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Abstract. These notes are very much under construction. In particular, I have to give more
references..
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1. Poisson manifolds

1.1. Basic definitions. Poisson structures on manifolds can be described in several equivalent
ways. The quickest definition is in terms of a bracket operation on smooth functions.

Definition 1.1. [24] A Poisson structure on a manifold M is a skew-symmetric bilinear map

{·, ·} : C∞(M)× C∞(M)→ C∞(M)

with the derivation property

(1) {f, gh} = {f, g}h+ g{f, h}
and the Jacobi identity

(2) {f, {g, h}} = {{f, g}, h}+ {g, {f, h}},
for all f, g, h ∈ C∞(M). The manifold M together with a Poisson structure is called a Poisson
manifold. A map Φ: N → M between Poisson manifolds is a Poisson map if the pull-back
map Φ∗ : C∞(M)→ C∞(N) preserves brackets.

Condition (2) means that {·, ·} is a Lie bracket on C∞(M), making the space of smooth
functions into a Lie algebra. Condition (1) means that for all f ∈ C∞(M), the operator {f, ·}
is a derivation of the algebra of smooth functions C∞(M), that is, a vector field. One calls

Xf = {f, ·}
the Hamiltonian vector field determined by the Hamiltonian f . In various physics interpreta-
tions, the flow of Xf describes the dynamics of a system with Hamiltonian f .

Example 1.2. The standard Poisson bracket on ‘phase space’ R2n, with coordinates q1, . . . , qn

and p1, . . . , pn, is given by

{f, g} =
n∑
i=1

( ∂f
∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
.

The Jacobi identity may be verified by direct computation, using the formula for the bracket.
(Of course, one can do much better than ‘direct computation’ – see below.) The differential
equations defined by the Hamiltonian vector field Xf are Hamilton’s equations

q̇i =
∂f

∂pi
, ṗi = − ∂f

∂qi

from classical mechanics. Here our sign conventions (cf. Appendix ??) are such that a vector
field

X =
∑
j

aj(x)
∂

∂xi

on RN corresponds to the ODE
dxj

dt
= −aj

(
x(t)

)
.

A function g ∈ C∞(M) with Xf (g) = 0 is a conserved quantity, that is, t 7→ g(x(t)) is constant
for any solution curve x(t) of Xf . One of Poisson’s motivation for introducing his bracket was
the realization that if g and h are two conserved quantities then {g, h} is again a conserved
quantity. This was explained more clearly by Jacobi, by introducing the Jacobi identity (1).
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Example 1.3. Let g be a finite-dimensional Lie algebra, with basis ε and corresponding structure
constants ckij defined by [εi, εj ] =

∑
k c

k
ijεk. On the C∞(g∗), we have the bracket

(3) {f, g}(µ) =
∑
ijk

ckijµk
∂f

∂µi

∂g

∂µj
.

One checks that this does not depend on the choice of basis, and that {·, ·} is a Poisson
bracket. (The Jacobi identity for g becomes the Jacobi identity for g∗.) It is called the Lie-
Poisson structure on g∗, since it was discovered by Lie in his foundational work in the late 19th
century, and is also known as the Kirillov-Poisson structure, since it plays a key role in Kirillov’s
orbit method in representation theory. The Poisson structure is such that φξ ∈ C∞(g∗) is the
linear map defined by a Lie algebra element ξ ∈ g, then

(4) {φξ, φζ} = φ[ξ,ζ]

The Hamiltonian vector field Xφξ is the generating vector field corresponding to ξ, for the

coadjoint G-action on g∗. Writing ξ =
∑

i ξ
iεi, we have φξ(µ) =

∑
i ξ
iµi, hence

Xφξ =
∑
ijk

ckij µk ξ
i ∂

∂µj
.

1.2. Deformation of algebras. Classical mechanics and Lie theory are thus two of the major
inspirations for Poisson geometry. A more recent motivation comes from deformation theory.
Consider the problem of deforming the product on the algebra of smooth functions C∞(M),
to a possibly non-commutative product. Thus, we are interested in a family of products f ·~ g
depending smoothly on a parameter ~, always with the constant function 1 as a unit, and with
f ·0 g the usual (pointwise) product. The commutator f ·~ g − g ·~ f vanishes to first order in
~, let {f, g} be its linear term:

{f, g} =
d

d~

∣∣∣
~=0

(f ·~ g − g ·~ f)

so that f ·~ g− g ·~ f = ~{f, g}+O(~2). Then {·, ·} is a Poisson bracket. This follows since for
any associative algebra A, the commutation [a, b] = ab− ba satisfies

(5) [a, bc] = [a, b]c+ b[a, c]

and

(6) [a, [b, c]] = [[a, b], c] + [b, [a, c]],

hence the properties (1) and (2) of the bracket follow by applying these formulas for A =
C∞(M) with product ·~, and taking the appropriate term of the Taylor expansion in ~ of both
sides. Conversely, C∞(M) with the deformed product ·~ could then be called a quantization
of the Poisson bracket on C∞(M).

Unfortunately, there are few concrete examples of ‘strict’ quantizations in this sense. More
is known for the so-called formal deformations of the algebra C∞(M).

Definition 1.4. Let A be an associative algebra over R. A formal deformation of A is an
algebra structure on A[[~]] (formal power series in ~ with coefficients in A), such that

(a) The product is R[[~]]-linear in both arguments.
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(b) The isomorphism

A[[~]]

~A[[~]]
∼= A

is an isomorphism of algebras.

(Note that by (a), the subspace ~A[[~]] is a two-sided ideal in A[[~]], hence the quotient
space inherits an algebra structure.)

The product of A[[~]] is usually denoted ∗. We have A ⊆ A[[~]] as a subspace, but not as a
subalgebra. The product ∗ is uniquely determined by what it is on A. For a, b ∈ A we have

a ∗ b = ab+ ~F1(a, b) + ~2F2(a, b) + · · ·

As before, any formal deformation of A = C∞(M) gives a Poisson bracket {f, g} = F1(a, b)−
F2(b, a).

Definition 1.5. A deformation quantization of a Poisson manifold (M, {·, ·}) is given by a star
product on C∞(M)[[~]], with the following properties:

(i) (C∞(M)[[~]], ∗) is a deformation of the algebra structure on C∞(M).
(ii) The terms Fi(f, g) are given by bi-differential operators in f and g.
(iii) F1(f, g)− F2(g, f) = {f, g}.

Conversely, we think of (C∞(M)[[~]], ∗) as a deformation quantization of (C∞(M), ·, {·, ·}).
One often imposes the additional condition that 1 ∗ f = f ∗ 1 = f for all f .

Example 1.6. An example of a deformation quantization is the Moyal quantization of C∞(R2n),
with the standard Poisson bracket. Let µ : C∞(M) ⊗ C∞(M) → C∞(M) be the standard
pointwise product. Then

f ∗ g = µ
(
D(f ⊗ g)

)
where D is the infinite-order ‘formal’ differential operator on M ×M

D = exp
(~

2

∑
i

( ∂
∂qi
⊗ ∂

∂pi
− ∂

∂pi
⊗ ∂

∂qi
))
.

It is an exercise to check that this does indeed define an associative multiplication.

