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1. Terminology and notation

1.1. Lie groups.

Definition 1.1. A Lie group is a group G, equipped with a manifold structure such that the
group operations

Mult : G×G→ G, (g1, g2) 7→ g1g2

Inv : G→ G, g 7→ g−1

are smooth. A morphism of Lie groups G,G′ is a morphism of groups φ : G → G′ that is
smooth.

Remark 1.2. Using the implicit function theorem, one can show that smoothness of Inv is in
fact automatic. (Exercise)

The first example of a Lie group is the general linear group

GL(n,R) = {A ∈ Matn(R)| det(A) 6= 0}

of invertible n × n matrices. It is an open subset of Matn(R), hence a submanifold, and the
smoothness of group multiplication follows since the product map for Matn(R) is obviously
smooth.

Our next example is the orthogonal group

O(n) = {A ∈ Matn(R)| ATA = I}.

To see that it is a Lie group, it suffices to show that O(n) is an embedded submanifold of
Matn(R). In order to construct submanifold charts, we use the exponential map of matrices

exp: Matn(R) → Matn(R), B 7→ exp(B) =

∞∑

n=0

1

n!
Bn

(an absolutely convergent series). One has d
dt
|t=0 exp(tB) = B, hence the differential of exp

at 0 is the identity idMatn(R). By the inverse function theorem, this means that there is ǫ > 0
such that exp restricts to a diffeomorphism from the open neighborhood U = {B : ||B|| < ǫ}
of 0 onto an open neighborhood exp(U) of I. Let

o(n) = {B ∈ Matn(R)| B +BT = 0}.
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We claim that

exp(o(n) ∩ U) = O(n) ∩ exp(U),

so that exp gives a submanifold chart for O(n) over exp(U). To prove the claim, let B ∈ U .
Then

exp(B) ∈ O(n) ⇔ exp(B)T = exp(B)−1

⇔ exp(BT ) = exp(−B)

⇔ BT = −B

⇔ B ∈ o(n).

For a more general A ∈ O(n), we use that the map Matn(R) → Matn(R) given by left multi-
plication is a diffeomorphism. Hence, A exp(U) is an open neighborhood of A, and we have

A exp(U) ∩ O(n) = A(exp(U) ∩ O(n)) = A exp(U ∩ o(n)).

Thus, we also get a submanifold chart near A. This proves that O(n) is a submanifold. Hence
its group operations are induced from those of GL(n,R), they are smooth. Hence O(n) is a
Lie group. Notice that O(n) is compact (the column vectors of an orthogonal matrix are an
orthonomal basis of Rn; hence O(n) is a subset of Sn−1 × · · ·Sn−1 ⊂ Rn × · · ·Rn).

A similar argument shows that the special linear group

SL(n,R) = {A ∈ Matn(R)| det(A) = 1}

is an embedded submanifold of GL(n,R), and hence is a Lie group. The submanifold charts
are obtained by exponentiating the subspace

sl(n,R) = {B ∈ Matn(R)| tr(B) = 0},

using the identity det(exp(B)) = exp(tr(B)).
Actually, we could have saved most of this work with O(n), SL(n,R) once we have the

following beautiful result of E. Cartan:

Fact: Every closed subgroup of a Lie group is an embedded submanifold, hence
is again a Lie group.

We will prove this very soon, once we have developed some more basics of Lie group theory.
A closed subgroup of GL(n,R) (for suitable n) is called a matrix Lie group. Let us now give a
few more examples of Lie groups, without detailed justifications.

Examples 1.3. (a) Any finite-dimensional vector space V over R is a Lie group, with product
Mult given by addition.

(b) Let A be a finite-dimensional associative algebra over R, with unit 1A. Then the group
A× of invertible elements is a Lie group. More generally, if n ∈ N we can create the
algebra Matn(A) of matrices with entries in A, and the general linear group

GL(n,A) := Matn(A)×

is a Lie group. If A is commutative, one has a determinant map det : Matn(A) → A,
and GL(n,A) is the pre-image of A×. One may then define a special linear group

SL(n,A) = {g ∈ GL(n,A)| det(g) = 1}.
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(c) We mostly have in mind the cases A = R,C,H. Here H is the algebra of quaternions
(due to Hamilton). Recall that H = R4 as a vector space, with elements (a, b, c, d) ∈ R4

written as

x = a+ ib+ jc+ kd

with imaginary units i, j, k. The algebra structure is determined by

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j.

Note that H is non-commutative (e.g. ji = −ij), hence SL(n,H) is not defined. On the
other hand, one can define complex conjugates

x = a− ib− jc− kd

and

|x|2 := xx = a2 + b2 + c2 + d2.

defines a norm x 7→ |x|, with |x1x2| = |x1||x2| just as for complex or real numbers. The
spaces Rn,Cn,Hn inherit norms, by putting

||x||2 =

n∑

i=1

|xi|
2, x = (x1, . . . , xn).

The subgroups of GL(n,R), GL(n,C), GL(n,H) preserving this norm (in the sense that
||Ax|| = ||x|| for all x) are denoted

O(n), U(n), Sp(n)

and are called the orthogonal, unitary, and symplectic group, respectively. Since the
norms of C,H coincide with those of C ∼= R2, H = C2 ∼= R4, we have

U(n) = GL(n,C) ∩ O(2n), Sp(n) = GL(n,H) ∩ O(4n).

