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1. Lie groupoids

Symmetries in mathematics, as well as in nature, are often defined to be invariance properties
under actions of groups. Lie groupoids are given by a manifold M of ‘objects’ together with
a type of symmetry of M that is more general than those provided by group actions. For
example, a foliation of M provides an example of such a generalized symmetry, but foliations
need not be obtained from group actions in any obvious way.

1.1. Definitions. The groupoid will assign to any two objects m0, m1 ∈ M a collection
(possibly empty) of arrows from m1 to m0. These arrows are thought of as ‘symmetries’, but
in contrast to Lie group actions this symmetry need not be defined for all m ∈ M – only
pointwise. On the other hand, we require that the collection of all such arrows (with arbitrary
end points) fit together smoothly to define a manifold, and that arrows can be composed
provided the end point (target) of one arrow is the starting point (source) of the next.

The formal definition of a Lie groupoid G ⇒M involves a manifold G of arrows, a submanifold
i : M ↪→ G of units (or objects), and two surjective submersions s, t : G →M called source and
target such that

t ◦ i = s ◦ i = idM .

One thinks of g as an arrow from its source s(g) to its target t(g), with M embedded as trivial
arrows.

(1) t(g) s(g)

g

Using that s, t are submersion, one finds (cf. Exercise 1.1 below) that for all k = 1, 2, . . . the
set of k-arrows

G(k) = {(g1, . . . , gk) ∈ Gk| s(gi) = t(gi+1)}

(2) m0 m1 m2 · · · · · · mk−1 mk

g1 g2 g3 gk−1
gk

is a smooth submanifold of Gk, and the two maps G(k) → M taking (g1, . . . , gk) to s(gk),
respectively to t(g1), are submersions. For k = 0 one puts G(0) = M .

The definition of a Lie groupoid also involves a smooth multiplication map, defined on
composable arrows (i.e., 2-arrows)

MultG : G(2) → G, (g1, g2) 7→ g1 ◦ g2,

such that s(g1 ◦ g2) = s(g2), t(g1 ◦ g2) = t(g1). It is thought of as a concatenation of arrows.
Note that when picturing this composition rule, it is best to draw arrows from the right to the
left.

(3) m0 m1 m2

g1 g2

m0 m2

g1◦g2
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Definition 1.1. The above data define a Lie groupoid G ⇒ M if the following axioms
are satisfied:

1. Associativity: (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3) for all (g1, g2, g3) ∈ G(3).
2. Units: t(g) ◦ g = g = g ◦ s(g) for all g ∈ G.
3. Inverses: For all g ∈ G there exists h ∈ G such that s(h) = t(g), t(h) = s(g),
and such that g ◦ h, h ◦ g are units.

The inverse of an element is necessarily unique (cf. Exercise). Denoting this element by g−1,
we have that g ◦ g−1 = t(g), g−1 ◦ g = s(g). Inversion is pictured as reversing the direction of
arrows.

From now on, when we write g = g1 ◦ g2 we implicitly assume that g1, g2 are composable,
i.e. s(g1) = t(g2). Let

Gr(MultG) = {(g, g1, g2) ∈ G3| g = g1 ◦ g2}.

be the graph of the multiplication map; we will think of MultG as a smooth relation from G×G
to G.

Remark 1.2. A groupoid structure on a manifold G is completely determined by Gr(MultG), i.e.
by declaring when g = g1 ◦ g2. Indeed, the units are the elements m ∈ G such that m = m ◦m.
Given g ∈ G, the source s(g) and target t(g) are the unique units for which g = g◦s(g) = t(g)◦g.
The inverse of g is the unique element g−1 such that g ◦ g−1 is a unit.

Remark 1.3. In the definition above, our manifolds are always assumed to satisfy the Hausdorff
separation axiom. For a (possibly) non-Hausdorff Lie groupoid, we allow the space G to be a
non-Hausdorff manifold, but still require that the fibers of the source and target maps, as well
as the units M , are Hausdorff. 1 Non-Hausdorff Lie groupoids are very common in the theory
of foliations; see below.

Remark 1.4. One may similarly consider ‘set-theoretic’ groupoids G ⇒ M , by taking s, t, and
MultG to be set maps (with s, t surjective). Such a set-theoretic groupoid is the same as a
category for which the objects M and arrows G are sets, and with the property that every
arrow is invertible.

Remark 1.5. Let InvG : G → G, g 7→ g−1 be the inversion map. As an application of the
implicit function theorem, it is automatic that InvG is a diffeomorphism.

Definition 1.6. A morphism of Lie groupoids F : H → G is a smooth map such that

F (h1 ◦ h2) = F (h1) ◦ F (h2)

for all (h1, h2) ∈ H(2). If F is an inclusion as a submanifold, we say that H is a Lie
subgroupoid of G.

1One of the consequences of the Hausdorff property is the uniqueness of flows of vector fields. But in the
theory to be developed below, the vector fields that we integrate are all tangent to source fibers, the target
fibers, or the units.



6 ECKHARD MEINRENKEN

By Remark 1.2, it is automatic that such a morphism takes units of H to units of G, and
that it intertwines the source, target, and inversion maps. We will often present Lie groupoid
homomorphisms by diagrams, as follows:

G //
//

��

M

��

H //
// N

If G ⇒M is a Lie groupoid, and m ∈M , the intersection of the source and target fibers

Gm = t−1(m) ∩ s−1(m)

is a Lie group, with group structure induced by the groupoid multiplication. (We will prove
later that it is a submanifold.) It is called the isotropy group of G at m.

1.2. Examples.

Example 1.7 (Lie groups). A Lie group G is the same as a Lie groupoid with a unique unit,
G⇒ pt. For any Lie groupoid G ⇒M , the inclusion of isotropy groups define Lie subgroupoids

Gm //
//

��

{m}

��

G //
// M

for all m ∈M .

Example 1.8 (Manifolds). At the opposite extreme, every manifold M can be regarded as a
trivial Lie groupoid M ⇒ M where all elements are units. The groupoid multiplication is
trivial: One has that m = m1 ◦ m2 if and only of m = m1 = m2. Given any Lie groupoid
G ⇒M , the units of M define a Lie subgroupoid

M //
//

��

M

��

G //
// M

Example 1.9 (Pair groupoid). For any manifold M , one has the pair groupoid

Pair(M) = M ×M ⇒M,

with a unique arrow between any two points m′,m (labeled by the pair itself). The composition
is necessarily

(m′,m) = (m′1,m1) ◦ (m′2,m2) ⇔ m′1 = m, m1 = m′2, m2 = m.

The units are given by the diagonal embedding M ↪→ M × M , and the source and target
of (m′,m) are m and m′, respectively. Note that the isotropy groups Pair(M)m of the pair
groupoid are trivial.
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For any Lie groupoid G ⇒ M , the target and source map combine into a Lie groupoid
morphism

(4) G //
//

(t,s)
��

M

��

Pair(M) //
// M

This groupoid morphism (t, s) is sometimes called the (groupoid) anchor ; it is related to the
anchor of Lie algebroids as we will see below.

Example 1.10 (Fundamental groupoid). Another natural Lie group associated to any manifold
M is the fundamental groupoid

Π(M)⇒M,

consisting of homotopy classes [γ] of continuous paths γ : [0, 1] → G, relative to fixed end
points. The source and target maps are s([γ]) = γ(0), t([γ]) = γ(1), and the groupoid mul-
tiplication is concatenation of paths. The groupoid anchor (t, s) : Π(M) → Pair(M) is a local
diffeomorphism; it is a global diffeomorphism if and only if M is 1-connected. 2

Example 1.11 (Lie group bundles). Suppose π : Q → M is a Lie group bundle, i.e., a locally
trivial fiber bundle whose fibers have Lie group structure, in such a way that the local trivi-
alizations respect these group structures. (As a special case, any vector bundle is a Lie group
bundle, using the additive group structure on the fibers.) Then Q is a groupoid Q⇒M , with
s = t = π, and with the groupoid multiplication g = g1 ◦ g2 if and only if π(g) = π(g1) = π(g2)
and g = g1g2 using the group structure on the fiber.

In the opposite direction, any Lie groupoid G ⇒M with s = t defines a family of Lie groups:
A surjective submersion with a fiberwise group structure such that the fiberwise multiplication
depends smoothly on the base point. In general, it is not a Lie group bundle since there need
not be local trivializations. In fact, the groups for different fibers need not even be isomorphic
as Lie groups, or even as manifolds.

Example 1.12 (Jet groupoids). Given points m0,m1 ∈M and a diffeomorphism φ from an open
neighborhood of m1 to an open neighborhood m0, with φ(m1) = m0, let jk(φ) denote its k-jet.
Thus, jk(φ) is the equivalence class of φ among such diffeomorphisms, where jk(φ) = jk(φ

′) if
the Taylor expansions of φ, φ′ in local coordinates centered m1,m0 agree up to order k. The
set of such triples (m0, jk(φ),m1) is a manifold Jk(M,M), and with the obvious composition
of jets it becomes a Lie groupoid

Jk(M,M)⇒M.

For k = 0, this is just the pair groupoid; for k = 1, the elements of the groupoid J1(M,M)⇒M
are pairs of elements m0,m1 ∈M together with an isomorphism Tm1M → Tm0M . The natural
maps

· · · → Jk(M,M)→ Jk−1(M,M)→ · · · → J0(M,M) = Pair(M)

2If M is connected, and M̃ is a simply connected covering space, with covering map M̃ →M , one has a Lie

groupoid homomorphism Pair(M̃) = Π(M̃) → Π(M). By homotopy lifting, this map is surjective. Let Λ be

the discrete group of deck transformations of M̃ , i.e., diffeomorphisms covering the identity map on M . Then

M = M̃/Γ, and Π(M) = Π(M̃)/Γ = (M̃ × M̃)/Γ, a quotient by the diagonal action.
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are morphisms of Lie groupoids. (These groupoids may be regarded as finite-dimensional
approximations of the Haefliger groupoid of M , consisting of germs of local diffeomorphisms.
The latter is not a Lie groupoid since it is not a manifold.)

Example 1.13 (Action groupopids). Given an smooth action of a Lie group G on M , one has
the action groupoid or transformation groupoid G ⇒M . It may be defined as the subgroupoid
of the direct product of groupoids G ⇒ pt and Pair(M) ⇒ M , consisting of all (g,m′,m) ∈
G × (M × M) such that m′ = g.m. Using the projection (g,m′,m) 7→ (g,m) to identify
G ∼= G×M , the product reads as

(g,m) = (g1,m1) ◦ (g2,m2) ⇔ g = g1g2, m = m2, m1 = g2.m2.

Note that the isotropy groups Gm of the action groupoid coincide with the stabilizer groups of
the G-action, Gm.

Example 1.14 (Submersion groupoids). Given a surjective submersion π : M ⇒ N , one has a
submersion groupoid

M ×N M ⇒M

given as the fiber product with itself over N . The groupoid structure is as a subgroupoid of the
pair groupoid Pair(M). For the special case of a principal G-bundle π : P → N , the submersion
groupoid is identified with P ×G; the groupoid structure is that of an action groupoid.

Example 1.15 (Atiyah groupoids). Let P → M be a principal G-bundle. Let G(P ) be the set
of triples (m′,m, φ) where m,m′ ∈ M and φ : Pm → Pm′ is a G-equivariant map between the
fibers over m,m′ ∈M . Put s(m′,m, φ) = m, t(m′,m, φ) = m′, and define the composition by

(m′1,m1, φ1) ◦ (m′2,m2, φ2) = (m′,m, φ)

whenever φ = φ1 ◦ φ2 and (m′1,m1) ◦ (m′2,m2) = (m′,m) (as for the pair groupoid). We will
call the resulting groupoid

G(P )⇒M

the Atiyah algebroid of P; it is also known as the gauge groupoid. Equivalently, we may regard
G(P ) as the quotient

G(P ) = Pair(P )/G,

of the pair groupoid by the diagonal action. We have the following sequence of groupoids and
groupoid morphisms,

1→ Gau(P )→ G(P )→ Pair(M)→ 1,

where Gau(P ) is the subgroupoid of elements having the same source and target. 3 As a special
case, for a vector bundle V →M one has an Atiyah algebroid G(V) of its frame bundle, given
more directly as the set of linear isomorphisms from one fiber of V to another fiber. Note that
the Atiyah algebroid of the tangent bundle TM is the same as the first jet groupoid J1(M,M).

3Perhaps, a better notation for this groupoid G(P ) is Aut(P ) ⇒ M . The automorphism group of P is then
the group Γ(Aut(P )) of bisections of Aut(P ).
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1.3. Exercises.

Exercise 1.1. Let φ1 : Q1 → M1, φ2 : Q2 → M2 be two submersions. Given any smooth map
F : Q1 →M2, show that the fiber product

Q2 φ2×F Q1 = {(q2, q1)| φ2(q2) = F (q1)}
is a smooth submanifold of Q2 × Q1, and the map Q2 φ2×F Q1 → M1 induced by φ1 is a

submersion. Use this to verify that for a Lie groupoid G, the spaces of k-arrows G(k) are
smooth manifolds.

Exercise 1.2. Using the definition, show that inverses of a (Lie) groupoid are unique. In fact,
show that if g ∈ G is given, and h1, h2 ∈ G are such that g ◦ h1 and h2 ◦ g are units, then
h1 = h2.

Exercise 1.3. Show that the inversion map InvG of a groupoid is a diffeomorphism.

Exercise 1.4. a) Given two Lie groupoids G ⇒M and H⇒ N , show that their direct product
becomes a Lie groupoid

G ×H⇒M ×N.
b) Show that a smooth map F : H → G between Lie groupoids is a Lie groupoid morphism if
and only if its graph

Gr(F ) = {(g, h) ∈ G ×H| F (h) = g}
is a Lie subgroupoid of the direct product:

Gr(F ) //
//

��

Gr(F |M )

��

G ×H //
// M ×N

Exercise 1.5. Show that any morphism of Lie groupoids Pair(N) → Pair(M) is induced by a
smooth map f : N →M .

Exercise 1.6. Show that if J is an open interval around 0, and G ⇒M is a Lie groupoid, then
a morphism of Lie groupoids

Pair(J)→ G
is equivalent to a G-path: That is, a path γ̃ : J → G such that γ̃(0) =: m ∈M and t(γ̃(t)) = m
for all t ∈ J . That is, any such morphism if of the form

(t′, t) 7→ γ̃(t′)−1γ̃(t).

Show that the corresponding base path γ(t) = s(γ̃(t)) lies in a fixed orbit O of G.

Exercise 1.7. Let G ⊆ R ×MatR(3) be the 4-dimensional submanifold consisting of all (t, B)
such that

B +B> + t B>B = 0.

Show that
(t, B) = (t1, B1) ◦ (t2, B2)

if and only if
t = t1 = t2, B = B1 +B2 + t B1B2
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defines a Lie groupoid structure G ⇒ R, with s = t given by projection G → R. Identify the
Lie groups Gt given as the fibers of this projection. (Hint: For t 6= 0, consider A = tB + I.)

Exercise 1.8. Let d be a Lie algebra, and g, h ⊆ d two Lie subalgebras such that d = g ⊕ h
as vector spaces. Let D,G,H be the corresponding simply connected Lie groups, and i : G→
D, j : H → D the group homomorphisms exponentiating the inclusions of g, h into d. Let

Γ = {(h, g, g′, h′) ∈ H ×G×G×H| j(h)i(g) = i(g)j(h)}.

In other words, G is the fiber product of H ×G with G×H over D, relative the natural maps
from these spaces to D. Put

(h, g, g′, h′) = (h1, g1, g
′
1, h
′
1) ◦ (h2, g2, g

′
2, h
′
2)

if and only if

h′1 = h2, h = h2, h′ = h′2, g = g1g2, g′ = g′1g
′
2.

Show that this defines the structure of a Lie groupoid G ⇒ H. Exchanging the roles of G and
H the same space has a groupoid structure G ⇒ G, and the two structures are compatible in
the sense that they define a double Lie groupoid. Try to invent such a compatibility condition
of two groupoid structures, and verify that it is satisfied in this example. (See Lu-Weinstein
[28])

Exercise 1.9. Let X be a vector field on a manifold M . If X is complete, then the flow Φt(m)
of any m ∈ M is defined for all t, and one obtains a group action Φ: R ×M → M . For an
incomplete vector field, Φ is defined on a suitable U ⊆ R ×M . Show that U becomes a Lie
groupoid U ⇒ R.

2. Foliation groupoids

2.1. Definition, examples. A foliation F of a manifold M may be defined to be a subbundle
E ⊆ TM satisfying the Frobenius condition: for any two vector fields X,Y taking values in E,
their Lie bracket again takes values in E. Given such a subbundle, one obtains a decomposition
of M into leaves of the foliation, i.e., maximal connected injectively immersed submanifolds.
The quotient space M/ ∼, where two points are considered equivalent if they lie in the same
leaf, is called the leaf space. Locally, a foliation looks very simple: For every m ∈ M there
exists a chart (U, φ) centered at m, with φ : U → Rn, such that the tangent map Tφ takes
E|U to the tangent bundle of the projection prRq : Rn → Rq to the last q coordinates. Such an
adapted chart is called a foliation chart. For a foliation chart, every Ua = φ−1(Rn−q × {a})
for a ∈ Rq is an open subset of a leaf. Globally, the situation can be much more complicated,
since Ua, Ub for a 6= b might belong to the same leaf. Accordingly, the leaf space of a foliation
can be extremely complicated.

Example 2.1. For any surjective submersion π : P → B, the bundle ker(Tπ) ⊆ TP defines a
foliation, with leaves the fibers π−1(b). If the fibers are connected, then P/ ∼ is just B itself.
If the fibers are disconnected, the leaf space can be a non-Hausdorff manifold. (E.g., take
P = R2\{0} with π projection to the first coordinate; here P/ ∼ is the famous ‘line with two
origins’.)



LIE GROUPOIDS AND LIE ALGEBROIDS 11

Example 2.2. Given a diffeomorphism Φ: M → M of a manifold, one can form the mapping
torus as the associated bundle

MΦ = R×Z M,

where R is regarded as a principal Z-bundle over R/Z, and the action of Z is generated by
Φ. That is, it is the quotient of R ×M under the equivalence relation generated by (t,m) ∼
(t+1,Φ(m)). The 1-dimensional foliation of M ×R, given as the fibers under projection to M ,
is invariant under the Z-action, and so it descends to a 1-dimensional foliation of the mapping
torus. If some point m ∈M is fixed under some power ΦN , then the corresponding leaf in the
mapping torus is a circle winding N times around the mapping torus. But if m is not a fixed
point, then the corresponding leaf is diffeomorphic to R.

Example 2.3. Given a manifold M with a foliation F , and any proper action of a discrete
group Λ preserving this foliation, the quotient M/Λ inherits a foliation. For example, given
a connected manifold B, with base point b0, and any action of the fundamental group Λ =

π1(B, b0) on another manifold Q, the foliation of M = B̃×Q given by the fibers of the projection
to Q is Λ-invariant for the diagonal action, and hence the associated bundle

M/Λ = B̃ ×Λ Q

inherits a foliation. Note that the leaves of this foliations are coverings of B.

Example 2.4. Consider the foliation of the 2-torus T 2 = R2/Z2 induced by the vector field
X ∈ X(R2) whose lift to R2 is ∂

∂x + c ∂∂y . If c is a rational number, then the flow of X is

periodic, and space of leaves of the foliation is a manifold (a circle). If c is irrational, then the
space T 2/ ∼ of leaves is quite pathological: its only open subsets are the empty set and the
entire space. (This example may also be regarded as a mapping torus, where Φ is given by a
rotation of the standard circle by a fixed 2πc.)

Example 2.5. We next describe a 2-dimensional foliation of the 3-sphere, known as the Reeb
foliation. Consider S3 as the total space of the Hopf fibration

π : S3 → S2

(realized for example as the quotient map from SU(2) = S3 to its homogeneous space CP (1) ∼=
S2). The pre-image of the equator on S2 is a 2-torus T 2 ⊆ S3, and this will be one leaf of the
foliation. The pre-image of the closed upper hemisphere is a solid 2-torus bounded by T 2, and
similarly for the closed lower hemisphere. Thus, S3 is obtained by gluing two solid 2-tori along
their boundary. Note that this depends on the choice of gluing map: what is the ‘small circle’
with respect to one of the solid tori becomes the ‘large circle’ for the other, and vice versa.
Now, foliate the interiors of these solid 2-tori as in the following picture (from wikipedia):
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More specifically, this foliation of the interior of a solid torus is obtained from a translation
invariant foliation of the interior of a cylinder Z = {(x, y, z)| x2 + y2 < 1}, for example given
by the hypersurfaces

z = exp
( 1

1− (x2 + y2)

)
+ a, a ∈ R

for a ∈ R. The Reeb foliation has a unique compact leaf (the 2-torus), while all other leaves
are diffeomorphic to R2.

2.2. Monodromy and holonomy. We will need the following notions.

Definition 2.6. Let F be a foliation of M , of codimension q.

(a) A path (resp. loop) in M that is contained in a single leaf of the foliation F is
called a foliation path (resp., foliation loop).

(b) A q-dimensional submanifold N is called a transversal if N is transverse to all
leaves of the foliation. That is, for all m ∈ N , the tangent space TmN is a
complement to the tangent space of the foliation.

Given points m,m′ in the same leaf L, and transversals N,N ′ through these points, then
any leaf path γ from m to m′ determines the germ at m of a diffeomorphism

φγ : N → N ′,

taking m to m′. Indeed, given m1 ∈ N1 sufficiently close to m, there exists a foliation path
γ1 close to γ, and with end point in N ′. This end point m′1 is independent of the choice of
γ1, as long as it stays sufficiently close to γ. This germ φγ is unchanged under homotopies of
γ. It is also independent of the choice of transversals, since we may regard a sufficiently small
neighborhood of m in N as the ‘local leaf space’ for M near m, and similarly for m′. One calls
φγ the holonomy of the path γ. Intuitively, the holonomy of a path measures how the foliation
‘twists’ along γ. In the special case m = m′, we may take N = N ′ and obtain a map from the
fundamental group of the leaf, π1(L,m), to the group of germs of diffeomorphism of N fixing
m.

2.3. The monodromy and holonomy groupoids. .
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Definition 2.7. Let F be a foliation of M , and m ∈M .

(a) The monodromy group of F at m is the fundamental group of the leaf L ⊆ M
through m:

Mon(F ,m) = π1(L,m).

(b) The holonomy group of F at m is the image of the homomorphism from
Mon(F ,m) into germs of diffeomorphisms of a local transversal through m. It is
denoted

Hol(F ,m).

In other words, Mon(F ,m) consists of homotopy classes of foliation loops bases at m, while
Hol(F ,m) consists of holonomy classes. Hol(F ,m) is the quotient of Mon(F ,m) by the classes
of foliation loops having trivial holonomy.

Definition 2.8. Let F be a foliation of M .

(a) The monodromy groupoid

Mon(F)⇒M,

consists of triples (m′,m, [γ]), where m,m′ ∈ M and [γ] is the homotopy class
of a foliation path γ from m = γ(0) to m′ = γ(1). The groupoid structure is
induced by the concatenation of foliation paths.

(b) The holonomy groupoid
Hol(F)⇒M,

is defined similarly, but taking [γ] to be the holonomy class of a foliation path γ.

Proposition 2.9. Mon(F) and Hol(F) are (possibly non-Hausdorff) manifolds.

Sketch. Here is a sketch of the construction of charts, first for the monodromy groupoid. Given
(m′,m, [γ]) ∈ Mon(F), choose local transversals N, N ′ through m, m′: that is, q-dimensional
submanifolds transverse to the foliation, where q is the codimension of F . Let φγ : N → N ′

be the diffeomorphism germ determined by [γ]. Choosing a germ of a diffeomorphism N →
Rq, which we may think of as transverse coordinates at m, we then also obtain transverse
coordinates near m′. These sets of transverse coordinates may be completed to local foliation
charts at m and m′. We hence obtain 2(n− q) + q = 2n− q-dimensional charts for Mon(F). A
similar construction works for Hol(F). �

Remark 2.10. (a) To see why the groupoids Mon(F) or Hol(F) are sometimes non-
Hausdorff, suppose g ∈ Mon(M,m) is a non-trivial element of the monodromy group.
It is represented by a non-contractible loop γ in the leaf through m. Then it can happen
that γ is approached through loops γn in nearby leaves, but the γn are all contractible.
Then the elements gn ∈ Mon(M,mn) (with mn = γn(0)) satisfy gn → g, but since
gn = mn (constant loops) they also satisfy gn → m. This non-uniqueness of limits then
implies that Mon(M) is not Hausdorff. Similarly phenomena appear for the holonomy
groupoid.
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(b) There is no simple relationship, in general, between the Hausdorff properties of the
holonomy and monodromy groupoids of a foliation F . Indeed, it can happen that two
points of Mon(F) not admitting disjoint open neighborhoods get identified under the
quotient map to Hol(F). On the other hand, it can also happen that two distinct points
of Hol(F) do not admit disjoint open neighborhoods, even if they have pre-images in
Mon(F) have disjoint open neighborhoods. (The images of the latter under the quotient
map need no longer be disjoint.)

Exercise 2.1. (From Crainic-Fernandes [12].) Let M = R3\{0} be foliated by the fibers of the
projection (x, y, z) 7→ z. Is the monodromy groupoid Hausdorff? What about the holonomy
groupoid?

Exercise 2.2. For the Reeb foliation of S3, show that the holonomy groupoid coincides with
the monodromy groupoid, and is non-Hausdorff.

Exercise 2.3. Think of S3 has obtained by gluing two solid 2-tori as before, and let M ⊆ S3 be
the open subset obtained by removing the central circle of each of the solid 2-tori. Show that
the monodromy groupoid is Hausdorff, but the holonomy groupoid is non-Hausdorff.

Exercise 2.4. Similar to S3, the product S2 × S1 is obtained by gluing to solid 2-tori, given as
the pre-images of the closed upper/lower hemispheres under the projection to S2. Foliate these
solid 2-tori as for the Reeb foliation. Show that the monodromy groupoid is non-Hausdorff,
but the holonomy groupoid is Hausdorff.

2.4. Appendix: Haefliger’s approach. A cleaner definition of holonomy proceeds as follows
(following Haefliger [24]): Let F be a given codimension q foliation of M . A foliated manifold
can be covered by foliation charts φ : U → Rn−q × Rq, i.e. the pre-images φ−1(Rn−q × {y0})
for y0 ∈ Rq are tangent to the leaves. There exists a topology on M , called the foliation
topology, generated by such pre-images. Put differently, the foliation charts become local
homeomorphisms if we give Rn−q its standard topology and Rq the discrete topology. The
connected components of M for the foliation topology are exactly the leaves of M , and the
continuous paths in M for the foliation topology are the foliation paths.

Let M̃ be the set of all (m, [ψ]), where m ∈ M , and where [ψ] is the germ of a smooth
map ψ : U → Rq, where U is an open neighborhood of m, and ψ is a submersion whose fibers

are tangent to leaves. Given a foliation chart (U, φ), one obtains a subset Ũ of M̃ consisting

of germs of [ψ] at points of U , where ψ is φ followed by projection. Give M̃ the topology

generated by all Ũ . Then the natural projection M̃ → M is a local homeomorphism relative
to the foliation topology on M .

Let γ : [0, 1] → M be a continuous path for the foliation topology (a foliation path in M),

with end points m = γ(0) and m′ = γ(1). Since M̃ → M is a covering, γ to paths in M̃ ,

defining a map π−1(m) → π−1(m′) between fibers of M̃ . Two such paths, with the same end
points, are said to define the same holonomy if they determine the same map.

3. Properties of Lie groupoids

3.1. Orbits and isotropy groups. Let G ⇒ M be a Lie groupoid. Define a relation ∼ on
M , where

m ∼ m′ ⇔ ∃g ∈ G : s(g) = m, t(g) = m′.
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Lemma 3.1. The relation ∼ is an equivalence relation.

Proof. Transitivity follows from the groupoid multiplication, symmetry follows from the exis-
tence of inverses, reflexivity follows since elements of M are units (so, m ◦m = m) �

The equivalence classes of the relation ∼ are called the orbits of the Lie groupoid. The
equivalence class of the element m ∈M is denoted

G ·m ⊆M.

Let us also recall the definition of isotropy groups

Gm = s−1(m) ∩ t−1(m).

Example 3.2. For a Lie group G with a Lie group action on M , the orbits and isotropy groups
of the action groupoid G = G×M are just the usual ones for the G-action:

G ·m = G ·m, Gm = Gm.

Example 3.3. For a foliation F of M , the orbits of both Mon(F) ⇒ M and Hol(F) ⇒ M are
the leaves of the foliation F , while the isotropy groups Gm are the monodromy groups and
holonomy groups, respectively.

We will show later in this section that the orbits are injectively immersed submanifolds of
M , while the isotropy groups are embedded submanifolds of G. Note that for any given m, the
orbit can be characterized as

G ·m = t(s−1(m)),

(or also as s(t−1(m))). The isotropy group Gm is the fiber of m under the map s−1(m) →
G ·m. Since is a submersion, the fibers s−1(m) are embedded submanifolds of G, of dimension
dimG−dimM . Hence, to show that the orbits and stabilizer group are submanifolds, it suffices
to show that the restriction of t to any source fiber s−1(m) has constant rank. This will be
proved as Proposition 3.7 below.

3.2. Bisections. A bisection of a Lie groupoid is a submanifold S ⊆ G such that both t, s
restrict to diffeomorphisms S →M . For example, M itself is a bisection. The name indicates
that S can be regarded as a section of both s and t. We will denote by

Γ(G)

the set of all bisections. It has a group structure, with the multiplication given by

S1 ◦ S2 = MultG((S1 × S2) ∩ G(2)).

