MAT 1120HF – Assignment #3

Due date: Friday, December 10, 2010.

- 1. Let G_2 be the simply connected compact Lie group corresponding to the Dynkin diagram with two vertices, connected by a directed arrow of multiplicity 3. Pretending that we don't know anything about G_2 , show how to extract the following information from the Dynkin diagram. Give **brief** explanations.
 - a) Find the Cartan matrix of G_2 .
 - b) Draw the root system $\mathfrak{R} \subset E$ of G_2 . Indicate the simple roots and the corresponding Weyl chamber.
 - c) Use the invariant invariant inner product on E for which the long roots α satisfy $||\alpha||^2 = 2$, to identify $E^* \cong E$. Draw the co-root system $\mathfrak{R}^{\vee} \subset E$. Indicate the simple co-roots. (Don't draw it into the picture from (b) it will get too messy. But use the same scale.)
 - d) Show that the Weyl group of G_2 is the dihedral group D_6 , i.e. the symmetry group of a regular hexagon.
 - e) Find the dimension of G_2 .
- 2. Let G be a compact, semi-simple Lie group. Let $T \subset G$ be a given maximal torus, and $\Pi \subset \mathfrak{R}$ a given set of simple roots. A permutation Φ of Π is called a *Dynkin diagram* automorphism if $\langle \Phi(\alpha^{\vee}), \Phi(\beta) \rangle = \langle \alpha^{\vee}, \beta \rangle$ for all $\alpha, \beta \in \Pi$. Let Aut(Π) denote the group of Dynkin diagram automorphisms. On the other hand, let Aut(G) be the group of automorphisms of G, Inn(G) the normal subgroup of inner automorphisms, and

$$\operatorname{Out}(G) = \operatorname{Aut}(G) / \operatorname{Inn}(G)$$

the group of *outer automorphisms*.

- a) Show that any element of Out(G) may be represented by an element $\phi \in Aut(G)$, such that ϕ preserves T and the induced action Φ on $X^*(T)$ preserves the set Π of simple roots. Show that this defines a group morphism $Out(G) \to Aut(\Pi)$.
- b) Let $\phi \in \operatorname{Aut}(G)$ be an automorphism with $\phi(t) = t$ for all $t \in T$. Show that $d\phi \in \operatorname{Aut}(\mathfrak{g})$ preserves each root space \mathfrak{g}_{α} , $\alpha \in \mathfrak{R}$. Use this to define a group morphism $\operatorname{span}_{\mathbb{Z}}(\mathfrak{R}) \to \operatorname{U}(1)$. Show that any such morphism is of the form $\alpha \mapsto \alpha(h)$ for some $h \in T$, and finally that $\phi = \operatorname{Ad}_h$. This proves that the group morphism $\operatorname{Out}(G) \to \operatorname{Aut}(\Pi)$ is *injective*.
- c) Show that for G simply connected, the group morphism $Out(G) \to Aut(\Pi)$ is also *surjective*. (Hint: use the Serre relations.)
- d) Give an example of an automorphism of G = SU(n), n > 2 that is not inner. Describe the corresponding Dynkin diagram automorphism.
- e) Give an example of an automorphism of G = SO(2m), m > 1 that is not inner. (Hint: use O(2m).) Describe the corresponding Dynkin diagram automorphism.