In particular, all of these groups are compact. One can also define

SO(n) = O(n) ∩ SL(n,R), SU(n) = U(n) ∩ SL(n,C),

these are called the special orthogonal and special unitary groups. The groups SO(n), SU(n),Sp(n)
are often called the classical groups (but this term is used a bit loosely).

(d) For any Lie group G, its univeral cover G̃ is again a Lie group. The universal cover
˜SL(2,R) is an example of a Lie group that is not isomorphic to a matrix Lie group.

1.2. Lie algebras.

Definition 1.4. A Lie algebra is a vector space g, together with a bilinear map [·, ·] : g× g → g

satisfying anti-symmetry

[ξ, η] = −[η, ξ] for all ξ, η ∈ g,

and the Jacobi identity,

[ξ, [η, ζ]] + [η, [ζ, ξ]] + [ζ, [ξ, η]] = 0 for all ξ, η, ζ ∈ g.

The map [·, ·] is called the Lie bracket. A morphism of Lie algebras g1, g2 is a linear map
φ : g1 → g2 preserving brackets.
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The space

gl(n,R) = Matn(R)

is a Lie algebra, with bracket the commutator of matrices. (The notation indicates that we
think of Matn(R) as a Lie algebra, not as an algebra.)

A Lie subalgebra of gl(n,R), i.e. a subspace preserved under commutators, is called a matrix
Lie algebra. For instance,

sl(n,R) = {B ∈ Matn(R) : tr(B) = 0}

and

o(n) = {B ∈ Matn(R) : BT = −B}

are matrix Lie algebras (as one easily verifies). It turns out that every finite-dimensional real
Lie algebra is isomorphic to a matrix Lie algebra (Ado’s theorem), but the proof is not easy.

The following examples of finite-dimensional Lie algebras correspond to our examples for Lie
groups. The origin of this correspondence will soon become clear.

Examples 1.5. (a) Any vector space V is a Lie algeba for the zero bracket.
(b) Any associative algebra A can be viewed as a Lie algebra under commutator. Replacing

A with matrix algebras over A, it follows that gl(n,A) = Matn(A), is a Lie algebra, with
bracket the commutator. If A is commutative, then the subspace sl(n,A) ⊂ gl(n,A) of
matrices of trace 0 is a Lie subalgebra.

(c) We are mainly interested in the cases A = R,C,H. Define an inner product on
Rn,Cn,Hn by putting

〈x, y〉 =

n∑

i=1

xiyi,

and define o(n), u(n), sp(n) as the matrices in gl(n,R), gl(n,C), gl(n,H) satisfying

〈Bx, y〉 = −〈x,By〉

for all x, y. These are all Lie algebras called the (infinitesimal) orthogonal, unitary,
and symplectic Lie algebras. For R,C one can impose the additional condition tr(B) =
0, thus defining the special orthogonal and special unitary Lie algebras so(n), su(n).
Actually,

so(n) = o(n)

sunce BT = −B already implies tr(B) = 0.

Exercise 1.6. Show that Sp(n) can be characterized as follows. Let J ∈ U(2n) be the unitary
matrix (

0 In
−In 0

)
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where In is the n× n identity matrix. Then

Sp(n) = {A ∈ U(2n)| A = JAJ−1}.

Here A is the componentwise complex conjugate of A.

Exercise 1.7. Let R(θ) denote the 2 × 2 rotation matrix

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

Show that for all A ∈ SO(2m) there exists O ∈ SO(2m) such that OAO−1 is of the block
diagonal form 



R(θ1) 0 0 · · · 0
0 R(θ2) 0 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · R(θm)


 .

For A ∈ SO(2m+ 1) one has a similar block diagonal presentation, with m 2 × 2 blocks R(θi)
and an extra 1 in the lower right corner. Conclude that SO(n) is connected.

Exercise 1.8. Let G be a connected Lie group, and U an open neighborhood of the group unit
e. Show that any g ∈ G can be written as a product g = g1 · · · gN of elements gi ∈ U .

Exercise 1.9. Let φ : G → H be a morphism of connected Lie groups, and assume that the
differential deφ : TeG→ TeH is bijective (resp. surjective). Show that φ is a covering (resp. sur-
jective). Hint: Use Exercise 1.8.

2. The covering SU(2) → SO(3)

The Lie group SO(3) consists of rotations in 3-dimensional space. Let D ⊂ R3 be the closed
ball of radius π. Any element x ∈ D represents a rotation by an angle ||x|| in the direction of x.
This is a 1-1 correspondence for points in the interior of D, but if x ∈ ∂D is a boundary point
then x,−x represent the same rotation. Letting ∼ be the equivalence relation on D, given by
antipodal identification on the boundary, we have D3/ ∼= RP (3). Thus

SO(3) = RP (3)

(at least, topogically). With a little extra effort (which we’ll make below) one can make this
into a diffeomorphism of manifolds.

By definition
SU(2) = {A ∈ Mat2(C)| A† = A−1, det(A) = 1}.

Using the formula for the inverse matrix, we see that SU(2) consists of matrices of the form

SU(2) =

{(
z −w
w z

)
| |w|2 + |z|2 = 1

}
.