That is, S1 ◦S2 consists of all products g1 ◦ g2 of composable elements with gi ∈ Si for i = 1, 2.
The identity element for this multiplication is the unit bisection M , and the inverse is given
by S−1 = InvG(S). This group of bisections comes with a group homomorphism

Γ(G)→ Diff(M), S 7→ ΦS

where ΦS = t|S ◦ (s|S)−1.
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Remark 3.4. Alternatively, a bisection of G may be regarded as a section σ : M → G of the
source map s such that its composition with the target map t is a diffeomorphism of Φ. The
definition as a submanifold has the advantage of being more ‘symmetric’.

Examples 3.5. (a) For a Lie group G⇒ pt, regarded as a Lie groupoid, a bisection is simply
an element of G, and Γ(G) = G as a group.

(b) For a vector bundle V → M , regarded as groupoid V ⇒ M , a bisection is the same as
a section. More generally, this is true for any bundle of Lie groups.

(c) For the ‘trivial’ groupoid M ⇒ M the only bisection is M itself. The resulting group
Γ(M) consists of only the identity element.

(d) For the pair groupoid Pair(M) ⇒ M , a bisection is the same as the graph of a diffeo-
morphism of M . This identifies Γ(G) ∼= Diff(M).

(e) Let P →M be a principal G-bundle. A bisection of Atiyah groupoid G(P )⇒M is the
same as a principal bundle automorphism ΦP : P → P . That is,

Γ(G) = Aut(P ).

(f) Given a G-action on M , a bisection of the action groupoid is a smooth map f : M → G
for which the map m 7→ f(m).m is a diffeomorphism.

The group of bisections has three natural actions on G:

• Left multiplication:

ALS(g) = h ◦ g,

with the unique element h ∈ S such that s(h) = t(g). Namely, h = ((s|S)−1 ◦ t)(g). This
has the property

(5) s ◦ ALS = s, t ◦ ALS = ΦS ◦ t.

• Right multiplication:

ARS (g) = g ◦ (h′)−1,

with the unique element h′ ∈ S such that s(h′) = s(g). Namely, h′ = (s|S)−1(s(g)). We
have that

(6) t ◦ ARS = t, s ◦ ARS = ΦS ◦ s.

• Adjoint action:

AdS(g) = h ◦ g ◦ (h′)−1,

with h, h′ as above. Note that the adjoint action is by groupoid automorphisms, re-
stricting to the map ΦS on units.

Examples 3.6. Diffeomorphisms of a manifold give a natural action on the pair groupoid
Pair(M). For a principal G-bundle, the group Aut(P ) of principal bundle automorphisms
naturally acts by automorphisms of the Atiyah groupoid. In both cases, the natural action is
the adjoint action.
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3.3. Local bisections. In general, there may not exist a global bisection passing through a
given point g ∈ G. However, it is clear that one can always find a local bisection S ⊆ M , that
is, t, s restrict to local diffeomorphisms to open subsets t(S) = V, s(S) = U of M . Any local
bisection defines a diffeomorphism between these open subsets:

ΦS = t|S ◦ (s|S)−1 : U → V,

with inverse defined by the local bisection S−1 = InvG(S). We have the left, right, and adjoint
actions defined as diffeomorphisms

ALS : t−1(U)→ t−1(V ), g 7→ h ◦ g,
ARS : s−1(U)→ s−1(V ), g 7→ g ◦ (h′)−1,

where, for a given element g ∈ G, we take h, h′ to be the unique elements in S such that
s(h) = t(g), s(h′) = s(g). These satisfy the relations (5), (6) as before, and hence we also have
an adjoint action defined as a diffeomorphism

AdS : s−1(U) ∩ t−1(U)→ s−1(V ) ∩ t−1(V ), g 7→ h ◦ g ◦ (h′)−1,

extending the map ΦS on units. As an application of local bisections, we can now prove

Proposition 3.7. For any Lie groupoid G ⇒M and any m ∈M , the restriction of t to
the source fiber s−1(m) has constant rank.

Proof. To show that the ranks of

t|s−1(m) : s−1(m)→M

at given points g, g′ ∈ s−1(m) coincide, let S be a local bisection containing the element g′◦g−1,
and let U = s(S), V = t(S). The diffeomorphism

ALS : t−1(U)→ t−1(V )

takes g to g′. Since s◦ALS = s, it restricts to a diffeomorphism on each s fiber. Since furthermore
t ◦ ALS = ΦS ◦ ALS , we obtain a commutative diagram

t−1(U) ∩ s−1(m)
AL

S |s−1(m)
//

t|s−1(m)

��

t−1(V ) ∩ s−1(m)

t|s−1(m)

��

U
ΦS

// V

where the horizontal maps are diffeomorphisms, and the upper map takes g to g′. Hence, the
ranks of the vertical maps at g, g′ coincide. �
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Corollary 3.8. For every m ∈ G, the orbit G ·m is an injectively immersed submanifold
of M , while the isotropy group Gm is an embedded submanifold of G, hence is a Lie
group. In fact, all fibers of the map

t, s : G → Pair(M)

are embedded submanifolds.

For the last part, we have that (t, s)−1(m′,m) is a submanifold because it coincides with the
fiber of m′ under the surjective submersion s−1(m)→ G ·m. (The fiber is empty if m′ 6∈ G ·m.)
Note that (t, s) does not have constant rank, in general.

3.4. Transitive Lie groupoids. A G-action on a manifold is called transitive if it has only a
single orbit: G ·m. The definition carries over to Lie groupoids:

Definition 3.9. A Lie groupoid is called transitive if it has only one orbit: G ·m = M .

Here are some examples:

• The pair groupoid Pair(M)⇒M is transitive.
• The jet groupoids Jk(M,M)⇒M are transitive.
• The homotopy groupoid Π(M)⇒M is transitive if and only is M is connected.
• For an action of a Lie group G on M , the action groupoid GnM ⇒M is transitive if

and only if the G-action on M is transitive.
• For any Lie groupoid G ⇒ M , and any orbit i : O ↪→ M , the restriction of G|O to O

is transitive. Here, the ‘restriction’ consists of all groupoid elements having source and
fiber in O. More precisely,

G|O = {(g, x′, x) ∈ G × Pair(O)| s(g) = x, t(g) = x′},
with the groupoid structure as a subgroupoid of G ×Pair(O). Note that GO comes with
an injective immersion to G, and G is a disjoint union of all such immersions.
• For any principal G-bundle π : P →M , the Atiyah groupoid G(P ) is transitive.

It turns out that all these examples are special cases of the last one. For the following, see e.g.
[30].

Theorem 3.10. Suppose G ⇒M is a transitive Lie groupoid. Then G is isomorphic to
an Atiyah groupoid G(P ), for a suitable principal G-bundle P → M . The identification
depends on the choice of a base point m0 ∈M .

Proof. Given m0, let G = Gm0 be the isotropy group at m0, and P = s−1(m0) the source fiber.
The target map gives a surjective submersion

π = t|s−1(m0) : P →M, p 7→ t(p).

The group G acts on P by
g.p = p ◦ g−1;

this is well-defined since s(p) = m0 = s(g) and s(g.p) = s(g−1) = t(g) = m0. This action
preserves fibers, since π(g.p) = t(p◦g−1) = t(p) = π(p). The action is free, since g.p = p means
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p ◦ g−1 = p, hence g = m0 as an element of G, which is the identity of G = Gm0 . Conversely,
given two points p′, p ∈ P in the same fiber, i.e. t(p′) = t(p), the element g = (p′)−1 ◦ p is
well-defined, lies in Gm0 = G, and satisfies p′ = p ◦ g−1. This shows that P is a principal
G-bundle.4

It remains to identify G with the Atiyah groupoid of P . Let φ ∈ G be given. Left multipli-
cation by φ gives a map

Ps(φ) → Pt(φ), p 7→ φ ◦ p,
which commutes with the principalG-action given by multiplication from the right. This defines
an injective smooth map F : G → G(P ). It is clear that F is a groupoid homomorphism. The
inverse map is constructed as follows: given ψ ∈ G(P ), choose p ∈ Ps(ψ), then the element

φ = ψ(p) ◦ p−1 ∈ G is defined, and independent of the choice of p. Clearly, F (φ) = ψ. �

Example 3.11. For a homotopy groupoid Π(M)⇒M over a connected manifold M , the choice
of a base point m0 defines the fundamental group Gm0

∼= π1(M,m0). The bundle P is the

universal covering M̃ of M (with respect to m0), regarded as a principal π1(M,m0)-bundle,
and Π(M) gets identified as its Atiyah groupoid. In particular, we see that the group Γ(Π(M))
of bisections is the group

Aut(M̃) = Diff(M̃)π1(M)

of automorphisms of the covering space M̃ .

Example 3.12. Let G ×M ⇒ M be the action groupoid of a transitive G-action on M . The
choice of m0 ∈M identifies M with the homogeneous space

M ∼= G/K.

where K = Gm0 is the stabilizer. The principal bundle P for this transitive Lie groupoid is
G itself, regarded as a principal K-bundle over M . The resulting identification of the action
groupoid and the Atiyah groupoid is the map

G× (G/K)→ (G×G)/K (g, aK) 7→ (ga, a)K,

the inverse map is

(G×G)/K → G× (G/K), (b, a)K 7→ (ba−1, aK).

Exercise 3.1. Let M be a connected manifold. Show (by giving a counter-example) that the

map Aut(M̃)→ Diff(M) is not always surjective. Hint: You can take M = S1.

Exercise 3.2. Show that a Lie groupoid is transitive if and only if the map (t, s) is surjective,
and that it must be a submersion in that case.

4. More constructions with groupoids

In this section, we will promote the viewpoint of describing groupoid structures in terms
of the graph of the groupoid multiplication. This will require some preliminary background
material in differential geometry.

4The local triviality is automatic: given a free Lie group action on a manifold, and a surjective submersion
onto another manifold such that the orbits are exactly the fibers of the action, the manifold is a principal bundle;
local trivializations are obtained from local sections of the submersion.
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4.1. Vector bundles in terms of scalar multiplication. It is a relatively recent observation
that vector bundles are uniquely determined by the underlying manifold structures together
with the scalar multiplications:

Proposition 4.1 (Grabowski-Rotkievicz). [22]

(a) A submanifold of the total space of a vector bundle E →M is a vector subbundle
if and only if it is invariant under scalar multiplication by all t ∈ R.

(b) A smooth map E′ → E between the total spaces of two vector bundles E →
M, E′ →M ′ is a vector bundle morphism if and only if it intertwines the scalar
multiplications by all t ∈ R.

That is, the additive structure is uniquely determined by the scalar multiplication.

4.2. Relations. A linear relation from a vector space V1 to a vector space V2 is a subspace
R ⊆ V2 × V1. We will think of R as a generalized map from V1 to V2, and will write

R : V1 99K V2.

We define the kernel and range of R as

ker(R) = {v1 ∈ V1 : (0, v1) ∈ R},
ran(R) = {v2 ∈ V2 : ∃v1 ∈ V1, (v2, v1) ∈ R}.

R is called surjective if ran(R) = V2, and injective if ker(R) = 0.
An actual linear map A : V1 → V2 can be viewed as a linear relation, by identifying A with its

graph Gr(A); the kernel and range of A as a linear map coincide withe the kernel and relation
as a relation. The identity map idV : V → V defines the relation

∆V = Gr(idV ) : V 99K V

given by the diagonal in V ×V . Any subspace S ⊆ V can be regarded as a relation S : 0 99K V .
Given a relation R : V1 → V2, we define the transpose relation R> : V2 99K V1 by setting
(v1, v2) ∈ R> ⇔ (v2, v1) ∈ R. Note that R is the graph of a linear map A : V1 → V2 if and only
if dimR = dimV1 and ker(R>) = 0. We also define a relation

ann\(R) : V ∗1 → V ∗2

by declaring that (µ2, µ1) ∈ ann\(R) if and only if 〈µ2, v2〉 = lµ1, v1〉 for all (v2, v1) ∈ R;
equivalently, it is obtained from the annihilator of R by a sign change in one of the factors of
V ∗2 × V ∗1 . Note that

ann\(∆V ) = ∆V ∗ .

Also, if A : V1 → V2 is a linear map, and A∗ : V ∗2 → V ∗1 the dual map, then

ann\(Gr(A)) = Gr(A∗)>.

The composition of relations R : V1 99K V2 and R′ : V2 99K V3 is the relation

R′ ◦R : V1 99K V3,

where (v3, v1) ∈ R′◦R if and only if there exists v2 ∈ V2 such that (v3, v2) ∈ R′ and (v2, v1) ∈ R.
This has the property

ann\(R′ ◦R) = ann\(R′) ◦ ann\(R)
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(see [27, Lemma A.2]). Note that in general, given smooth families of subspaces Rt, R
′
t, the

composition Rt ◦ R′t need not have constant dimension, and even if it does it need not de-
pend smoothly on t (as elements of the Grassmannian). For this reason, one often imposes
transversality assumptions on the composition.

Definition 4.2. We say that R′, R have transverse composition if

(a) ker(R′) ∩ ker(R>) = 0,
(b) ran(R) + ran((R′)>) = V2.

Notice that the first condition in (4.2) means that for (v3, v1) ∈ R′ ◦R, the element v2 ∈ V2

such that (v3, v2) ∈ R′, (v2, v1) ∈ R is unique. The second condition is equivalent to the
condition that the sum (R′ × R) + (V3 × ∆V2 × V1) equals V3 × V2 × V2 × V1. The first
condition is automatic if ker(R′) = 0 or ker(R>) = 0, while the second condition is automatic
if ran(R) = V2 or ran((R′)>) = V2.

See e.g. [27, Appendix A] for further details, as well as the proof of the following dimension
formula:

Proposition 4.3. If R : V1 99K V2 and R′ : V2 99K V3 have transverse composition, then

dim(R′ ◦R) = dim(R′) + dim(R)− dimV2.

Conversely, if this dimension formula holds, then the composition is transverse provided
that at least one of the conditions in Definition 4.2 holds.

Lemma 4.4. Let R : V1 99K V2 and R′ : V2 99K V3 be surjective relations, whose trans-
pose relations are injective. Then R′, R have transverse composition, R′◦R is surjective,
and (R′ ◦R)> is injective.

Proof. Transversality of the composition is immediate from the definition 4.2: The first condi-
tion follows from injectivity of R>, the second condition from surjectivity of R. On the other
hand, the composition of surjective relations is surjective, while the composition of injective
relations is injective. �

More generally, we can consider smooth relations between manifolds. A smooth relation

Γ: M1 99KM2

from a manifold M1 to a manifold M2, is an (immersed) submanifold Γ ⊆M2×M1. Any smooth
Φ: M1 →M2 defines such a relation Gr(Φ) ⊆M2×M1, and we have Gr(Φ◦Ψ) = Gr(Φ)◦Gr(Ψ)
(composition of relations). Given another such relation Γ′ : M2 99K M3, the set-theoretic
composition of relations

Γ′ ◦ Γ = {(m3,m1)| ∃m2 ∈M2 : (m3,m2) ∈ Γ′, (m2,m1) ∈ Γ}

is a smooth relation if the composition is transverse:
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Definition 4.5. The composition of smooth relations Γ: M1 99KM2 and Γ′ : M2 99KM3

is transverse if for all points of Γ′ � Γ := (Γ′ × Γ) ∩ (M3 ×∆M2 ×M1) the composition
of tangent spaces is transverse.

This assumption implies that Γ′ ◦Γ is a submanifold of dimension dim Γ + dim Γ′− dimM2,
and the map to Γ ◦ Γ is a (local) diffeomorphism. It also follows that

T (Γ′ ◦ Γ) = TΓ ◦ TΓ′.

The manifold counterpart to Lemma 4.4 reads as:

Lemma 4.6. Let Γ: M1 99K M2 and Γ′ : M2 99K M3 be smooth relations, with the
property that the projections from Γ,Γ′ to their targets is a surjective submersion, while
their projection to the source is an injective immersion. Then Γ′,Γ have a transverse
composition, and the projections from Γ′ ◦ Γ to the target and source are a surjective
submersion and injective immersion, respectively.

Finally, we can also consider relations in the category of vector bundles. A VB-relation
Γ: E1 99K E2 between vector bundles is a vector subbundle of Γ ⊆ E2 × E1. By Grabowski-
Rotkievicz, this is the same as a smooth relation that is invariant under scalar multiplication.
The definition of ann\(Γ) generalizes, and the property under compositions extends:

ann\(Γ′ ◦ Γ) = ann\(Γ′) ◦ ann\(Γ).

4.3. Groupoid structures as relations. The axioms of a Lie groupoid can be phrased in
terms of smooth relations, as follows. Let Γ = Gr(MultG) ⊆ G × G 99K G be the graph of
the multiplication map. The projection of Γ onto G given as (g; g1, g2) 7→ g is a surjective
submersion, while the map Γ → G × G, (g; g1, g2) 7→ (g1, g2) is an embedding (its image is the

submanifold G(2)). By Lemma 4.6, it is automatic that the composition of Γ with Γ×∆G and
also with ∆G ×Γ are smooth, and the associativity of the groupoid multiplication is equivalent
to the equality

(7) Γ ◦ (Γ×∆G) = Γ ◦ (∆G × Γ)

Similarly, regarding the submanifold of units as a relation M : pt→ G, the condition for units
reads as

(8) Γ ◦ (M ×∆G) = ∆G = Γ ◦ (∆G ×M).
5 In the next section, we will give a first application of this viewpoint.

4.4. Tangent groupoid, cotangent groupoid. For any Lie groupoid G ⇒ M , the tangent
bundle becomes a Lie groupoid

TG ⇒ TM,

by applying the tangent functor to all the structure maps. For example, the source map is
sTG = T sG , and similarly for the target map; and the multiplication map is MultTG = T MultG
as a map from (TG)(2) = T (G(2)) to TG. The associativity and unit axioms are obtained from
those of G, by applying the tangent functor.

5This last composition is not transverse, though -- FIX THIS
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In fact, TG is a so-called VB-groupoid: It is a vector bundle, and all structure maps are
vector bundle morphisms.

Definition 4.7. A VB-groupoid is a groupoid V ⇒ E such that V → G is a vector
bundle, and Gr(MultV) is a vector subbundle of V3.

Using this result, it follows that the units of a VB-groupoid are a vector bundle E →M , and
that all groupoid structure maps are vector bundle morphisms. Furthermore, the zero sections
of V defines a subgroupoid G ⇒M of V ⇒ E.

Suppose that W ⇒ F is a VB-subgroupoid of V ⇒ E, with base H ⇒ N a subgroupoid of
G ⇒M . Then we can form the quotient VB-groupoid,

V|H/W ⇒ E|N/F
For example, if H ⊆ G is a Lie subgroupoid with units N ⊆ M , then the normal bundle
ν(G,H) = TG|H/TH becomes a Lie groupoid over ν(M,N),

ν(G,H)⇒ ν(M,N).

The dual of a VB-groupoid V ⇒ E is also a VB-groupoid:

Theorem 4.8. For any VB-groupoid V ⇒ E, the dual bundle V∗ has a unique structure
of a VB-groupoid such that µ = µ1 ◦ µ2 if and only if

〈µ, v〉 = 〈µ1, v1〉+ 〈µ2, v2〉
whenever v = v1 ◦ v2 in V. (Here it is understood that v, v1, v2 ∈ V have the same base
points as µ, µ1, µ2, respectively. In particular, these base points must satisfy g = g1 ◦g2.)
The units for this groupoid structure is the annihilator bundle ann(E).

We call
V∗ ⇒ ann(E)

the dual VB-groupoid to V ⇒ E.

Proof. Let ΓV = Gr(MultV) be the graph of the groupoid multiplication of V. Then the graph
of the proposed groupoid multiplication of V∗ is

ΓV∗ = ann\(Gr(MultV)).

By applying ann\ the associativity and unit axioms of V, given by (7) and (8) (with G replaced
by V), one obtains the corresponding axioms of V∗. In particular, we see that the elements of
ann(E) act as units. The inversion map for V∗ is just the dual of that of V; their graphs are
related by ann\ . �

Remark 4.9. (Some details.) As usual, the units, as well as the source and target maps, are
uniquely determined by the groupoid multiplication: Suppose µ ∈ V∗ is a unit. Then its base
point must be a unit in G. Let v ∈ E (with the same base point), so that v = v ◦ v. The
multiplication rule tells us that 〈µ, v〉 = 〈µ, v〉 + 〈µ, v〉, hence 〈µ, v〉 = 0. This shows that
µ ∈ ann(E). Conversely, if v, v1, v2 ∈ V|M with v = v1 ◦ v2 (in particular, all base points
coincide) then v = v1 + v2 modulo E. (Exercise below.) Hence, for µ ∈ ann(E) we obtain
µ = µ ◦ µ, by definition of the multiplication.
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Remark 4.10. We might call a VB-groupoid V ⇒ E a VB-group if E is the zero vector bundle
over pt. For example, the tangent bundle of a Lie group is a VB-group. The dual bundle to a
VB-group need not be a group, in general, since ann(E) ∼= (V|e)∗ with e the group unit of the
base G ⇒ pt is non-trivial unless V is the zero bundle over G. For the case that G = G is a Lie
group, and V = TG, we find that ann(E) = g∗.

Exercise 4.1. Show that if V is a VB-groupoid, and v = v1 ◦ v2 where the base points are in
M , then these base points are all the same, and v = v1 + v2 − s(v1).

Exercise 4.2. Using the preceding exercise, give explicit formulas for the source and target map
of V∗. (Start with V∗|M .)

4.5. Prolongations of groupoids. Given a groupoid G ⇒M , one can define new groupoids

Jk(G)⇒M,

the so-called k-th prolongation of G. The points of Jk(G) are k-jets of bisections of G. Thinking
of a bisection as a section σ : M → G whose composition with the target map is a diffeomor-
phism, the source fiber of Jk(G) consists of all k-jets of such sections at m, with the property
that the composition with t is the k-jet of a diffeomorphism.

• For k = 0, one recovers J0(G) = G itself.
• Elements of J1(G) are pairs (g,W ), where g ∈ G is an arrow and W ⊆ TgG is a

subspace complementary to both the source and target fibers. In other words, W is the
tangent space to some bisection passing through g. The composition is induced from
the composition of bisections, that is,

(g,W ) = (g1,W1) ◦ (g2,W2)

if and only if

W = T MultG((W1 ×W2) ∩ TG(2))

(the linearized version for multiplication of bisections.)

The successive prolongations define a sequence of Lie groupoids

· · · → Jk(G)→ Jk−1(G)→ · · · → J0(G) = G.
By applying this construction to the pair groupoid, one recovers the groupoids Jk(M,M)
discussed earlier. Prolongations of groupoids were introduced by Ehresmann [20]; recently
they have been used in the work of Crainic, Salazar, and Struchiner [13] on Pfaffian groupoids
and Spencer operators.

4.6. Pull-backs and restrictions of groupoids. Let G ⇒ M be a Lie groupoid. Given a
submanifold i : N ↪→ M such that the map (t, s) : G ⇒ Pair(M) is transverse to Pair(N) ⊆
Pair(M), one obtains a new groupoid i!G ⇒ N by taking the pre-image

i!G = (t, s)−1(Pair(N)).

The groupoid multiplication is simply the restriction of that of G. More generally, suppose
f : N → M is a smooth map such that the induced map Pair(f) : Pair(N) → Pair(M) is
transverse to (t, s). Then we define a pull-back groupoid f !G ⇒ N by

f !G = {(g, n′, n)| s(g) = f(n), t(g) = f(n′)}.



LIE GROUPOIDS AND LIE ALGEBROIDS 25

Its groupoid structure is that as a subgroupoid of G×Pair(N) over N ∼= Gr(f) ⊆M×N . Note

dim f !G = dimG + 2 dimN − 2 dimM,

and also that
f ! Pair(M) = Pair(N).

By construction, the pull-back groupoid comes with a morphism of Lie groupoids

f !G //
//

��

N

��

G //
// M

Remark 4.11. In the definition of f !G, one can weaken the transversality assumption to clean
intersection assumptions. However, the dimension formula for f !G has to be modified in that
case, adding the excess of the clean intersection to the right hand side.

Exercise 4.3. Show that under composition of maps,

(f1 ◦ f2)!G = f !
2f

!
1G.

provided that the clean intersection hypotheses are satisfied.

Exercise 4.4. Let π : P →M be a principal bundle, f : N →M a smooth map, and f∗P → N
the pull-back bundle (this is the subbundle of P ×N → M ×N along Gr(f) ∼= N , consisting
of all (p, n) such that π(p) = f(n)). Show that

f !G(P ) = G(f∗P ).

4.7. A result on subgroupoids. .

Theorem 4.12. Let G ⇒M be a Lie groupoid, and H⇒ N a set-theoretic subgroupoid.
If H is a submanifold of G, and the source fibers of H are connected, then H is a Lie
subgroupoid.

Our proof use the following Lemma from differential geometry (see e.g. [26])

Lemma 4.13 (Smooth retractions). Let Q be a manifold, and p : Q→ Q a smooth map
such that p ◦ p = p. Then p(Q) is a submanifold, and admits an open neighborhood in Q
on which the map p is s surjective submersion onto p(Q).

Remark 4.14. (a) If Q is connected, then p(Q) is connected. If Q is disconnected, then
p(Q) can have several connected components of different dimensions.

(b) In general, the smooth retraction p need not be a submersion globally, even when Q is
compact and connected.

Proof of Theorem 4.12. We denote by s, t : G → M the source and target map of G, by
i : M → G the inclusion of units, and by Mult : G(2) → G the groupoid multiplication. For
the corresponding notions of H, we will put a subscript H. We have to show:

(a) N is a submanifold of H,
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(b) sH, tH : H → N are submersions,

(c) MultH : H(2) → H is smooth.

The map iH ◦ sH : H → H is a retraction to the subset N ⊆ H. It is smooth, since it is the
restriction of the smooth map i ◦ s : G → G. Hence, by the Lemma, N is a submanifold. For
the rest of this argument, we can and will assume that the H-orbit space of N is connected;
hence N (which may be disconnected) has constant dimension.

The Lemma also tells us that there exists an open neighborhood of iH(N) in H on which sH
is a submersions onto N . By using a similar argument for tH, we see that the same is true for
tH. In particular, some neighborhood Ω of N in H becomes a ‘local Lie algebroid’. Define a
left-action of Ω on H, by the map

Ω sH×tH H, (k, g) 7→ k ◦ g.
Note that Ω sH×tHH is a smooth submanifold of G(2), due to the fact that sH is a submersion over
Ω, and that the action map is smooth since it is the restriction of MultG to this submanifold.

If sH is a surjective submersion at some point g ∈ H, then it is also a submersion at k ◦ g,
for any k ∈ Ω. Since H is assumed to be source connected, any g ∈ H can be written as a
product k1 ◦ · · · ◦ kN with kj ∈ Ω. This shows that sH is a submersion, and similarly tH is a
submersion. �

If we drop the assumption that H is source-connected, it need no longer be true that sH is
a submersion everywhere:

Example 4.15. Take G = R×R⇒ R be the 1-dimensional trivial vector bundle over R, regarded
as a groupoid with s(x, y) = t(x, y) = x. Pick a function y = f(x), taking values in positive
real numbers, such that the graph of f is a smooth submanifold, but has a vertical tangent
at some point (x0, y0). Then H = {(x, kf(x))| x ∈ R, k ∈ Z} is a set-theoretic subgroupoid
which is not a Lie subgroupoid, since sH is not surjective at (x0, y0).

Remark 4.16. If the submanifold H is a set-theoretic subgroupoid of the Lie groupoid G, with
possibly disconnected source fibers, the its ‘source component’ is still a Lie subgroupoid.

4.8. Clean intersection of submanifolds and maps. Some of the subsequent results will
depend on intersection properties of maps that are weaker than transversality. The following
notion of clean intersection goes back to Bott [5, Section 5].

Definition 4.17 (Clean intersections). (a) Two submanifold S1, S2 of a manifold M
intersect cleanly if S1 ∩ S2 is a submanifold, with

T (S1 ∩ S2) = TS1 ∩ TS2.

(b) A smooth map F : N → M between manifolds has clean intersection with a
submanifold S ⊆M if F−1(S) is a submanifold of N , with

Tn (F−1(S)) = (TnF )−1(TF (n)S), n ∈ N.
(c) Two smooth maps F1 : N1 →M and F2 : N2 →M intersect cleanly if the map

F1 × F2 : N1 ×N2 →M ×M
is clean with respect to the diagonal ∆M ⊆M ×M .
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Remarks 4.18. (a) One can show (see e.g. [25]) that at any point of a clean intersection of
submanifolds S1, S2, there exist local coordinates in which the submanifolds are vector
subspaces. One consequence of this is that for any two functions fi ∈ C∞(Si), with

f1|S1∩S2 = f2|S1∩S2 ,

there exists a smooth function f ∈ C∞(M) with

f |S1 = f1, f |S2 = f2.

More generally, given a vector bundle V → M , and two sections of σi ∈ Γ(V |Si) with
σ1|S1∩S2 = σ2|S1∩S2 , there exists σ ∈ Γ(V ) with σ|Si = σi.

(b) Note that F : N →M is clean with respect to S ⊆M if and only if its graph Gr(F ) ⊆
M ×N has clean intersection with S ×N .