Example 1.7. Let g be a finite-dimensional algebra. The universal enveloping algebra Ug is the
algebra linearly generated by g, with relations

XY − Y X = [X,Y ]

(where the right hand side is the Lie bracket). Note that if the bracket is zero, then this is the
symmetric algebra. In fact, as a vector space, Ug is isomorphic to Sg, the symmetrization map

Sg→ Ug, X1 · · ·Xr 7→
1

r!

∑
s∈Sr

Xs(1) · · ·Xs(r)

where the right hand side uses the product in Ug. The fact that this map is an isomorphism is
a version of the Poincaré-Birkhoff-Witt theorem. Using this map, we may transfer the product
of U(g) to a product on S(g). In fact, we putting a parameter ~ in front of the Lie bracket,
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we obtain a family of algebra structures on S(g), which we may also regard as a product on
S(g)[[~]]. On low degree polynomials, this product can be calculated by hand: In particular,

X ∗ Y = XY +
~
2

[X,Y ]

for X,Y ∈ g ⊆ S(g)[[~]].
The resulting Poisson structure on S(g) is just the Lie-Poisson structure, if we regard S(g) as

the polynomial functions on g∗. Hence, we obtain a canonical quantization of the Lie-Poisson
structure, given essentially by the universal enveloping algebra.

The question of whether every Poisson structure admits a deformation quantization was
settled (in the affirmative) by Kontsevich, in his famous 1997 paper, “Deformation quantization
of Poisson manifolds”.

1.3. Basic properties of Poisson manifolds. A skew-symmetric bilinear {·, ·} satisfying (1)
is a derivation in both arguments. In particular, the value of {f, g} at any given point depnds
only on the differential df, dg at that point. This defines a bi-vector field π ∈ X2(M) =
Γ(∧2TM) such that

π(df,dg) = {f, g}
for all functions f, g. Conversely, given a bivector field π, one obtains a skew-symmetric bracket
{·, ·} on functions satisfying the derivation property. Given bivector fields π1 on M1 and π2 on
M2, with corresponding brackets {·, ·}1 and {·, ·}2, then a smooth map Φ: M1 →M2 is bracket
preserving if and only if the bivector fields are Φ-related

π1 ∼Φ π2,

that is, TmΦ((π1)m) = (π2)Φ(m) for all m ∈ M1 where TmΦ is the tangent map (extended to
multi-tangent vectors).

We will call π a Poisson bivector field (or Poisson structure) on M if the associated bracket
{·, ·} is Poisson, that is, if it satisfies the Jacobi identity. Consider the Jacobiator Jac(·, ·, ·)
defined as

(7) Jac(f, g, h) = {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}}

for f, g, h ∈ C∞(M). Clearly, Jac(f, g, h) is skew-symmetric in its three arguments. Here
π] : T ∗M → TM be the bundle map defined by π, i.e. π](α) = π(α, ·). Then the Hamiltonian
vector field associated to a function f isXf = {f, ·} = π](df). We have the following alternative
formulas for the Jacobiator:

(8) Jac(f, g, h) = L[Xf ,Xg ]h− LX{f,g}h = (LXfπ)(dg,dh).

The first equality shows that Jac is a derivation in the last argument h, hence (by skew-
symmetry) in all three arguments. It follows the values of Jac(f, g, h) at any given point
depend only on the exterior differentials of f, g, h at that point, and we obtain a 3-vector field

Υπ ∈ X3(M), Υπ(df, dg,dh) = Jac(f, g, h).

We hence see:
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Proposition 1.8. We have the equivalences,

{·, ·} is a Poisson bracket ⇔ [Xf , Xg] = X{f,g} for all f, g

⇔ LXfπ = 0 for all f

⇔ LXf ◦ π
] = π] ◦ LXf for all f

⇔ Υπ = 0.

Let us point out the following useful consequence:

Remark 1.9. To check if {·, ·} satisfies the Jacobi identity, it is enough to check on functions
whose differentials span T ∗M everywhere. (Indeed, to verify Υπ = 0 at any given m ∈ M , we
only have to check on covectors spanning T ∗mM .)

Remark 1.10. In terms of the Schouten bracket of multi-vector fields, the 3-vector field Υπ

associated to a bivector field π is given by Υπ = −1
2 [π, π]. Thus, π defines a Poisson structure

if and only if [π, π] = 0.

1.4. Examples of Poisson structures.

Example 1.11. Every constant bivector field on a vector space is a Poisson structure. Choosing
a basis, this means that π = 1

2

∑
Aij

∂
∂xi
∧ ∂

∂xj
for any skew-symmetric matrix A is a Poisson

structure. This follows from Remark 1.9, since we only need to check the Jacobi identity on
the coordinate functions. But since the bracket of two linear functions is constant, and the
bracket with a constant function is zero, all three terms in the Jacobiator are zero in that case.
As a special case, the bivector field on R2n given as

(9) π =
n∑
i=1

∂

∂qi
∧ ∂

∂pi
.

is Poisson.

Example 1.12. Similarly, if g is a Lie algebra, the bracket {·, ·} on C∞(g∗) given by (3) corre-
sponds to the bivector field

π =
1

2

∑
ijk

ckij µ
k ∂

∂µi
∧ ∂

∂µj

on g∗. By Remark 1.9, to verify the Jacobi identity, we only need to check on linear functions
φξ, ξ ∈ g. But on linear functions, the Jacobi identity for the bracket reduces to the Jacobi
identity for the Lie algebra g.

Example 1.13. Any symplectic manifold (M,ω) becomes a Poisson manifold, in such a way
that the Hamiltonian vector fields Xf = {f, ·} satisfy ω(Xf , ·) = −df . In local symplectic
coordinates q1, . . . , qn, p1, . . . , pn, with ω =

∑
i dqi ∧ dpi, the Poisson structure is given by the

formula (9) above. Note that with our sign conventions, the two maps

π] : T ∗M → TM, µ 7→ π(µ, ·),
and

ω[ : TM → T ∗M, v 7→ ω(v, ·)
are related by

π] = −(ω[)−1.



8 INTRODUCTION TO POISSON GEOMETRY LECTURE NOTES, WINTER 2017

Example 1.14. If dimM = 2, then any bivector field π ∈ X2(M) is Poisson: The vanishing of
Υπ follows because on a 2-dimensional manifold, every 3-vector field is zero.

Example 1.15. If (M1, π1) and (M2, π2) are Poisson manifolds, then their direct product M1 ×
M2 is again a Poisson manifold, with the Poisson tensor π = π1+π2. To check that this is indeed
a Poisson tensor field, using Remark 1.9 it suffices to check the Jacobi identity for functions
that are pullbacks under one of the projections pri : M1 ×M2 → Mi, but this is immediate.
Put differently, the bracket is such that both projections pri : M1 →M2 are Poisson maps, and
the two subalgebras pr∗i C

∞(Mi) ⊆ C∞(M1 ×M2) Poisson commute among each other.

Warning: While we usually refer to this operation as a direct product of Poisson manifolds,
it is not a direct product in the categorical sense. For the latter, it would be required that
whenever N is a Poisson manifold with two Poisson maps fi : N → Mi, the diagonal map
N →M1 ×M2 is Poisson. But this is rarely the case.

