MAT 1120HF – Assignment #1

Due date: Wednesday, October 6, 2010 in class.

1. Let J be the $2n \times 2n$ -matrix, given as

$$J = \left(\begin{array}{cc} 0 & I_n \\ -I_n & 0 \end{array}\right).$$

One defines the *complex symplectic group* $\operatorname{Sp}(2n, \mathbb{C})$ as follows,

$$\operatorname{Sp}(2n, \mathbb{C}) = \{ A \in \operatorname{GL}(2n, \mathbb{C}) | A^T J A = J \}.$$

In class, we had defined Sp(n) as the subgroup of $\text{GL}(n, \mathbb{H})$ preserving the norm on $\mathbb{H}^n \cong \mathbb{R}^{4n}$. Show that

$$\operatorname{Sp}(n) \cong \operatorname{Sp}(2n, \mathbb{C}) \cap \operatorname{U}(2n).$$

Hint: View $\operatorname{Mat}_n(\mathbb{H})$ as the subalgebra of $\operatorname{Mat}_{2n}(\mathbb{C})$ of matrices of block form

$$\left(\begin{array}{cc}a+ib&c+id\\-c+id&a-ib\end{array}\right),$$

with $a, b, c, d \in Mat_n(\mathbb{R})$.

Remark: The non-compact group $\operatorname{Sp}(2n,\mathbb{R}) \subset \operatorname{GL}(2n,\mathbb{R})$ (defined similarly to $\operatorname{Sp}(2n,\mathbb{C})$) is the group of transformations preserving the symplectic form on \mathbb{R}^{2n} . Both $\operatorname{Sp}(2n,\mathbb{R})$ and $\operatorname{Sp}(n)$ are real forms of the complex Lie group $\operatorname{Sp}(2n,\mathbb{C})$, in the sense that their complexified Lie algebras are $\mathfrak{sp}(2n,\mathbb{C})$.

2. a) Let G be a connected Lie group, and U an open neighborhood of the group unit e. Show that any $g \in G$ can be written as a product $g = g_1 \cdots g_N$ of elements $g_i \in U$.

b) Let $\phi: G \to H$ be a morphism of connected Lie groups, and assume that the differential $d_e \phi: T_e G \to T_e H$ is bijective. Show that ϕ is a (surjective) covering.

- 3. Give an explicit construction of a double covering of SO(4) by $SU(2) \times SU(2)$. Hint: Represent the quaternion algebra \mathbb{H} as an algebra of matrices $\mathbb{H} \subset Mat_2(\mathbb{C})$, as in problem 1 above. Use this to define an action of $SU(2) \times SU(2)$ on \mathbb{H} preserving the norm.
- 4. Show that $A = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} \in SL(2, \mathbb{R})$ does not lie in the image of the exponential map for $SL(2, \mathbb{R})$. Hence exp: $\mathfrak{sl}(2, \mathbb{R}) \to SL(2, \mathbb{R})$ is not surjective. Hint: Assuming $A = \exp(B)$, what would the eigenvalues of B have to be?

Encores (do not hand in): 1) Find a parametrization of the set of conjugacy classes of $SL(2,\mathbb{R})$. Can you find all conjugacy classes of elements that are not in the image of exp? 2) Show that the exponential map for $GL(2,\mathbb{C})$ is surjective.