(c) As a special case, if S1, S2 have transverse intersection, in the sense that

TmS1 + TmS2 = TmM

for all m ∈ S1 ∩ S2, then the intersection is clean: it is automatic in this case that
the intersection is a submanifold. Similarly, transversality of a map F : N → M to a
submanifold S ⊆M , in the sense that

ran(TnF ) + TF (n)S = TF (n)M

for all n ∈ N) implies cleanness.
(d) For a clean intersection of submanifolds S1, S2, one calls the quantity

e = dim(S1 ∩ S2) + dim(M)− dim(S1)− dim(S2)

the excess of the clean intersection. Thus, e = 0 if and only if the intersection is
transverse. Similarly, one defines the excess of a clean intersection of two maps, or of a
map with a submanifold.

Given a vector bundle V → M , with a subbundle W → N , we denote by Γ(V,W ) ⊆ Γ(V )
the sections of V whose restriction to N takes values in W . As a special case, if 0N is the
zero bundle over N , then Γ(V, 0N ) are the sections of V vanishing along N . We have the exact
sequence,

0→ Γ(V, 0N )→ Γ(V,W )→ Γ(W )→ 0.

For example, if N is a submanifold of M , then Γ(TM, TN) are the vector fields on M that ar
tangent to N . Later we will need the following fact:

Lemma 4.19. Suppose Wi → Ni are two vector subbundles of a vector bundle V →M .
If W1,W2 intersect cleanly (as manifolds), then the zero sections intersect cleanly, and
W1 ∩W2 → N1 ∩N2 is a vector subbundle of V . Furthermore, the map

Γ(V,W1) ∩ Γ(V,W2)→ Γ(W1 ∩W2)

is surjective.
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Proof. The first part follows by using the Grabowski-Rotkievicz theorem, since the intersec-
tion is a submanifold by assumption, and since it is invariant under scalar multiplication. In
particular, its zero sections N1 ∩N2 is a submanifold, where the intersection is clean:

T (N1 ∩N2) = T (W1 ∩W2) ∩ TM = TW1 ∩ TW2 ∩ TM = TN1 ∩ TN2.

For the second part, given a section σ12 ∈ Γ(W1 ∩W2), extend to sections σ1 ∈ Γ(W1) and
σ2 ∈ Γ(W2), and use Remark 4.18a to extend to a section σ of V . Then σ ∈ Γ(V,W1)∩Γ(V,W2),
and σ|N1∩N2 = σ12. �

4.9. Intersections of Lie subgroupoids, fiber products. .

Theorem 4.20 (Clean intersection of Lie subgroupoids). Let G ⇒M be a Lie groupoid,
and Hi ⇒ Ni, i = 1, 2 two Lie subgroupoids with clean intersection. Then H1 ∩H2 is a
Lie subgroupoid.

Proof. The cleanness assumption means that H = H1 ∩H2 is a submanifold, with

TH = TH1 ∩ TH2.

Let s be the source map of G, and s′ its restriction to H. By Theorem 4.12, the source
components of H are Lie subgroupoids; in particular the space of units N = N1 ∩ N2 is a
submanifold. Furthermore, s′ is a surjective submersion from some open neighborhood of N
inside H onto N . To see that it is a surjective submersion everywhere on H, we use right
translation. Given g ∈ G, with s(g) = m, t(g) = m′, we have that

ARg−1 : s−1(m)→ s−1(m′).

In particular, the tangent map preserves the source fibers, and hence

(9) TgARg−1 : ker(Tgs)→ ker(Tm′s).

Given g ∈ H, the map TgARg−1 restricts to isomorphisms

TgARg−1 : TgHi ∩ ker(Tgs)→ Ts(g)Hi ∩ ker(Tm′s)

for i = 1, 2, since both ]H1,H2 are Lie subgroupoids. Using the clean intersection condition,
we see that it restricts to an isomorphism

TgARg−1 : Tg(H1 ∩H2) ∩ ker(Tgs)→ Ts(g)(H1 ∩H2) ∩ ker(Tm′s),

that is,

TgARg−1 : ker(Tgs
′)→ ker(Tm′s

′).

This shows that s′ has constant rank globally, and likewise for t′. �

Corollary 4.21. Let G ⇒M and H⇒ N be Lie groupoids, and F : G → H a morphism
of Lie groupoids. Suppose that H′ ⇒ N ′ is a Lie subgroupoid of H, and let G′ ⇒ M ′

be its pre-image. If F is clean with respect to H′, then G′ is a Lie subgroupoid. In
particular, this is true if F is transverse to H′.
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Proof. We may regard the pre-image as the intersection of two Lie subgroupoids, Gr(F )∩(H′×
G) ⊆ H× G. �

Corollary 4.22. Suppose G ⇒ M and H ⇒ N are Lie groupoids, and that F : G → H
is a morphism of Lie groupoids. If F is clean with respect to N , then the kernel

ker(F ) = F−1(N)

is a Lie subgroupoid. In particular, this is true if F is transverse to N .

Corollary 4.23. Let G1 ⇒ M1,G2 ⇒ M2, H ⇒ N be Lie groupoids, and Fi : Gi →
H, i = 1, 2 morphisms of Lie groupoids. Let

G = G1 ×H G2 ⊆ G1 × G2.

be the fiber product. If G is a submanifold, and if, for all g = (g1, g2) ∈ G, the tangent
space of G is the fiber product of Tg1G1 and Tg2 |G2 under the tangent maps of the Fi,
then G is a Lie groupoid. In particular, this is true if F1, F2 are transverse.

Proof. We may interpret the fiber product as the pre-image of the diagonal ∆H under the map
F1 × F2. The given assumption just means that F1 × F2 is clean with respect to ∆H. �

Remark 4.24. This result, in the strong version stated here, is due to Bursztyn-Cabrera-del
Hoyo [6]. Note that conversely, the result for fiber products implies Theorem ??. Indeed, our
proof of the Theorem ?? was motivated by the argument in [6].

Example 4.25. The pull-back construction may be re-phrased in these terms: Given G ⇒ M
and f : N →M such that Pair(f) is transverse to (t, s), we have that

f !G = Pair(N)×Pair(M) G.

More generally, this holds if the two maps are clean with respect to each other.

4.10. The universal covering groupoid. Let G ⇒ M be a source connected Lie groupoid.

The source map s : G → M is a surjective submersion. Let G̃ be obtained by replacing each
source fiber by its universal covering. That is,

G̃ = {[γ]| γ : [0, 1]→ G is an s-foliation path with γ(0) ∈M},

where [γ] stands for homotopy classes of s-foliation paths, with fixed end points. (Put dif-
ferently, letting F be the s-foliation of G, we take the pre-image of M ⊆ G under the source

map of Mon(F) ⇒ G.) The space G̃ has a natural structure of a (possibly non-Hausdorff)
manifold. The manifold structure is obtained from the inclusion as a submanifold of Mon(F).

We emphasize that G̃ may be non-Hausdorff even if G is Hausdorff. Define source and target

maps of G̃ by

s([γ]) = γ(0), t([γ]) = t(γ(1)),

and define the groupoid multiplication of composable elements as

[γ′] ◦ [γ] = [γ′′]
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where γ′′ is a concatenation of the path γ with the ARγ(1)-translate of the path γ′: Thus

γ′′(t) =

{
γ(2t) 0 ≤ t ≤ 1/2,

γ′(2t− 1) ◦ γ(1)−1 1/2 ≤ t ≤ 1

Using these definitions, the space G̃ is a (possibly non-Hausdorff) Lie groupoid

G̃ ⇒M.

It comes with a local diffeomorphism

π : G̃ → G, [γ] 7→ γ(1),

which is a morphism of Lie groupoids.

5. Groupoid actions, groupoid representations

5.1. Actions of Lie groupoids. Generalizing Lie group actions, one can also consider
groupoid actions of G ⇒M on other manifolds.

Definition 5.1. An action of a Lie groupoid G ⇒M on a manifold Q is given by a map
Φ: Q→M together with an action map

A : G×M Q→ Q, (g, q) 7→ Ag(q) = g · q
where G×M Q := {(g, q)| s(g) = Φ(q)}. These are required to satisfy Φ(g · q) = t(g), as
well as

(g1 ◦ g2) · q = g1 · (g2 · q), m · q = q

for gi ∈ G, q ∈ Q, m ∈M , and whenever these are defined.

The map Φ is sometimes called a moment map of the action (due to some relationship with
the moment map in symplectic geometry), sometimes it is called an anchor. We will say that
G ⇒M acts on Q along M .

For any G-action, one can define its orbits in Q as the equivalence classes under the relation

q ∼ q′ ⇔ ∃g ∈ G : q′ = g · q.

Also, for q ∈ Q we can define its isotropy group

Gq = {g ∈ G| g · q = q}.

Example 5.2. For a group G, one always has the trivial action on point. The generalization to
groupoids is its action on the units M = G(0); here Φ = idM , and the action is g ·m = m′ for
s(g) = m, tz(g) = m′. Note that in general, there is no action of a groupoid on a point.

Example 5.3. Every Lie groupoid G ⇒M acts on itself by left multiplication g ·a = lg(a) = g◦a
(here Φ = t), and by right multiplication g · a = rg−1(a) = a ◦ g−1 (here Φ = s). These two
actions commute, and combine into an action of G × G ⇒ M ×M on G (with (Φ = (t, s)).
On the other hand, there is no natural adjoint action of G on itself (although we do have an
‘adjoint action’ of the group Γ(G) of bisections on G).
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Remark 5.4. Given an action of G ⇒M on Φ: Q→M , and a morphism of Lie groupoids from
H⇒ N to G ⇒M , there is no natural way, in general, of producing an H-action on Q (unless
the map on units N → M is a diffeomorphism). For example, in the case of the G × G-action
on G, there is no natural way of passing to a diagonal action, in general.

Remark 5.5. Note that any G-action on Q determines an action of the group of bisections Γ(G)
on Q, where the bisection S takes q ∈ Q to g×q, for the unique g ∈ S such that this composition
is defined (i.e., s(g) = Φ(q)). More generally, there is an action of the local bisections,

AS : Φ−1(U)→ Φ−1(V )

where U = s(S), V = t(S).

Remark 5.6. A groupoid action is fully determined by its graph Gr(AQ) ⊆ Q × (G × Q); for
example, Φ(q) ∈M is the unique unit such that q = Φ(q) · q.

Given a groupoid action of G ⇒M on Q→M , one can again form an action groupoid

G nQ⇒ Q

as the subgroupoid of G ×Pair(Q)⇒M ×Q consisting of all (g, q′, q) such that q′ = g ◦ q. The
action groupoid comes with a groupoid morphism

G nQ //
//

��

Q

��

G //
// M

where the left vertical map is (g, q) 7→ g. The orbits and isotropy groups of the action groupoid
are the orbits and isotropy groups for the G-action on Q.

Remark 5.7. Suppose conversely that we are given a groupoid morphism φ from H ⇒ Q to
G ⇒ M such that the map (φ, s) : H → G ×M Q is a diffeomorphism. Then H is the action
groupoid for a G-action on Q, in such a way that the action map is identified with the target
map for H. The stabilizers for the action are the isotropy groups of H.

5.2. Principal actions. A special case of a groupoid action is a principal action. If G is a
Lie group, a principal bundle is a G-manifold P for which there exists a surjective submersion
κ : P → B onto another manifold B, such that the fibers of κ are exactly the G-orbits, and the
action is free. These condition may be restated as the assertion that the map

G× P → P ×B P, (g, p) 7→ (g · p, p)

is a diffeomorphism. (In other words, the action groupoid G n P ⇒ P is identified with the
foliation groupoid). This definition has a direct analogue for groupoids:
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Definition 5.8 (Moerdijk-Mcrun [31]). Let G ⇒ M be a Lie groupoid. A principal
G-bundle is given by a manifold P with a surjective submersion κ : P → B, together
with a G-action on P along a map Φ: P →M , such that

(a) κ(g · p) = κ(p) whenever s(g) = Φ(p),
(b) the map

G n P → P ×B P, (g, p) 7→ (g · p, p)
is a diffeomorphism.

Morphisms of principal G-bundles κiPi → Bi are G-equivariant maps P1 → P2, inter-
twining the maps κi with respect to some base map B1 → B2.

As a consequence of (b), the isotropy groups for a principal action are trivial: Gp = {e} for
all p ∈ P .

Example 5.9. G itself is a principal G-bundle for

Φ(h) = s(h), κ(h) = t(h), g.h = hg−1.

Given a principal G-bundle κ → B, with moment map Φ: P → G(0), and any smooth map
f : B′ → B, the fiber product of P with B′ over B becomes a principal G-bundle, called the
pull-back :

κ′ : f∗P = B′ ×B P → B′.

Here κ′(b′, p) = b′, Φ′(b′, p) = Φ(p), g.(b′, p) = (b′, g · p).

Example 5.10. As a special case, every smooth map f : B → G(0) defines a trivial principal
G-bundle by pulling back G itself:

B ×G(0) G,

with

Φ(b, h) = t(h), κ(b, h) = b, g · (b, h) = (b, hg−1).

Principal bundles of this type are regarded as trivial.

As in the case of principal bundles for Lie groups, if a principal G-bundle admits a section
σ : B → P , then P is identified with the trivial bundle relative to the map f = t◦σ. Explicitly,
this map is

B ×G(0) G → P, (b, h) 7→ h−1 · σ(b).

For principal bundles of Lie groups, one has a notion of associated bundle P ×G S for any
G-manifold S on which G acts. It is the quotient of P × S under the diagonal action. For
general Lie groupoids G ⇒ M , there is no notion of diagonal action, in general. However,
given a G-manifold Q with a G-equivariant submersion Q → P , one has that Q is a principal
G-bundle, and its space of orbits may be regarded as an analogue of the associated bundle
construction. See Moerdijk-Mcrun for more details.
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5.3. Representations of Lie groupoids. A (linear) representation of a Lie groupoid G ⇒M
on a vector bundle π : V →M is a G-action on V along π such that the action map

G ×M V → V, (g, v) 7→ g · v

is a vector bundle map. Equivalently, the action groupoid

G n V ⇒ V

is a VB-groupoid. A representation of G on V gives a family of linear isomorphisms between
fibers

φg : Vs(g) → Vt(g)

with the property that φg1◦g2 = φg1 ◦ φg2 . Recall that for any vector bundle, we defined the
Atiyah groupoid G(V )⇒M to consist of triples (m′,m, φ) with φ : Vm → Vm′ . We may hence
also regard a representation to be a Lie groupoid morphism

G → G(V ).

Examples:

• A linear representation of the pair groupoid Pair(M) on V is the same as a trivialization
of V . Indeed, the action map gives consistent identifications of the fibers.
• A representation of the homotopy groupoid Π(M) on V is the same as a flat connection

on V: Any element of Π(M) gives a ‘parallel transport’.
• Given a G-action on M , a representation of the action groupoid GnM is the same as
G-equivariant vector bundle V →M (lifting the given action on the base).
• Given a foliation F of M , let ν(M,F) be the normal bundle of the foliation. This normal

bundle comes with a natural representation of the holonomy groupoid Mon(F) ⇒ M :
Given g = (m′,m, [γ]), and given transversals N,N ′ at m,m′, the tangent map to the
holonomy gives an isomorphism TmN → Tm′N

′; under the identification with normal
bundles this is the desired representation.

6. Lie algebroids

The infinitesimal counterpart to Lie groupoids was introduced by Pradines in the 1960s.

6.1. Definitions. .

Definition 6.1. A Lie algebroid over M is a vector bundle A→M , together with a Lie
bracket [·, ·] on its space of sections, such that there exists a vector bundle map

a : A→ TM

called the anchor map satisfying the Leibnitz rule

[σ, fτ ] = f [σ, τ ] + (a(σ)f) τ

for all σ, τ ∈ Γ(A) and f ∈ C∞(M).

Remark 6.2. (a) If an anchor map satisfying the Leibnitz rule exists, it is unique. (Exer-
cise.)
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(b) In the original definition, it was also assumed that the anchor map a induces a Lie
algebra morphism

a : Γ(E)→ X(M).

Later, it was noticed that this is automatic. (Exercise.)

6.2. Examples.

Example 6.3. A Lie algebroid over a point M = pt is the same as a Lie algebra.

Example 6.4. The tangent bundle, with its usual bracket on sections, is a Lie algebroid with a
the identity.

Example 6.5. Suppose E is a Lie algebra bundle, that is, a vector bundle whose fibers have Lie
algebra structures, and with local trivializations respecting the Lie algebra structures. Then E
with the pointwise Lie bracket and zero anchor is a Lie algebroid. Conversely, if E is a Lie alge-
broid with zero anchor, then the fibers inherit Lie brackets such that [σ, τ ](m) = [σ(m), τ(m)]
for all m ∈M . However, the Lie algebras for different fibers need not be isomorphic.

Example 6.6. Given a foliation F of a manifold M , one has the Lie algebroid TFM given by
the tangent bundle of the foliation.

Example 6.7. An action of a Lie algebra k onM is, by definition, a vector bundle homomorphism
k→ X(M), X 7→ XM such that the action map M × k→ TM, (m,X) 7→ XM (m) is smooth.
It defines an action Lie algebroid

A = knM,

where the anchor map is given by the action map, and the bracket is the unique extension of the
given Lie bracket on constant section determined by the Leibnitz rule. That is, if X,Y : M → k
(viewed as sections of A)

[X,Y ] = [X,Y ]k + La(X)Y − La(Y )X.

Here the subscript k indicates the pointwise bracket [X,Y ]k(m) = [X(m), Y (m)].

Example 6.8. For any principal K-bundle κ : P →M , the bundle

A(P ) = (TP )/K →M

is a Lie algebroid, called the Atiyah algebroid of P . The bracket on the space of sections Γ(A)
is induced from its identification with K-invariant vector field on P , while the anchor map
is induced by the bundle projection Tκ : TP → TM . This Lie algebroid fits into an exact
sequence of vector bundles (in fact, of Lie algebroids), called the Atiyah sequence

0→ gau(P )→ A(P )→ TM → 0

where gau(P ) = (P × k)/K is the quotient of the vertical bundle TvP ∼= P × k by K; it is
the bundle of infinitesimal gauge transformations. A splitting j : TM → A(P ) of the Atiyah
sequence is equivalent to a principal bundle connection. Given two vector fields X,Y , since
[j(X), j(Y )] is a lift of [X,Y ], the difference [j(X), j(Y )]− j([X,Y ]) is a section of the bundle
gau(P ). The resulting 2-form

F ∈ Ω2(M, gau(P )), F (X,Y ) = [j(X), j(Y )]− j([X,Y ])

is the curvature form of the connection.
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A Lie algebroid whose anchor map is a surjection onto TM is called a transitive Lie algebroid.
Thus, Atiyah algebroids are transitive. Not every transitive Lie algebroid corresponds to a
globally defined principal bundle, though.

Example 6.9. Let ω ∈ Ω2(M) be a 2-form on M , and let A = TM × R with the following
bracket on sections Γ(A) = X(M)⊕ C∞(M),

[X + f, Y + g] = [X,Y ] +X(g)− Y (f) + ω(X,Y ),

and with anchor the projection to TM . Then A is a Lie algebroid if and only if ω is closed.
Note that it is a transitive Lie algebroid. As we will explain later, this Lie algebroid corresponds
to a principal R/Λ-bundle (for Λ a discrete subgroup of R) if and only if for all f : S2 → M ,
the integral ∫

S2

f∗ω

lies in Λ. Hence, if the set of all such integrals (for all maps f : S2 → R) is dense in R, then no
such principal bundle, for any Λ, can exist.

Example 6.10. Given a hypersurface N ⊆ M , there is a Lie algebroid A → M whose space
of sections Γ(A) are the vector fields tangent to N . (In local coordinates x1, . . . , xn, with N
corresponding to xn = 0, the space of such vector fields is generated as a module over C∞(M)
by

∂

∂x1
, . . . ,

∂

∂xn−1
, xn

∂

∂xn−1
.

This Lie algebroid was considered by Melrose for manifolds with boundary, in his so-called
b-calculus.

Example 6.11 (Jet prolongations). For any vector bundle V →M , one has its k-th jet prolon-
gation Jk(V ) → M . The fiber of Jk(V ) at m consists of k-jets of sections σ ∈ Γ(V ), that is,
equivalence classes of sections, where two sections are equivalent if their Taylor expansions up
to order k agree. The jet bundles come with a tower of bundle maps

· · · Jk(V )→ Jk−1(V )→ · · · → J0(V ) = V.

For any section σ of V , one obtains a section jk(σ) of Jk(V ), and these generate Jk(V ) as a
C∞(M)-module. Taking V to be a Lie algebroid (for example, A = TM), one finds that Jk(A)
has a unique Lie algebroid structure such that

[jk(σ), jk(τ)] = jk([σ, τ ]), a(jk(σ)) = a(σ)

for all sections σ, τ ∈ Γ(A).

Remark 6.12. Suppose A→M is a vector bundle with an anchor map a : A→ TM , and with
a skew-symmetric ‘bracket’ [·, ·] on Γ(A) satisfying the Leibnitz rule. Then the ‘Jacobiator’

Jac(σ1, σ2, σ3) = [σ1, [σ2, σ3]] + [σ2, [σ3, σ1]] + [σ3, [σ1, σ2]]

is C∞(M)-linear in each entry. (Exercise.) That is, it defines a tensor Jac ∈ Γ(∧3A∗). In
particular, to verify whether Jac = 0 over some open subset U ⊆ M , it suffices to check on
generators for Γ(A|U ).
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6.3. Lie subalgebroids. We will make use of the following notation, for a vector bundle
V →M with given subbundle W → N :

Γ(V,W ) = {σ ∈ Γ(V )| σ|N ∈ Γ(W )}.

The map Γ(V,W )→ Γ(W ) is surjective, with kernel Γ(V, 0N ) the sections of V whose restriction
to N vanishes.

Definition 6.13. A subbundle B → N of a Lie algebroid A → M is called a Lie
subalgebroid if it has the following two properties:

(a) a(B) ⊆ TN ,
(b) Γ(A,B) ⊆ Γ(A) is a Lie subalgebra.

Proposition 6.14. A Lie subalgebroid B of A inherits a unique Lie algebroid structure,
in such a way that the restriction map Γ(A,B)→ Γ(B) preserves Lie brackets.

Proof. We have to show that Γ(A, 0N ) is an ideal in Γ(A,B). Let σ ∈ Γ(A,B). The space
Γ(A, 0N ) is spanned by products fτ , where τ ∈ Γ(A) and where f ∈ C∞(M) vanishes along
N . The Leibnitz rule

[σ, fτ ] = f [σ, τ ] + (a(σ)f) τ

shows that the bracket lies in Γ(A, 0N ), since both f and a(σ)f vanish along N . This proves
the claim, and hence Γ(B) = Γ(A,B)/Γ(A, 0N ) inherits a Lie bracket. The Leibnitz rule for
Γ(A) implies a Leibnitz rule for B, with anchor the restriction of a to B. �

Remark 6.15. A similar argument shows that for rank(B) < rank(A), the first condition in
Definition 6.13 is redundant. (On the other hand, for rank(B) = rank(A), the second condition
is redundant.)

Example 6.16. If N ⊆M is a submanifold, then TN ⊆ TM is a sub-Lie algebroid.

Example 6.17. The tangent bundle to a foliation F is a Lie subalgebroid TFM ⊆ TM .

Example 6.18. Let A → M be a Lie algebroid, and N ⊆ M a submanifold. If B := a−1(TN)
is a submanifold, then it is a vector subbundle (by the GR Lemma), and is in fact a Lie
subalgebroid. Its sections are all restrictions σ|N of sections σ ∈ Γ(A) such that a(σ) is tangent
to N . That is, it is the pre-image of Γ(TM, TN) under a. Letting i : N →M be the inclusion,
we will also use the notation

i!A→ N

for this Lie algebroid. The condition that a−1(TN) be a subbundle holds true, for example, if
N is transverse to the anchor. (I.e., a(Am) + TmN = TmM for all m ∈ N .) In this case, we
have that

rank(i!A) = rank(A)− dimM + dimN.

The transversality conditions is automatic if A is a transitive Lie algebroid. In the special case
A = TM , we obtain

i!TM = TN.
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More generally, for an Atiyah groupoid A = A(P ) of a principal K-bundle,

i!A(P ) = A(P |N ).

Example 6.19. If A→M is any Lie algebroid, and m ∈M , the kernel of the anchor at m

gm := ker(a)|m

is a Lie algebroid over {m}. As a Lie algebroid over a point, it is a Lie algebra. This is the
isotropy Lie algebra of A at m.

Example 6.20. More generally, if N ⊆M is a submanifold such that ker(a)|N is a submanifold
of A, then this submanifold (the union of isotropy Lie algebras of points in N) is a Lie subal-
gebroid. In particular, for any transitive Lie algebroid A→M the kernel of the anchor map is
a Lie subalgebroid ker(a) ⊆ A.

Suppose A→M is a Lie algebroid, and B ⊆ A is an anchored subbundle along N ⊆M , that
is, a(B) ⊆ TN . Then B is a Lie subalgebroid if and only if the bracket of any two sections of A
which restrict to sections of B, is again a section which restricts to a section of B. Fortunately,
it is not necessary to check this condition for all sections.

Lemma 6.21. Suppose A→M is a Lie algebroid, and B ⊆ A is an anchored subbundle
along N ⊆ M . Suppose that we are given a subset R ⊆ Γ(A,B), whose image in Γ(B)
generates Γ(B) as a C∞(N)-module. Then B is a Lie subalgebroid if and only if

(10) [R,R] ⊆ Γ(A,B).

Proof. By the Leibnitz rule, the condition (10) on R is equivalent to a similar property for the
C∞(M)-submodule generated by R. We may hence assume that R is a C∞(M)-submodule,
which hence surjects onto all of Γ(B). Consequently,

Γ(A,B) = R+ Γ(A, 0N ).

Since Γ(A,B),Γ(A, 0N ) ⊆ Γ(A, 0N ) (which holds regardless of whether Γ(A,B) is a Lie subal-
gebra), we see that Γ(A,B) is a Lie subalgebra if and only if (10) holds. �

Example 6.22. If A is a Lie algebroid, and B is a subbundle of rank 1 along N ⊆ M , then
B is a Lie subalgebroid if and only if a(B) ⊆ TN . Indeed, compatibility with the bracket is
automatic, since we may (locally) take R to consist of a single section.

6.4. Intersections of Lie subalgebroids. In general, the intersection of two Lie subalge-
broids need not be a Lie subalgebroid, even if the intersection is smooth:

Example 6.23. Consider two foliations F± of R2, given by the curves y = a ± x2 with a ∈ R.
Let B± ⊆ TR2 be the tangent bundles of these foliations. Then

B+ ∩B− = B+|S = B−|S

where S ⊆ R2 is the y-axis. However, this restriction is not a Lie subalgebroid, since a(B+|S) 6⊆
TS.
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However, a clean intersection assumption is all that is needed:

Theorem 6.24 (Clean intersection of Lie subalgebroids). Suppose A → M is a Lie
algebroid, and B1 → N1, B2 → N2 are two Lie subalgebroids. If B1, B2 intersect cleanly,
then B1 ∩B2 is again a Lie subalgebroid of A.

Proof. As discussed in Section 4.8, as a clean intersection of two vector subbundles, B1 ∩B2 is
again a vector subbundle, and the map

Γ(A,B1) ∩ Γ(A,B2)→ Γ(B1 ∩B2)

is surjective. Furthermore,

a(B1 ∩B2) ⊆ a(B1) ∩ a(B2) ⊆ TN1 ∩ TN2 = T (N1 ∩N2).

Since both Γ(A,Bi) are Lie subalgebras, their intersection is a Lie subalgebra. Hence, Remark
6.21 applies, and shows that B1 ∩B2 is a Lie subalgebroid. �

6.5. Direct products of Lie algebroids. .

Lemma 6.25. Given two Lie algebroids A→M and B → N , their direct product

A×B →M ×N
has a unique Lie algebroid structure, with anchor the direct product of the anchors, in
such a way that the map

Γ(A)⊕ Γ(B)→ Γ(A×B), (σ, τ) 7→ pr∗M σ + pr∗N τ

is a Lie algebra homomorphism. Here prM : M×N →M and prN : M×N → N are the
two projections, and pr∗M : Γ(A)→ Γ(pr∗M A) ⊆ Γ(A×B) and pr∗N : Γ(B)→ Γ(pr∗N B) ⊆
Γ(A×B) the pull-back maps.

Proof. Uniqueness is clear since Γ(A)⊕Γ(B) generates Γ(A×B) as a module over C∞(M×N).
To show existence, we write the bracket locally: Let σ1, . . . , σk be a local basis of sections

of A, τ1, . . . , τl a local basis of sections of B. Together, this form a local basis εi of sections of
A×B. Then all brackets [εi, εj ] are determined, and the Leibnitz rule forces us to put

[
∑
i

fiεi,
∑
j

gjεj ] =
∑
ij

(
figj [εi, εj ] + fi (a(εi)gj)εj − (a(εj)fi)gjεi

)
for all fi, gj ∈ C∞(M ×N). By Remark 6.12, this is a Lie bracket. �

7. Morphisms of Lie algebroids

7.1. Definition of morphisms. The definition of a morphism of Lie algebroids is not entirely
obvious, due to the fact that a vector bundle map does not induce a map of sections, in general.
Instead, we will characterize Lie algebroid morphisms in terms of their graphs.
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Definition 7.1. Let A → M and B → N be two Lie algebroids. A morphism of Lie
algebroids φ : B → A is a vector bundle morphism whose graph,

Gr(φ) ⊆ A×B
is a Lie subalgebroid of the direct product.

Note that a Lie algebroid morphism is in particular a morphism of anchored vector bundles.
That is, the following diagram commutes:

B
φ
//

��

A

��

TN
TF
// TM

where F : N →M is the base map of φ.