That is, SU(2) = S3 as a manifold. Similarly,

su(2) =

{(
it −u
u −it

)
| t ∈ R, u ∈ C

}

gives an identification su(2) = R ⊕ C = R3. Note that for a matrix B of this form, det(B) =
t2 + |u|2, so that det corresponds to || · ||2 under this identification.
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The group SU(2) acts linearly on the vector space su(2), by matrix conjugation: B 7→
ABA−1. Since the conjugation action preserves det, we obtain a linear action on R3, preserving
the norm. This defines a Lie group morphism from SU(2) into O(3). Since SU(2) is connected,
this must take values in the identity component:

φ : SU(2) → SO(3).

The kernel of this map consists of matrices A ∈ SU(2) such that ABA−1 = B for all B ∈ su(2).
Thus, A commutes with all skew-adjoint matrices of trace 0. Since A commutes with multiples
of the identity, it then commutes with all skew-adjoint matices. But since Matn(C) = u(n) ⊕
iu(n) (the decomposition into skew-adjoint and self-adjoint parts), it then follows that A is a
multiple of the identity matrix. Thus ker(φ) = {I,−I} is discrete. Since deφ is an isomorphism,
it follows that the map φ is a double covering. This exhibits SU(2) = S3 as the double cover
of SO(3).

Exercise 2.1. Give an explicit construction of a double covering of SO(4) by SU(2) × SU(2).
Hint: Represent the quaternion algebra H as an algebra of matrices H ⊂ Mat2(C), by

x = a+ ib+ jc+ kd 7→ x =

(
a+ ib c+ id
−c+ id a− ib

)
.

Note that |x|2 = det(x), and that SU(2) = {x ∈ H| det(x) = 1}. Use this to define an action
of SU(2) × SU(2) on H preserving the norm.

3. The Lie algebra of a Lie group

3.1. Review: Tangent vectors and vector fields. We begin with a quick reminder of some
manifold theory, partly just to set up our notational conventions.

Let M be a manifold, and C∞(M) its algebra of smooth real-valued functions. For m ∈M ,
we define the tangent space TmM to be the space of directional derivatives:

TmM = {v ∈ Hom(C∞(M),R)| v(fg) = v(f)g + v(g)f}.

Here v(f) is local, in the sense that v(f) = v(f ′) if f ′ − f vanishes on a neighborhood of m.

Example 3.1. If γ : J →M , J ⊂ R is a smooth curve we obtain tangent vectors to the curve,

γ̇(t) ∈ Tγ(t)M, γ̇(t)(f) =
∂

∂t
|t=0f(γ(t)).

Example 3.2. We have TxRn = Rn, where the isomorphism takes a ∈ Rn to the corresponding
velocity vector of the curve x+ ta. That is,

v(f) =
∂

∂t
|t=0f(x+ ta) =

n∑

i=1

ai
∂f

∂xi
.

A smooth map of manifolds φ : M →M ′ defines a tangent map:

dmφ : TmM → Tφ(m)M
′, (dmφ(v))(f) = v(f ◦ φ).

The locality property ensures that for an open neighborhood U ⊂ M , the inclusion identifies
TmU = TmM . In particular, a coordinate chart φ : U → φ(U) ⊂ Rn gives an isomorphism

dmφ : TmM = TmU → Tφ(m)φ(U) = Tφ(m)R
n = Rn.
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Hence TmM is a vector space of dimension n = dimM . The union TM =
⋃

m∈M TmM is a
vector bundle over M , called the tangent bundle. Coordinate charts for M give vector bundle
charts for TM . For a smooth map of manifolds φ : M → M ′, the entirety of all maps dmφ
defines a smooth vector bundle map

dφ : TM → TM ′.

A vector field on M is a derivation X : C∞(M) → C∞(M). That is, it is a linear map
satisfying

X(fg) = X(f)g + fX(g).

The space of vector fields is denoted X(M) = Der(C∞(M)). Vector fields are local, in the sense
that for any open subset U there is a well-defined restriction X|U ∈ X(U) such that X|U (f |U) =
(X(f))|U . For any vector field, one obtains tangent vectors Xm ∈ TmM by Xm(f) = X(f)|m.
One can think of a vector field as an assignment of tangent vectors, depending smoothly on
m. More precisely, a vector field is a smooth section of the tangent bundle TM . In local
coordinates, vector fields are of the form

∑
i ai

∂
∂xi

where the ai are smooth functions.
It is a general fact that the commutator of derivations of an algebra is again a derivation.

Thus, X(M) is a Lie algebra for the bracket

[X,Y ] = X ◦ Y − Y ◦X.

In general, smooth maps φ : M → M ′ of manifolds do not induce maps of the Lie algebras
of vector fields (unless φ is a diffeomorphism). One makes the following definition.

Definition 3.3. Let φ : M → N be a smooth map. Vector fields X,Y on M,N are called
φ-related, written X ∼φ Y , if

X(f ◦ φ) = Y (f) ◦ φ

for all f ∈ C∞(M ′).