Example 1.16. If A is a skew-symmetric n× n-matrix, then

π =
1

2

∑
ij

Aijx
ixj

∂

∂xi
∧ ∂

∂xj

is a Poisson structure on Rn. Here are two simple ways of seeing this: (i) On the open, dense
subset where all xi 6= 0, the differentials of the functions fi(x) = log(|xi|) span the cotangent
space. But the Poisson bracket of two such functions is constant. (ii) Using a linear change
of coordinates, we can make A block-diagonal wth 2 × 2-blocks, and possibly one 1 × 1-block
with entry 0. This reduces the question to the case n = 2; but π = x1x2 ∂

∂x1
∧ ∂
∂x2

is a Poisson
structure by the preceding example.

Example 1.17. R3 has a Poisson structure π0 given as

{x, y}0 = z, {y, z}0 = x, {z, x}0 = y.

The corresponding Poisson tensor field is

π0 = z
∂

∂x
∧ ∂

∂y
+ x

∂

∂y
∧ ∂

∂z
+ y

∂

∂z
∧ ∂

∂x
.

Actually, we know this example already: It is the Poisson structure on g∗ for g = so(3) (in a
standard basis). Another Poisson structure on R3 is

π1 = xy
∂

∂x
∧ ∂

∂y
+ yz

∂

∂y
∧ ∂

∂z
+ zx

∂

∂z
∧ ∂

∂x
,

as a special case of the quadratic Poisson structures from Example 1.16. In fact, all

πt = (1− t)π0 + tπ1

with t ∈ R are again Poisson structures. (It suffice to verify the Jacobi identity for f = x, g =
y, h = z). This is an example of a Poisson pencil.

Exercise: Show that if π0, π1 are Poisson structures on a manifold M such that πt =
(1 − t)π0 + tπ1 is a Poisson structure for some t 6= 0, 1, then it is a Poisson structure for all
t ∈ R. In other words, given three Poisson structures on an affne line in X2(M), then the entire
line consists of Poisson structures.
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Example 1.18. Another Poisson structure on R3:

{x, y} = xy, {z, x} = xz, {y, z} = φ(x)

for any smooth function φ. Indeed,

{x, {y, z}}+ {y, {z, x}}+ {z, {x, y}}
= {x, φ(x)}+ {y, xz}+ {z, xy}
= −{x, y}z + x{y, z}+ {z, x}y − {y, z}x
= −(xy)z + (zx)y = 0.

Example 1.19. Let M be a Poisson manifold, and Φ: M →M a Poisson automorphism. Then
the the group Z acts on M ×R by Poisson automorphism, generated by (m, t) 7→ (Φ(m), t+1),
and the mapping cylinder (M × R)/Z inherits a Poisson structure.

Example 1.20. Given a 2-form α = 1
2

∑
ij αij(q) dqi ∧ dqj on Rn, we can change the Poisson

tensor on R2n to the bivector field

(10) π =
n∑
i=1

∂

∂qi
∧ ∂

∂pi
+

1

2

n∑
i,j=1

αij(q)
∂

∂pi
∧ ∂

∂pj
.

Is π a Poisson structure? When checking the Jacobi identity on linear functions, only the sum
over cyclic permutations of {pi, {pj , pk}} is an issue. One finds

{pi, {pj , pk}} = −
∂αjk
∂qi

,

so the sum over cyclic permutations of this expression vanishes if and only if dα = 0. This
example generalizes to cotangent bundles T ∗Q (with their standard symplectic structure):
Given a closed 2-form α ∈ Ω2(Q), we can regard α as a vertical bi-vector field πα on T ∗Q.
(The constant bivector fields on T ∗qQ are identified with ∧2T ∗qQ, hence a family of such fiberwise
constant vertical bivector fields is just a 2-form.)

1.5. Casimir functions.

Definition 1.21. Suppose π is a Poisson structure on M . A function χ ∈ C∞(M) is a Casimir
function if it Poisson commutes with all functions: {χ, f} for all f ∈ C∞(M).

Note that if π is a Poisson structure, and χ is a Casimir, then χπ is again a Poisson
structure. To check whether a given function χ ∈ C∞(M) is a Casimir function, it suffices to
prove {f, χ} = 0 for functions f whose differentials span T ∗M everywhere.

Example 1.22. If M = R3 with the Poisson structure from example 1.17, the Casimir functions
are the smooth functions of x2 + y2 + z2. Indeed, it is immediate that this Poisson commutes
with x, y, z. More generally, if M = g∗, it is enough to consider differentials of linear functions
φξ with ξ ∈ g. The Hamiltonian vector fields Xφξ are the generating vector field for the co-
adjoint action of G on g∗. Hence, the Casimir functions for g∗ are exactly the g-invariant
functions on g∗.
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1.6. Tangent lifts of Poisson structures. Given a Poisson structure π on M , there is a
canonical way of obtaining a Poisson structure πTM on the tangent bundle TM . For every
smooth function f ∈ C∞(M), let

fT ∈ C∞(TM)

be its tangent lift, defined by fT (v) = v(f) for v ∈ TM . Put differently, fT is the exterior
differential df ∈ Γ(T ∗M), regarded as a function on TM via the pairing. In local coordinates
xi on M , with corresponding tangent coordinates xi, yi on TM (i.e. yi = ẋi are the ‘velocities’)
we have

fT =

n∑
i=1

∂f

∂xi
yi.

Theorem 1.23. Given a bi-vector field π on M , with associated bracket {·, ·}, there is a unique
bi-vector field πTM on the tangent bundle such that the associated bracket satisfies

(11) {fT , gT }TM = {f, g}T ,

for all f, g ∈ C∞(M). The bivector field πTM is Poisson if and only if π is Poisson.

Proof. From the description in local coordinates, we see that the differentials dfT span the
cotangent space T ∗(TM) everywhere, except along the zero section M ⊆ TM . Hence, there
is at most one bracket with the desired property. To show existence, it is enough to write the
Poisson bivector in local coordinates: If π = 1

2

∑
ij π

ij(x) ∂
∂xi
∧ ∂
∂xj

,

πTM =
∑
ij

πij(x)
∂

∂xi
∧ ∂

∂yj
+

1

2

∑
ijk

∂πij

∂xk
yk

∂

∂yi
∧ ∂

∂yj

It is straightforward to check that this has the desired property (11). Equation (??) also implies

ΥπTM (dfT , dgT , dhT ) = (Υπ(df,dg,dh))T .

In particular, πTM is Poisson if and only if π is Poisson. �

Remark 1.24. Let fV ∈ C∞(TM) denote the vertical lift, given simply by pullback. Then

{fT , gV }TM = {f, g}V , {fV , gV }TM = 0.

Example 1.25. If g is a Lie algebra, with corresponding Lie-Poisson structure on g∗, then T (g∗)
inherits a Poisson structure. Under the identification T (g∗) ∼= (Tg)∗, this is the Lie-Poisson
structure for the tangent Lie algebra Tg = gn g.

Example 1.26. If (M,ω) is a symplectic manifold, and π the associated Poisson structure, then
πTM is again non-degenerate. That is, we obtain a symplectic structure ωTM on TM .