Example 7.2. For any smooth map F : N →M of manifolds, the tangent map

TF : TN → TM

is a morphism of Lie algebroids. To see this, it suffices to note that Gr(TF ) = T Gr(F ), under
the identification TM × TN ∼= T (M ×N). Conversely, if φ : TN → TM is a morphism of Lie
algebroids, then φ = TF , just from the compatibility with anchor maps.

Example 7.3. If B → N is a Lie subalgebroid of A → M , the inclusion map φ : B → A is a
morphism of Lie algebroids. To see that Gr(φ) is a Lie subalgebroid, note that

R = {σ × σ|N | σ ∈ Γ(A,B)} ⊆ Γ(A×B,Gr(φ))

surjects onto Gr(φ), and is closed under the Lie bracket. As a special case, the diagonal
inclusion A→ A×A is a Lie algebroid morphism.

Example 7.4. Given two Lie algebroids A,B the two projections

prA : A×B → A, prB : A×B → B

are Lie algebroid morphisms. For prA this follows because ∆A × B is a Lie subalgebroid of
A×A×B; the argument for prB is similar.

Example 7.5. Let A→M, B → N be Lie algebroids, and φ : B → A a vector bundle morphism
intertwining anchors. If the base map F : N →M is a diffeomorphism, then we have an induced
map on sections

φ∗ : Γ(B)→ Γ(A), φ∗τ = φ ◦ τ ◦ F−1.

φ is a Lie algebroid morphism if and only if this map on sections intertwines the Lie brackets.
This follows from the criterion, by taking

R = {φ∗(τ)× τ | τ ∈ Γ(B)} ⊆ Γ(A×B,Gr(φ))

Example 7.6. In particular, the anchor map a : A→ TM is a morphism of Lie algebroids. Also,
the natural maps between jet prolongations Jk(A)→ Jk−1(A) are morphisms of Lie algebroids.
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Example 7.7. Let A → M be a Lie algebroid. If N is a 1-dimensional manifold, then a Lie
algebroid morphism φ : TN → A is just a morphism of anchored vector bundles: Compatibility
with brackets is automatic. Indeed, since the graph of φ is a rank 1 subbundle, we may take
R in our criterion to consist of just one section.

Let us consider the case that N is an open interval J ⊆ R. Given a Lie algebroid morphism

φ : TJ → A,

the base map defines a smooth curve γ : J → M . Consider the coordinate vector field ∂
∂t as

a section of TJ . Compatibility with the anchor a : A → TM means that a takes the section
along γ,

(11) φ(
∂

∂t
) ∈ Γ(γ∗A)

to the vector field along γ,

(12) (Tγ)(
∂

∂t
) ∈ Γ(γ∗TM).

More intuitively, we may interpret (11) as a path γ̃ : J → A, with base path γ, and (12) as the
path

γ̇ =
∂γ

∂t
: J → TM.

The compatibility condition is simply that

(13) a ◦ γ̃ = γ̇.

Definition 7.8. A path γ̃ : J → A in a Lie algebroid, with base path γ : J → M , is
called a Lie algebroid path in A, or simply an A-path if it satisfies (13).

To summarize, the Lie algebra morphisms φ : TJ → A are in 1-1 correspondence with Lie
algebroid paths in A.

Example 7.9. Let M be a manifold, and g a Lie algebra. A vector bundle morphism

θ : TM → g,

may be regarded as a g-valued 1-form, θ ∈ Ω1(M, g). One finds that θ is a Lie algebroid
morphism if and only if is a solution of the Maurer-Cartan equation,

dθ +
1

2
[θ, θ] = 0.

Indeed, the graph of θ is spanned by sections σX = θ(X) +X ∈ Γ(g× TM) = g⊕ X(M), and
the condition that the bracket of two such sections σX , σY is again tangent to the graph gives
the desired identity.



LIE GROUPOIDS AND LIE ALGEBROIDS 41

7.2. Morphisms and sections. Let A→M and B → N be two Lie algebroids, and φ : B →
A a morphism of Lie algebroids. Sections σ ∈ Γ(A) and τ ∈ Γ(B) are called φ-related,

τ ∼φ σ

if φ(τ(n)) = σ(φ0(n)) for all n ∈ N . In particular, the vector fields a(τ), a(σ) are then
φ0-related. Observe that

τ ∼φ σ ⇔ σ × τ ∈ Γ(A×B, Gr(φ)).

Hence, the following is immediate:

Proposition 7.10. Let A → M and B → N be two Lie algebroids, and φ : B → A a
morphism of Lie algebroids. Given σ, σ′ ∈ Γ(A) and τ, τ ′ ∈ Γ(B) we have that

τ ∼φ σ, τ ′ ∼φ σ′ ⇒ [τ, τ ′] ∼φ [σ, σ′].

Our definition of Lie algebroid morphisms circumvents the problem that, in general, a vector
bundle map does not induce a map on sections, unless the vector bundles have the same base.
However, the bundle map φ : B → A, with base map F : N →M , does give a map

φ : Γ(B)→ Γ(F ∗A), τ 7→ φ(τ),

to sections of the pull-back vector bundle. The space Γ(F ∗A) is generated, as a C∞(M)-module,
by pull-backs F ∗σ of sections σ ∈ Γ(A). Its general sections are thus of the form

∑
i fiF

∗σi
where fi ∈ C∞(N) and σi ∈ Γ(A).

Proposition 7.11. Let A → M, B → N be Lie algebroids, and φ : B → A a vector
bundle morphism intertwining the anchor maps, with base map F : N → M . Then φ is
a Lie algebroid morphism if and only if for all τ, τ ′ ∈ Γ(B), with

(14) φ(τ) =
∑
i

fi F
∗σi, φ(τ ′) =

∑
j

f ′j F
∗σ′j ,

we have that

(15) φ([τ, τ ′]) =
∑
ij

fifjF
∗[σi, σ

′
j ] +

∑
j

a(τ)(f ′j) F
∗σ′j −

∑
i

a(τ ′)(fi) F
∗σi.

Proof. Given fi ∈ C∞(N) and σi ∈ Γ(A), the first formula in (14) is equivalent to stating that

τ̃ := (0× τ) +
∑
i

(pr∗M fi)(σi × 0)

lies in Γ(A×B,Gr(φ)). Define τ̃ ′ similarly in terms of f ′j , σ
′
j . Then

[τ̃ , τ̃ ′] =(0× [τ, τ ′]) +
∑
j

pr∗M (a(τ)f ′j)(σ
′
j × 0)−

∑
i

pr∗M (a(τ ′)fi)(σi × 0)

+
∑
ij

pr∗M (fif
′
j) ([σi, σ

′
j ]× 0).
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φ is a Lie algebroid morphism if and only if, for all τ, τ ′ ∈ Γ(B), this section again lies
Γ(A × B,Gr(φ)). But this says precisely that φ([τ, τ ′]) is given by the right hand side of
(15). �

Remark 7.12. In [29], the formula (15) is used as the definition of Lie algebroid morphism.
However, in this approach one has to check that the bracket is well-defined, i.e. independent
of the choice of the expressions (14) for φ(τ), φ(τ ′).

7.3. Fibered products, pre-images. .

Proposition 7.13. Let φ : B → A be a morphism of Lie algebroids A → M, B → N ,
with base map F : N → M , and let A′ ⊆ A be a Lie subalgebroid. If φ : B → A is clean
with respect to A′, then B′ = φ−1(A′) is a Lie subalgebroid.

Proof. This follows from the identification

B′ ∼= Gr(φ) ∩ (B ×A′)
where the intersection is clean. �

Proposition 7.14. Let φi : Bi → A be two Lie algebroid morphisms. If φ1, φ2 intersect
cleanly, then the fiber product B1 ×A B2 is a Lie subalgebroid of B1 ×B2.

Proof. This follows by interpreting the fiber product as the clean intersection of two Lie alge-
broids

Gr(φ1 × φ2) ∩ (∆A ×B1 ×B2) ⊆ A×A×B1 ×B2.

�

7.4. Pull-backs. Suppose A → M is a Lie algebroid, and that F ∈ C∞(N,M) is a smooth
map. Suppose that the anchor a : A→ TM has clean intersection with TF : TN → TM . Then
the fiber product

(16) F !A := A×TM TN,

has a natural structure as a Lie algebroid over N , with anchor induced by the natural projection
A × TN → TN . To define the Lie bracket on sections, note that under the identification of
N with Gr(F ) ⊆ M × N , the fiber product F !A is just the pre-image of T Gr(F ) = Gr(TF )
under the anchor A×TN → TM ×TN = T (M ×N). The pull-back Lie algebroid comes with
a Lie algebroid morphism

(17) F !A→ A

with base map F . Under composition of maps we have that

(F1 ◦ F2)!A = (F2)!(F1)!A,

provided that all the pullbacks are clean. If F is transverse to a, then the dimension count
gives

rank(F !A) = rank(A)− dimM + dimN.
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Example 7.15. For the tangent bundle, we find that

F !(TM) = TN.

Example 7.16. If F : N → M is a submersion, the transversality is automatic, hence F !A
is defined. For the case of product N = M × Q, with F : N → M projection to M , then
F !A = A× TQ. For an arbitrary submersion F , this describes F !A in local trivializations.

Example 7.17. Likewise, if A→M is a transitive Lie algebroid, the transversality is automatic,
and F !A → N is again transitive. In particular, if A = A(P ) is the Atiyah algebroid of a
principal G-bundle, then

F !A(P ) = A(F ∗P ),

the Atiyah algebroid of the pullback bundle.

Example 7.18. Suppose F is a foliation of M . If F : N → M has clean intersection with all
leaves of the foliation, then by taking pre-images of leaves we obtain a foliation F !F of N . We
have

F !TFM = TF !FN.

Example 7.19. If F : N → M is an injective immersion, then F !A = a−1(TN). In particular,
is a(A)|N ⊆ TN everywhere, then F !A is the usual pull-back as a vector bundle; the bracket
on sections of F !A is given by ‘restriction’.

7.5. Further Constructions.

7.5.1. Homotopy. Using pull-backs, we can define a notion of homotopy between two Lie alge-
broids morphisms. Recall that a homotopy between two maps of manifolds F0, F1 : N →M is
a smooth map F : N × [0, 1]→M such that

F0 = F ◦ j0, F1 = F ◦ j1
where jt : N → N × [0, 1] is the map n 7→ (n, t). To get avoid smoothness problems under
composition, one sometimes imposes the extra condition of sitting end points, that is, F being
t-independent for t close to the end points. 6

Definition 7.20. Let B → N, A → M be two Lie algebroids. A homotopy between
two LA morphisms ϕ0, ϕ1 : B → A (with base maps F0, F1) to be an LA morphism

ϕ : B × T [0, 1]→ A

whose composition with the LA morphisms B → B×T [0, 1] is the identity. We say that
ϕ has sitting end points if the base map has sitting end points, and ϕ|(n,t)( ∂∂t) = 0 for t
close 0 or close to 1.

Write ϕ1 ∼ ϕ0 for the relation of homotopy of LA morphisms.

Lemma 7.21. If ϕ1 ∼ ϕ0, then there exists a homotopy ϕ between ϕ0, ϕ1 with sitting
end points.

6A slightly different version of this condition is to assume ‘flatness at the end points’, in the sense that the
extension of F to all of R×N , by extending as a constant map on (−∞, 0]×M and on [1,∞), be smooth.
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Proof. Let χ : [0, 1] → [0, 1] be a smooth function with χ(0) = 0, χ(1) = 1, and such that χ
is constant near the end points. Given an arbitrary homotopy between ϕ0, ϕ1, its composition
with idA×Tχ has sitting end points. �

Since LA homotopies with sitting end points can be composed, the Lemma implies that LA
homotopy is an equivalence relation.

Given a Lie subalgebroid B1 ⊆ B along a submanifold N1 ⊆ N , we can define a notion
of relative homotopy, where we require that the homotopy ϕ is constant when restricted to
B1 × T [0, 1].

7.5.2. A-connections. Let A → M be a Lie algebroid. An A-connection on a vector bundle
V →M is a bilinear map

∇ : Γ(A)× Γ(V )→ Γ(V ), (σ, τ) 7→ ∇στ,

with the property that

∇fσ = f∇στ, ∇σ(fτ) = f∇σ(τ) + La(σ)(f) τ.

The notion of A-connections generalizes that of ordinary connections. to which it reduced for
A = TM . On the other hand, every TM -connection ∇ determines an A-connection by setting
∇σ := ∇a(σ).

Example 7.22. Suppose A is a regular Lie algebroid, so that a has constant rank, and defines
a foliation F with TF = ran(a). One obtains an A-connection on the vector bundle ker(a) by

∇στ = [σ, τ ],

as well as a Bott A-connection on ann(TF), the conormal bundle to the leaves:

∇σβ = La(σ)β.

(Sections of the conormal bundle are 1-forms on M that vanish on tangent vectors to the
leaves.) More generally, if A is not necessarily regular, and O ⊆M is any leaf, one has natural
AO-connections on ker(a)|O as well as on ann(TO).

The curvature of an A-connection is a tensor field

F∇ ∈ Γ(∧2A∗ ⊗ End(V )),

defined on sections σ1, σ2 ∈ Γ(A) by

F∇(σ1, σ2) = [∇σ1 ,∇σ2 ]−∇[σ1,σ2].

Thus, F∇ = 0 if and only if the map σ 7→ ∇σ preserves brackets. For the special case V = A,
one can also introduce a torsion of an A-connection on A, as the tensor field T∇ ∈ Γ(∧2A∗⊗A)
given on sections by

T∇(σ1, σ2) = ∇σ1σ2 −∇σ2 − [σ1, σ2].

7.5.3. Prolongations, VB-algebroids, tangent algebroids.



LIE GROUPOIDS AND LIE ALGEBROIDS 45

7.6. Lie algebroid actions, representations of Lie algebroids. Recall that an action of a
Lie algebra g on a manifold Q is a Lie algebra homomorphism g→ X(Q) such that the action
map g × Q → TQ, (ξ, q) 7→ ξQ(q) is smooth. Given such an action, one can then form the
action Lie algebroid gnQ⇒ Q as discussed in section ??. Note that the projection gn→ g is
a morphism of Lie algebroids, due to the fact that the bracket on constant sections is the given
one on g. In fact, Lie algebra actions can be defined in these terms, as Lie algebroid structures
on the trivial bundle Q× g, such that the projection to g is a Lie algebroid morphism.

This suggests the following generalization to actions of arbitrary Lie algebroids.

Definition 7.23. An action of a Lie algebroid A → M on a manifold Q is given by a
smooth map

Φ: Q→M

called the moment map (or anchor) of the action, together with a Lie algebroid structure
on the pull-back bundle Φ∗A, such that the natural bundle map

Φ∗A→ A

is a morphism of Lie algebroids. We define the generating vector fields of the action to
be

σQ = a(Φ∗σ), σ ∈ Γ(A).

Remarks 7.24. (a) In this context, Φ∗A becomes the action Lie algebroid ; it is also denoted
AnQ.

(b) Every section σ ∈ Γ(A) defines a generating vector field

σQ = aΦ∗A(Φ∗σ).

The map σ 7→ σQ is a Lie algebra morphism.
(c) The assumption that Φ∗A → A is a Lie algebroid morphism means in particular that

the following diagram commutes:

Φ∗A //

aΦ∗A
��

A

aA
��

TQ
TΦ
// TM

(d) We may equivalently define a Lie algebroid action of A→M on Φ: Q→M to be a Lie
algebra homomorphism

Γ(A)→ X(Q), σ 7→ σQ

such that (fσ)Q = (Φ∗f)σQ for all sections σ ∈ Γ(A) and functions f ∈ C∞(M), and
such that the resulting map Φ∗A→ TQ defined by σΦ(q) 7→ (σQ)q is smooth.

Examples 7.25. Every Lie algebroid A→M as a natural action on its base M , with generating
vector fields σM = a(σ).

We will encounter more interesting examples of Lie algebroid actions later on, as derivatives
of Lie groupoid actions. At this point, we are mainly interested in linear actions on vector
bundles.
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Definition 7.26. A representation of a Lie algebroid A → M on a vector bundle
π : V → M is a Lie algebroid action of A on V , with moment map π, such that the
generating vector fields σV ∈ X(V ) are linear, i.e., homogeneous of degree 0.

At this point it is useful to recall the following fact.

Proposition 7.27. Let π : V → M be a vector bundle. There is a 1-1 correspondence
between:

(a) Linear vector fields on V →M .
(b) Linear operators D : Γ(V )→ Γ(V ) such that there exists a vector field X ∈ X(M)

such that

D(fτ) = f D(τ) +X(f) τ, f ∈ C∞(M), τ ∈ Γ(V ).

(Thus, D is a first order linear differential operator on V with scalar principal
symbol.)

The correspondence takes a linear vector field X̃ on V , with restriction X = X̃|M , to

the differential operator on Γ(V ) defined by the infinitesimal flow of X̃.

Using this result, one can rephrase the definition of a Lie algebroid representation as follows.

Proposition 7.28. A representation of a Lie algebroid A on a vector bundle V is
equivalent to a flat A-connection on V .

Example 7.29. Given a Lie algebroid A → M , and a Lie subalgebroid B ⊆ A, with base
manifold N = M , one obtains a representation of B on A/B by

∇τσ = [τ, σ]

where σ ∈ Γ(A/B) is the equivalence class of a section σ ∈ Γ(A).

8. The generalized foliation of a Lie algebroid

8.1. Integral submanifolds. Let A→M be a Lie algebroid. If the Lie algebroid A is regular,
in the sense that the anchor map has constant rank, then a(A) ⊆ TM is a subbundle, with
sections Γ(a(A)) = a(Γ(A)). Since a induces a Lie algebra morphism on sections, it hence
follows by Frobenius’ theorem that a(A) is the tangent bundle of a foliation F on M .

For a non-regular Lie algebroid, a(A) ⊆ TM is not a subbundle since it does not have
constant rank. One still has a notion of integral submanifolds:

Definition 8.1. An integral submanifold of A is an injectively immersed submanifold
i : N ↪→M with the property that

Ti(TnN) = a(Ai(n))

for all n ∈ N . A connected integral submanifold is called a leaf of A if it is not properly
contained in any larger connected integral submanifold.
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Note that since the notion of integral submanifolds does not involve the bracket on Γ(A),
it is defined more generally for anchored vector bundles A → M . But we will use the Lie
algebroid structure to prove the following result:

Theorem 8.2. Given a Lie algebroid A → M , there is a unique leaf passing through
any given point m ∈M . That is, M acquires a unique decomposition into leaves of A.

The decomposition of M into leaves of A gives a ‘generalized foliation’ in the sense of
Stefan-Sussmann. One can prove the result above by referring to an appropriate version of the
Stefan-Sussmann theorem, as for example in [2]. Instead, we will follow a different approach,
due to [7] where we first prove a splitting theorem for Lie algebroids. This will require some
background information on normal bundles and tubular neighborhood embeddings.

8.2. Normal bundles and tubular neighborhoods. Let M be a manifold, and N ⊆M an
embedded submanifold. The normal bundle of N in M is the vector bundle

ν(M,N) := TM |N/TN → N.

We will denote by i : N →M the inclusion map and by p : ν(M,N)→ N the projection:

(18) ν(M,N)

p
��

N
i
// M.

Given a smooth map of pairs ϕ : (M ′, N ′)→ (M,N) (that is, ϕ : M ′ →M is a smooth map
with ϕ(N ′) ⊆ N), one obtains a vector bundle morphism

(19) ν(ϕ) : ν(M ′, N ′)→ ν(M,N)

over ϕ|N ′ : N ′ → N , with the obvious functorial property under composition of such maps. If
ϕ is transverse to N , and N ′ = ϕ−1(N), then ν(ϕ) is a fiberwise isomorphism.

Remarks 8.3. (a) The conormal bundle of i : N →M is the subbundle ann(TN) ⊆ T ∗M |N .
It is canonically isomorphic to the dual of ν(M,N).

(b) Of course, normal bundles are defined more generally for immersions i : N → M , as
ν(M,N) = i∗TM/TN .

(c) The normal bundle functor is compatible with the tangent functor: There is a canonical
isomorphism

(20) ν(TM, TN)
∼=−→ Tν(M,N)

identifying the structures as vector bundles over ν(M,N) and also as vector bundles
over TN . See Appendix ?? in [?] for a detailed discussion.

For a vector bundle π : E → M , the restriction of TE → E to M ⊆ E has a canonical
decomposition

TE|M = E ⊕ TM,

where E ⊆ TE|M is identified with the vectors tangent to fibers, and TM ⊆ TE|M with vectors
tangent to the base. Taking a quotient by TM , this gives a canonical isomorphism

(21) ν(E,M) ∼= E.
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As a special case, for any submanifold N ⊆M , we have

ν(ν(M,N), N) = ν(M,N).

Using this identification, we define:

Definition 8.4. Let i : N → M be a submanifold. A tubular neighborhood embedding
of ν(M,N) is an embedding φ : ν(M,N) → M , taking N ⊆ ν(M,N) to N ⊆ M , such
that the map ν(φ) induced by

φ : (ν(M,N), N)→ (M,N)

is the identity map on ν(M,N).

Thus, a tubular neighborhood embedding induces the identity map on the base N , as well as
in directions normal to N . It is well-known that every submanifold N ⊆ M admits a tubular
neighborhood embedding of its normal bundle. (The standard construction uses a Riemannian
metric on M .) One may think of ν(M,N) as a ‘model’ for a neighborhood of N insider M :
For instance, it follows that if i1 : N1 → M1 and i2 : Ni → M2 are two embeddings, then a
diffeomorphism N1 → N2 extends to a diffeomorphism of open neighborhoods if and only if
ν(M1, N1)→ N1 is isomorphic to the pullback of ν(M2, N2)→ N2.

Remark 8.5. One might call the above a ‘complete’ tubular neighborhood embedding. One
could also consider ‘incomplete’ tubular neighborhood embeddings, where φ is only defined on
some open neighborhood of the zero section N ⊆ ν(M,N).

Note that a tubular neighborhood embedding φ specifies a complement to TN in TM |N ,
namely the image of ν(M,N) ⊆ Tν(M,N)|N under Tφ. Much more than that, the image
U = φ(ν(M,N)) acquires the structure of a vector bundle over N .

Remark 8.6. A closely related construction for pairs (M,N) is the deformation to the normal
cone D(M,N). This is a manifold of dimension dim(M) + 1, together with a surjective sub-
mersion D(M,N)→ R such that the fibers D(M,N)t at t ∈ R are given by M itself for t 6= 0,
and by ν(M,N) for t = 0. That is,

D(M,N) = ν(M,N)q (M × R×)

where ν(M,N) is embedded as a codimension 1 submanifold, with complement the open subset
M×R×. The smooth structure on D(M,N) is defined in such a way that (i) the map to M×R,
given by the obvious inclusion on M×R× and by bundle projection to N on ν(M,N), is smooth,
(ii) for any f ∈ I(M,N) (the ideal of smooth functions on M that vanish on N), the function

f̃ : D(M,N)→ R given on the two pieces by

M × R× → R, (m, t) 7→ t−1f(m)

and

ν(M,N)→ R, [v] 7→ v(f)

(where [v] is represented by v ∈ TM |N ), is smooth. Intuitively, as one approaches t = 0 the
normal directions get ‘magnified’. 7 Again, this construction is functorial; for example the map

7For details on why this defines a smooth structure, see e.g. [?], or the appendix.
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described in (i) above is the map

D(M,N)→ D(M,M) = M × R,

induced by (M,N) → (M,M), while f̃ is the first component of the map induced by
D(f) : (M,N)→ (R, {0}).

8.3. Euler-like vector fields. The Euler vector field on Rk is the vector field

(22) E =
k∑
j=1

yj
∂

∂yj
.

It has the property that E(f) = f whenever f ∈ C∞(Rk) is linear (i.e., homogeneous of degree
1), and is in fact uniquely determined by this property. For any vector bundle π : V → M we
may define the Euler vector field E ∈ X(V ) uniquely by its property that E(f) = f for all linear
functions f ∈ C∞(M). Indeed, this property implies that E must be tangent to the fibers of
V , and is given fiberwise by (22).

Definition 8.7. Let N ⊆ M be a submanifold, and I(M,N) ⊆ C∞(M) the ideal of
functions vanishing along N . A vector field X ∈ X(M) is called Euler-like along N if it
is complete, and has the property

X(f) = f mod I(M,N)2

for all f ∈ I(M,N).

The condition means that whenever f vanishes along N , then X(f)− f vanishes to second
order along N . (In particular, X itself must vanish along N .)

The definition may be expressed in several equivalent ways. Note that since X vanishes along
N , it is in particular tangent to N , and so it defines a map of pairs X : (M,N)→ (TM, TN).
Applying the normal functor, we obtain

ν(X) : ν(M,N)→ ν(TM, TN) ∼= Tν(M,N),

which we may think of as a vector field on ν(M,N). The Euler-like property of a complete
vector field X is then equivalent to stating that ν(X) is the Euler vector field on ν(M,N).
That is, X is Euler-like if it vanishes along N and its linear approximation is Euler-like.

We may also express the Euler-like condition in local coordinates. Suppose
x1, . . . , xr, y1, . . . , yk are local coordinates on M such that N is given by the vanishing of
the y-coordinates. A vector field in these local coordinates is Euler-like if and only if it has the
form

(23) X =
∑
i

ai(x, y)
∂

∂xi
+
∑
j

(yj + bj(x, y))
∂

∂yj

where the ai vanish for y = 0, and bj vanishes to second order for y = 0.

Exercise 8.1. Verify that this condition in local coordinates is equivalent to Definition 8.7.

Remark 8.8. The interpretation in terms of the deformation space D(M,N) is as follows. Given
a vector field X that is tangent to N , the resulting map X : (M,N) → (TM, TN) gives, by
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functoriality, a vertical vector field D(X) on D(M,N), such that D(X) is given by X on fibers
D(M,N)t for t 6= 0, and by ν(X) on D(M,N)0 = ν(M,N).

A tubular neighborhood embedding φ : ν(M,N)→ U ⊆M gives rise to an Euler-like vector
field on U , by taking the image of the Euler vector field E on ν(M,N). Somewhat surprisingly,
the converse is true:

Theorem 8.9. [7] Suppose N ⊆ M is a submanifold, and X is Euler-like along N .
Then there is a unique tubular neighborhood embedding φ : ν(M,N)→M such that

E ∼φ X
where E is the Euler vector field on ν(M,N).

Proof. The key step is to show that X is linearizable along N . Choose an initial tubular
neighborhood embedding to identify M with a neighborhood of N inside ν(M,N). Let E be
the Euler vector field on ν(M,N), and write

X = E + Z

where E =
∑
yj ∂

∂yj
is the standard Euler vector field. Our goal is to modify the tubular

neighborhood embedding to arrange that Z = 0. In local coordinates, we have that

Z =
∑
i

ai(x, y)
∂

∂xi
+
∑
j

bj(x, y)
∂

∂yj

where ai vanish to first order for y = 0, while the bj vanish to second order for y = 0. Let
κt : ν(M,N) → ν(M,N) be scalar multiplication by t. For t 6= 0, this is a diffeomorphism.
Observe that the family of vector fields

Zt = t−1κ∗tZ,

which a priori is defined only for t 6= 0, extends smoothly to a family of vector fields defined
for all t ∈ R. To see this, note that in local coordinates

Zt =
∑
i

ai(x, ty)

t

∂

∂xi
+
∑
j

bj(x, ty)

t2
∂

∂yj
,

which has good limits, as claimed. We see furthermore that Z0 vanishes along N , since all Zt
do. (In coordinates, the coefficients in front of ∂

∂xi
become linear in y, while those in front of

∂
∂yj

become quadratic in y.) It follows that on a sufficiently small open neighborhood of N

inside ν(M,N), the flow ϕt of the time dependent vector field Zt, with initial condition ϕ0 = id,
is defined for all |t| ≤ 1. By the scaling property κ∗aZt = aZat for 0 < a < 1, this neighborhood
is invariant under κt for 0 ≤ t ≤ 1. Using that κ∗tE = E , and t ddtκ

∗
tY = κ∗t [E , Y ] for all vector

fields Y , we obtain

d

dt
ϕ∗t (E − t Zt) =

d

dt
ϕ∗t (E − κ∗tZ)

= ϕ∗t

(
− [Zt, E − κ∗tZ]− 1

t
κ∗t [E , Z]

)
= ϕ∗t (−[Zt, E ]− [E , Zt]) = 0.
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Hence ϕ∗t (E−tZt) does not depend on t. Equality of the values at t = 1 and t = 0 gives ϕ∗1(X) =
E . Hence, any tubular neighborhood embedding that agrees with ϕ1 near N will give the
desired linearization. This shows the existence of a possibly incomplete tubular neighborhood
embedding taking E to X. Using the flows of E and of X, it extends to a complete tubular
neighborhood embedding ψ : ν(M,N)→ U ⊆M .

This proves the existence part. For the uniqueness part, let Φs be the flow of X, and
λt = Φ− log(t). Then the image U ⊆ M of the tubular neighborhood embedding constructed
above is characterized as the set of all m ∈M such that lim→0 λt(m) exists and lies in N . The
inverse map ψ−1 : U → ν(M,N) is explicitly given as

ψ−1(m) =
d

dt
|t=0λt(m) mod TN.