In short, X ◦ φ∗ = φ∗ ◦ Y where φ∗ : C∞(N) → C∞(M), f 7→ f ◦ φ.
One has X ∼φ Y if and only if Yφ(m) = dmφ(Xm). From the definitions, one checks

X1 ∼φ Y1, X2 ∼φ Y2 ⇒ [X1,X2] ∼φ [Y1, Y2].

Example 3.4. Let j : S →֒ M be an embedded submanifold. We say that a vector field X is
tangent to S if Xm ∈ TmS ⊂ TmM for all m ∈ S. We claim that if two vector fields are tangent
to S then so is their Lie bracket. That is, the vector fields on M that are tangent to S form a
Lie subalgebra.

Indeed, the definition means that there exists a vector field XS ∈ X(S) such that XS ∼j X.
Hence, if X,Y are tangent to S, then [XS , YS ] ∼j [X,Y ], so [XS , YS ] is tangent.

Similarly, the vector fields vanishing on S are a Lie subalgebra.

Let X ∈ X(M). A curve γ(t), t ∈ J ⊂ R is called an integral curve of X if for all t ∈ J ,

γ̇(t) = Xγ(t).

In local coordinates, this is an ODE dxi

dt
= ai(x(t)). The existence and uniqueness theorem for

ODE’s (applied in coordinate charts, and then patching the local solutions) shows that for any
m ∈M , there is a unique maximal integral curve γ(t), t ∈ Jm with γ(0) = m.
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Definition 3.5. A vector field X is complete if for all m ∈M , the maximal integral curve with
γ(0) = m is defined for all t ∈ R.

In this case, one obtains a smooth map

Φ: R ×M →M, (t,m) 7→ Φt(m)

such that γ(t) = Φ−t(m) is the integral curve through m. The uniqueness property gives

Φ0 = Id, Φt1+t2 = Φt1 ◦ Φt2

i.e. t 7→ Φt is a group homomorphism. Conversely, given such a group homomorphism such
that the map Φ is smooth, one obtains a vector field X by setting

X =
∂

∂t
|t=0Φ

∗
−t,

as operators on functions. That is, X(f)(m) = ∂
∂t
|t=0f(Φ−t(m)). 1

The Lie bracket of vector fields measure the non-commutativity of their flows. In particular,
if X,Y are complete vector fields, with flows ΦX

t , ΦY
s , then [X,Y ] = 0 if and only if

ΦX
t ◦ ΦY

s = ΦY
s ◦ ΦX

t .

In this case, X + Y is again a complete vector field with flow ΦX+Y
t = ΦX

t ◦ ΦY
t . (The right

hand side defines a flow since the flows of X,Y commute, and the corresponding vector field is
identified by taking a derivative at t = 0.)

3.2. The Lie algebra of a Lie group. Let G be a Lie group, and TG its tangent bundle.
For all a ∈ G, the left,right translations

La : G→ G, g 7→ ag

Ra : G→ G, g 7→ ga

are smooth maps. Their differentials at e define isomorphisms dgLa : TgG → TagG, and simi-
larly for Ra. Let

g = TeG

be the tangent space to the group unit.
A vector field X ∈ X(G) is called left-invariant if

X ∼La X

for all a ∈ G, i.e. if it commutes with L∗
a. The space XL(G) of left-invariant vector fields is

thus a Lie subalgebra of X(G). Similarly the space of right-invariant vector fields XR(G) is a
Lie subalgebra.

1The minus sign is convention, but it is motivated as follows. Let Diff(M) be the infinite-dimensional group
of diffeomorphisms of M . It acts on C∞(M) by Φ.f = f ◦ Φ−1 = (Φ−1)∗f . Here, the inverse is needed so
that Φ1.Φ2.f = (Φ1Φ2).f . We think of vector fields as ‘infinitesimal flows’, i.e. informally as the tangent
space at id to Diff(M). Hence, given a curve t 7→ Φt through Φ0 = id, smooth in the sense that the map
R × M → M, (t, m) 7→ Φt(m) is smooth, we define the corresponding vector field X = ∂

∂t
|t=0Φt in terms of the

action on functions: as

X.f =
∂

∂t
|t=0Φt.f =

∂

∂t
|t=0(Φ

−1
t )∗f.

If Φt is a flow, we have Φ−1
t = Φ−t.
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Lemma 3.6. The map

XL(G) → g, X 7→ Xe

is an isomorphism of vector spaces. (Similarly for XR(G).)

Proof. For a left-invariant vector field, Xa = (deLa)Xe, hence the map is injective. To show
that it is surjective, let ξ ∈ g, and put Xa = (deLa)ξ ∈ TaG. We have to show that the map
G → TG, a 7→ Xa is smooth. It is the composition of the map G → G× g, g 7→ (g, ξ) (which
is obviously smooth) with the map G × g → TG, (g, ξ) 7→ deLg(ξ). The latter map is the
restriction of d Mult : TG× TG→ TG to G× g ⊂ TG× TG, and hence is smooth. �

We denote by ξL ∈ XL(G), ξR ∈ XR(G) the left,right invariant vector fields defined by ξ ∈ g.
Thus

ξL|e = ξR|e = ξ

Definition 3.7. The Lie algebra of a Lie group G is the vector space g = TeG, equipped with
the unique bracket such that

[ξ, η]L = [ξL, ηL], ξ ∈ g.