2. Lie algebroids as Poisson manifolds

The Lie-Poisson structure on the dual of a finite-dimensional Lie algebra g, has the important
property of being linear, in the sense that the coefficients of the Poisson tensor are linear
functions, or equivalently the bracket of two linear functions is again linear. Conversely any
linear Poisson structure on a finite-dimensional vector space V defines a Lie algebra structure
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on its dual space g := V ∗, with {·, ·} as the corresponding Lie-Poisson structure: One simply
identifies g with the linear functions on V . This gives a 1-1 correspondence

(12)
{

Vector spaces with
linear Poisson structures

}
1−1←→

{
Lie algebras

}
.

The correspondence (12) extends to vector bundles, with Lie algebras replaced by Lie algebroids.

2.1. Lie algebroids.

Definition 2.1. A Lie algebroid (E, a, [·, ·]) over M is a vector bundle E →M , together with
a bundle map a : E → TM called the anchor, and with a Lie bracket [·, ·] on its space Γ(E) of
sections, such that for all σ, τ ∈ Γ(E) and f ∈ C∞(M),

(13) [σ, fτ ] = f [σ, τ ] +
(
a(σ)(f)

)
τ.

Remarks 2.2. (a) One sometimes sees an additional condition that the map a : Γ(E) →
X(M) should preserve Lie brackets. But this is actually automatic. (Exercise.)

(b) It is not necessary to include the anchor map as part of the structure. An equivalent
formulation is that [σ, fτ ] − f [σ, τ ] is multiplication of τ by some function. (In other
words, adσ := [σ, ·] is a first order differential operator on Γ(E) with scalar principal
symbol.) Denoting this function by X(f), one observes f 7→ X(f) is a derivation of
C∞(M), hence X is a vector field depending linearly on σ. Denoting this vector field by
X = a(σ), one next observes that a(fσ) = fa(σ) for al functions f , so that a actually
comes from a bundle map E → TM .

Some examples:

• E = TM is a Lie algebroid, with anchor the identity map.
• More generally, the tangent bundle to a regular foliation of M is a Lie algebroid, with

anchor the inclusion.
• A Lie algebroid over M = pt is the same as a finite-dimensional Lie algebra g.
• A Lie algebroid with zero anchor is the same as a family of Lie algebras Em parametrized

byM . Note that the Lie algebra structure can vary withm ∈M ; hence it is more general
than what is known as a ‘Lie algebra bundle’. (For the latter, one requires the existence
of local trivializations in which the Lie algebra structure becomes constant.)
• Given a g-action on M , the trivial bundle E = M×g has a Lie algebroid structure, with

anchor given by the action map, and with the Lie bracket on sections extending the Lie
bracket of g (regarded as constant sections of M × g). Concretely, if φ, ψ : M → g are
g-valued functions,

[φ, ψ](m) = [φ(m), ψ(m)] + (La(φ)ψ)(m)− (La(ψ)φ)(m).

• For a principal G-bundle P →M , the bundle E = TP/G is a Lie algebroid, with anchor
the obvious projection to T (P/G) = TM . This is known as the Atiyah algebroid. Its
sections are identified with the G-invariant vector fields on M . It fits into an exact
sequence

0→ P ×G g→ TP/G
a→ TM → 0;

a splitting of this sequence is the same as a principal connection on P .
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• A closely related example: Let V →M be a vector bundle. A derivation of V is a first
order differential operator D : Γ(V )→ Γ(V ), such that there exists a vector field X on
M with

D(fσ) = fD(σ) +X(f)σ

for all sections σ ∈ Γ(V ) and functions f ∈ C∞(M). These are the sections of a certain
Lie algebroid E, with anchor given on sections by a(D) = X. In fact, it is just the
Atiyah algebroid of the frame bundle of V .
• Let N ⊆ M be a codimension 1 submanifold. Then there is a Lie algebroid E of rank

dimM , whose space of sections are the vector fields on M tangent to N . [26]. In local
coordinates x1, . . . , xk, with N defined by an equation xk = 0, it is spanned by the
vector fields

∂

∂x1
, . . . ,

∂

∂xk−1
, xk

∂

∂xk
.

Note that it is important here that N has codimension 1; in higher codimension the
space of vector fields vanishing along N would not be a free C∞(M)-module, so it
cannot be the sections of a vector bundle.
• Let ω ∈ Ω2(M) be a closed 2-form. Then E = TM ⊕ (M × R) acquires the structure

of a Lie algebroid, with anchor the projection to the first summand, and with the Lie
bracket on sections,

[X + f, Y + g] = [X,Y ] + LXg − LY f + ω(X,Y ).

(A similar construction works for any Lie algebroid E, and closed 2-form in Γ(∧2E∗).

2.2. Linear Poisson structures on vector bundles. Given a vector bundle V → M , let
κt : V → V be scalar multiplication by t ∈ R. For t 6= 0 this is a diffeomorphism. A function
f ∈ C∞(V ) is called linear if it is homogeneous of degree 1, that is, κ∗t f = f for all t 6= 0. A
multi-vector field u ∈ Xk(V ) on the total space of V will be called (fiberwise) linear if it is
homogeneous of degree 1− k, that is,

κ∗tu = t1−k u

for t 6= 0. An equivalent condition is that u(df1, . . . ,dfk) is linear whenever the fi are all
linear. In terms of a local vector bundle coordinates, with xi the coordinates on the base and
yj the coordinates on the fiber, such a fiberwise linear multi-vector field is of the form

u =
∑

i1<···<ik

∑
j

cji1···ik yj
∂

∂yi1
∧ · · · ∧ ∂

∂yik
+

∑
i1<···<ik−1

∑
r

ai1···ik−1,r
∂

∂xr
∧ ∂

∂yi1
∧ · · · ∧ ∂

∂yik−1

where the coefficients are smooth functions on U .
An example of a linear vector field on V is the Euler vector field, given in local coordinates

as

E =
∑
i

yi
∂

∂yi
.

It is the unique vector field on V with the property that LEf = f for all linear functions f .
In turn, the linearity of a multi-vector field u ∈ Xk(V ) can be expressed in terms of the Euler
vector field as the condition

LEu = (1− k)u.
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As a special case, a bivector field π is linear if it is homogeneous of degree −1, or equivalently
LEπ = −π. The following theorem gives a 1-1 correspondence

(14)
{

Vector bundles with
linear Poisson structures

}
1−1←→

{
Lie algebroids

}
For any section σ ∈ Γ(E), let φσ ∈ C∞(E∗) be the corresponding linear function on the dual

bundle E∗.

Theorem 2.3 (Courant [9, Theorem 2.1.4]). For any Lie algebroid E →M , the total space of
the dual bundle p : E∗ →M has a unique Poisson bracket such that for all sections σ, τ ∈ Γ(E),

(15) {φσ, φτ} = φ[σ,τ ].

The anchor map is described in terms of the Poisson bracket as

(16) p∗(a(σ)f) = {φσ, p∗f},

for f ∈ C∞(M) and σ ∈ Γ(E), while {p∗f, p∗g} = 0 for all functions f, g. The Poisson
structure on E∗ is linear; conversely, every fiberwise linear Poisson structure on a vector bundle
V →M arises in this way from a unique Lie algebroid structure on the dual bundle V ∗.