(The element d
dt |t=0λt(m) is a tangent vector at λ0(m), and we take its image in ν(M,N).) �

Remark 8.10. The question of linearizability of vector fields is subtle, and has been extensively
studied. (See e.g. [3] for a quick overview and recent results.) The classical result of Sternberg
[38, 39] gives C∞-linearizability of vector fields at critical points m, provided the endomor-
phism of TmM describing this linear approximation has non-resonant eigenvalues. If the linear
approximation is the Euler vector field, then this endomorphism is − id, and the non-resonance
condition is satisfied. Thus, for N = {m}, Theorem 8.9 is essentially a very special case of
Sternberg’s theorem. (Note however that the theorem gives more information than only the
existence of a linearization.) To give some concrete examples, the vector field

x
∂

∂x
+ (y + x2)

∂

∂y

is linearizable at 0. One can show 8 that the vector field

x
∂

∂x
+ (2y + x2)

∂

∂y

is not linearizable at 0, while on the other hand9

2x
∂

∂x
+ (y + x2)

∂

∂y

is linearizable at 0.

Remark 8.11. In [36], the authors give the following nice explanation of Theorem 8.9 in terms
of the deformation to the normal cone. We will explain this proof in the appendix.

8.4. Some applications of Theorem 8.9. Before using this result to prove the splitting
theorem for Lie algebroids, let us very quickly sketch some other applications of the theorem.

(a) Many ‘normal form’ results can be phrased in terms of Euler-like vector fields:

8The solution curves of this vector field are x = 0 and curves of the form y = (c+log(|x|)x2, c ∈ R. These are
not smooth at the origin, unlike the solution curves of the linearized vector field. See Robert Bryant’s explanation
on https://mathoverflow.net/questions/76971/nice-metrics-for-a-morse-gradient-field-counterexample-request

9An argument similar to the proof of Theorem 8.9 applies.
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(i) The linearizability of a vector field Y ∈ X(M) with critical point at 0 ∈ M is
equivalent to the existence of an Euler-like vector field X with respect to {m}
with [X,Y ] = 0. Indeed, any such X determines coordinates in which it becomes
the Euler vector field. But then [X,Y ] = 0 tells us that in these coordinates, Y
is homogeneous of degree 0, i.e. linear. This remark was already made (in the
analytic context) by Guillemin-Sternberg in [23, Proposition 1.1].

(ii) Darboux’s theorem for symplectic 2-forms amounts to the fact that for every
m ∈ M , there exists an Euler-like vector field X with respect to {m} such that
LXω = 2ω near X. Indeed, any such X determines coordinates in which it
becomes the Euler vector field. But then L(X)ω = 2ω tells us that in these
coordinates, ω is homogeneous of degree 2, i.e. is a constant 2-form.

(iii) The Morse lemma for a function f ∈ C∞(M) with non-degenerate critical point
at m ∈M amounts to the existence of an Euler-like vector field X with respect to
{m} such that L(X)f = 2(f−f(m)). Indeed, any such X determines coordinates
in which it becomes the Euler vector field. But then L(X)f = 2(f − f(m)) tells
us that in these coordinates, f − f(m) is quadratic.

(iv) Recall that the normal form theorem for cleanly intersecting manifolds N1, N2 ⊆
M states that around any point m ∈ N1∩N2, one can choose local coordinates in
which N1, N2 become subspaces. This is equivalent to the existence of an Euler-
like vector field X with respect to {m} such that X is tangent to both N1 and
N2.

One advantage of these coordinate-free formulations is that the equivariant versions,
given a compact Lie group G acting on M and preserving the given structures, are
automatic: Given an Euler-like vector field solving the non-equivariant problem, one
simply takes its G-average to obtain an Euler-like vector field solving the equivariant
problem.

(b) As remarked in [36], we may use this perspective to give a quick proof of Darboux’s
theorem in the version stated above. Given a symplectic manifold (M,ω) and any
m ∈M , choose local coordinates centered at m to write

ω =
1

2

∑
Aijdx

idxj + higher order ,

with a non-degenerate skew-symmetric matrix Aij , where the higher order terms are of
order ≥ 3 in x. 10 Applying the standard homotopy operator, we ω = dα, with

α =
1

2

∑
ij

Aijx
idxj + higher order ,

where the higher order are again of order ≥ 3 in x, or higher. Define a vector field X
by

ι(X)ω = 2α.

10Here our notion of order includes the dxi, not only the coefficients. Thus, a k-form whose coefficients are
homogeneous of degree l is homogeneous of degree k + l.
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Then L(X)ω = dι(X)ω = 2dα = 2ω. But

X =
∑
i

xi
∂

∂xi
+ higher order ,

where the higher order term are of order ≥ 1 in x. Thus X is Euler-like. As stated
above, L(X)ω = 2ω for an Euler-like vector field is equivalent to Darboux.

(c) Consider similarly the Morse Lemma: Suppose f ∈ C∞(M) has a nondegenerate critical
point at m, with f(m) = 0. We would like to construct an Euler-like X with L(X) = 2f .
After choice of local coordinates, Taylor’s theorem allows us to write

f =
1

2

∑
ij

Sij(x)xixj , df =
∑
ij

Rij(x)xidxj

where Sij(x) = Sji(x), and Sij(0) = Rij(0). In matrix notation,

f =
1

2
x · (S(x)x), df = x · (R(x) dx).

Since the matrix R(0) is invertible, it remains invertible for small x. Put

X =
∑
r

(R(x)−1S(x) · x) · ∂
∂x
.

Then X is Euler-like, and satisfies L(X)f = ι(X)df = 2f as desired.
(d) The Grabowski-Rotkievicz theorem is itself a consequence of Theorem 8.9. To recover

the additive structure on a vector bundle V → M from the scalar multiplication, note
that the scalar multiplication determines the Euler vector field of V . The latter (being
Euler-like) gives an isomorphism ν(V,M)→ V which allows us to recover the additive
structure on V from that on the normal bundle ν(V,M).

8.5. The splitting theorem for Lie algebroids. Let A → M be a Lie algebroid, and
i : N ↪→M an embedded submanifold, with normal bundle p : ν(M,N)→ N . We assume that
N is transverse to the anchor, so that i!A is a well-defined Lie algebroid.

Lemma 8.12. Let A → M be an anchored vector bundle over M . If a submanifold
N ⊆ M is transverse to the anchor a : A → TM , then there exists a section σ ∈ Γ(A)
such that the vector field X = a(σ) is Euler-like along N .

Proof. Suppose that in local coordinates x1, . . . , xr, y1, . . . , yk, the submanifold N is given by
the vanishing of y-coordinates. Since a is transverse to N , it induces a surjective bundle map
A|N → ν(M,N). Hence, there exist sections σi such that a(σj) = ∂

∂yj
modulo TN . Then

the vector field a(
∑

j y
jσj) is an (incomplete) Euler-like vector field. We may patch the local

definitions by using partitions of unity, to obtain a section whose image under the anchor is
an (incomplete) Euler-like vector field on M . Multiplying by a bump function, supported near
N and equal to 1 on a smaller neighborhood of N , we can achieve that the vector field is
complete. �
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We will use in the discussion below that for any section σ of a Lie algebroid, the operator
[σ, ·] is an infinitesimal Lie algebroid automorphism. Indeed, it is an infinitesimal vector bundle
automorphism due to the Leibnitz rule, it is preserves the anchor 11 due to a◦ [σ, ·] = [a(σ), ·]◦a,
and it preserves the bracket itself due to the Jacobi identity. Put differently, [σ, ·] defines a

vector field Ỹ on A, homogeneous of degree 0, and restricting to Y on M , such that the local

flow of Ỹ on A is by Lie algebroid automorphisms. The compatibility with the anchor is the
fact that

Ỹ ∼a YT

where YT ∈ X(TM) is the tangent lift of Y .

Theorem 8.13 (Splitting theorem for Lie algebroids). Suppose A → M is a Lie al-
gebroid, and let N ⊆ M be a transversal. Choose σ ∈ Γ(A) with σ|N = 0, such that
X = a(σ) is Euler-like. Then the choice of σ determines an isomorphism of Lie alge-
broids

p!i!A
ψ̃

//

��

A|U

��

ν(M,N)
ψ

// U

where the base map is the tubular neighborhood embedding defined by X.

Proof. Let X̃ ∈ X(A) be the vector field on A defined by the Lie algebroid derivation [σ, ·]. It

is homogeneous of degree 0, and restricts to X = a(σ) along M . We claim that X̃ is Euler-like
with respect to the submanifold i!A = a−1(TN) ⊆ A. To see this, observe that under the
anchor map,

X̃ ∼ XT ,

where XT ∈ X(TM) is the tangent lift of X. This tangent lift is Euler-like with respect to
TN ⊆ TM , as one checks in local coordinates. (E.g., if κt is scalar multiplication by t for a
vector bundle V → M , then Tκt is scalar multiplication for TV → TM . Hence, the Euler
vector field for TV is the tangent lift of that of V .) On the other hand, a gives a map of pairs

a : (A, i!A)→ (TM, TN).

By transversality, the resulting map ν(a) : ν(A, i!A)→ ν(TM, TN) = Tν(M,N) is a fiberwise

isomorphism. Together with X̃ ∼a XT , this implies that X̃ is Euler-like, as claimed.

Let Φs, Φ̃s be the flow of X, X̃, respectively. (The flow of X̃ is complete, since X̃ is homo-

geneous of degree 0, and the flow of X is complete.) As explained above, Φ̃s are Lie algebroid
automorphisms. Let

λt = Φ− log(t), λ̃t = Φ̃− log(t).

11A vector bundle automorphism Φ̃ of A, with base map Φ, preserves the anchor if and only if a◦ Φ̃ = TΦ◦a.

In other words, Φ̃ is a-related to the tangent lift of Φ. Similarly, an infinitesimal automorphism Ỹ preserves
the anchor if it is a-related to the tangent lift of Y . For the corresponding operator D on sections, this means
a ◦D = [Y, ·] ◦ a.
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(In terms of the tubular neighborhood embeddings defined by X, X̃, these correspond to mul-

tiplication by t. Since λ̃t covers the flow of λt, it is defined over A|U even for t = 0. Consider
the following diagram, defined for all 0 ≤ t ≤ 1,

A|U ∼=
//

��

λ!
t(A|U ) ∼=

//

��

ψ!λ!
t(A|U )

��

U
id

// U
ψ−1

// ν(M,N)

Here the first upper horizontal arrow is given by the Lie algebroid morphism

A|U → λ!
t(A|U ) ⊆ TU ×A|U , v 7→ (a(v), λ̃t(v)).

This map is an isomorphism for all t: If t > 0, this is clear since λ̃t is an isomorphism then. If

t = 0 we note that it is an isomorphism along N ⊆ U (using that λ̃0 : A|N → AN is a projection
to iA), hence also on some neighborhood of N , and using e.g. λ0 = λ0 ◦ λt we conclude that it
is an isomorphism over all of U . We hence obtain a family of Lie algebroid isomorphisms

ψ!λ!
t(A|U ) //

��

A|U

��

ν(M,N)
ψ

// U

all with the base map ψ. For t = 0, we have that λ0 ◦ ψ = ψ ◦ κ0 = i ◦ p, so we obtain the
desired Lie algebroid isomorphism

ψ̃ : p!i!(A|U )→ A|U ,
with base map ψ. �

Remark 8.14. One can show that p!i!A is canonically isomorphic to ν(A, i!A), and that ψ̃ is

the tubular neighborhood embedding defined by X̃.

If the normal bundle is trivial, νN = N × S, then we obtain the simpler model

p!i!A = i!A× TS
as Lie algebroids. In particular, we obtain:

Corollary 8.15 (Local splitting of Lie algebroids). Let (A, a, [·, ·]) be a Lie algebroid
over M , and m ∈M . Let i : N ↪→M be a submanifold containing m, such that TmN is
a complement to S = am(Am) in TmM . Then Lie algebroid A is isomorphic, near m,
to the direct product of Lie algebroids i!A× TS. If a compact Lie group G acts on A by
Lie algebroid automorphisms, such that the action on M fixes m and preserves N , this
isomorphism can be chosen G-equivariant.

For G = {1} this result is due to Weinstein [40], Fernandes [21], and Dufour [18].

Remark 8.16. There is a more elegant proof of Theorem 8.13, using the deformation to the
normal cone D(M,N). We will explain this proof in the appendix.
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8.6. The generalized foliation. An important consequence of the local splitting theorem is:

Proposition 8.17. Let A→M be a Lie algebroid. Through every m ∈M there passes
a unique maximal connected integral submanifold of A.

Proof. In the local model given by Corollary 8.15, it is immediate that {m} × S is an integral
submanifold, and the germ of such an integral submanifold is unique. Patching the local integral
submanifolds, one obtains a maximal integral submanifold. �

Thus, M acquires a generalized foliation, with these maximal integral submanifolds as its
leaves. The leaf through m ∈M is called the orbit of the Lie algebroid M .

Example 8.18. For any g-action, we obtain a decomposition of M into g-orbits. Note that we
did not have to assume any special properties of the action.

9. The Lie functor

9.1. The Lie algebra of a Lie group. Before discussing the case of Lie algebroids, let us
quickly review the construction of the Lie algebra of a Lie group G. As a vector space,

g = TeG

is the tangent space to the identity. The Lie bracket of g can be defined in several equivalent
ways:

9.1.1. Bracket via conjugation. Consider the conjugation action of group elements a ∈ G:

Ada : G→ G, g 7→ Ada(g) = aga−1.

This action fixes the group unit, hence its tangent map at the identity is a linear map,
Te Ada : g→ g It is common to denote this map again by

Ada : g→ g.

It may be regarded as a Lie group morphism Ad: G → GL(g), a 7→ Ada, where GL(g) is the
group of invertible linear transformations of g. Taking the differential at the identity, we obtain
a linear map Te Ad: g→ gl(g). It is common to denote this map by

ad: g→ gl(g).

In terms of this map, one defines the Lie bracket as

[X,Y ] = adX(Y ),

and one proves that it is skew-symmetric and satisfies the Jacobi identity.
If G is a matrix Lie group i.e. if it is a closed subgroup of the group GL(n,R) = MatR(n)× of

invertible n× n-matrices for some n ∈ N, then g = TeG is identified as a subspace of MatR(n).
The map Ada : G→ G is conjugation of matrices, hence Ada : g→ g is again just conjugation
Ada(Y ) = aY a−1. Taking the derivative with respect to a, one obtains adX(Y ) = XY − Y X,
the usual commutator of matrices.
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9.1.2. Bracket via BCH series. For any Lie group G and any X ∈ g, there is a unique group
homomorphism φX : R→ G whose differential at zero is the map T0φX : T0R = R→ g, t 7→ tX.
One defines an exponential map exp: g→ G, X 7→ φX(1). It is easy to see that exp is a local
diffeomorphism near 0, hence its inverse log = exp−1 is defined close to e ∈ G. One defines
[X,Y ] by check

log(exp(tX) exp(tY )) = t(X + Y ) +
t2

2
[X,Y ] +O(t3),

and proves that [X,Y ] is a Lie bracket. For a matrix Lie group, exp is just the usual exponen-
tial of matrices, and this formula (up to quadratic terms) is an easy consequence of Taylor’s
theorem.

9.1.3. Bracket via left-invariant vector fields. Every a ∈ G acts on G by left translation ALa .
A vector field is left-invariant if it is invariant under ALa for all a ∈ G. Such a vector field is
determined by its restriction to the group unit; conversely, each X ∈ g has a unique extension to
a left-invariant vector field. The Lie bracket of left-invariant vector fields is again left-invariant,
and one uses this to define the bracket on g by requiring that

[X,Y ]L = [XL, Y L].

9.1.4. Bracket via Maurer-Cartan forms. The left-invariant Maurer-Cartan form is the unique
left-invariant g-valued 1-form such that

ι(XL)θL = X

for all X ∈ g. For a matrix Lie group, one has that θL = g−1dg, and since

d(g−1dg) = −g−1dg g−1dg = −(g−1dg)2 = −1

2
[g−1dg, g−1dg

these satisfy the Maurer-Cartan equation,

dθL +
1

2
[θL, θL] = 0.

For general Lie groups, one can take this equation to be the definition of the Lie bracket on
g. Let us verify that this convention is consistent with the definition via left-invariant vector
fields: Using Cartan’s calculus,

ι(Y L)ι(XL)dθ = ι(Y L)L(XL)θL − ι(Y L)dι(XL)θL

= L(XL)ι(Y L)θL − ι([XL, Y L])θL − ι(Y L)dX

= L(XL)Y − L(Y L)X − ι([XL, Y L])θL

= −ι([XL, Y L])θL

where we used that X,Y are constant g-valued functions, and

ι(Y L)ι(XL)(−1

2
[θL, θL]) = −ι(Y L)[X, θL] = −[X,Y ] = −ι([X,Y ]L)θL.

Comparing, we find [XL, Y L] = [X,Y ]L as required.
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Remark 9.1. Note if we were to use right-invariant vector fields to define the bracket, we would
end up with the opposite bracket (unless we also change the definition of commutator of vector
fields, as done in some of the literature). However, this would then result in sign changes also
for the other formulas involving the bracket!

9.2. The Lie algebroid of a Lie groupoid. We now define the Lie algebroid A = Lie(G) of
a Lie groupoid G ⇒M . As a vector bundle, we take

Lie(G) = ν(G,M) = TG|M/TM

to be the normal bundle of M in G. To define the anchor map, note that t and s coincide on
M ⊆ G, hence the difference T s− T t : TG → TM vanishes on TM ⊆ TG, and hence descends
to a map ν(G,M)→ TM which we take to be the anchor,

a : Lie(G)→ TM.

For the definition of the Lie bracket on Γ(Lie(G)), we may use any of the standard approaches
for Lie groups. For example, we may observe that any 1-parameter family of bisections St ⊆ G,
with S0 = M , has differential at t = 0 a section σ ∈ Γ(A). In this sense, we may regard Γ(A) as
the tangent space to the infinite-dimensional group Γ(G) at the identity, and define the bracket
on Γ(Lie(G)) in such a way that

Lie(Γ(G)) = Γ(Lie(G))

as Lie algebras. Concretely, one has an adjoint action of Γ(G) on Γ(ν(G,M)), given by

AdS(τ) =
∂

∂t
|t=0(SRtS

−1)

whenever Rt is a 1-parameter family of bisections such that τ = ∂
∂t |t=0Rt. One may use this

to define an infinitesmal adjoint action,

adσ(τ) =
∂

∂t
|t=0 AdSt τ

whenever St is a 1-parameter family of bisections such that σ = ∂
∂t |t=0St. The Lie algebroid

bracket is then [σ, τ ] = adσ τ . Parallel to the case of Lie groups, one may verify that this
defines a Lie bracket, which furthermore satisfies the Leibnitz rule. Rather than pursuing this
approach further, we turn to the alternative definition in terms of left-invariant vector fields.

9.3. Left-and right-invariant vector fields. For a general action of a groupoid G ⇒ M
on a manifold Q, there is no natural‘lift’ of the G-action to the tangent bundle TQ. Suppose
however that the moment map Φ: Q → M is a submersion (or, more generally, has constant
rank). Then the fibers of Φ are submanifolds, and every g ∈ G, with source m = s(g) and
target m′ = t(g), gives a diffeomorphism

(24) g : Φ−1(m)→ Φ−1(m′), q 7→ g · q,

and hence by differentiation a bundle map T (Φ−1(m))→ T (Φ−1(m′)). In this way, one obtains
an action of G on ker(TΦ) ⊆ TQ, with moment map the bundle projection TQ → Q followed
by Φ.
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Definition 9.2. Suppose Q is a G-manifold such that the moment map Φ: Q → M
for the action has constant rank. A vector field X ∈ X(Q) is called G-invariant if it is
tangent to Φ-fibers, and if for all q ∈ Q and g ∈ G such that s(g) = Φ(q),

Xg.q = g.Xq.

The space of G-invariant vector fields is denoted X(Q)G .

Exercise 9.1. Show that a vector field X ∈ X(Q) is G-invariant if and only if for all local
bisections S of G, with s(S) = U and t(S) = V , the diffeomorphism Φ−1(U) → Φ−1(V ) takes
X to itself. In particular, X must be tangent to the Φ-fibers.

Lemma 9.3. The invariant vector fields on Q form a Lie subalgebra.

Proof. By definition, a vector field X is G-invariant if and only if it is tangent to Φ-fibers, and
for all g ∈ G, with s(g) = m, tz(g) = m′, the restrictions X|Φ−1(m) and X|Φ−1(m′) are related
under (24). But if two pairs of vector fields are related under a diffeomorphism, then their Lie
brackets are also related. �

As a special case, a vector field X on G itself is called left-invariant if it is tangent to the
source fibers, and g ·Xh = Xg◦h under the action AL. Similarly, X is called right invariant if

it is tangent to s-fibers, and satisfies g · X = Xh◦g−1 where the action is AR. The spaces of
left-invariant, respectively right-invariant vector fields, are denoted

XL(G), XR(G).

By construction, both are Lie subalgebras. Now, using the left multiplication, we may identify
ker(Tht) ∼= ker(Ts(h)t), thus

ker(T t) = s∗ ker(T t)|M .
A vector field is left-invariant of and only if it is ‘constant’ under this identification. Similarly,
the right multiplication identifies

ker(T s) = t∗ ker(T s)|M ,

and a vector field is right-invariant if and only if it is constant under this isomorphism. Since
both ker(T t)|M , ker(T s)|M are complements to TM in TG|M , each of these bundles may be
identified with the normal bundle. That is, we have

(25) ker(T t)|M ∼= ν(G,M) ∼= ker(T s)|M .

Definition 9.4. For σ ∈ Γ(Lie(G)), we denote by

σL ∈ X(G)L, σR ∈ X(G)R

the unique left-invariant, right-invariant vector fields mapping to σ under restriction to
M followed by the quotient map TG|M → ν(G,M).
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Lemma 9.5. For all σ ∈ Γ(Lie(G)), we have that

σL ∼t 0, σL ∼s a(σ), σR ∼t −a(σ), σR ∼s 0,

and
a(σ) ∼i σL − σR

where i : M → G is the inclusion of units. Furthrmore,

σL ∼InvG −σ
R.

Proof. Since σL is tangent to the t-fibers, we have that σL ∼t 0. Since s is invariant under the
left-action we see that

σL ∼s (T s)(σL|M ) ∈ X(M).

But

(T s)(σL|M ) = (T s− T t)(σL|M ) = a(σ).

This proves σL ∼s a(σ); similarly σR ∼t −a(σ). Finally, note that σL − σR is tangent to M ,
hence restricts to a vector field on M . Since

T s((σL − σR)|M ) = a(σ),

we see that this restriction is a(σ). The last claim follows since InvG interchanges source and
target maps, and the induced map on the normal bundle is multiplication by −1. �

Lemma 9.6. We have, for all σ, τ ∈ Γ(Lie(G)),

(26) [σL, τL] = [σ, τ ]L, [σL, τR] = 0, [σR, τR] = −[σ, τ ]R.

The (local) flow of σL is by right translations by (local) bisections, the flow of −σR is
left translation by the same (local) bisections.

Proof. The first formula follows from the definition of the bracket, the third formula since
inversion takes σL to −σR. We will now show that the (local) flow of −σR is by left translations
by (local) bisections. Applying the inversion, this will imply that the flow of σL is by right
translations by local bisections, hence the flows of left-and right-invariant vector fields commute,
so [σL, τR] = 0,

The vector field −σR is tangent to s-fibers, and satisfies

(ARg )∗(σ
L|s−1(m)) = σL|s−1(m′)

for s(g) = m, t(g) = m′. Hence, the flow φt of σL has the property s ◦ φt = s, and

φt(h ◦ g−1) = φt(h) ◦ g−1.

Letting a = g−1 and h = s(g−1) = t(a), this shows

φt(a) = φt(t(a)) ◦ a.
Hence, the flow is left translation by a local bisection St, consisting of all φt(m) for all m ∈M
such that the time t flow is defined. �
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9.4. The Lie functor from Lie groupoids to Lie algebroids. Following the standard
definition for Lie groups, we will use the identification of Γ(Lie(G)) with left-invariant vector
fields on G to define a Lie bracket on Γ(Lie(G)). In other words, the sign conventions are such
that

[σL, τL] = [σ, τ ]L.

Lemma 9.7. With these data, (Lie(G), a, [·, ·]) is a Lie algebroid.

Proof. We only need to verify the Leibnitz rule. Let f ∈ C∞(M) and σ, τ ∈ Γ(Lie(G))). Using
(fτ)L = (s∗f) τL and σL(s∗f) = s∗

(
a(σ)f

)
(since σL ∼s a(σ)) we compute,

[σ, fτ ]L = [σL, s∗f τL] = s∗f [σL, τL] + s∗(a(σ)f)τL =
(
f [σ, τ ] +

(
a(σ)f

)
τ
)L
,

proving [σ, fτ ] = f [σ, τ ] +
(
a(σ)f

)
τ . �

One calls the Lie algebroid Lie(G) the differentiation of the Lie groupoid G; conversely, if
A → M is a given Lie algebroid, a Lie groupoid G ⇒ M with a Lie algebroid isomorphism
A ∼= Lie(G) is called an integration of A.

Example 9.8. For the pair groupoid Pair(M) = M ×M , a left -invariant vector field is of the
form (0, X) where X is a vector field on M , while right-invariant vector fields are of the form
(X, 0). The flow of a left-invariant vector field is (m′,m) 7→ (m′,Φt(m)) where Φt is the flow of
X. This is right multiplication by the element (m,Φt(m)) = (Φt(m),m)−1. Similarly, a right
invariant vector field has flow (m′,m) 7→ (Φt(m

′),m). From the definitions, it is clear that

Lie(Pair(M)) = TM

as a Lie algebroid. Likewise, the fundamental groupoid Π(M) has TM as its associated Lie
algebroid. Hence, both Π(M) and Pair(M) integrate the tangent bundle.

Lemma 9.9. If H⇒ N is a Lie subgroupoid of G ⇒M , then the natural map of normal
bundles, induced functorially by the map of pairs (H, N)→ (G,M), defines a morphism
of Lie algebroids

Lie(H)→ Lie(G).

Proof. It is immediate that Lie(H) → N is a subbundle of Lie(G) → M . Furthermore, σ ∈
Γ(Lie(G)) restricts to a section of Lie(H), if and only if the vector field σL is tangent to H. If
σ, τ are two such sections, then [σL, τL] = [σ, τ ]L again is tangent to H. That is, the space

Γ(Lie(G),Lie(H))

of sections of Lie(G) that restrict to sections of Lie(H), is a Lie subalgebra. �

More generally, we have:
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Theorem 9.10. If H ⇒ N and G ⇒ M are Lie groupoids, then the map on normal
bundles defined by the map of pairs F : (H, N)→ (G,M), is a morphism of Lie algebroids

Lie(F ) : Lie(H)→ Lie(G).

Proof. F is a morphism of Lie groupoids if and only if Gr(F ) ⊆ G × H is a Lie subgroupoid.
But then Lie(Gr(F )) ⊆ Lie(G ×H) = Lie(G)× Lie(H) is a Lie subalgebroid. �

In summary, we have constructed a Lie functor from the category of Lie groupoids (and
their morphisms) to Lie algebroids (and their morphisms).

9.5. Examples. We list the Lie algebroids for our main examples of Lie groupoids.

(a) For a Lie groupoid over a point G ⇒ pt, one recovers the usual notion of the Lie algebra
of a Lie group.

(b) For the pair groupoid Pair(M)⇒M , on obtains

Lie(Pair(M)) = TM,

the tangent bundle. The homotopy groupoid Π(M) has the same Lie algebroid.
(c) For the Atiyah groupoid G(P ) ⇒ M of a principal K-bundle P → M , we obtain the

Atiyah Lie algebroid:
Lie(G(P )) = A(P ).

(d) Given a K-action on a manifold, with corresponding action groupoid KnM ⇒M , one
has

Lie(K nM) = knM,

the action Lie algebroid for the infinitesimal action.
(e) For the k-th jet prolongation Jk(G) of a Lie groupoid, we obtain the k-th jet prolongation

of the corresponding Lie algebroid:

Lie(Jk(G)) = Jk(Lie(G)).

(f) For the monodromy groupoid Mon(F)⇒M of a foliation, we obtain the tangent bundle
of the foliation:

Lie(Mon(F)) = TFM.

The holonomy groupoid has the same Lie algebroid.

9.6. Groupoid multiplication via σL, σR. we probably won’t discuss this in class

For i = 0, 1, 2 and σ ∈ Γ(A), the vector fields on G × G × G,

(27) X0
σ = (−σR,−σR, 0), X1

σ = (0, σL,−σR), X2
σ = (σL, 0, σL).

are all tangent to Gr(MultG). For instance, the invariance of the graph under the (local) flow
of X1

σ follows from the fact that g1 ◦g2 = (g1 ◦h−1)◦ (h◦g2) whenever s(h) = t(g2). The vector
fields satisfy bracket relations

[Xi
σ, X

j
τ ] = Xi

[σ,τ ] δi,j

for σ, τ ∈ Γ(A) and i, j = 0, 1, 2. If G is t-connected, then the graph is generated from M ⊆ Λ
(embedded as m 7→ (m,m,m)) by the flow of these vector fields. In fact, it is already obtained
using the flows of the Xi

σ’s for any two of the indices i ∈ {0, 1, 2}. For reference in Section ??,
let us note the following partial converse.
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Proposition 9.11. Let (A, a, [·, ·]) be a Lie algebroid over M . Suppose i : M → P
is an embedding, with normal bundle ν(P,M) ∼= A, and suppose σL, σR ∈ X(P ) are
vector fields on P , mapping to σ ∈ Γ(A) under the quotient map TP |M → A, with
a(σ) ∼i σL − σR, and satisfying the bracket relations (26). Then a neighborhood of M
in P inherits a structure of a local Lie groupoid integrating A, in such a way that σL, σR

are the left, right invariant vector fields.