Remark 3.8. If you use the right-invariant vector fields to define the bracket on g, we get a
minus sign. Indeed, note that Inv : G → G takes left translations to right translations. Thus,
ξR is Inv-related to some left invariant vector field. Since de Inv = − Id, we see ξR ∼Inv −ξL.
Consequently,

[ξR, ηR] ∼Inv [−ξL,−ηL] = [ξ, η]L.

But also −[ξ, η]R ∼Inv [ξ, η]L, hence we get

[ξR, ζR] = −[ξ, ζ]R.

The construction of a Lie algebra is compatible with morphisms. That is, we have a functor
from Lie groups to finite-dimensional Lie algebras.

Theorem 3.9. For any morphism of Lie groups φ : G → G′, the tangent map deφ : g → g′ is
a morphism of Lie algebras. For all ξ ∈ g, ξ′ = deφ(ξ) one has

ξL ∼φ (ξ′)L, ξR ∼φ (ξ′)R.

Proof. Suppose ξ ∈ g, and let ξ′ = deφ(ξ) ∈ g′. The property φ(ab) = φ(a)φ(b) shows that
Lφ(a) ◦ φ = φ ◦ La. Taking the differential at e, and applying to ξ we find (deLφ(a))ξ

′ =

(daφ)(deLa(ξ)) hence (ξ′)L
φ(a) = (daφ)(ξL

a ). That is ξL ∼φ (ξ′)L. The proof for right-invariant

vector fields is similar. Since the Lie brackets of two pairs of φ-related vector fields are again
φ-related, it follows that deφ is a Lie algebra morphism. �

Remark 3.10. Two special cases are worth pointing out.

(a) Let V be a finite-dimensional (real) vector space. A representation of a Lie group G on
V is a Lie group morphism G→ GL(V ). A representation of a Lie algebra g on V is a
Lie algebra morphism g → gl(V ). The Theorem shows that the differential of any Lie
group representation is a representation of its a Lie algebra.
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(b) An automorphism of a Lie group G is a Lie group morphism φ : G→ G from G to itself,
with φ a diffeomorphism. An automorphism of a Lie algebra is an invertible morphism
from g to itself. By the Theorem, the differential of any Lie group automorphism is an
automorphism of its Lie algebra. As an example, SU(n) has a Lie group automorphism
given by complex conjugation of matrices; its differential is a Lie algebra automorphism
of su(n) given again by complex conjugation.

Exercise 3.11. Let φ : G→ G be a Lie group automorphism. Show that its fixed point set is a
closed subgroup of G, hence a Lie subgroup. Similarly for Lie algebra automorphisms. What
is the fixed point set for the complex conjugation automorphism of SU(n)?

4. The exponential map

Theorem 4.1. The left-invariant vector fields ξL are complete, i.e. they define a flow Φξ
t such

that

ξL =
∂

∂t
|t=0(Φ

ξ
−t)

∗.

Letting φξ(t) denote the unique integral curve with φξ(0) = e. It has the property

φξ(t1 + t2) = φξ(t1)φ
ξ(t2),

and the flow of ξL is given by right translations:

Φξ
t (g) = gφξ(−t).

Similarly, the right-invariant vector fields ξR are complete. φξ(t) is an integral curve for ξR as
well, and the flow of ξR is given by left translations, g 7→ φξ(−t)g.

Proof. If γ(t), t ∈ J ⊂ R is an integral curve of a left-invariant vector field ξL, then its left
translates aγ(t) are again integral curves. In particular, for t0 ∈ J the curve t 7→ γ(t0)γ(t) is
again an integral curve. Hence it coincides with γ(t0 + t) for all t ∈ J ∩ (J − t0). In this way,
an integral curve defined for small |t| can be extended to an integral curve for all t, i.e. ξL is
complete.

Since ξL is left-invariant, so is its flow Φξ
t . Hence

Φξ
t (g) = Φξ

t ◦ Lg(e) = Lg ◦ Φξ
t (e) = gΦξ

t (e) = gφξ(−t).

The property Φξ
t1+t2

= Φξ
t1

Φξ
t2

shows that φξ(t1+t2) = φξ(t1)φ
ξ(t2). Finally, since ξL ∼Inv −ξR,

the image

Inv(φξ(t)) = φξ(t)−1 = φξ(−t)

is an integral curve of −ξR. Equivalently, φξ(t) is an integral curve of ξR. �

Since left and right translations commute, it follows in particular that

[ξL, ηR] = 0.

Definition 4.2. A 1-parameter subgroup of G is a group homomorphism φ : R → G.

We have seen that every ξ ∈ g defines a 1-parameter group, by taking the integral curve
through e of the left-invariant vector field ξL. Every 1-parameter group arises in this way:
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Proposition 4.3. If φ is a 1-parameter subgroup of G, then φ = φξ where ξ = φ̇(0). One has

φsξ(t) = φξ(st).

The map
R × g → G, (t, ξ) 7→ φξ(t)

is smooth.