Proof. Let E → M be a Lie algebroid. Pick local bundle trivializations E|U = U × Rn over
open subsets U ⊆ M , and let ε1, . . . , εn be the corresponding basis of sections of E. Let xj

be local coordinates on U . The differentials of functions yi = φεi and functions xjyi = φxjεi
span T ∗(E∗) everywhere, except where all yj = 0. This shows that he differentials of the
linear functions φσ span the cotangent spaces to E∗ everywhere, except along the zero section
M ⊆ E∗. Hence, there can be at most one bivector field π ∈ X2(E∗) such that

(17) π(dφσ, dφτ ) = φ[σ,τ ]

(so that the corresponding bracket {·, ·} satisfies (15)). To show its existence, define ‘structure
functions’ ckij ∈ C∞(U) by [εi, εj ] =

∑
k c

k
ijεk, and let ai = a(εi) ∈ X(U). Letting yi be the

coordinates on (Rn)∗ corresponding to the basis, one finds that

(18) π =
1

2

∑
ijk

ckij yk
∂

∂yi
∧ ∂

∂yj
+
∑
i

∂

∂yi
∧ ai

is the unique bivector field on E∗|U = U × (Rn)∗ satisfying (17). (Evaluate the two sides on
dφσ, dφτ for σ = fεi and τ = gεj .) This proves the existence of π ∈ X2(E∗). The Jacobi
identity for {·, ·} holds true since it is satisfied on linear functions, by the Jacobi identity for
Γ(E).

Conversely, suppose p : V → M is a vector bundle with a linear Poisson structure π. Let
E = V ∗ be the dual bundle. We define the Lie bracket on sections and the anchor a : E → TM
by (15) and (16). This is well-defined: for instance, since φσ and p∗f have homogeneity 1
and 0 respectively, their Poisson bracket is homogeneous of degree 1 + 0 − 1 = 0. Also, it is
straightforward to check that a(σ) is a vector field, and that the map σ 7→ a(σ) is C∞(M)-
linear. The Jacobi identity for the bracket [·, ·] follows from that of the Poisson bracket, while
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the Leibnitz rule (13) for the anchor a follows from the derivation property of the Poisson
bracket, as follows:

φ[σ,fτ ] = {φσ, φfτ}
= {φσ, (p∗f)φτ}
= p∗(a(σ)f)φτ + (p∗f)φ[σ,τ ]. �

As a simple (if unsurprising) consequence of this result, we see that if E1 →M1 and E2 →M2

are two Lie algebroids, then the exterior direct sum E1×E2 →M1×M2 is again a Lie algebroid.
The corresponding Poisson manifold is the product of Poisson manifolds:

(E1 × E2)∗ = E∗1 × E∗2 .

Note also that if E− is the Lie algebroid with the opposite LA-structure (that is, E− is E as a
vector space, but the Lie bracket on sections given by minus the bracket on E, and with minus
the anchor of E), then

(E−)∗ = (E∗)−

as vector bundles with linear Poisson structure, where the superscript − on the right hand side
signifies the opposite Poisson structure.

Example 2.4. Consider E = TM as a Lie algebroid over M . In local coordinates, the sections
of TM are of the form

σ =
∑
i

ai
∂

∂qi
,

with corresponding linear function φσ(q, p) =
∑

i ai(q)p
i. The Lie bracket with another such

section τ =
∑

j b
j(q) ∂

∂qj
is (as the usual Lie bracket of vector fields)

[σ, τ ] =
∑
k

(∑
i

ai
∂bk

∂qi
−
∑
i

bi
∂ak

∂qi

) ∂

∂qk

It corresponds to

φ[σ,τ ] =
∑
k

(∑
i

ai
∂bk

∂qi
−
∑
i

bi
∂ak

∂qi

)
pk =

∑
ik

(∂φσ
∂pi

∂φτ
∂qi
− ∂φσ
∂qi

∂φτ
∂pi

)
.

The resulting Poisson structure on T ∗M is the opposite of the standard Poisson structure.

Example 2.5. Given a Lie algebra action of g on M , let E = M × g with dual bundle E∗ =
M × g∗. The Poisson tensor on E∗ is given by (18), with ai the generating vector fields for the
action.

Example 2.6. For a principal G-bundle P → M , we obtain a linear Poisson structure on
(TP/G)∗. This is called by Sternberg [?] and Weinstein [?] the ‘phase space of a classical
particle in a Yang-Mills field’. It may be identified with T ∗P/G, with the Poisson structure
induced from the opposite of the standard Poisson structure on T ∗P .

Example 2.7. For the Lie algebroid E associated to a hypersurface N ⊆M , with local coordi-
nates x1, . . . , xk so that N is given by the vanishing of the k-th coordinate, we have εi = ∂

∂xi
for
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i < k and εk = xk ∂
∂xk

as a basis for the sections of E. Denote by y1, . . . , yn the corresponding
linear functions. The Poisson bracket reads

{xi, yj} = δij for i < k, {xk, yj} = xkδkj .

2.3. The cotangent Lie algebroid of a Poisson manifold. As a particularly important
example, let (M,π) be a Poisson manifold. As we saw, the tangent bundle V = TM inherits
a Poisson structure πTM such that {fT , gT }TM = {f, g}T for all f, g. The functions fT are
homogeneous of degree 1, hence πTM is homogeneous of degree −1. That is, πTM is a linear
Poisson structure, and hence determines a Lie algebroid structure on the dual bundle T ∗M . It
is common to use the notation T ∗πM for the cotangent bundle with this Lie algebroid structure.
From {fT , gV } = {f, g}V we see that the anchor map satisfies a(df) = Xf = π](df). That is,

a = π] : T ∗πM → TM.

Since φdf = fT for f ∈ C∞(M), the bracket on sections is such that

[df,dg] = d{f, g}

for all f, g ∈ C∞(M). The extension to 1-forms is uniquely determined by the Leibnitz rule,
and is given by

[α, β] = Lπ](α)β − Lπ](β)α− dπ(α, β).

This Lie bracket on 1-forms of a Poisson manifold was first discovered by Fuchssteiner [16].

2.4. Lie algebroid comorphisms. As we saw, linear Poisson structures on vector bundles
V → M correspond to Lie algebroid structures on E = V ∗. One therefore expects that the
category of vector bundles with linear Poisson structures should be the same as the category
of Lie algebroids. This turns out to be true, but we have to specify what kind of morphisms
we are using.

The problem is that a vector bundle map V1 → V2 does not dualize to a vector bundle map
E1 → E2 for Ei = V ∗i (unless the map on the base is a diffeomorphism). We are thus forced
to allow more general kinds of vector bundle morphisms, either for V1 → V2 (if we insist that
E1 → E2 is an actual vector bundle map), or for E1 → E2 (if we insist that V1 → V2 is an
actual vector bundle map. Both options are interesting and important, and lead to the notions
of Lie algebroid morphisms and Lie algebroid comorphisms, respectively.