Sketch of proof. Since σL|M maps to σ under TG|M → ν(G,M), the restrictions of the left-
invariant vector fields to M span a complement to TM in TP |M . In a particular, on a neighbor-
hood of M they determine a distribution of rank equal to that of A. By the bracket relations,
this distribution is Frobenius integrable. A similar argument applies to the vector fields −σR.
Taking P smaller if necessary, we can assume that these foliations define surjective submersions
t, s : P → M , with σL, σR tangent to the respective fibers, and with t ◦ i = s ◦ i = id. Define
vector fields Xi

σ in P × P × P as above, and embed M ↪→ P × P × P by m 7→ (m,m,m).
Along M , hence also on some neighborhood of M inside P × P × P , the vector fields X0

σ, X
2
τ

span a distribution of rank equal to twice the rank of A. The bracket relations guarantee
that this distribution is integrable, hence they define a foliation. Since the intersection of
this distribution with the tangent bundle of M ⊆ P × P × P is trivial, we conclude that the
flow-out of M under these vector fields defines a (germ of a) submanifold Λ ⊆ P × P × P , of
dimension 2 rank(A) + dimM = 2 dim(A)− dimM This is our candidate for the graph of the
multiplication map.

By construction, Λ ⊆ P × P × P contains M , and is invariant under the local flow of all
vector fields X0

σ, X
2
σ. In fact, it is also invariant under the local flow of X1

τ for τ ∈ Γ(A), since
these vector fields are tangent to Λ along M , and hence everywhere since the commute with
all X0

σ, X
2
σ.

Under projection P ×P ×P → P ×P, (p, p1, p2) 7→ (p1, p2), the vector fields X0
σ, X

2
σ are re-

lated to (−σR, 0) and (0, σL), respectively. Hence, this projection restricts to a diffeomorphism

from Λ onto a neighborhood of the diagonal embedding of M in P (2) = P s ×t P ⊆ P × P .
Taking the inverse map, followed by projection to the first P -factor, defines a multiplication
map MultP : P (2) → P ; strictly speaking it is defined only on some neighborhood of M in P (2).
By construction, Λ = Gr(MultP ).

Letting idP : P → P be the identity relation (given by the diagonal in P×P , the associativity
of the groupoid multiplication means that

Λ ◦ (Λ× idP ) = Λ ◦ (idP ×Λ)

as relations P ×P ×P 99K P , where the circle means composition of relations. In fact, we can
see that both sides are given by

Λ[2] ⊆ P × (P × P × P ),

the submanifold generated from the diagonal M
[3]
∆ (consisting of elements (m,m,m,m)) by the

action of vector fields of the form

(−σR,−σR, 0, 0), (0, σL,−σR, 0), (0, 0, σL,−σR). �
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10. Integrability of Lie algebroids: The transitive case

A Lie groupoid G ⇒ M is said to integrate a Lie algebroid A → M if there exists an
isomorphism of Lie algebroids

A ∼= Lie(G).

Lie’s third theorem states that every finite-dimensional Lie algebra integrates to a Lie group G.
In one of the early articles on the subject, Pradines [34] announced that a similar statement
holds true for Lie algebroids. That this is not so was observed several years later by Almeida and
Molino [1], in the context of their work on ‘developability of foliations’. This then opened the
question of specifying the obstructions to integrability, and after work by a number of authors
(e.g., [14, 16, 17, 29, 32]), and building on ideas of Duistermaat-Kolk [19], Cattaneo-Felder [8],
and Weinstein, this question was finally settled by Crainic and Fernandes in [11].

We will begin our discussion of the integration problem with the case of transitive Lie
algebroids. Here, the integration problem had been solved by Mackenzie [29], but our approach
will be somewhat different from his.

10.1. The Almeida-Molino counter-example. Let M be a connected, simply connected
manifold. Given a closed 2-form

ω ∈ Ω2(M), dω = 0

consider the Lie algebroid A = TM × R, with the bracket on sections given as

[X + f, Y + g] = [X,Y ] +∇X(g)−∇Y (f) + ω(X,Y )

for vector fields X,Y ∈ X(M). Let us assume that A is integrable to a Lie groupoid G ⇒ M .
Since the Lie groupoid is transitive, it the Atiyah groupoid G(P ) of a principal G-bundle P →
M , where G is a 1-dimensional structure group. Since M was assumed to be 1-connected, we
can take the fibers of P , and hence the structure group G, to be connected; thus G = R/π1(G)
is either a circle (if π1(G) is non-trivial) or all of R (if π1(G) is trivial). The canonical splitting
TM → A, v 7→ v + 0 of the Lie algebroid A corresponds to a principal connection on P , with
ω as its curvature 2-form.

Note that even if π1(G) is non-trivial, the corresponding lattice in R need not be the standard
Z – that is, the ‘size’ of the circle G may depend on the Lie algebroid A. The main observation
is that we can detect the ‘size’ via holonomy of the connection. The holonomy associates to
every loop λ : S1 → M an element Hol(λ) ∈ G = R/π1(G). This holonomy is defined by
integration of the connection, but since λ is contractible it may also be computed in terms of
the curvature. Indeed, if φ : D2 →M is a smooth map from the disk, extending λ, then

Hol(λ) =

∫
D2

φ∗ω mod π1(G)

For this to be consistent, the right hand side cannot depend on how we extend λ to a map
from the disk. Given two extensions φ± : D2 →M , the difference is the integral over the map
from the 2-sphere

φ : S2 →M
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whose restrictions to the upper and lower hemisphere are φ±. Hence, the consistency require-
ment is that for all maps φ : S2 →M , the integral∫

S2

φ∗ω

takes values in π1(G) ⊆ R. Hence, letting Λ ⊆ R be the subgroup given as image of the group
homomorphism

π2(M)→ R, [φ] 7→
∫
S2

φ∗ω,

we have that Λ ⊆ π1(G) ⊆ R.In particular, Λ is a discrete subgroup of R. To summarize we
arrive at the following condition:

Criterion: If the Lie algebroid A = TM×R, with bracket defined by the closed
2-form ω, is integrable, then the subgroup Λ must be discrete.

It is easy to give an example where this criterion fails:

Example 10.1. Take M = S2 × S2, let σ ∈ Ω2(S2) be the standard area form, and put with
ω = pr∗1 σ +

√
2 pr∗2 σ. Here the set of integrals of ω over 2-spheres is Z +

√
2Z, which is dense

in R.

On the other hand, if the criterion is satisfied then A is indeed integrable, using a standard
construction (see Pressley-Segal [35]) of reconstructing a principal circle bundle with connection
from its curvature 2-form. The Lie groupoid is explicitly given as

G = {[(γ, u)]| γ ∈ C∞([0, 1],M), u ∈ R/Λ}

with the equivalence relation

(γ1, u1) ∼ (γ0, u0)⇔ γ1(0) = γ0(0), γ1(1) = γ0(1), u1 = u0 Hol(γ−1
1 ∗ γ0)

where the holonomy may be defined using the integral of ω over a disk bounded by γ−1
1 ∗ γ0.

The groupoid structure is induced by the concatenation of paths,

[(γ′, u′)] ◦ [(γ, u)] = [(γ′ ∗ γ, u′ + u)].

We leave it as an exercise to show that this Lie groupoid has 1-connected source fibers.

10.2. Transitive Lie algebroids. For any transitive Lie algebroid A→M , we have an exact
sequence of Lie algebroids,

(28) 0→ L→ A→ TM → 0,

where L = ker(a) ⊆ A. Its fibers are the isotropy Lie algebras, gm = ker(am).
The splitting theorem for Lie algebroids shows that locally, on a neighborhood U of any

given point m ∈M , A|U = TU × h for a fixed Lie algebra h. In particular,

L→M

is a (locally trivial) Lie algebra bundle with fibers Lm ≡ gm ∼= h.
Given a Lie algebra h, let Tranh(M) be the set of isomorphism classes of transitive Lie

algebroids over M , with structure Lie algebra h. Similarly, for a given Lie group H, let
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PrinH(M) be the isomorphism classes of principal H-bundles with structure group H. If
h = Lie(H), we have the map

(29) PrinH(M)→ Tranh(M)

taking a principal bundle to its Atiyah algebroid. If a transitive Lie algebroid A → M is
integrable, then the Lie groupoid G integrating it is the Atiyah groupoid of a principal H-
bundle P →M . That is, A is integrable if and only if its class in Transh(M) lies in the image
of (29) for some Lie group H integrating h. We stress that this Lie group H need not be
connected.

Let zm be the center of gm, and Zm the center of the simply connected Lie group integrating
gm.

Let Cent(L) ⊆ L be the subbundle with fibers zm.

Lemma 10.2. The bundle Cent(L) has a canonical flat connection.

Proof. Given X ∈ X(M) and τ ∈ Γ(Cent(L)), define a covariant derivative in terms of the Lie
algebroid bracket by

∇Xτ = [σ, τ ], X ∈ X(M), τ ∈ Γ(L)

where σ ∈ Γ(A) is any section with a(σ) = X. This is well-defined, because σ is unique up to
a section of L, and sections of L have trivial bracket with all sections of Cent(L). The Jacobi
identity for the Lie bracket on Γ(A) shows that this connection is flat. �

As a consequence, the bundle
⋃
m∈M Zm also has a flat connection. Hence, for any smooth

path γ : [0, 1]→M from m = γ(0) to m′ = γ(1), we obtain a parallel transport homomorphisms

(30) P(γ) : zm → zm′ , P(γ) : Zm → Zm′

depending only on the homotopy class of γ.

10.3. Splittings. Any choice of a splitting j : TM → A of the exact sequence (28) defines
a connection on L, by ∇X = [j(X), ·]. On sections of Cent(L) ⊆ L, this coincides with the
canonical flat connection. Since

∇X [τ1, τ2] = [∇Xτ1, τ2] + [τ1,∇Xτ2]

by the Jacobi identity, this connection is compatible with the Lie algebra structure; in par-
ticular, the parallel transport on fibers is by Lie algebra isomorphisms. The curvature of this
connection F∇ ∈ Ω2(M,End(L)) is given by F∇ = [ω, ·], where ω ∈ Ω2(M,L) is the L-valued
2-form

ω(X1, X2) = [j(X1), j(X2)]− j([X1, X2]).

In terms of the identification A = TM ⊕ L defined by j, the Lie algebroid bracket on sections
is given by a formula

[X1 + τ1, X2 + τ2] = [X1, X2] +∇X1τ2 −∇X2τ1 + [τ1, τ2] + ω(X1, X2)

The local trivializations AU = TU × h considered above define splittings of A|U for which
ω = 0, and the connection ∇ on L is flat.
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Remark 10.3. If A is the Atiyah algebroid of a principal bundle P →M , then the bundle L is
the gauge bundle gau(P ), the splitting j is equivalent to a principal connection on P , and ω
becomes the curvature 2-form of the principal connection.

10.4. Gauge transformations of transitive Lie algebroids. Locally, any transitive Lie
algebroid is of the form TM × h for a fixed Lie algebra h. We are interested in gauge transfor-
mations of such Lie algebroids

Proposition 10.4. Let h be a Lie algebra, and Aut(h) its Lie algebra automorphisms.
Given a manifold M , the group of automorphisms of the trivial Atiyah algebroid TM×h,
inducing the identity on the base, is the subgroup

GauLA(TM × h) ⊆ Ω1(M, h) o C∞(M,GL(h))

consisting of all pairs (θ,Φ) such that θ is a solution of the Maurer-Cartan equation

dθ +
1

2
[θ, θ] = 0,

and Φ is an Aut(h) ⊆ GL(h)-valued function such that

dΦ + adθ ◦Φ = 0.

Proof. The group of vector bundle automorphism of TM × h, preserving the anchor map and
inducing the identity on the base, is

GauAV (TM × h) = Ω1(M, h) o C∞(M,GL(h)),

where an element (θ,Φ) of this group acts on sections by

(θ,Φ) · (X + ξ) = X + ιXθ + Φ(ξ).

The bracket on sections of TM × h is

[X + ξ, Y + ζ] = [X,Y ] + [ξ, ζ] + LXζ − LY ξ.
Hence, (θ,Φ) preserves this bracket if and only if the following three equations are satisfied,
for all X,Y, ξ, ζ:

Φ([ξ, ζ]) = [Φ(ξ),Φ(ζ)]

θ([X,Y ]) = LXιY θ − LY ιXθ + [ιXθ, ιY θ]

Φ(LXζ) = LX(Φ(ζ)) + [ιXθ,Φ(ζ)].

The first condition says that Φ takes values in Lie algebra automorphisms, the second condition
means that θ is a Maurer-Cartan element. The third equation means LXΦ + adθ(X) ◦Φ = 0,
hence dΦ + adθ ◦Φ = 0. �

Remark 10.5. We may obtain general transitive Lie algebroids by taking trivial bundles TU×h
over charts, and gluing with the help of transition automorphisms. This approach, and a
discussion of the integration problem from this perspective, is detailed in [29].

We will now construct a canonical group homomorphism, for any given m ∈M ,

GauLA(TM × h)→ Hom(π1(M,m),Cent(H)).
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Let M̃ be the universal cover of M with respect to m. Given transition data (θ,Φ) as above,

the Maurer-Cartan element θ, regarded as a flat connection on the trivial H̃-bundle, determines

a unique map g ∈ C∞(M̃,H) with

g|m̃ = e, θ̃ = g−1dg;

here m̃ ∈ M̃ is the base point corresponding to m. (More precisely, g−1dg is the pull-back of

the left-invariant Maurer-Cartan form θL ∈ Ω1(H̃, h) under the map g : M̃ → H). Letting Φ̃
be the pull-back of Φ, we have

dΦ + adθ ◦Φ = 0⇔ d(Adg̃ ◦Φ̃) = 0⇔ Adg̃ ◦ Φ̃ = const .

That is,

θ̃ = g̃−1dg̃, Φ̃ = Adg̃−1 ◦Ψ
for some fixed automorphism Ψ ∈ Aut(h). Conversely, given g ∈ C∞(M̃,H), the condition
that the Lie algebra valued 1-form g−1dg and the Aut(h)-valued function Adg−1 descend to M
mean precisely that g is quasi-periodic with respect to the center. That is, the restriction of g

to π1(M,m) ⊆ M̃ defines a group homomorphism

κ : π1(M,m)→ Cent(H),

and the pull-back of g under the deck transformation given by [λ] changes g by multiplication
by κ([λ]).

10.5. Classification of Lie algebroids over 2-spheres. Recall that if H is a connected Lie
group, then

(31) PrinH(S2) ∼= π1(H).

The element of π1(H) associated to a principal bundle P → S1 is the homotopy class of the
transition map S1 → H of the principal bundle, after choice of trivializations over the upper
and lower hemispheres of S2, and with S1 viewed as the equator. The following gives a similar
description for transitive Lie algebroids over S2.

Theorem 10.6. Let h be a Lie algebra, let H̃ be the connected, simply connected Lie

group integrating h, and let Cent(H̃) be its center. There is a canonical isomorphism,

Tranh(S
2) ∼= Cent(H̃).

Proof. Identify R/Z = S1 ⊆ S2 with the equator, and let m ∈ S1 ⊆ S2 be the base point
(corresponding to 0 ∈ S1). We consider Lie algebroids A with a given identification gm ∼= h.
Consider the open covering of S2 given by the sets

U± ⊆ S2

defined by removing the south pole (for U+) or north pole (for U−). The intersection

C := U+ ∩ U−
is an annulus around the equator. Given a transitive Lie algebroid A → S2, we may choose
trivializations

A|U± = TU± × h
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extending the given trivialization of L at m. Over C, these are related by gluing data (θ,Φ),

where Φ|m = Id (since the identification of gm with h is fixed). Let (θ̃, Φ̃) be their pull-back to

the universal cover C̃. There exists a unique function

g ∈ C∞(C̃, H̃)

with g(0) = e (where 0 is the origin of R ⊆ C̃) such that θ̃ = g−1dg. As discussed above, Φ̃
must be of the form

Φ̃ = Adg−1 ◦Ψ,

where Ψ ∈ Aut(h) is constant, and since Φ|m = Id we have Ψ = Id, thus Φ̃ = Adg−1 .

The fact that Φ̃ descends to C = C̃/Z means that Adg must descend to C. That is, denoting
the action of the generator of Z by x 7→ x + 1, we have that x 7→ g(x + 1)g(x)−1 takes values

in Cent(H̃). Furthermore, since g−1dg descends means that this function is constant. That is,
g(x+ 1) = cg(x) where

c := g(1) ∈ Cent(H̃).

We claim that this element does not depend on the choice of trivialization. A change of
trivialization over U+ (preserving the identification gm ∼= h) is an automorphism given by

h+ ∈ C∞(U+, H̃), with h+|m = e. It amounts to replacing g with h̃+g, where h̃+ is the pull-

back of h. But then (h̃+g)(1) = h̃+(1)g(1) = g(1). Similarly, the change of trivialization over
U− does not change g(1). We have thus constructed a map

Transh(S
2)→ Cent(H̃).

The map is surjective: given c ∈ Cent(H̃) we obtain a transitive Lie algebroid by choosing

g ∈ C∞(C̃, H̃) such that g(0) = e, g(1) = c, and such that Adg−1 descends to C, defining

Φ ∈ C∞(C,Aut(h)). The h-valued 1-form g−1dg descends to a Maurer-Cartan element θ, and
(θ,Φ) are the desired gluing data. The map is injective, because g is determined by these
properties up to change of trivialization. (We leave it as an exercise to spell out the details of
the latter step.) �

Example 10.7. If h = R, so that H̃ = Cent(H̃) = R, we recover the identification with

H2(S2,R) = R. If h = su(2), we have H̃ = SU(2), hence Cent(H̃) = {e, c} (a trivial and
a non-trivial element). These correspond to the Atiyah algebroids of the trivial and non-trivial
SO(3)-bundle over S2.

The group structure on PrinH(S2), defined by the isomorphism PrinH(S2) ∼= π1(H), is
realized by a ‘connected sum’ construction: Given two principal bundles Pi → S2, one obtains
P → S2#S2 by choosing local trivializations near the base points, and identifying the principal
bundles using those identifications. It corresponds to the product on π1(H). In the same way,
Tranh(S

2) has a group structure given by a connected sum construction, and it amounts to

multiplying the elements in Cent(G̃).
Let us now consider the map (29) for the special case M = S2.
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Lemma 10.8. Suppose H is a Lie group with Lie(H) = h. Then the following diagram
commutes:

PrinH(S2) //

��

Tranh(S
2)

��

π1(H) // Cent(H̃).

Here, the bottom map is the inclusion of π1(H) into the kernel of the group homomorphism

H̃ → H; since H̃ is connected, the latter is contained in the center of H̃.

Proof. We may assume H is connected. Then any principal H-bundle P is obtained by gluing
two copies of trivial bundles U± ×H by some transition function g′ : C → H, representing an
element of π1(H). Accordingly, the associated Lie algebroid A(P ) is obtained by gluing two

copies of U± × h by the same a transition function. Lifted to C̃, this becomes the transition

function defining c; in particular c must be in the kernel of the map H̃ → H, that is, c ∈
π1(H) ⊆ H̃. �

Remark 10.9. We will also need the following ‘homotopy invariance’ of this classification: For
any s ∈ [0, 1] the Lie algebroid pull-back under the inclusion S2 → [0, 1] × S2, x 7→ (s, x)
induces an isomorphism

Tranh([0, 1]× S2)→ Tranh(S
2).

To see this, repeat the argument for the classification of transitive Lie algebroids over S2 with
the covering by [0, 1]×U±. Choosing trivializations over these open sets, the transition function

is given by a smooth map g : [0, 1]× C̃ → H̃, and the same argument as before shows that this
function is quasi-periodic with respect to the translation action of Z.

10.6. The monodromy groups. Let us now turn to arbitrary transitive Lie algebroids A→
M over connected manifolds M . As before, we will use the notation L = ker(a), a bundle of
Lie algebras.

Definition 10.10. The monodromy group of the transitive Lie algebroid A at m ∈ M
is the image Λm ⊆ Zm of the group homomorphism

δA : π2(M,m)→ Zm

taking [f ] to the class of f !A ∈ Pringm(S2).

Given a smooth path γ : [0, 1]→M from γ(0) = m to γ(1) = m′, we obtain a commutative
diagram

π2(M,m)
δA //

[γ]
��

Zm

P(γ)

��

π2(M,m′)
δA

// Zm′

In particular, P(γ) takes Λm to Λm′ .
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Proposition 10.11. A necessary condition for the integrability of the transitive Lie
algebroid A is that the monodromy groups Λm are discrete.

Proof. Suppose A is integrable. Then A = A(P ) for some principal H-bundle, where H is a

Lie group with Lie algebra h = gm. Let π1(H) ⊆ H̃ be its fundamental group. Given a smooth
map f : S2 →M , taking the base point of S2 to m, it follows that f !A = A(f∗P ). By Lemma
10.8,

δA([f ]) ∈ π1(H)

for any such f . That is,

Λm ⊆ π1(H),

and in particular Λm must be discrete. �

10.7. Construction of an integration. We will now show how to construct an integration of
transitive Lie algebroids, provided that the monodromy groups are discrete. The construction
will use the choice of a splitting j : TM → A of the Lie algebroid. As we saw, such a splitting
defines a connection ∇X = [j(X), ·] on the Lie algebra bundle L→ M . The resulting parallel
transport along paths

(32) P(γ) : gm → gm′

is by Lie algebra isomorphisms; it agrees with the canonical parallel transport (30) on Cent(L).
The parallel transport of a concatenation of paths is the composition of parallel transports:

(33) P(γ′ ∗ γ) = P(γ′) ◦ P(γ).

A small technical problem is that the concatenation of smooth paths need no longer be smooth.
But there are various simple ways around this issue: For example, one can restrict attention to
paths γ with ‘sitting end points’ [?], i.e., paths that are constant near t = 0 and t = 1. (There
is an associated notion of homotopies of paths with sitting end points.)

The parallel transport exponentiates to group isomorphisms G̃m → G̃m′ , and the induced
map Zm → Zm′ coincides with that given by the flat connection on Z. In particular, it takes
Λm to Λm′ . Letting

Um = G̃m/Λm

the parallel transport also gives group isomorphisms

P(γ) : Um → Um′ ,

again with the property (33) under concatenation. In particular, every loop based at m defines
a group automorphism of Um. On contractible loops λ : [0, 1]→M , we can do better:
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Proposition 10.12. For contractible smooth loops λ : [0, 1]→M based at m ∈M , there
are canonically defined holonomies

(34) Holm(λ) ∈ Um
with Holm(λ′ ∗ λ) = Holm(λ′) Holm(λ), and such that for any smooth path γ from m to
m′,

Holm′(γ ∗ λ ∗ γ−1) = P (γ)
(

Holm(λ)
)
.

In particular, P(λ) : Um → Um is conjugation by Holm(λ).

Proof. To define (34), let us think of λ as a smooth map λ : S1 → M , taking [0] ∈ S1 to M .
After a choice of trivialization

λ!A ∼= T [0, 1]× gm,

compatible with the given inclusion of gm at the base point, the splitting of j!A becomes an
gm-valued 1-form on S1, and we can take its holonomy

Ĥolm(λ) ∈ G̃m.

This element depends on the choice of trivialization of λ!A. However, since our loop is con-
tractible, we may extend it to a smooth map ψ : D2 → M , and we may restrict attention to
trivializations of λ!A that are induced from trivializations of ψ!A. Two such maps ψ± : D2 →M

combine to a map from the sphere, φ : S2 → M , and the two holonomies Ĥol
±
m(λ) are related

by

Ĥol
+

m(λ) = c Ĥol
−
m(λ)

where c ∈ Λm is the element corresponding to φ!A ∈ Pringm(S2). It follows that the image

Holm(λ) ∈ Um
is independent of the choice of extension ψ. �

Given two based paths γ0, γ1 : [0, 1]→M from m to m′, with γ1 ' γ0, we now define

c(γ1, γ0) = Holm(γ−1
1 ∗ γ0) ∈ Um.

Then, if γ2 ' γ1 ' γ0,

c(γ2, γ1)c(γ1, γ0) = c(γ2, γ0)

Furthermore, under concatenation of paths,

c(γ′1 ∗ γ, γ′0 ∗ γ) = P(γ−1)c(γ′1, γ
′
0),

and more generally

c(γ′1 ∗ γ1, γ
′
0 ∗ γ0) = P(γ−1

1 )(c(γ′1, γ
′
0)) c(γ1, γ0).

Also,

P(γ−1
1 )P(γ0)(u) = Ad(c(γ1, γ0))u.



LIE GROUPOIDS AND LIE ALGEBROIDS 73

Theorem 10.13. A transitive Lie algebroid A → M is integrable to a Lie groupoid
(equivalently, it is the Atiyah algebroid of a principal bundle) if and only if the mon-
odromy groups Λm are discrete. In this case, the source-simply connected Lie groupoid
G ⇒ M integrating A is the set of equivalence classes [(γ, u)], where γ : [0, 1] → M is a
path from m to m′ and u ∈ Um, with the equivalence relation

(γ1, u1) ∼ (γ0, u0)⇔ γ1 ' γ0, u1 = c(γ1, γ0) u0.

The groupoid multiplication is given by

[(γ′, u′)] ◦ [(γ, u)] =
[(
γ′ ∗ γ, (P(γ−1).u′)u

)]
.

The isotropy groups Gm fit into an exact sequence

1→ Um → Gm → π1(M,m)→ 1

Proof. Observe first that the relation ∼ is indeed an equivalence relation, and that the groupoid
multiplication is well-defined: For example, if (γ1, u1) ∼ (γ0, u0) then(

γ′ ∗ γ1, (P(γ−1
1 ).u′)u1

)
∼
(
γ′ ∗ γ0, (P(γ−1

0 ).u′)u0

)
.

But

(P(γ−1
1 ).u′)u1 = (P(γ−1

1 ).u′)c(γ1, γ0)u0 = c(γ1, γ0)(P(γ−1
0 ).u′)u0

as required since c(γ′ ∗ γ1, γ
′ ∗ γ0) = c(γ1, γ0). It is also straightforward to check that the

proposed groupoid multiplication is associative, and that its units are the elements of M ,
embedded as classes [(m, 1)].

To see that G is souce simply connected, consider the source fiber of m ∈M . It consists of all
[(γ, u)] such that γ is a path based at m. Consider a family (γs, us) for s ∈ [0, 1], with γ0 = γ1

the constant path at m and u1 = u0 = 1. The us form a loop in Um, representing an element
c ∈ π1(Um) = Λm. By definition of Λm, this element is realized by some map φ : S2 → M
based at m. Equivalently, there is a family of contractible loops λs ∈ Loopm(M) starting and
ending at m, so that s 7→ Holm(λs) represents the same element c. (See the Lemma below).
Hence we have

us = Holm(λs)ṽs,

where vs is a contractible loop, and so

[(γs, us)] = [(γ̃s, ũs)].

This loop in G is contractible, using any homotopy urs with the constant loop and putting
γ̃rs(t) = γ̃s(rt).

The isotropy groups Gm are equivalence classes [(λ, u)] such that λ is a loop based at m, and
u ∈ Um, subject to the relation (λ1, u1) ∼ (λ0, u0) if and only if λ−1

1 ∗ λ0 is contractible and

u1 = Holm(λ−1
1 ∗ λ0)u0. The kernel of the natural map Gm → π1(M,m) is thus Um. �

Lemma 10.14. Any element of π1(Um) = Λm may be realized as a loop s 7→ Holm(λs) ∈
Um, where λs ∈ Loopm(M) is a family of loops based at m, starting and ending at m.
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Proof. Given an element c ∈ Λm, choose a smooth map φ : S2 → M such that c = δA(φ). We
may thing of φ as a family λs of (contractible) loops t 7→ λs(t), with λ0 = λ1 being trvial
loops. (Think of S2 as being sliced by hyperplances passing through the base point.) Since λs
is contractible, Holm(λs) = us is defined, and by construction of c the loop s 7→ us represents
c. more details �

Corollary 10.15. If M is contractible, then every transitive Lie algebroid A → M is
isomorphic to TM × h for some Lie algebra h.

This follows because the integrability assumptions are trivially satisfied, hence A corresponds
to some principal H-bundle. But every principal H-bundles over a contractible base is trivial.

Remarks 10.16. (a) By construction, we have an exact sequence of Lie groupoids

1→ U → G → Π(M)→ 1

where U =
⋃
m∈M Um.

(b) The exact sequence for Gm shows in particular that Gm is connected if and only if M
is 1-connected, and Gm is simply connected if and only if the monodromy groups are
trivial.

Remark 10.17. As already mentioned, the integrability of transitive Lie algebroids was worked
out by Mackenzie [29, Theorem 8.3.6], although formulated and proved differently (using a
Čech theory approach).

11. Integrability of non-transitive Lie algebroids

A general Lie algebroid A → M defines a generalized foliation of M , and is a union of its
restrictions AO to the leaves O ⊆ M of this foliation. If A is integrable to a source-simply
connected Lie groupoid G ⇒ M , then the orbits of G are the leaves of A, and the restrictions
GO to the orbits is a source-simply connected Lie groupoid integrating AO. Hence, integrability
of the restrictions AO is necessary for the integrability of A. It is, however, not sufficient as
the following example shows.

Example 11.1. Consider the foliation F of M = S2 × R with leaves Mt = S2 × {t}. Let ω be
the standard area form on S2, and let

At = TS2 × R→ S2

be the family of Lie algebroids defined by the 2-forms tω. That is, the bracket on sections of
At is given by

[X1 + f1, X2 + f2] = LX1f2 − LX2f1 + tω(X1, X2).