Proof. Let φ(t) be a 1-parameter group. Then Φt(g) := gφ(−t) defines a flow. Since this
flow commutes with left translations, it is the flow of a left-invariant vector field, ξL. Here ξ is
determined by taking the derivative of Φ−t(e) = φ(t) at t = 0: ξ = φ̇(0). This shows φ = φξ. As

an application, since ψ(t) = φξ(st) is a 1-parameter group with ψ̇ξ(0) = sφ̇ξ(0) = sξ, we have
φξ(st) = φsξ(t). Smoothness of the map (t, ξ) 7→ φξ(t) follows from the smooth dependence of
solutions of ODE’s on parameters. �

Definition 4.4. The exponential map for the Lie group G is the smooth map defined by

exp: g → G, ξ 7→ φξ(1),

where φξ(t) is the 1-parameter subgroup with φ̇ξ(0) = ξ.

Proposition 4.5. We have
φξ(t) = exp(tξ).

If [ξ, η] = 0 then
exp(ξ + η) = exp(ξ) exp(η).

Proof. By the previous Proposition, φξ(t) = φtξ(1) = exp(tξ). For the second claim, note that

[ξ, η] = 0 implies that ξL, ηL commute. Hence their flows Φξ
t , Φη

t , and Φξ
t ◦ Φη

t is the flow of

ξL + ηL. Hence it coincides with Φξ+η
t . Applying to e, we get φξ(t)φη(t) = φξ+η(t). Now put

t = 1. �

In terms of the exponential map, we may now write the flow of ξL as Φξ
t (g) = g exp(−tξ),

and similarly for the flow of ξR. That is,

ξL =
∂

∂t
|t=0R

∗
exp(tξ), ξR =

∂

∂t
|t=0L

∗
exp(tξ).

Proposition 4.6. The exponential map is natural with respect to Lie group homomorphisms
φ : G→ H. That is,

φ(exp(ξ)) = exp((deφ)(ξ)), ξ ∈ g.

Proof. t 7→ φ(exp(tξ)) is a 1-parameter subgroup of H, with differential at e given by

d

dt

∣∣∣
t=0

φ(exp(tξ)) = deφ(ξ).

Hence φ(exp(tξ)) = exp(tdeφ(ξ)). Now put t = 1. �

Proposition 4.7. Let G ⊂ GL(n,R) be a matrix Lie group, and g ⊂ gl(n,R) its Lie algebra.
Then exp: g → G is just the exponential map for matrices,

exp(ξ) =
∞∑

n=0

1

n!
ξn.

Furthermore, the Lie bracket on g is just the commutator of matrices.
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Proof. By the previous Proposition, applied to the inclusion of G in GL(n,R), the exponential
map for G is just the restriction of that for GL(n,R). Hence it suffices to prove the claim for
G = GL(n,R). The function

∑∞
n=0

tn

n! ξ
n is a 1-parameter group in GL(n,R), with derivative

at 0 equal to ξ ∈ gl(n,R). Hence it coincides with exp(tξ). Now put t = 1. �

Proposition 4.8. For a matrix Lie group G ⊂ GL(n,R), the Lie bracket on g = TIG is just
the commutator of matrices.

Proof. It suffices to prove for G = GL(n,R). Using ξL = ∂
∂t

∣∣∣
t=0

R∗
exp(tξ) we have

∂

∂s

∣∣∣
s=0

∂

∂t

∣∣∣
t=0

(R∗
exp(−tξ)R

∗
exp(−sη)R

∗
exp(tξ)R

∗
exp(sη))

=
∂

∂s

∣∣∣
s=0

(R∗
exp(−sη)ξ

LR∗
exp(sη) − ξL)

= ξLηL − ηLξL

= [ξ, η]L.

On the other hand, write

R∗
exp(−tξ)R

∗
exp(−sη)R

∗
exp(tξ)R

∗
exp(sη) = R∗

exp(−tξ) exp(−sη) exp(tξ) exp(sη).

Since the Lie group exponential map for GL(n,R) coincides with the exponential map for
matrices, we may use Taylor’s expansion,

exp(−tξ) exp(−sη) exp(tξ) exp(sη) = I + st(ξη − ηξ) + . . . = exp(st(ξη − ηξ)) + . . .

where . . . denotes terms that are cubic or higher in s, t. Hence

R∗
exp(−tξ) exp(−sη) exp(tξ) exp(sη) = R∗

exp(st(ξη−ηξ) + . . .

and consequently

∂

∂s

∣∣∣
s=0

∂

∂t

∣∣∣
t=0

R∗
exp(−tξ) exp(−sη) exp(tξ) exp(sη) =

∂

∂s

∣∣∣
s=0

∂

∂t

∣∣∣
t=0

R∗
exp(st(ξη−ηξ)) = (ξη − ηξ)L.

We conclude that [ξ, η] = ξη − ηξ. �

Remark 4.9. Had we defined the Lie algebra using right-invariant vector fields, we would have
obtained minus the commutator of matrices. Nonetheless, some authors use that convention.

The exponential map gives local coordinates for the group G on a neighborhood of e:

Proposition 4.10. The differential of the exponential map at the origin is d0 exp = id. As a
consequence, there is an open neighborhood U of 0 ∈ g such that the exponential map restricts
to a diffeomorphism U → exp(U).

Proof. Let γ(t) = tξ. Then γ̇(0) = ξ since exp(γ(t)) = exp(tξ) is the 1-parameter group, we
have

(d0 exp)(ξ) =
∂

∂t
|t=0 exp(tξ) = ξ.

