) There is an open neighborhood U of 0 and a diffeomorphism $\phi: U \to \phi(U) \subset G$ with $\phi(0) = e$ such that

$$\phi(U \cap W) = \phi(U) \cap H.$$

(Thus ϕ defines a submanifold chart near e.)

Step (i). Let $\xi \in W \setminus \{0\}$, with sequence ξ_n as in the definition of W. By the Lemma, there are $a_n \in \mathbb{N}$ with $a_n \xi_n \to \xi$. Since $\exp(a_n \xi_n) = \exp(\xi_n)^{a_n} \in H$, and H is closed, it follows that

$$\exp(\xi) = \lim_{n \to \infty} \exp(a_n \xi_n) \in H.$$

Step (ii). Since the subset W is invariant under scalar multiplication, we just have to show that it is closed under addition. Suppose $\xi, \eta \in W$. To show that $\xi + \eta \in W$, we may assume that $\xi, \eta, \xi + \eta$ are all non-zero. For t sufficiently small, we have

$$\exp(t\xi)\exp(t\eta) = \exp(u(t))$$

for some smooth curve $t \mapsto u(t) \in \mathfrak{g}$ with u(0) = 0. Then $\exp(u(t)) \in H$ and

$$\lim_{n \to \infty} n \, u(\frac{1}{n}) = \lim_{h \to 0} \frac{u(h)}{h} = \dot{u}(0) = \xi + \eta.$$

hence $u(\frac{1}{n}) \to 0$, $\exp(u(\frac{1}{n}) \in H$, $[u(\frac{1}{n})] \to [\xi + \eta]$. This shows $[\xi + \eta] \in W$, proving (ii). Step (iii). Let W' be a complement to W in \mathfrak{g} , and define

$$\phi \colon \mathfrak{g} \cong W \oplus W' \to G, \quad \phi(\xi + \xi') = \exp(\xi) \exp(\xi').$$

Since $d_0\phi$ is the identity, there is an open neighborhood $U \subset \mathfrak{g}$ of 0 such that $\phi: U \to \phi(U)$ is a diffeomorphism. It is automatic that $\phi(W \cap U) \subset \phi(W) \cap \phi(U) \subset H \cap \phi(U)$. We want to show that we can take U sufficiently small so that we also have the opposite inclusion

$$H \cap \phi(U) \subset \phi(W \cap U).$$

Suppose not. Then, any neighborhood $U_n \subset \mathfrak{g} = W \oplus W'$ of 0 contains an element (η_n, η'_n) such that

$$\phi(\eta_n, \eta'_n) = \exp(\eta_n) \exp(\eta'_n) \in H$$

(i.e. $\exp(\eta'_n) \in H$) but $(\eta_n, \eta'_n) \notin W$ (i.e. $\eta'_n \neq 0$). Thus, taking U_n to be a nested sequence of neighborhoods with intersection $\{0\}$, we could construct a sequence $\eta'_n \in W' - \{0\}$ with $\eta'_n \to 0$ and $\exp(\eta'_n) \in H$. Passing to a subsequence we may assume that $[\eta'_n] \to [\eta]$ for some $\eta \in W' \setminus \{0\}$. On the other hand, such a convergence would mean $\eta \in W$, by definition of W. Contradiction.

As remarked earlier, Cartan's theorem is very useful in practice. For a given Lie group G, the term 'closed subgroup' is often used as synonymous to 'embedded Lie subgroup'.

- *Examples* 5.3. (a) The matrix groups $G = O(n), Sp(n), SL(n, \mathbb{R}), \ldots$ are all closed subgroups of some $GL(N, \mathbb{R})$, and hence are Lie groups.
 - (b) Suppose that $\phi: G \to H$ is a morphism of Lie groups. Then $\ker(\phi) = \phi^{-1}(e) \subset G$ is a closed subgroup. Hence it is an embedded Lie subgroup of G.
 - (c) The center Z(G) of a Lie group G is the set of all $a \in G$ such that ag = ga for all $a \in G$. It is a closed subgroup, and hence an embedded Lie subgroup.
 - (d) The group of automorphisms of a Lie algebra \mathfrak{g} is closed in the group $\operatorname{End}(\mathfrak{g})^{\times}$ of vector space automorphisms, hence it is a Lie group.

6. The adjoint representations

6.1. The adjoint representation of G. Recall that an automorphism of a Lie group G is an invertible morphism from G to itself. The automorphisms form a group $\operatorname{Aut}(G)$. Any $a \in G$ defines an 'inner' automorphism $\operatorname{Ad}_a \in \operatorname{Aut}(G)$ by conjugation:

$$\operatorname{Ad}_a(g) = aga^{-1}$$

Indeed, Ad_a is an automorphism since $\mathrm{Ad}_a^{-1} = \mathrm{Ad}_{a^{-1}}$ and

$$\operatorname{Ad}_{a}(g_{1}g_{2}) = ag_{1}g_{2}a^{-1} = ag_{1}a^{-1}ag_{2}a^{-1} = \operatorname{Ad}_{a}(g_{1})\operatorname{Ad}_{a}(g_{2}).$$