The union
A =

⋃
t

At

is a Lie algebroid with a(A) = TFM . We claim that this Lie algebroid is not integrable.
Each At has a source-simply connected integration given by Gt = G(Pt) ⇒ S2 for principal

R/Λt-bundles Pt → Mt, where Λt = tZ. Note that for t = 0, the structure group is all of R,
while for small non-zero t, the structure groups are circle groups, where the size of the circle
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goes to zero as t→ 0. It seems ‘plausible’ that these cannot fit together into a global, smooth
Lie groupoid.

To see this clearly, suppose that G →M is a source-simply connected Lie groupoid integrating
A. The map (t, s) : G →M ×M is a groupoid homomorphism of constant rank. The pre-image
H = (t, s)−1(M) is hence an embedded subgroupoid of G. This subgroupoid is the union of
isotropy groups, Gm:

H =
⋃
m∈M

Gm.

We have an exact sequence of Lie groupoids

1→ H→ G → Pair(M)→ 1

integrates the exact sequence of Lie algebroids
Fix a base point x ∈ S2, and let

i : R→M = S2 × R, t 7→ (x, t)

be the corresponding inclusion. This is transverse to the anchor, hence i!G is a Lie groupoid
integrating i!A. But i!A is just the trivial Lie algebroid R×R (a trivial vector bundle, regarded
as a Lie algebroid with zero anchor), hence its source-simply connected integration is R×R⇒ R
(a trivial vector bundle, regarded as a Lie groupoid). It follows that i!G is a group bundle,
which is a quotient of R×R by some subbundle Λ ⊆ R×R. But we know that the fiber Λt at
t ∈ R is R/tZ. This is a contradiction, since Λ = {(tn, t)| n ∈ Z, t ∈ R} is not a submanifold of
R× R.

Given a Lie algebroid A→M , and any m ∈M , let gm = ker(am). We define the monodromy
group

Λm ⊆ Cent(G̃m)

to be the monodromy group of the restrictions of A to the leaf O through m. As we saw,
discreteness of Λm is necessary and sufficient for the integrability of AO, where O is the leaf
containing m. To ensure integrability of A itself, we need to compare with the monodromy
groups of nearby leaves. Let

Λ0
m ⊆ Cent(gm)

be the pre-image of Λm under the exponential map Cent(gm) → Cent(G̃m). Clearly, Λm is
discrete if and only if Λ0

m is discrete. An advantage of passing to Λ0
m is that these may be

regarded as subgroups of Am. Let

Λ0 =
⋃
m∈M

Λ0
m ⊆ A

be their union.

Theorem 11.2 (Crainic-Fernandes [11]). The Lie algebroid A → M is integrable to a
(possibly non-Hausdorff) Lie groupoid G ⇒M if and only if the monodromy groups are
uniformly discrete, in the sense that there exists an open neighborhood of the zero section
M ⊆ A that does not contain any non-zero elements of Λ0.

Crainic-Fernandes give an explicit construction of the groupoid G ⇒ M integrating A, as
the space of LA-paths in A modulo LA-homotopy. The groupoid itself was described also by
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Cattaneo-Felder [8], as well as Severa [37], but the key question of smoothness was answered
by Crainic-Fernandes.

Remark 11.3. An LA-path in A is a Lie algebroid morphism T [0, 1] → A. Such an LA-path
is given by the base path γ : [0, 1]→ M , together with a lift of γ to a path γ̂ : [0, 1]→ A such
that

a ◦ γ̂ =
dγ

dt
.

Recall from Section 7.5.1 the notion of homotopy of LA morphisms. [...]
Following Severa [37], one can define a homotopy between two such paths to be an LA-

morphism T [0, 1]2 → A such that its restrictions to the tangent bundle of the horizontal sides
of the square [0, 1]2 are constant maps, while the restrictions to the vertical sides are the given
maps γ0, γ1. This defines an equivalence relation, and G is the set of equivalence classes. The
groupoid structure is such that [φ′] ◦ [φ] = [ψ] whenever there is a morphism from the tangent
bundle of a triangle, restricting to φ, φ′, ψ on the three boundaries.

Example 11.4. Recall that a Lie algebroid with trivial anchor is the same as a family of Lie
algebras gm depending smoothly on m ∈M . The source-simply connected integration of such
a Lie algebroid is a family of simply connected Lie groups Gm depending smoothly on m. The
existence of such an integration (namely, that the Gm fit together into a smooth manifold)
was proved in 1966 by Douady-Lazard [17]. It now follows directly from the Crainic-Fernandes
theorem since the leaves O are points. More generally, whenever the leaves of a Lie algebroid
A are 2-connected, the monodromy groups are trivial, hence the criterion is trivially satisfied.

Example 11.5. Another situation where the monodromy groups Λ0
m are trivial occurs if the

isotropy Lie algebras gm have trivial center (for example, if they are semisimple).

Example 11.6. [11] If A→M is integrable, then every Lie subalgebroid of A is again integrable.
This follows since the monodromy groups of the Lie subalgebroid are contained in those of A.

Example 11.7. Let g be a Lie algebra, and A = g×M the actions Lie algebroid for a g-action
on M . By a result of Dazord [15] (see also Palais [33]), such an action is always integrable. This
follows from the Crainic-Fernandes theorem, since the monodromy group at m is contained in

π1(Gm) ⊆ G̃m, where Gm is the Lie subgroup of the simply connected Lie group G integrating
g. explain why this is the case. Hence, Λ0

m is contained in the set of all ξ ∈ g ∼= Am
such that exp(ξ) = e. Since the exponential map is a diffeomorphism near 0, this implies that
the condition of the theorem is satisfied.

12. Lie algebroid cohomology, Lie groupoid cohomology

12.1. The de Rham complex of a Lie algebroid. Given a manifold M , one can define
the Lie derivatives LX on the space Ω(M) = Γ(∧•T ∗M) of differential forms in terms of the
contraction operators ιX and the given Lie derivative on functions f ∈ Ω0(M) = C∞(M).
One takes LX to be the unique linear operator of degree 0 such that its commutator with
contraction operators is given by

ιY ◦ LX = LX ◦ ιY − ι[X,Y ], LX(f) = X(f) for f ∈ C∞(M) = Ω0(M).

Similarly, one defines the exterior differential to be the linear operator of degree 1 such that

ιX ◦ d = LX − d ◦ ιX .
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These definitions generalize from TM to arbitrary Lie algebroids A→M : On the graded space

Γ(∧•A∗)
we have the operators ισ of contraction with σ ∈ Γ(A), we define Lie derivatives Lσ to be the
degree 0 operators satisfying

ιτ ◦ Lσ = Lσ ◦ ιτ − ι[σ,τ ], Lσ(f) = a(σ)(f),

and we define an exterior differential by

ισ ◦ dA = Lσ − dA ◦ ισ.
Explicitly, for ω ∈ Γ(∧kA∗),

(dAω)(σ1, . . . , σk+1) =
∑
i<j

(−1)i+jω([σi, σj ], σ1, . . . , σ̂i, . . . , σ̂j , . . . , σk+1)(35)

+

k+1∑
i=1

(−1)i+1La(σi)ω(σ1, . . . , σ̂i, . . . , σk+1)

where entries with a hat are to be omitted. The usual properties for the de Rham complex of
differential forms generalize:

Proposition 12.1 (Cartan calculus). One has the formulas

[Lσ, ιτ ] = ι[σ,τ ], [Lσ,Lτ ] = L[σ,τ ], [Lσ,dA] = 0, [ισ, ιτ ] = 0, [ισ, dA] = Lσ, [dA,dA] = 0

where the brackets indicate graded commutators.

Proof. The first, fourth, and fifth formula are immediate (from the definitions). The second
formula holds true on functions; to prove it in general one has to show that the commutator
of the two sides with any contraction ικ is equal. For the left hand side we find

[[Lσ,Lτ ], ικ] = [[Lσ, ικ],Lτ ] + [Lσ, [Lτ , ικ]] = [ι[σ,κ],Lτ ] + [Lσ, ι[τ,κ]] = ι[[σ,κ],τ ] + ι[σ,[τ,κ]]

which agrees with the right hand

[L[σ,τ ], ικ] = ι[[σ,τ ],κ]

by the Jacobi identity. The third formula is verified similarly: Since the operator [Lσ, dA] has
degree 1, it suffices to show that its commutator with all ιτ is zero:

[[Lσ,dA], ιτ ] = −[[Lσ, ιτ ], dA] + [Lσ, [dA, ιτ ]] = −[ι[σ,τ ], dA] + [Lσ,Lτ ] = −L[σ,τ ] + [Lσ,Lτ ] = 0.

Likewise, the last formula follows from

[[dA, dA], ισ] = 2[[dA, ισ],dA] = 2[Lσ, dA] = 0.

�

Similar arguments may be used to show,

Lemma 12.2. The operators ισ,Lσ,dA on Γ(∧A∗) are graded derivations of degrees
−1, 0, 1, respectively.
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Since dA is an odd operator, the identity [dA, dA] = 0 means that dA ◦ dA = 0. One may
thus define the cohomology groups:

Definition 12.3. The de Rham cohomology groups H•(A) of the Lie algebroid A are
the cohomology groups of the complex (Γ(∧A∗), dA).

Note that H•(A) has a natural graded algebra structure, coming from the wedge product
on Γ(∧A∗).

For A = TM , one recovers the usual de Rham complex of differential forms. For A = g a
Lie algebra, one obtains the Chevalley-Eilenberg complex ∧g∗ of the Lie algebra g. Recall that
the latter may also be regarded as the complex of left-invariant differential forms on G.

A bit more generally, one can also consider the de Rham cohomology of A with coefficients
in an A-module V → M . Recall that this means that A comes with a flat A-connection. One
defines contractions, Lie derivatives, and a differential on

Γ(∧•A∗ ⊗ V )

by the same inductive formulas as before, with the understanding that Lστ for

τ ∈ Γ(∧0A∗ ⊗ V ) = Γ(V )

is the given A-representation ∇στ .

12.2. The Lie algebroid structure. As we saw, a Lie algebroid structure on A makes the
sections of ∧A∗ into a differential graded algebra (Γ(∧A∗),dA), where the Jacobi identity of
the bracket on A is ultimately responsible for dA ◦ dA = 0. That the converse is true as well
was first observed by Vaintrob [?] (generalizing a well-known-fact for Lie algebras):

Proposition 12.4. Let A → M be a vector bundle, and let dA be a differential on
Γ(∧A∗), that is, dA is a derivation of degree 1 with dA ◦ dA = 0. Then dA determines a
unique Lie algebroid structure on A for which dA is the de Rham differential.

Proof. Given dA, define ‘Lie derivatives’ Lσ on Γ(∧A∗) by Cartan’s identity Lσ = dA◦ισ+ισ◦dA,
and define a bracket on sections by the formula

ω([σ1, σ2]) = [Lσ1 , ισ2 ]ω, ω ∈ Γ(∧1A∗).

Then ι[σ1,σ2] = [Lσ1 , ισ2 ]. (A priori, this formula holds on Γ(∧1A∗), but since Lσ, ισ are graded
derivations, it holds in fact on all of Γ(∧A∗). Then, the first, fourth, and fifth identity from
Cartan’s calculus (Lemma 12.1) hold by definition, and the sixth is the assumption d2

A = 0.
The identity [Lσ,dA] = 0 follows from

[Lσ,dA] = [[ισ,dA], dA] =
1

2
([[ισ, dA],dA] + [[dA, ισ], dA]) = −1

2
[[dA, dA], ισ] = 0,

while [Lσ1 ,Lσ2 ] = L[σ1,σ2] follows from

[Lσ1 ,Lσ2 ] = [[dA, ισ1 ],Lσ2 ] = [[ισ1 ,Lσ2 ],dA] = [ι[σ1,σ2],dA] = L[σ1,σ2].



LIE GROUPOIDS AND LIE ALGEBROIDS 79

By the calculation as in the proof of Proposition 12.1, this last identity implies the Jacobi
identity for the bracket [·, ·], so that the latter is indeed a Lie bracket. It remains to show that
this bracket admits an anchor map. Define

a : A→ TM

on the level of sections σ ∈ Γ(A) by

La(σ)(f) = Lσ(f)

for f ∈ C∞(M) (viewed on the right hand side as an element of Γ(∧0A∗)). It defines a bundle
map since the right hand side is C∞-linear in σ. Then

ι[σ1,fσ2] = [Lσ1 , fισ2 ] = f [Lσ1 , ισ2 ] + Lσ1(f)ισ2 = fι[σ1,σ2] + La(σ1)(f)ισ2 ,

which shows the Leibnitz rule for the bracket, [σ1, fσ2] = f [σ1, σ2] + a(σ1)(f)σ2. �

It is easily seen that for a direct product of Lie algebroids, A = A1×A2 over M = M1×M2,
we have that

Γ(∧A∗) = Γ(∧A∗1)⊗ Γ(∧A∗2)

as differential graded algebras – in turn, one may take this to be the definition of the Lie
algebroid structure on the direct product.

Proposition 12.5. Let A → M be a Lie algebroid, and B ⊆ A is a vector subbundle
along a submanifold N ⊆ M . Then B is a Lie subalgebroid of A if and only if the
B-horizontal space

{ω ∈ Γ(∧A∗)| ισω|N = 0 for all σ ∈ Γ(A,B)}
is a subcomplex for the differential dA. (Equivalently, the projection φ∗ : Γ(∧A∗) →
Γ(∧B∗) is a cochain map for a (unique) differential dB on Γ(∧B∗).)

Proof. Let φ : B ↪→ A be the inclusion map, with base map i : N → M , and φ∗ : Γ(∧B∗) →
Γ(∧A∗) be the induced maps on sections of the dual bundle. Suppose ker(φ∗) is a subcomplex.
Then Γ(∧B∗) inherits a differential such that

φ∗ ◦ dA = dB ◦ φ∗.
In particular, B inherits the structure of a Lie algebroid. If σ ∈ Γ(A,B), with restriction τ , we
have that

φ∗ ◦ ισ = ιτ ◦ φ∗, φ∗ ◦ Lσ = Lτ ◦ φ∗.
Consequently, if σ1, σ2 ∈ Γ(A,B), restricting to sections τ1, τ2 ∈ Γ(B), then

φ∗ ◦ ι[σ1,σ2] = φ∗ ◦ [Lσ1 , ισ2 ] = [Lτ1 , ιτ2 ] ◦ φ∗ = ι[τ1,τ2] ◦ φ∗.
Applying this to arbitrary ω ∈ ker(φ∗), this shows in particular that [σ1, σ2] ∈ Γ(A,B), so
that Γ(A,B) is closed under the Lie bracket. Similarly, if f ∈ C∞(M) vanishes along N , and
σ ∈ Γ(A,B) restricts to τ ∈ Γ(B), then (since φ∗ coincides with i∗ on functions)

φ∗La(σ)f = φ∗ισdAf = ιτφ
∗dAf = ιτdBφ

∗f = 0,

which shows that the vector field a(σ) is tangent to N . Hence, a(B) ⊆ TN . This shows that
B is a Lie subalgebroid.
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Conversely, let B be a Lie subalgebroid of A. To show φ∗dAω = dBφ
∗ω for all ω ∈ Γ(∧kA∗),

apply both sides to sections τ1, . . . , τk ∈ Γ(B), which we may take to be restrictions of sections
σ1, . . . , σk ∈ Γ(A,B). Since B is a Lie subalgebroid, the bracket [σi, σj ] restricts to [τi, τj ],
and a(τi) are i-related to a(σi). Hence, the desired identity follows from the formula (35)
for the differential. This proves that φ∗ is a cochain map, and in particular its kernel is a
subcomplex. �

Example 12.6. For any Lie algebroid A, the diagonal in A × A is a Lie subalgebroid. The
corresponding map on de Rham complexes

Γ(∧(A×A)∗) = Γ(∧A∗)⊗ Γ(∧A∗)→ Γ(∧A∗)

is just the algebra multiplication, hence it is a cochain map.

More generally, we obtain:

Proposition 12.7. Let A → M, B → N be Lie algebroids, and let ϕ : B → A be a
bundle map with base map F : N →M . Then ϕ is a morphism of Lie algebroids if and
only if the pull-back map on sections, Γ(∧A∗)→ Γ(∧B∗), is a cochain map.

Proof. Suppose ϕ∗ : Γ(∧B∗) → Γ(∧A∗) is a cochain map. The inclusion B ∼= Gr(ϕ) → A × B
factors as a composition of maps

B → B ×B → A×B,

where the first map is the diagonal inclusion, and the the second map is ϕ× idB. The map on
de Rham complexes is thus φ∗ ⊗ idΓ(∧B∗) : Γ(∧A∗) ⊗ Γ(∧B∗) → Γ(∧B∗) → Γ(∧B∗), followed
by multiplication. It is thus a cochain map, proving that Gr(φ) is a Lie subalgebroid.

Conversely, if Gr(φ) is a Lie subalgebroid, we see that the map Γ(∧A∗) ⊗ Γ(∧B∗) →
Γ(∧B∗), x⊗ y 7→ φ∗(x)y is a cochain map:

dB(φ∗(x)y) = φ∗(dAx)y + φ∗(x)dBy.

Applying this to y = 1, it follows that φ∗ is a cochain map. �

12.3. Examples.

12.3.1. Foliations. By Frobenius’ theorem, a vector subbundle B ⊆ TM is the tangent bundle
TFM of a foliation F if and only if B is a Lie subalgebroid of TM . In terms of the differential
complexes, this is equivalent to requiring that the space of B-horizontal forms (i.e. ιXω = 0
whenever X takes values in B) is a subcomplex of Ω(M). The quotient complex (∧(T ∗FM),dA)
is called the tangential de Rham complex. See e.g. [?, Chapter III].

12.3.2. g-actions. If A = M×g is the action Lie algebroid for a g-action on M , then Γ(∧A∗) ∼=
C∞(M)⊗ ∧g∗ is the Chevalley-Eilenberg complex with coefficients in the g-module C∞(M).

12.3.3. Poisson manifolds. Let M be a manifold with a Poisson bracket. Hence, the corre-
sponding Poisson tensor π ∈ Γ(∧2TM) satisfies [π, π] = 0. One obtains a differential dπ = [π, ·]
on Γ(∧TM), making the latter into a differential graded algebra. Hence, T ∗M inherits a Lie
algebroid structure.
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12.3.4. b-forms. Given an embedded hypersurface N ⊆ M , one has a Lie algebroid A = T bM
whose sections are the vector fields tangent to N . The corresponding complex Γ(∧A∗) = Ωb(M)
can be regarded as differential forms on M\N developing a first order pole along N . This is the
starting point for Melrose’s b-calculus (in his work, M is a manifold with boundary N = ∂M).

12.4. The Lie groupoid complex. Given a Lie groupoid G ⇒ M , recall that G(p) is the
space of p-arrows in G. In this section, we will use the ‘simplicial notation’ and write BpG for
the space of p-arrows: Thus

BpG = {(g1, . . . , gp)| gi ∈ G, s(gi) = t(gi+1)}.
It will be convenient to regard gi as an arrow from a base point s(gi) = mi to a base point
t(gi) = mi−1; hence a p-arrow comes with p+ 1 base points

m0, . . . ,mp.

There are p+ 1 face maps, where

∂i : BpG → Bp−1G, i = 0, . . . , p

amounts to ‘omitting the i-th base point’. Explicitly,

∂i(g1, . . . , gp) =


(g2, . . . , gp) i = 0,

(g1, . . . , gigi+1, . . . , gp) 0 < i < p,

(g1, . . . , gp−1) i = p.

For p = 1 we have ∂0(g) = s(g), ∂1(g) = t(g). There are also degeneracy maps εi : BpG →
Bp+1G, ‘repeating the i-th base point’ by inserting a trivial arrow. That is,

εi(g1, . . . , gp) = (g1, . . . , gi,mi, gi+1, . . . , gp).

Definition 12.8. The complex (C•(G), δ) of differentiable groupoid cochains is given by

Cp(G) = C∞(BpG), δ =

p+1∑
i=0

(−1)i∂∗i .

The normalized subcomplex C̃•(G) is the subcomplex consisting of f ∈ C∞(BpG) such
that ε∗i f = 0 for all i.

That is, the normalized subcomplex consists of functions on BpG which vanish on
(g1, . . . , gp) ∈ BpG whenever one of the entries gi is a unit. Using the relations between

face maps, it is not hard to check to verify that δ does indeed square to zero, and that C̃•(G)
is indeed a subcomplex.

Remark 12.9. Also of interest is a localized version of these complexes, denoted C•M (G) and

C̃•M (G), whose cochains are the germs of functions on BpG along M ⊆ BpG.

Example 12.10. A 0-cochain f ∈ C0(G) is a function on M . It is a cocycle if and only if
(δf)(g) = (t∗f)(g) = (s∗f)(g) = 0, i.e. f is constant along the orbits of G. (One might say: f
is a G-invariant function on M .) A 1-cochain f ∈ C1(G) is a cocycle if and only if

(δf)(g0, g1) = f(g1)− f(g0g1) + f(g0) = 0.
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These are the multiplicative functions on G, i.e., groupoid homomorphisms G → R.

Example 12.11. Let G = Pair(M) be the pair groupoid. Then BpG consists of p + 1-tuples
(m0, . . . ,mp), with the i-th face map forgetting the i-th entry. (The normalized subcomplex
consists of functions that vanish whenever two of the entries coincide.)

Consider the cocycles in low degree: For f ∈ C0(G), we have that (δf)(m0,m1) =
f(m1) − f(m0), which vanishes if and only if f is constant. For f ∈ C1(G), we have
that (δf)(m0,m1,m2) = f(m1,m2) − f(m0,m2) + f(m0,m1), which vanishes if and only if
f(m0,m1) + f(m1,m2) = f(m0,m2) for all triples of points. Any 1-cocycle is a coboundary:
Fixing a base point m∗, we have that

f(m1,m2) = −f(m∗,m1) + f(m∗,m2) = (δg)(m1,m2)

with g(m) = f(m∗,m).
More generally, the formula

(hf) (m0, . . . ,mk−1) = f(m∗,m0, . . . ,mk−1),

defines a homotopy operator for δ:

h ◦ δ + δ ◦ h = id−i ◦ π
where i and π are inclusion of and projection to R ⊆ C0(G). It follows that, H•(G) is trivial.
Notice that the homotopy operator no longer works for the localized complex C•M (G). In fact,
the latter has more interesting cohomology H•M (G): One can show that this Alexander-Spanier
complex computes the de Rham cohomology of M .

Some comments and generalizations:

(a) Just as for the Lie algebroid complex, one can consider groupoid cochains with coeffi-
cients in a G-representation p : V →M . Recall that such a G-representation is given by a
vector bundle together with an action G s×pV → V such that the maps g : Vs(g) → Vt(g)
are linear. Equivalently, the action groupoid GnV ⇒ V is a VB-groupoid over G ⇒M .
Applying the functor B•, we obtain vector bundles

Bp(G n V )→ Bp(G).

The fiber of Bp(G × V ) over (g1, . . . , gp) ∈ BpG, with base points m0, . . . ,mp, may be
regarded as sequences v0, . . . , vp with vi ∈ Vmi , such that vi−1 = gi ◦ vi. (Of course,
such a sequence is uniquely determines by any one of the vi, for example by vp.) The
sections of this bundle define the cochain groups complex

Cp(G, V ) = Γ(Bp(G n V ));

the differential is as before the alternating sum of pullbacks.
(b) Another generalization is to consider differential forms on BpG. This defines a double

complex,
Cp,q(G) = Ωq(BpG)

A q-form ω on G is a 1-cocycle if it is multiplicative: Thus,

Mult∗G ω = pr∗1 ω + pr∗2 ω

where MultG : G(2) → G is the groupoid multiplication and pr1, pr2 : G(2) → G are the
two projections.
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(c) The complex C(G) has a (non-commutative) ring structure given by cup product, as

follows. Given f ∈ Cp(G) = C∞(BpG) and f ′ ∈ Cp
′
(G) = C∞(Bp′G), we define f ∪ f ′ by

(f ∪ f ′)(g1, . . . , gp+p′) = f(g1, . . . , gp) + f(gp+1, . . . , gp+p′).

The cup product satisfies

δ(f ∪ f ′) = δ(f) ∪ f ′ + (−1)pf ∪ δ(f ′),

so it defines a cup product in cohomology H•(G).

12.5. Weinstein-Xu’s van Est map. Suppose G ⇒M is a Lie groupoid, with Lie algebroid
A→M . We then have two cochain complexes

C̃•(G) ⊆ C•(G) = C∞(B•G), C•(A) = Γ(∧•A∗).

We would like to describe a cochain map

VE• : C̃•(G)→ C•(A)

amounting to a ‘differentiation procedure’. In the case that G is a Lie group, with A its Lie
algebra, this will be the classical van Est map [?].

To describe this map, consider the map

Φ: BpG →Mp+1

taking a p-arrow to its p + 1 base points (m0, . . . ,mp). Its i-th component is the anchor map
for a G-action on BpG, given by

h · (g1, . . . , gp) = (g1, . . . , gih
−1, hgi+1, . . . , gp).

For i = 0, the right hand side is to be interpreted as (hg1, g2, . . . , gp), and for i = p as
(g1, g2, . . . , gph

−1). Accordingly, every section σ ∈ Γ(A) gives rise to p+ 1 vector fields defining
the corresponding infnitesimal actions: Regarding BpG as a submanifold of Gp+1, these are the
restrictions of the vector fields

σ(i) = (0, . . . , 0, σL︸︷︷︸
i

,−σR︸︷︷︸
i+1

, 0, . . . , 0),

For i = 0, this is to be interpreted as (−σR, 0, . . . , 0) and for i = p as (0, . . . , 0, σL).

Example 12.12. Let G = Pair(M), A = TM . Then the map Φ is a diffeomorphism BpG =
Mp+1. In terms of this identification, the p+ 1 vector fields defined by X ∈ Γ(A) = X(M) are
simply

X(i) = (0, . . . , X︸︷︷︸
i

, . . . , 0) ∈ X(Mp+1))

The formula for the Van Est map is then as follows: For f ∈ C̃p(G) = C∞(BpG),

(36) VE(f)(σ1, . . . , σp) =
∑
s∈Sp

sign(s) L(σ
(1)
s(1)) · · · L(σ

(p)
s(p))(f)

∣∣
M

where the sum is over the permutation group Sp. Note that the 0-th action does not enter this
formula.
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Lemma 12.13. The right hand side of (36) is C∞-linear in σ1, . . . , σp, hence it gives
a well-defined section VE(f) ∈ Γ(∧pA∗).

Proof. Using that the vector fields σ(i) are all defined on all of Gp, we may compute (36)
by using any extension of f to Gp, still with the property that f vanishes whenever one of
the entries lies in M . (We will use the same notation f for the extension.) The difference
VE(f)(gσ1, . . . , σp) − gVE(f)(σ1, . . . , σp), for a given function f , is a linear combination of

terms of the form L(τ
(i1)
1 ) · · · L(τ

(ir)
r )(f)|M with 1 ≤ i1 < . . . < ir ≤ p where r is strictly less

than p. Using the formula for the vector fields σ(i), and since f is normalized, it is not hard to
see that such terms are all zero. to be polished. A cleaner way is to pull everything

back to EpG �

Theorem 12.14 (Weinstein-Xu [41]). The van Est map (36) is a cochain map

VE: C̃(G)→ C(A), intertwining the products.

The van Est map is also well-defined on the localized complex C̃M (G). We will see that the
resulting map

VE: C̃M (G)→ C(A)

induces an isomorphism in cohomology. In the case of G = Pair(M), this gives the isomorphism
between Alexander-Spanier cohomology and de Rham cohomology.

12.6. The Crainic double complex. Our approach to the Weinstein-Xu theorem will relate
the two complexes using a double complex, due to Crainic [10]. The argument is similar to A.
Weil’s Čech-de Rham double complex (see e.g. [4]), used to prove the isomorphism between
Čech cohomology and de Rham cohomology. The sequence of manifolds

EpG = {(a0, . . . , ap) ∈ Gp+1| s(a0) = . . . = s(ap)}

is a simplicial manifold, for the face maps

∂i : EpG → Ep−1G, i = 0, . . . , p

omitting the i-th entry, and degeneracy maps

εi : EpG → Ep+1G, i = 0, . . . , p

repeating the i-th entry. There is a morphism of simplicial manifolds κ• : E•G → B•G, where

κp : EpG → BpG, (a0, . . . , ap) 7→ (a0a
−1
1 , a1a

−1
2 , . . . , ap−1a

−1
p ).

(This being a morphism means that κ• intertwines the respective face and degeneracy maps.)
The map κp is the quotient map for the principal G-action on EpG, with anchor map

πp : EpG →M

taking (a0, . . . , ap) to the common source, and given by

h · (a0, . . . , ap) = (a0h
−1, . . . , aph

−1).
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On the other hand, the p + 1 G-actions on EpG given by left multiplication descend to the
p+1 actions on BpG described above. In particular, the vector field (0, 0, . . . ,−σR, 0, . . .) (with

−σR as the i-th entry) descends to σ(i). Note that πp is also a simplicial map (where M is a
simplicial manifold in a trivial way: it is given by M itself for all p, and all face and degeneracy
maps are the identity maps). It has a right inverse ip : M → EpG which also defines a simplicial
map.