�

Exercise 4.11. Show hat the exponential map for SU(n), SO(n) U(n) are surjective. (We will
soon see that the exponential map for any compact, connected Lie group is surjective.)
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Exercise 4.12. A matrix Lie group G ⊂ GL(n,R) is called unipotent if for all A ∈ G, the matrix
A− I is nilpotent (i.e. (A− I)r = 0 for some r). The prototype of such a group are the upper
triangular matrices with 1’s down the diagonal. Show that for a connected unipotent matrix
Lie group, the exponential map is a diffeomorphism.

Exercise 4.13. Show that exp: gl(2,C) → GL(2,C) is surjective. More generally, show that
the exponential map for GL(n,C) is surjective. (Hint: First conjugate the given matrix into
Jordan normal form).

Exercise 4.14. Show that exp: sl(2,R) → SL(2,R) is not surjective, by proving that the ma-

trices

(
−1 ±1
0 −1

)
∈ SL(2,R) are not in the image. (Hint: Assuming these matrices are of

the form exp(B), what would the eigenvalues of B have to be?) Show that these two matrices
represent all conjugacy classes of elements that are not in the image of exp. (Hint: Find a
classification of the conjugacy classes of SL(2,R), e.g. in terms of eigenvalues.)

5. Cartan’s theorem on closed subgroups

Using the exponential map, we are now in position to prove Cartan’s theorem on closed
subgroups.

Theorem 5.1. Let H be a closed subgroup of a Lie group G. Then H is an embedded subman-
ifold, and hence is a Lie subgroup.

We first need a Lemma. Let V be a Euclidean vector space, and S(V ) its unit sphere. For
v ∈ V \{0}, let [v] = v

||v|| ∈ S(V ).

Lemma 5.2. Let vn, v ∈ V \{0} with limn→∞ vn = 0. Then

lim
n→∞

[vn] = [v] ⇔ ∃an ∈ N : lim
n→∞

anvn = v.

Proof. The implication ⇐ is obvious. For the opposite direction, suppose limn→∞[vn] = [v].

Let an ∈ N be defined by an − 1 < ||v||
||vn||

≤ an. Since vn → 0, we have limn→∞ an
||vn||
||v|| = 1, and

anvn =

(
an

||vn||

||v||

)
[vn] ||v|| → [v] ||v|| = v. �

Proof of E. Cartan’s theorem. It suffices to construct a submanifold chart near e ∈ H. (By
left translation, one then obtains submanifold charts near arbitrary a ∈ H.) Choose an inner
product on g.

We begin with a candidate for the Lie algebra of H. Let W ⊂ g be the subset such that
ξ ∈W if and only if either ξ = 0, or ξ 6= 0 and there exists ξn 6= 0 with

exp(ξn) ∈ H, ξn → 0, [ξn] → [ξ].

We will now show the following:

(i) exp(W ) ⊂ H,
(ii) W is a subspace of g,
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(iii) There is an open neighborhood U of 0 and a diffeomorphism φ : U → φ(U) ⊂ G with
φ(0) = e such that

φ(U ∩W ) = φ(U) ∩H.

(Thus φ defines a submanifold chart near e.)

Step (i). Let ξ ∈W\{0}, with sequence ξn as in the definition of W . By the Lemma, there are
an ∈ N with anξn → ξ. Since exp(anξn) = exp(ξn)an ∈ H, and H is closed, it follows that

exp(ξ) = lim
n→∞

exp(anξn) ∈ H.

Step (ii). Since the subset W is invariant under scalar multiplication, we just have to show
that it is closed under addition. Suppose ξ, η ∈ W . To show that ξ + η ∈ W , we may assume
that ξ, η, ξ + η are all non-zero. For t sufficiently small, we have

exp(tξ) exp(tη) = exp(u(t))

for some smooth curve t 7→ u(t) ∈ g with u(0) = 0. Then exp(u(t)) ∈ H and

lim
n→∞

nu(
1

n
) = lim

h→0

u(h)

h
= u̇(0) = ξ + η.

hence u( 1
n
) → 0, exp(u( 1

n
) ∈ H, [u( 1

n
)] → [ξ + η]. This shows [ξ + η] ∈W , proving (ii).

Step (iii). Let W ′ be a complement to W in g, and define

φ : g ∼= W ⊕W ′ → G, φ(ξ + ξ′) = exp(ξ) exp(ξ′).

Since d0φ is the identity, there is an open neighborhood U ⊂ g of 0 such that φ : U → φ(U) is
a diffeomorphism. It is automatic that φ(W ∩ U) ⊂ φ(W ) ∩ φ(U) ⊂ H ∩ φ(U). We want to
show that we can take U sufficiently small so that we also have the opposite inclusion

H ∩ φ(U) ⊂ φ(W ∩ U).