Definition 2.8. A vector bundle comorphism, depicted by a diagram

E1
ΦE //

��

E2

��

M1
ΦM

// M2

is given by a base map ΦM : M1 → M2 together with a family of linear maps (going in the
‘opposite’ direction)

ΦE : (E2)ΦM (m) → (E1)m

depending smoothly on m, in the sense that the resulting map Φ∗ME2 → E1 is smooth.
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Given such a vector bundle comorphism, one obtains a pullback map on sections,

(19) Φ∗E : Γ(E2)→ Γ(E1)

which is compatible with the pullback of functions on M . Comorphisms can be composed in
the obvious way, hence one obtains a category VB∨ the category of vector bundles and vector
bundle morphisms.

Remark 2.9. Letting VS be the category of vector spaces, and VSop the opposite category, one

has the isomorphism VS
∼=−→ VSop taking a vector space to its dual space. Taking the opposite

category (‘reversing arrows’) ensures that this is a covariant functor. Similarly, taking a vector

bundle to its dual is an isomorphism of categories VB
∼=−→ VB∨. In this sense, the introduction

of VB∨ may appear pointless. It becomes more relevant if the vector bundles have additional
structure, which is not so easy to dualize.

Definition 2.10. Let E1 →M1 and E2 →M2 be Lie algebroids. A Lie algebroid comorphism
ΦE : E1 99K E2 is a vector bundle comorphism such that

(i) the pullback map (19) preserves brackets,
(ii) The anchor maps satisfy

a1(Φ∗Eσ) ∼ΦM a2(σ)

(ΦM -related vector fields).

We denote by LA∨ the category of Lie algebroids and Lie algebroid comorphisms.

The second condition means that we have a commutative diagram

E1
ΦE //

a1
��

E2

a2
��

TM1
TΦM

// TM2

Note that this condition (ii) is not automatic. For instance, take M1 = M2 = M , with ΦM the
identity map, let E2 = TM the tangent bundle and let E1 = 0 the zero Lie algebroid. Take
X ∈ Γ(TM) be a non-zero vector field. There is a unique comorphism ΦE : 0 99K E covering
ΦM = idM ; the pull-back map on sections is the zero map, and in particular preserves brackets.
But the condition (ii) would tell us 0 ∼idM X, i.e. X = 0.

Example 2.11. Let M be a manifold, and g a Lie algebra. A comorphism of Lie algebroids
TM 99K g is the same as a Lie algebra action of g on M . In this spirit, a comorphism from
TM to a general Lie algebroid E may be thought of as a Lie algebroid action of E on M .

Remark 2.12. On the open set of all m ∈M1 where the pullback map Φ∗E : (E2)Φ(m) → (E1)m
is non-zero, condition (ii) is automatic. To see this let σ, τ be sections of E2, and f ∈ C∞(M2).
Then Φ∗[σ, fτ ] = [Φ∗σ, (Φ∗f)Φ∗τ ]. Expanding using the Leibnitz rule, nd cancelling like terms,
one arrives at the formula (

Φ∗(a2(σ)f)− a(σ1)(Φ∗f)
)

Φ∗τ = 0.

This shows that Φ∗(a2(σ)f) = a(σ1)(Φ∗f) at all those points m ∈ M1 where Φ∗τ |m 6= 0 for
some τ ∈ Γ(E2).
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Now, let VBPoi be the category of vector bundles with linear Poisson structures; morphisms
in this category are vector bundle maps that are also Poisson maps. (It is tempting to call these
‘Poisson vector bundles’, but unfortunately that terminology is already taken.) The following
result shows that there is an isomorphism of categories

VBPoi
∼=−→ LA∨.

Proposition 2.13. Let E1 →M1 and E2 →M2 be two Lie algebroids. A vector bundle comor-
phism ΦE : E1 99K E2 is a Lie algebroid comorphism if and only if the dual map ΦE∗ : E∗1 → E∗2
is a Poisson map.

Proof. To simplify notation, we denote all the pull-back maps Φ∗M ,Φ
∗
E ,Φ

∗
E∗ by Φ∗. For any

VB-comorphism ΦE : E1 99K E2, and any σ ∈ Γ(E2), we have that

(20) φΦ∗σ = Φ∗φσ.

Given sections σ, τ ∈ Γ(E2) and a function f ∈ C∞(M2), we have

(21) φΦ∗[σ,τ ] = Φ∗φ[σ,τ ] = Φ∗{φσ, φτ},

(22) φ[Φ∗σ,Φ∗τ ] = {φΦ∗σ, φΦ∗τ} = {Φ∗φσ,Φ∗φτ},

and

(23) p∗1Φ∗(a2(σ)f) = Φ∗p∗2(a2(σ)f) = Φ∗{φσ, p∗2f},

(24) p∗1
(
a1(Φ∗σ)(Φ∗f)

)
= {φΦ∗σ, p

∗
1Φ∗f} = {Φ∗φσ,Φ∗p∗2f}

Here we have only used (20), and the description of the Lie algebroid structures of E1, E2 in
terms of the Poisson structures on E∗1 , E

∗
2 , see (15) and (16).

ΦE being an LA-morphism is equivalent to the equality of the left hand sides of equations
(21), (22) and equality of the left hand sides of equations (23), (24), while ΦE∗ being a Poisson
map is equivalent to the equality of the corresponding right hand sides. �

2.5. Lie subalgebroids and LA-morphisms. To define Lie algebroid morphisms FE : E1 →
E2, we begin with the case of injective morphisms, i.e. subbundles.

Definition 2.14. Let E →M be a Lie algebroid, and F ⊆ E a vector subbundle along N ⊆M .
Then F is called a Lie subalgebroid if it has the following properties:

• If σ, τ ∈ Γ(E) restrict over N to sections of F , then so does their bracket [·, ·],
• a(F ) ⊆ TN .

As the name suggests, a Lie subalgebroid is itself a Lie algebroid:

Proposition 2.15. if F ⊆ E is a sub-Lie algebroid along N ⊆ M , then F acquires a Lie
algebroid structure, with anchor the restriction of a : E → TN , and with the unique bracket
such that

[σ|N , τ |N ] = [σ, τ ]|N
whenever σ|N , τ |N ∈ Γ(F ).
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Proof. To show that this bracket is well-defined, we have to show that [σ, τ ]|N = 0 whenever
τ |N = 0. (In other words, the sections vanishing along N are an ideal in the space of sections
of E that restrict to sections of N .) Write τ =

∑
i fiτi where fi ∈ C∞(M) vanish on N . Then

[σ, τ ]
∣∣∣
N

=
∑
i

fi|N
[
σ, τi

]
|N + (a(σ)fi)|N τi|N = 0

where we used that a(σ)fi = 0, since a(σ) is tangent to N and the fi vanish on N . �

Here is one typical example of how Lie subalgebroids arise:

Proposition 2.16. Let E → M be a Lie algebroid, on which a compact Lie group G acts by
Lie algebroid automorphisms. Then the fixed point set EG ⊆ E is a Lie subalgebroid along
MG ⊆M .