EpG
κp
//

πp

��

BpG

M

ip

OO

The Crainic double complex is given by

Cr,s = Γ(∧sπ∗rA)

with the two differentials defines as follows. For any fixed s, the collection bundles ∧sπ∗rA →
ErG define a simplicial vector bundle ∧sπ∗•A→ E•G, i.e., there are face and degeneracy maps

∂i : ∧s π∗rA→ ∧sπ∗r−1A, εi : ∧s π∗rA→ ∧sπ∗r+1A

covering the face and degeneracy maps on the base. Put differently, we may regard ∧sA→M
as a simplicial vector bundle given by A→M in all degrees, and with all face and degeneracy
maps being the identity maps; then ∧sπ∗•A is just its pullback in the category of simplicial
manifolds. This defines the simplicial differential

δ =
r+1∑
i=0

(−1)i∂∗i : : Cr,s → Cr+1,s.

On the other hand, for fixed r, we may regard π∗rA→ ErG as the tangent bundle to the fibers
of ErG → BrG:

π∗rA
∼= ker(Tκr) ⊆ TErG.

(This is just the usual isomorphism for the vertical bundle of any groupoid principal bundle;
in case G = G is a group, with Lie algebra A = g, it is the isomorphism ker(Tκr) = ErG× g.)
Since this is the tangent bundle to a foliation, it is in particular a Lie algebroid, hence there is
a Chevalley-Eilenberg differential

dCE : Cr,s → Cr,s+1.

This Chevalley Eilenberg and simplicial differentials commute in the ungraded sense (since each
∂i is a Lie algebroid morphism):

dCE ◦ δ = δ ◦ dCE .

For a double complex, we prefer if the two differentials commute in the graded sense. We hence
put

d = (−1)rdCE : Cr,s → Cr,s+1;

then
(C•,•, d, δ)

is the desired double complex, with horizontal differential δ and vertical differential d.
This double complex comes with two ‘augmentation’ maps. First, there is the map

κ∗r : C̃r(G)→ Cr,0.
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Its image are the G-invariant functions on ErG, regarded as sections of ∧0π∗rA
∗. Second,

regarding A → M as a simplicial Lie algebroid A• → M• as above, it too defines a double
complex (D•,•,d, δ), where

Dr,s = Γ(∧sA∗r),
and with the simplicial differential δ and with d = (−1)rdCE . The map

π∗rA
∼= ker(Tκr)→ Ar

is a morphism of Lie algebroids, inducing a morphism of complexes, for all fixed r,

π∗r : C•(Ar)→ Cr,•

which is indeed a map of double complexes D•,• → C•,•. Note that this map is injective, hence
we may think of D•,• as a sub-double complex.

Remark 12.15. Warning: the map ι∗r is not a cochain map for dCE , since this does not corre-
spond to a Lie algebroid morphism. It is still a cochain map for δ, though.

The idea of the construction is now as follows. Consider the double complex Tot•(C) with
the total differential d + δ. We have a cochain map

C•(G)→ Tot•(C).

We would like to define a cochain map from Tot•(C), by essentially ‘inverting’ the map π∗.

12.7. Perturbation lemma. We will use the following Lemma from homological algebra,
called the basic perturbation lemma. Suppose (C•,•,d, δ) is a double complex, concentrated in
non-negative degrees, with the corresponding total complex (Tot•(C),d+δ). Let i : D•,• ↪→ C•,•

be a sub-double complex. Suppose the horizontal differential δ admits a homotopy operator

h : C•,• → C•−1,•

with h|D = 0, so that
[h, δ] = 1− i ◦ p

for some projection p : C•,• → D•,•. The perturbation lemma modifies this homotopy for δ into
a homotopy operator for the total differential.

Lemma 12.16 (Brown, Gugenheim). Let

h′ = h(1 + dh)−1 = (1 + hd)−1h.

Then
[h′, d + δ] = id−i ◦ p′

where p′ = p(1 + dh)−1 is a new projection to D.

Proof. We calculate:

(1 + hd) [h′, d + δ] (1 + dh) = (1 + hd)h′(d + δ)(1 + dh) + (1 + hd)(d + δ)h′(1 + dh)

= h(d + δ)(1 + dh) + (1 + hd)(d + δ)h

= [h, d + δ]

= 1− i ◦ p+ [h, d],
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to be compared with

(1 + hd) (1− i ◦ p′) (1 + dh) = (1 + hd)(1 + dh)− (1 + hd) i ◦ p
= 1− i ◦ p+ [h,d]− hd i ◦ p.

Bit hd i p = h id p = 0, since i is a cochain map for d, and since h vanishes on the range of i,
by assumption. �

In short, if the inclusion D ↪→ C is a homotopy equivalence for the differential δ, and the
homotopy operator h has the property above, then we can turn it into a homotopy equivalence
for the total (‘perturbed’) differential.

12.8. Construction of the van Est map. We return to the double complex C•,• for a Lie
groupoid G ⇒M , and its subcomplex D•,•.

Lemma 12.17. There exists a homotopy operator h for the differential δ on C•,• with

[h, δ] = 1− π∗ ◦ ι∗.
This homotopy operator vanishes on the range of π∗.

Proof. Define maps
hj : ErG → Er+1G, j = 0, . . . , r

by
hj(a0, . . . , ap) = (a0, . . . , aj ,m, . . . ,m︸ ︷︷ ︸

r+1−j

).

These maps lift to bundle maps π∗rA → π∗r+1A, denoted by the same letters. One can verify
that

h =

r∑
j=0

(−1)j+1h∗j : Γ(∧sπ∗rA)→ Γ(∧sπ∗r+1A)

is a homotopy operator with the desired property. �

Remark 12.18. It may be useful to explain this calculation on the ‘homology side’. Consider
ZEpG, the formal linear combinations with coefficients in Z (to be precise, we only take linear
conbinations of elements with the same source in M). Then δ is pullback under the map

∂ : ZEpG → ZEp−1G, (a0, . . . , ap) =
∑
i

(−1)i(a0, . . . , âi, . . .).

while h is pullback under

h : ZEpG → ZEp+1G, (a0, . . . , ap) 7→
p∑
j=0

(−1)j+1(a0, . . . , aj ,m, . . . ,m).

Let us demonstrate the calculation of hδ + δh for p = 2:

hδ(a0, a1, a2) = h
(
(a1, a2)− (a0, a2) + (a0, a1)

)
= −(a1,m,m) + (a1, a2,m) + (a0,m,m)− (a0, a2,m)− (a0,m,m) + (a0, a1,m)

= −(a1,m,m) + (a1, a2,m)− (a0, a2,m) + (a0, a1,m)
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δh(a0, a1, a2) =h
(
− (a0,m,m,m) + (a0, a1,m,m)− (a0, a1, a2,m)

)
=− (m,m,m) + (a0,m,m)− (a0,m,m) + (a0,m,m)

+ (a1,m,m)− (a0,m,m) + (a0, a1,m)− (a0, a1,m)

− (a1, a2,m) + (a0, a2,m)− (a0, a1,m) + (a0, a1, a2)

=− (m,m,m) + (a1,m,m)− (a1, a2,m) + (a0, a2,m)− (a0, a1,m) + (a0, a1, a2)

So, (hδ + δh)(a0, a1, a2) = −(m,m,m) + (a0, a1, a2).

We are now in position to construct a cochain map from the complex C̃•(G) to the complex

C•(A). We begin with the pullback map κ∗ : C̃•(G) → C•,•. It takes values in C•,0, hence can
be regarded as a cochain map to the total complex.

κ∗ : C̃•(G)→ Tot•(C•,•).

The map ι∗ : D•,• is homotopy equivalence with respect to δ, with homotopy operator h. By
the basic perturbation lemma, we can modify it into a homotopy equivalence ι∗ ◦ (1 + dh)−1

with respect to d + δ. Hence, the composition

ι∗ ◦ (1 + dh)−1 ◦ κ∗ : C̃•(G)→ Tot•(D•,•)

is a cochain map. This is almost what we want, except that we don’t want to work with D•,•

which contains an infinite number of copies of the complex C•(A). Note however that the
differential

δ =

r+1∑
i=0

(−1)i∂∗i : Γ(∧sA∗r)→ Γ(∧sA∗r)

(with Ar = A for all r alternates between 0 and the identity, and is trivial in degree r = 0. It’s
easy to see that the inclusion of the r = 0 column

Cs(A) ↪→ D•,s

as D0,s is a homotopy equivalence. Hence, we conclude that

ι∗0 ◦ (1 + dh)−1 ◦ κ∗ : C̃•(G)→ Cs(A)

is a cochain map.

Definition 12.19. The composition

ι∗0 ◦ (1 + dh)−1 ◦ κ∗ : C̃•(G)→ Cs(A)

is called the van Est map for the groupoid G ⇒M .

In this formula, (1 + dh)−1 =
∑∞

n=0(−1)n(d ◦ h)n is well-defined on any element of finite
degree. We can also write

VE = ι∗0 ◦ (1 + [d, h])−1 ◦ κ∗
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because d ◦ κ∗ = 0 and (1 + [d, h])−1 = (1 + dh)−1 +
∑∞

j=1(hd)j . This formula is somewhat

easier to work with since [d, h] is closer to being a derivation. On elements of degree p the
formula simplifies to

VE = (−1)pι∗0 ◦ (d ◦ h)p ◦ κ∗p : Cp(G)→ Cp(A);

again, we can replace d ◦ h with [d, h] if desired.
To get a better understanding of this formula, consider the zig-zag on elements of the form

f0⊗̄ · · · ⊗̄fr⊗̄α ∈ Cr,s

where fi ∈ C∞(G) α ∈ Γ(∧sA∗), and the tensor products ⊗̄ are over C∞(M) (viewing C∞(G)
as a module over C∞(M) via the source map). We have

h(f0⊗̄ · · · ⊗̄fr⊗̄α) =
r−1∑
j=0

(−1)j+1 f0⊗̄ · · · ⊗̄fj⊗̄ 1⊗̄ · · · ⊗̄1︸ ︷︷ ︸
r−j−1

⊗̄ ι∗(fj+1 · · · fr)α.

π∗rα = 1⊗̄ · · · ⊗̄1︸ ︷︷ ︸
r+1

⊗̄α.

ι∗r(f0⊗̄ · · · ⊗̄fr⊗̄α) = ι∗(f0 · · · fr)α ∈ ∧sA∗.

Finally, the differential is given by the following formula (taking into account that d is a
derivation relative to the wedge product)

d (f0⊗̄ · · · ⊗̄fr⊗̄α) =
r∑
j=0

∑
k

f0⊗̄ · · · ⊗̄L(XL
k )fj⊗̄ · · · ⊗̄fr⊗̄(βk ∧ α) + (−1)rf0⊗̄ · · · ⊗̄fr⊗̄dCEα.

In the first term, we take Xk be a local frame of sections of A, with dual frame βk of A∗.

Remark 12.20. It is instructive to consider the case of a pair groupoid G = Pair(M). Here

BpG = Mp+1, EpG = Mp+1 ×M.

The quotient map κp is just the obvious projection to the first factor, πp : EpG → Mp is
projection to the last factor. The space

C∞(BpG) = C∞(Mp+1)

has a dense subspace C∞(M)⊗(p+1), consisting of functions f0 ⊗ f1 ⊗ · · · ⊗ fp. Likewise, Cr,s

has a dense subspace consisting of all

(f0 ⊗ f1 ⊗ · · · ⊗ fp)⊗ α
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with α ∈ Ωs(M). Consider the zig-zag (d ◦ h)p for p = 2. We have

f0 ⊗ f1 ⊗ f2
κ−→ (f0 ⊗ f1 ⊗ f2)⊗ 1

h−→ −(f0 ⊗ 1)⊗ f1f2 + (f0 ⊗ f1)⊗ f2

d−→ (f0 ⊗ 1)⊗ d(f1f2)− (f0 ⊗ f1)⊗ df2

h−→ −f0 ⊗ d(f1f2) + f0 ⊗ f1df2

d−→ f0 ⊗ df1df2

ι∗−→ f0 df1df2

More generally, one finds that

VE(f0 ⊗ · · · ⊗ fp) = f0df1 ∧ · · · ∧ dfp,

using a ‘completed’ tensor product. In any case, products

∈ C∞(Mp+1)

are dense. Likewise

Cr,s = C∞(M)⊗(p+1) ⊗ Ωs(M)

The map κ∗p is given by

f0 ⊗ f1 ⊗ · · · ⊗ fp ⊗ 1.

The map h takes this to

−f0 ⊗ f1 ⊗ · · · ⊗ fp ⊗ 1

Appendix A. Deformation to the normal cone

A.1. Basic properties. Let (M,N) be a pair consisting of a manifold M and a submanifold
N . Similar to the normal bundle functor, the deformation to the normal cone is a covariant
functor from manifold pairs to manifolds, taking a pair (M,N) to a manifold D(M,N) and a
smooth map of pairs ϕ : (M1, N1)→ (M2, N2) to a smooth map

(37) D(ϕ) : D(M1, N1)→ D(M2, N2).

The manifold D(M,N) is a set-theoretic union of two submanifolds

D(M,N) = ν(M,N) t (M × R×),

and given ϕ : (M1, N1)→ (M2, N2) the map D(ϕ) preserves this decomposition, and is given by
ν(ϕ) : ν(M1, N1)→ ν(M2, N2) on the first piece and by (m, t) 7→ (ϕ(m), t) on the second piece.
The deformation functor is uniquely determined by these properties, and the ‘normalization’
that

D(R, 0) = R× R
as a manifold, where the diffeomorphism is given by s 7→ (s, 0) on ν(R, 0) = R and by (s, t) 7→
(1
t s, t) on R× R×.
Before describing the construction of D(M,N) in more detail, we list some of the basic

properties.
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(a) The multiplicative group R× acts smoothly on D(M,N). Let λa denote the action of
a ∈ R×. On D(M,N)0 = ν(M,N) this is the action by scalar multiplication,

λa(ξ) = aξ

while on the complement M × R× the action is λa(m, t) = (m, a−1t). Given a map ϕ
of pairs, the induced map D(ϕ) is R×-equivariant.

The vector field with flow s 7→ λexp(s) is given by t ∂∂t on M × R×, and by minus the
Euler vector field on ν(M,N).

(b) If V →M is a vector bundle, we have a canonical diffeomorphism

D(V,M)→ V × R

given by the family of maps

D(V,M)t → V,

{
v 7→ t−1v t 6= 0

v 7→ v t = 0

(with the standard isomorphism ν(V,M) = V for t = 0). In terms of this diffeomor-
phism, the R×-action on V × R is

λa(v, t) = (av, a−1t).

(c) As a special case (taking V to be the zero vector bundle), we have that

D(M ;M) = M × R

with its standard manifold structure. Hence (M,N)→ (M ;M) defines a smooth map

D(M,N)→M × R.

On D(M,N)0 = ν(M,N) this is the bundle projection to N ⊆ M , and on M × R× it
is the obvious inclusion.

Similarly, (N,N)→ (M,N) defines a smooth map

, N × R→ D(M,N).

For all t, this is the inclusion of N ⊆ D(M,N)t.
(d) Let f : (M,N) → (R; 0), a smooth real-valued function vanishing on N . It induces a

map

D(f) : D(M,N)→ D(R; 0) ∼= R× R.
This function take [v] ∈ ν(M,N), represented by v ∈ TM |N , to (v(f), 0), and (m, t) ∈
M × R× to (1

t f(m), t). We conclude that the function

f̃ : D(M,N)→ R

given by [v] 7→ v(f) on ν(M,N), and by (m, t) 7→ 1
t f(m) on the complement, is smooth.

In terms of the R×-action, the functions f̃ are characterized by the property f̃(m, 1) =
f(m) together with homogeneity of degree 1:

λ∗af̃ = af̃ .
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(e) More generally, if E →M is a vector bundle, and σ a section vanishing along N ⊆M ,
then the map σ : (M,N)→ (E;M) induces a map

D(σ) : D(M,N)→ D(E;M) = E × R;

here D(σ)0 is the normal derivative dNσ : ν(M,N) → E|N ⊆ E, while D(σ)t for t 6= 0
is given by σ.

(f) A tubular neighborhood embedding ψ : ν(M,N)→ M determines, by functoriality, an
embedding

D(ψ) : ν(M,N)× R→ D(M,N).

A.2. Charts on D(M,N). To describe in more detail the manifold structure on D(M,N), we
should specify an atlas. For k ≤ n consider the pair (Rn,Rk) as the local model for the pair
(M,N). Write the coordinates on Rn as (x, y) = (x1, . . . , xk, y1, . . . , yl) where k + l = n. We
declare

D(Rn,Rk) = Rn × R,
by the map given on ν(Rn,Rk) = Rk ×Rl by the obvious identification with Rn × {0}, and on
Rn × R× by the map

(x, y, t) 7→ (x,
1

t
y, t).

Recall that a submanifold chart for (M,N) is given by a chart φ : U → Rn for M such that

φ : (U,U ∩N)→ (Rn,Rk).

Given any such submanifold chart, we obtain a chart

(38) D(φ) : D(U,U ∩N)→ D(Rn,Rk) ∼= Rn × R.

for the deformation space.

Proposition A.1. The charts (38) define an atlas on D(M,N).

Proof. It is clear that these charts cover all of D(M,N) (note that a submanifold chart need

not actually meet N). We have to check the compatibility of charts. Write Ũ = D(U,N ∩U) ⊆
D(M,N) so that

Ũ = νN |N∩U ∪ (U × R×).

Let x1, . . . , xk, y1, . . . , yl be the local coordinates defined by a submanifold chart near m ∈ N ,
and denote the resulting local coordinates on D(M,N) by

x1, . . . , xk, ỹ1, . . . , ỹl, t.

Thus ỹi|U×R× = 1
t yi for t 6= 0. Suppose X1, . . . , Xk, Y1, . . . , Yl are a new set of submanifold

coordinates. Then

Xi = Fi(x, y), Yj = Gj(x, y),

with Gj(x, 0) = 0. The resulting change of local coordinates on the deformation space is then
given for t 6= 0 by

(x, ỹ, t) 7→ (X, Ỹ , t) =
(
F (x, tỹ),

1

t
G(x, tỹ), t

)
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It extends smoothly to t = 0, and for t = 0 is given exactly by the normal map for the change
of coordinates. This shows that the change of coordinates is smooth. �

A.3. Euler-like vector fields. Let X ∈ X(M,N) = Γ(TM, TN), a vector field on M that is
tangent to N . Then X defines a vector field D(X) on the deformation space. This vector field
is tangent to all fibers D(M,N)t, and is given by X for t 6= 0 and by the linear appoximation
ν(X) for t = 0.

Theorem A.2. A vector field X ∈ X(M) is Euler-like along N if and only if the vector
field

W =
1

t
X +

∂

∂t
on M × R× extends smoothly to a vector field on D(M,N).

Proof. Recall from a above that the vector field t ∂∂t on M × R× extends smoothly to the
deformation space D(M,N), and is given on ν(M,N) by minus the Euler vector field on
ν(M,N). On the other hand, the vector field X, regarded as a vector field on M ×R×, extends
to the vector field D(X), given on ν(M,X) by the Euler vector field. Hence, X + t ∂∂t extends
to a vector field on D(M,N) that vanishes along the submanifold ν(M,N). This implies that
1
t times this vector field extends smoothly to D(M,N). �

Remark A.3. It may be instructive to repeat this proof in local coordinates. Let
x1, . . . , xk, y1, . . . , yl be coordinates of a submanifold chart, so that N is given by y = 0.
Recall from (23) that X is Euler-like along N if and only if

X =
∑
i

ai(x, y)
∂

∂xi
+
∑
j

(yj + bj(x, y))
∂

∂yj

where the ai vanish for y = 0, and bj vanishes to second order for y = 0. The vector field
D(X) is given by the same formula in the ‘product’ coordinates of D(M,N). A change to the
standard D(M,N) coordinates t̃ = t, x̃ = x, ỹ = 1

t y gives

D(X) =
∑
i

ai(x, tỹ)
∂

∂xi
+
∑
j

ỹj
∂

∂ỹj
+
∑
j

1

t
bj(x, tỹ))

∂

∂ỹj

On the other hand, the vector field ∂
∂t becomes, after coordinate change,

∂

∂t
 

∂

∂t
− t
∑
j

ỹj
∂

∂ỹj
.

So,

W =
∂

∂t
+

1

t

∑
i

ai(x, tỹ)
∂

∂xi
+
∑
j

1

t2
bj(x, tỹ))

∂

∂ỹj

which extends smoothly to t = 0.
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Since W ∼ ∂
∂t , its flow is given by a family of diffeomorphisms D(M,N)t → D(M,N)t−s.

Since [W,D(X)] = 0, this flow intertwines the vector fields D(X)t. In particular, we obtain a
diffeomorphism

ν(M,N) = D(M,N)0 →M = D(M,N)1,

taking ν(X) to X. Since the restriction of W to D(N,N) = N × R is the vector field ∂
∂t , the

family of diffeomorphisms considered above induce the identity on ν(D(M,N)t, N) ∼= ν(M,N),
hence it gives tubular neighborhood embeddings according to our definition.

should explain more clearly the completeness issues

A.4. Vector bundles. For any vector bundle A → M of rank k and subbundle B → N , the
deformation space defines a vector bundle D(A,B)→ D(M,N), again of rank k. Its restriction
to the zero fiber is the normal bundle ν(A,B)→ ν(M,N). In fact, ν(A,B) is a double vector
bundle

ν(A,B) //

��

B

��

ν(M,N) // N

with core A|N/B. The sections of ν(A,B) over ν(M,N) are generated by the linear and core
sections. Regarding sections of a vector bundle as sections that are homogeneous of degree −1,
the core sections are vector fields on ν(A,B) of homogeneity (−1,−1), while the linear sections
are those of homogeneity (0,−1).

In terms of the deformation space, every σ of A whose restriction to N takes values in B,
one obtains a section D(σ) if D(A). Its restriction to ν(M,N) is the linear section defined by
σ. (Note that D(σ) is invariant under natural R×-action on the deformation space, hence ν(σ)
is invariant under the resulting R×-action on ν(A,B)→ B. The latter is the horizontal scalar
multiplication). For a general section σ, the section t(σ × 0) ∈ Γ(A × R×) again extends to a
section of D(A,B). Relative to the R×-action, this section is homogeneous of degree −1; hence
we conclude that the resulting section of D(A,B) → D(M,N) is homogeneous of degree −1
for the horizontal scalar multiplication; that is, it is a core section.

If A is an anchored vector bundle, with anchor map a : A → TM , and B is an anchored
subbundle along N (that is, a(B) ⊆ TN), then the anchor map

a : (A,B)→ (TM, TN)

defines a map of deformation spaces

D(a) : D(A,B)→ D(TM, TN) ⊆ TD(M,N),

where we are identifying D(TM, TN) with the subbundle ker(Tπ). In this way, D(A,B) →
D(M,N) is an anchored vector bundle, with the fibers D(A,B)|π−1(t) as anchored subbundles.
For t = 0, we obtain the anchored vector bundle ν(A,B)→ ν(M,N).

A.5. Lie groupoids. Let us apply the normal cone construction to a Lie groupoid and Lie
subgroupoid.
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Theorem A.4. Let G ⇒ M be a Lie groupoid, and H ⇒ N a Lie subgroupoid. Then
D(G,H) is a Lie groupoid, containing ν(G,H)⇒ ν(M,N) and G ×R⇒M ×R× as Lie
subgroupoids.

Proof. The structure maps are all obtained ‘by functoriality’, for example

s : (G,H)→ (M,N)

induces

D(s) : D(G,H)→ D(M,N),

and similarly for t and for the inclusion of units. The multiplication map is obtained by
applying the functor D to

MultG : (G(2),H(2))→ (G,H),

and observing that

D(G(k),H(k)) = D(G,H)(k)

for all k. For the latter, note that each of the projections (G(k),H(k)) → (G,H), given by

(g1, . . . , gk) 7→ gi, give rise to maps D(G(k),H(k))→ D(G,H), and that the resulting map

D(G(k),H(k))→ D(G,H)k,

is a diffeomorphism onto D(G,H)(k). �

Example A.5. If G is a Lie group, and H is a Lie subgroup, then the group ν(G,H) is the
semi-direct product H n (g/h) of H with the vector space g/h. The normal cone construction
exhibits the semi-direct product as a ‘limit’ of G. For h = {0}, one obtains g as a ‘limit’ of G.

One can see it more explicitly if G is given as a matrix Lie group, G ⊆ GL(n,R). The
inclusion map takes {e} to {0}, hence it induces an embedding

D(G, {e})→ D((Mat(n,R), {0}) ∼= Mat(n,R)× R.

The image of this embedding is{
(x, 0)| x ∈ g

}
t
{(1

t
A, t
)
| A ∈ G, t ∈ R

}
⊆ Mat(n,R)× R.

To see that this is indeed a submanifold, observe that a neighborhood of g × {0} is given as
the image of the map g× R→ Mat(n,R)× R, (x, t) 7→ (1

t exp(tx), t).

Example A.6. Given any Lie groupoid, the proposition exhibits ν(G,M) = A(G) (viewed as a
vector bundle, hence as a Lie groupoid A(G)⇒M) as a Lie subgroupoid of D(G,M)⇒M×R,
with complement G ×R×. This applies, in particular, to the pair groupoid Pair(M) = M ×M .
The groupoid

D(M ×M,M)⇒M × R

is known as Connes’s tangent groupoid, since it plays a key role in Connes’ approach [9] to the
Atiyah-Singer index theorem.
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A.6. Lie algebroids. The Lie algebroid analogue to Theorem A.4 reads as follows:

Theorem A.7. Let A→M be a Lie algebroid, and B → N a Lie subalgebroid. Then the
Lie algebroid structure on A×0R× →M×R× extends uniquely to a Lie algebroid structure
on D(A,B). In particular, this induces a Lie algebroid structure on ν(A,B)→ ν(M,N).

Proof. As explained above the anchor map for A→M induces an anchor map for D(A,B)→
D(M,N). Any section σ ∈ Γ(A,B) (that is, a section of A whose restriction to N takes
values in B) determines a section D(σ) of the deformation space; arbitrary sections τ ∈ Γ(A)
determine sections τ̂ ∈ Γ(D(A,B)), given as the extension of t(τ × 0) ∈ Γ(A × 0R×). These
sections generate Γ(D(A,B)) as a module over smooth functions on D(M,N). Hence, to show
that the Lie algebroid structure on A× 0R× extends, it suffices to show that the Lie algebroid
bracket of sections of these two types, which a priori is given only as a section of A × 0R× ,
extends to a section of D(A,B). But this is straightforward; the desired extensions are given
by the formulas

[ τ̂1 , τ̂2 ] = t[̂τ1, τ2], [D(σ), τ̂ ] = [̂σ, τ ], [D(σ1),D(σ2)] = D([σ1, σ2]).

�

Restricting these brackets to t = 0, we obtain the Lie algebroid structure of ν(A,B). For
τ ∈ Γ(A), let c(τ) ∈ Γ(ν(M,N)) be the core section defined by τ |N mod B ∈ Γ(A|N/B).
Then

[c(τ1), c(τ2)] = 0, [ν(σ), c(τ)] = c([σ, τ ]), [ν(σ1), ν(σ2)] = ν([σ1, σ2]).

The anchor map for linear and core sections is

a(ν(σ)) = ν(a(σ)), a(c(τ)) = 0.

Remark A.8. If M = pt, so that A = g and B = h are just Lie algebras, we see that the Lie
algebroid structure on ν(g, h)→ pt is that of the semi-direct product g/ho h.

Let us now specialize to the case that B = i!A, where i : N ↪→ M is the inclusion of a
submanifold transverse to the anchor.

Lemma A.9. The bundle ν(A, i!A) → ν(M,N) has a distinguished section
ε : ν(M,N) → ν(A, i!A) such that a(ε) is the Euler vector field. There exists a section
σ ∈ Γ(A, i!A) such that ν(σ) = ε.

Proof. Recall that ν(A, i!A) is canonically isomorphic, as a double vector bundle, to p!i!A.
For any anchored vector bundle B → N (here i!A), and any vector bundle p : V → N (here
ν(M,N) → N), the bundle p!B → V is given by TV ×TN B → V ×N N = V . The section
EV × 0 of TV ×B → V ×N restricts over V ×N N to a section of TV ×TN B, as required.

If σ ∈ Γ(A) is any section such that a(σ) is Euler-like, then σ ∈ Γ(A, i!A) has ν(σ) = ε. �

We will call σ as in the Lemma an Euler-like section of A.
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Given an Euler-like section σ, we obtain a section of D(A, i!A), and a corresponding vector

field X̃ on the total space of D(A, i!A). Note that this vector field is an infinitesimal Lie
algebroid automorphism. It follows that the vector field

W̃ =
1

t
X̃ +

∂

∂t

on D(A, i!A) is an infinitesimal Lie algebroid automorphism, hence its flow is by Lie algebroid
automorphisms. This flow gives the desired tubular neighborhood embedding

ν(A, i!A)→ A,

covering ν(M,N)→M .

Remark A.10. A variation:12 Consider the canonical map

F : D(M,N)→M,

given on ν(M,N) be i◦p and on M×R× by projection. This map is smooth, and transversality
of N to the anchor of A guarantees the map F is transverse to the anchor. Hence, the pull-back
Lie algebroid F !A is well-defined.

If σ is an Euler-like section of A, then

1

t
σ +

∂

∂t
∈ Γ(A× TR×)

extends smoothly to a section of F !A. The corresponding vector field on F !A is an infinitesimal
Lie algebroid automorphism, lifting the vector field W on the base. Hence, its interwines ι!tA
with ι!t−sA, where ιt : D(M,N)t → D(M,N) is the inclusion of the t-fiber. In particular, we
get a LA isomorphism

p!i!A = ι!0A→ ι!1A = A.
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