Suppose not. Then, any neighborhood Un ⊂ g = W ⊕W ′ of 0 contains an element (ηn, η
′
n)

such that
φ(ηn, η

′
n) = exp(ηn) exp(η′n) ∈ H

(i.e. exp(η′n) ∈ H) but (ηn, η
′
n) 6∈ W (i.e. η′n 6= 0). Thus, taking Un to be a nested sequence

of neighborhoods with intersection {0}, we could construct a sequence η′n ∈ W ′ − {0} with
η′n → 0 and exp(η′n) ∈ H. Passing to a subsequence we may assume that [η′n] → [η] for some
η ∈ W ′\{0}. On the other hand, such a convergence would mean η ∈ W , by definition of W .
Contradiction. �

As remarked earlier, Cartan’s theorem is very useful in practice. For a given Lie group G,
the term ‘closed subgroup’ is often used as synonymous to ‘embedded Lie subgroup’.

Examples 5.3. (a) The matrix groups G = O(n),Sp(n),SL(n,R), . . . are all closed sub-
groups of some GL(N,R), and hence are Lie groups.

(b) Suppose that φ : G → H is a morphism of Lie groups. Then ker(φ) = φ−1(e) ⊂ G is a
closed subgroup. Hence it is an embedded Lie subgroup of G.

(c) The center Z(G) of a Lie group G is the set of all a ∈ G such that ag = ga for all a ∈ G.
It is a closed subgroup, and hence an embedded Lie subgroup.

(d) The group of automorphisms of a Lie algebra g is closed in the group End(g)× of vector
space automorphisms, hence it is a Lie group.
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6. The adjoint representations

6.1. The adjoint representation of G. Recall that an automorphism of a Lie group G is an
invertible morphism from G to itself. The automorphisms form a group Aut(G). Any a ∈ G
defines an ‘inner’ automorphism Ada ∈ Aut(G) by conjugation:

Ada(g) = aga−1

Indeed, Ada is an automorphism since Ad−1
a = Ada−1 and

Ada(g1g2) = ag1g2a
−1 = ag1a

−1ag2a
−1 = Ada(g1)Ada(g2).

Note also that Ada1a2 = Ada1 Ada2 , thus Ad defines a group morphism G → Aut(G) into the
group of automorphisms,

Its differential at the identity is a G-representation G → Aut(g) by automorphisms of the
Lie algebra g. This is the adjoint representation of G, and it is common to denote it by the
same symbol Ada := de Ada:

Ada : g → g, ξ 7→ Ada ξ.

Since the Ada are Lie algebra/group morphisms, they are compatible with the exponential
map,

exp(Ada ξ) = Ada exp(ξ).

Remark 6.1. If G ⊂ GL(n,R) is a matrix Lie group, then Ada ∈ Aut(g) is the conjugation of
matrices

Ada(ξ) = aξa−1.

This follows by taking the derivative of Ada(exp(tξ)) = a exp(tξ)a−1, using that exp is just the
exponential series for matrices.

6.2. The adjoint representation of g. A derivation of a Lie algebra g is an linear map
D ∈ End(g) such that D[ξ, ζ] = [Dξ, η] + [ξ,Dη]. Derivations of g form a Lie algebra under
commutator. For instance, Lie bracket [ξ, ·] with a given element of g is a derivation (by
Jacobi’s identity); derivations of this type are called inner.

For any Lie algebra g, one defines the adjoint representation

ad: g → Der(g) ⊂ End(g)

by

adξ = [ξ, ·].

The fact that this is a representation is again a consequence of the Jacobi identity.
Suppose now that G is a Lie group, with Lie algebra g. Recall that the differential of any

G-representation is a g-representation.

Theorem 6.2. If g is the Lie algebra of G, then the adjoint representation ad of g is the
differential of the adjoint representation of G. One has the equality of operators

exp(adξ) = Ad(exp ξ)

for all ξ ∈ g.
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Proof. We have exp(sAdexp(tξ) η) = Adexp(tξ) exp(sη) = exp(tξ) exp(sη) exp(−tξ). Hence

∂

∂t

∣∣∣
t=0

(Adexp(tξ) η)
L =

∂

∂t

∣∣∣
t=0

∂

∂s

∣∣∣
s=0

R∗
exp(s Adexp(tξ) η)

=
∂

∂t

∣∣∣
t=0

∂

∂s

∣∣∣
s=0

R∗
exp(tξ) exp(sη) exp(−tξ)

=
∂

∂t

∣∣∣
t=0

∂

∂s

∣∣∣
s=0

R∗
exp(tξ)R

∗
exp(sη)R

∗
exp(−tξ)

=
∂

∂t

∣∣∣
t=0

R∗
exp(tξ) η

L R∗
exp(−tξ)

= [ξL, ηL]

= [ξ, η]L = (adξ η)
L,

proving ∂
∂t

∣∣∣
t=0

Adexp(tξ) η = adξ η. The last part follows, since the exponential map is functorial

with respect to Lie group morphisms (in this case Ad: G→ End(g)×). �

Remark 6.3. As a special case, this formula holds for matrices. That is, for B,C ∈ Matn(R),

eB C e−B =
∞∑

n=0

1

n!
[B, [B, · · · [B,C] · · · ]].

The formula also holds in some other contexts, e.g. if B,C are elements of an algebra with B
nilpotent (i.e. BN = 0 for some N). In this case, both the exponential series for eB and the
series on the right hand side are finite. (Indeed, [B, [B, · · · [B,C] · · · ]] with n B’s is a sum of
terms BjCBn−j, and hence must vanish if n ≥ 2N .)