Proof. Recall first that since G is compact, the fixed point set MG is a submanifold, and
EG →MG is a vector subbundle. By equivariance, a(EG) ⊆ (TM)G = T (MG). Let Γ(E)G be
the G-invariant sections. The restriction of such a section to MG is a section of EG, and the
resulting map

Γ(E)G → Γ(EG)

is surjective. (Given a section of EG, we can extend extend to a section of E, and than achieve
G-invariance by averaging.) But the bracket of G-invariant sections of E is again G-invariant,
and hence restricts to a section of EG. �

Proposition 2.17. Let E → M be a Lie algebroid, and N ⊆ M a submanifold. Suppose that
a−1(TN) is a smooth subbundle of E. Then a−1(TN) ⊆ E is a Lie subalgebroid along N ⊆M .

Proof. This follows from the fact that a : Γ(E) → X(M) is a Lie algebra morphism, and the
Lie bracket of vector fields tangent to N is again tangent to N . �

Let ι : N →M be the inclusion map. We think of

ι!E := a−1(TN)

as the proper notion of ‘restriction’ of a Lie algebroid. Two special cases:

(a) If a is tangent to N (i.e. a(E|N ) ⊆ TN), then ι!E = E|N coincides with the vector
bundle restriction.

(b) If a is transverse to N , then the restriction ι!E is well-defined, with

rank(ι!E) = rank(E)− dim(M) + dim(N).

Note that ι!TM = TN .

More generally, we can sometimes define ‘pull-backs’ of Lie algebroids E →M under smooth
maps Φ: N →M . Here, we assume that Φ is transverse to a : E → TM . Then the fiber product
E ×TN TM ⊆ E × TN is a well-defined subbundle along the graph of Φ, and is exactly the
pre-image of T Gr(Φ). It hence acquires a Lie algebroid structure. We let

(25) Φ!E = E ×TN TM

under the identification Gr(Φ) ∼= N .

Remarks 2.18. (a) As a special case, Φ!(TM) = TN .
(b) If Φ = ι is an embedding as a submanifold, then Φ!E coincides with the ‘restriction’.
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(c) Under composition of maps, (Φ ◦Ψ)!E = Ψ!Φ!E (whenever the two sides are defined).

We can use Lie subalgebroids also to define morphisms of Lie algebroids.

Definition 2.19. Given Lie algebroids E1 →M1, E2 →M2, a vector bundle map

ΦE : E1 → E2

is a Lie algebroid morphism if its graph Gr(ΦE) ⊆ E2×E−1 is a Lie subalgebroid along Gr(ΦM ).
The category of Lie algebroids and Lie algebroid morphisms will be denote LA.

It will take some time and space (which we don’t have right now) to get acquainted with
this definition. At this point, we just note some simple examples:

(a) For any smooth map Φ: M1 → M2, the tangent map TΦ: TM1 → TM2 is an LA-
morphism.

(b) For any Lie algebroid E, the anchor map a : E → TM is an LA-morphism.
(c) Let E be a Lie algebroid over M , and Φ: N →M a smooth map for which the pull-back

Φ!E is defined. Then the natural map Φ!E → E is a Lie algebroid morphism.
(d) Given g-actions on M1,M2, and an equivariant map M1 →M2, the bundle map

M1 × g→M2 × g

is an LA morphism.
(e) If g is a Lie algebra, then a Lie algebroid morphism TM → g is the same as a Maurer-

Cartan form θ ∈ Ω1(M, g), that is,

dθ +
1

2
[θ, θ] = 0.

(See e.g. [???])

Having defined the category LA, it is natural to ask what corresponds to it on the dual side,
in terms of the linear Poisson structures on vector bundles. The answer will have to wait until
we have the notion of a Poisson morphism.

3. Submanifolds of Poisson manifolds

Given a Poisson manifold (M,π), there are various important types of submanifolds.

3.1. Poisson submanifolds. A submanifold N ⊆ M is called a Poisson submanifold if the
Poisson tensor π is everywhere tangent to N , in the sense that πn ∈ ∧2TnN ⊆ ∧2TnM . Taking
the restrictions pointwise defines a bivector field πN ∈ X2(N), with the property that

πN ∼j π
where j : N →M is the inclusion. The corresponding Poisson bracket {·, ·}N is given by

{j∗f, j∗g}N = j∗{f, g}.
The Jacobi identity for πN follows from that for π. The Poisson submanifold condition can be
expressed in various alternate ways.

Proposition 3.1. The following are equivalent:

(a) N is a Poisson submanifold.
(b) π](T ∗M |N ) ⊆ TN .
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(c) π](ann(TN)) = 0.
(d) All Hamiltonian vector fields Xf , f ∈ C∞(M) are tangent to N .
(e) The space of functions f with f |N = 0 are a Lie algebra ideal in C∞(M), under the

Poisson bracket.

Proof. It is clear that (a),(b),(c), are equivalent. The equivalence of (b) and (d) follows since

for all m ∈M , the range ran(π]m) is spanned by the Hamiltonian vector fields Xf . Furthermore,
if (d) holds, then the functions vanishing on N are an ideal since g|N = 0 implies {f, g}|N =
Xf (g)|N = 0 since Xf is tangent to N . This gives (e). Conversely, if (e) holds, so that
{f, g}|N = 0 whenever g|N = 0, it follows that 〈dg,Xf 〉|N = Xf (g)|N = 0 whenever g|N = 0.
The differentials dg|N for g|N = 0 span ann(TN), hence this means that Xf |N ∈ Γ(TN), which
gives (d). �

Examples 3.2. (a) If χ ∈ C∞(M) is a Casimir function, then all the smooth level sets of χ
are Poisson submanifolds. Indeed, since Xfχ = {f, χ} = 0 shows that the Hamiltonian
vector fields are tangent to the level sets of χ.

(b) As a special case, if g is a Lie algebra with an invariant metric, defining a metric on the
dual space, then the set of all µ ∈ g∗ such that ||µ|| = R (a given constant) is a Poisson
submanifold.

(c) For any Poisson manifold M , and any k ∈ N∪{0} one can consider the subset M(2k) of
elements where the Poisson structure has given rank 2k. If this subset is a submanifold,
then it is a Poisson submanifold. For example, if M = g∗ the components of the set of
elements with given dimension of the stabilizer group Gµ are Poisson submanifolds.

3.2. Symplectic leaves. As mentioned above, the subspaces

ran(π]m) ⊆ TmM
are spanned by the Hamiltonian vector fields. The subset ran(π]) ⊆ TM is usually a singular

distribution, since the dimensions of the subspaces ran(π]m) need not be constant. It doesn’t
prevent us from considering leaves:

Definition 3.3. A maximal connected injectively immersed submanifold S ⊆M of a connected
manifold S is called a symplectic leaf of the Poisson manifold (M,π) if

TS = π](T ∗M |S).

By definition, the symplectic leaves are Poisson submanifolds. Since π]S is onto TS every-
where, this Poisson structure is non-degenerate, that is, it corresponds to a symplectic 2-form

ωS with ω[S = −(π]S)−1. The Hamiltonian vector fields Xf are a Lie subalgebra of X(M), since
[Xf1 , Xf2 ] = X{f1,f2}. If the distribution spanned by these vector fields has constant rank, then
we can use Frobenius’ theorem to conclude that the distribution is integrable: Through every
point there passes a unique symplectic leaf. However, in general Frobenius’s theorem is not
applicable since the rank may jump. Nevertheless, we have the following fundamental result:

Theorem 3.4. [33] Every point m of a Poisson manifold M is contained in a unique symplectic
leaf S.