Note also that $\operatorname{Ad}_{a_1a_2} = \operatorname{Ad}_{a_1} \operatorname{Ad}_{a_2}$, thus Ad defines a group morphism $G \to \operatorname{Aut}(G)$ into the group of automorphisms,

Its differential at the identity is a G-representation $G \to \operatorname{Aut}(\mathfrak{g})$ by automorphisms of the Lie algebra \mathfrak{g} . This is the *adjoint representation of* G, and it is common to denote it by the same symbol $\operatorname{Ad}_a := \operatorname{d}_e \operatorname{Ad}_a$:

$$\operatorname{Ad}_a \colon \mathfrak{g} \to \mathfrak{g}, \ \xi \mapsto \operatorname{Ad}_a \xi.$$

Since the Ad_a are Lie algebra/group morphisms, they are compatible with the exponential map,

$$\exp(\operatorname{Ad}_a \xi) = \operatorname{Ad}_a \exp(\xi).$$

Remark 6.1. If $G \subset \operatorname{GL}(n, \mathbb{R})$ is a matrix Lie group, then $\operatorname{Ad}_a \in \operatorname{Aut}(\mathfrak{g})$ is the conjugation of matrices

$$\mathrm{Ad}_a(\xi) = a\xi a^{-1}$$

This follows by taking the derivative of $\operatorname{Ad}_a(\exp(t\xi)) = a \exp(t\xi)a^{-1}$, using that exp is just the exponential series for matrices.

6.2. The adjoint representation of \mathfrak{g} . A derivation of a Lie algebra \mathfrak{g} is an linear map $D \in \operatorname{End}(\mathfrak{g})$ such that $D[\xi, \zeta] = [D\xi, \eta] + [\xi, D\eta]$. Derivations of \mathfrak{g} form a Lie algebra under commutator. For instance, Lie bracket $[\xi, \cdot]$ with a given element of \mathfrak{g} is a derivation (by Jacobi's identity); derivations of this type are called *inner*.

For any Lie algebra \mathfrak{g} , one defines the adjoint representation

ad:
$$\mathfrak{g} \to \operatorname{Der}(\mathfrak{g}) \subset \operatorname{End}(\mathfrak{g})$$

by

 $\operatorname{ad}_{\xi} = [\xi, \cdot].$

The fact that this is a representation is again a consequence of the Jacobi identity.

Suppose now that G is a Lie group, with Lie algebra \mathfrak{g} . Recall that the differential of any G-representation is a \mathfrak{g} -representation.

Theorem 6.2. If \mathfrak{g} is the Lie algebra of G, then the adjoint representation ad of \mathfrak{g} is the differential of the adjoint representation of G. One has the equality of operators

$$\exp(\mathrm{ad}_{\xi}) = \mathrm{Ad}(\exp\xi)$$

for all $\xi \in \mathfrak{g}$.

Proof. We have $\exp(s \operatorname{Ad}_{\exp(t\xi)} \eta) = \operatorname{Ad}_{\exp(t\xi)} \exp(s\eta) = \exp(t\xi) \exp(s\eta) \exp(-t\xi)$. Hence

$$\begin{aligned} \frac{\partial}{\partial t}\Big|_{t=0} (\operatorname{Ad}_{\exp(t\xi)}\eta)^{L} &= \frac{\partial}{\partial t}\Big|_{t=0} \frac{\partial}{\partial s}\Big|_{s=0} R^{*}_{\exp(s\operatorname{Ad}_{\exp(t\xi)}\eta)} \\ &= \frac{\partial}{\partial t}\Big|_{t=0} \frac{\partial}{\partial s}\Big|_{s=0} R^{*}_{\exp(t\xi)\exp(s\eta)\exp(-t\xi)} \\ &= \frac{\partial}{\partial t}\Big|_{t=0} \frac{\partial}{\partial s}\Big|_{s=0} R^{*}_{\exp(t\xi)} R^{*}_{\exp(s\eta)} R^{*}_{\exp(-t\xi)} \\ &= \frac{\partial}{\partial t}\Big|_{t=0} R^{*}_{\exp(t\xi)} \eta^{L} R^{*}_{\exp(-t\xi)} \\ &= [\xi^{L}, \eta^{L}] \\ &= [\xi, \eta]^{L} = (\operatorname{ad}_{\xi} \eta)^{L}, \end{aligned}$$

proving $\frac{\partial}{\partial t}\Big|_{t=0}$ Ad_{exp(t\xi)} $\eta = \operatorname{ad}_{\xi} \eta$. The last part follows, since the exponential map is functorial with respect to Lie group morphisms (in this case Ad: $G \to \operatorname{End}(\mathfrak{g})^{\times}$).

Remark 6.3. As a special case, this formula holds for matrices. That is, for $B, C \in Mat_n(\mathbb{R})$,

$$e^{B} C e^{-B} = \sum_{n=0}^{\infty} \frac{1}{n!} [B, [B, \cdots [B, C] \cdots]].$$

The formula also holds in some other contexts, e.g. if B, C are elements of an algebra with B nilpotent (i.e. $B^N = 0$ for some N). In this case, both the exponential series for e^B and the series on the right hand side are finite. (Indeed, $[B, [B, \cdots, [B, C] \cdots]]$ with n B's is a sum of terms $B^j C B^{n-j}$, and hence must vanish if $n \geq 2N$.)

16