Thus, M has a decomposition into symplectic leaves. One can prove this result by obtaining
the leaf through a given point m as the ‘flow-out’ of m under all Hamiltonian vector fields, and
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this is Weinstein’s argument in [33]. We will not present this proof, since we will later obtain
this result as a corollary to the Weinstein splitting theorem for Poisson structures.

Example 3.5. For M = g∗ the dual of a Lie algebra g, the symplectic leaves are the orbits of
coadjoint action G on g∗. Here G is any connected Lie group integrating g.

Example 3.6. For a Poisson structure π on a 2-dimensional manifold M , let Z ⊆M be its set
of zeros, i.e. points m ∈ M where πm = 0. Then the 2-dimensional symplectic leaves of π are
the connected components of M − Z, while the 0-dimensional leaves are the points of Z.

Remark 3.7. The Poisson structure is uniquely determined by its symplectic leaves, and can
sometimes be described in these terms. Suppose for instance M is a manifold with a (regular)
foliation, and with a 2-form ω whose pull-back to every leaf of the foliation is closed and non-
degenerate, i.e., symplectic. Then M becomes a Poisson structure with the given foliation as
its symplectic foliation. The Poisson bracket of two functions on M may be computed leafwise;
it is clear that the result is again a smooth function on M . (See Vaisman [?, Proposition 3.6].)

Remark 3.8. Since the dimension of the symplectic leaf S through m ∈ M equals the rank

of the bundle map π]m : T ∗mM → TmM , we see that this dimension is a lower semi-continuous
function of m. That is, the nearby leaves will have dimension greater than or equal to the
dimension of S. In particular, if π has maximal rank 2k, then the union of 2k-dimensional
symplectic leaves is an open subset of M .

3.3. Coisotropic submanifolds.

Lemma 3.9. The following are equivalent:

(a) π](ann(TN)) ⊆ TN
(b) For all f such that f |N = 0, the vector field Xf is tangent to N .

(c) The space of functions f with f |N = 0 are a Lie subalgebra under the Poisson bracket.
(d) The annihilator ann(TN) is a Lie subalgebroid of the cotangent Lie algebroid.

Proof. Equivalence of (a) and (b) is clear, since ann(TN) is spanned by df |N such that f |N = 0.
If (b) holds, then f |N = 0, g|N = 0 implies {f, g}|N = Xf (g)|N = 0. Conversely, if (c) holds,
and f |N = 0, then Xf is tangent to N since for all g with g|N = 0, Xf (g)|N = {f, g}|N = 0.
If ann(TN) is a Lie subalgebroid of T ∗πM , then in particular its image under the anchor
is tangent to N , which is (a). Conversely, if the equivalent conditions (a),(c), hold, then
ann(TN) is a Lie subalgebroid because its space of sections is generated by df with f |N = 0,
and [df,dg] = d{f, g}. �

A submanifold N ⊆M is called a coisotropic submanifold if it satisfies any of these equivalent
conditions. Clearly,

{open subsets of symplectic leaves } ⊆ { Poisson submanifolds } ⊆ { coisotropic submanifolds }.

Remark 3.10. By (d), we see in particular that for any coisotropic submanifold N , the normal
bundle

ν(M,N) = TM |N/TN = ann(TN)∗

inherits a linear Poisson structure πν(M,N). By the tubular neighborhood theorem, there is an
diffeomorphism of open neighborhoods of N inside ν(M,N) and inside M . Hence, ν(M,N) wit
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this linear Poisson structure is thought of as the linear approximation of the Poisson structure
πM along N . As special cases, we obtain linear Poisson structures on the normal bundles of
Poisson submanifolds, and in particular on normal bundles of symplectic leaves.

Remark 3.11. There are also notions of Lagrangian submanifold and isotropic submanifold of a
Poisson manifold, defined by the conditions that π](ann(TN)) = TN and π](ann(TN)) ⊇ TN .
However, it seems that these notions rarely appears in practice.

Example 3.12. Let E →M be a Lie algebroid, so that E∗ →M has a linear Poisson structure.
For any submanifold N ⊆ M , the restriction E∗|N is a coisotropic submanifold. Indeed, the
conormal bundle to E∗|N is spanned by d(p∗f) such that f |N = 0, but {p∗f, p∗g} for all
functions on M .

Example 3.13. If (M,ω) is a symplectic manifold, regarded as a Poisson manifold, then the
notions of coisotropic in the Poisson sense coincides with that in the symplectic sense. Indeed,
in this case π](ann(TN)) equals the ω-orthogonal space TNω, consisting of v ∈ TM such that

ω[(v) ∈ ann(TN). But TNω ⊆ TN is the coisotropic condition in symplectic geometry. For a
Poisson manifold, it follows that the intersection of coisotropic submanifolds with symplectic
leaves are coisotropic.

Theorem 3.14 (Weinstein). A smooth map Φ: M1 → M2 of Poisson manifolds (M1, π1)
and (M2, π2) is a Poisson map if and only if its graph Gr(Φ) ⊆ M2 ×M−1 is a coisotropic
submanifold. (Here M−1 is M1 with the Poisson structure −π1.

Proof. The condition that π1 ∼Φ π2 means that for covectors α1 ∈ T ∗mM1, α2 ∈ T ∗Φ(m)M2,

α1 = Φ∗α2 ⇒ π]1(α1) ∼Φ π]2(α2).

But α1 = Φ∗α2 is equivalent to (α2,−α1) ∈ ann(T Gr Φ), while π]1(α1) ∼Φ π]2(α2) is equivalent

to (π]2(α2), π]1(α1)) ∈ Gr(TΦ) = T Gr Φ. �

Theorem 3.14 is the Poisson counterpart to a well-known result from symplectic geometry: If
M1,M2 are symplectic manifolds, then a diffeomorphism Φ: M1 →M2 is symplectomorphism
if and only if its graph Gr(Φ) ⊆M2×M−1 is a Lagrangian submanifold. This leads to the idea
of viewing Lagrangian submanifolds of M2 ×M−1 as ‘generalized morphisms’ from M1 to M2,
and idea advocated by Weinstein’s notion of a symplectic category [34]. In a similar fashion,
Weinstein defined:

Definition 3.15. Let M1,M2 be Poisson manifolds. A Poisson relation from M1 to M2 is a
coisotropic submanifold N ⊆M2 ×M−1 , where M−1 is M1 equipped with the opposite Poisson
structure.

Poisson relations are regarded as generalized ‘morphisms’. We will thus write

N : M1 99KM2

for a submanifold N ⊆ M2 ×M1 thought of as such a ‘morphism’. However, ‘morphism’ is
in quotes since relations between manifolds cannot always be composed: Given submanifolds
N ⊆M2 ×M1 and N ′ ⊆M3 ×M2, the composition N ′ ◦N need not be a submanifold.

Definition 3.16. We say that two relations N : M1 99K M2 and N ′ : M2 99K M3 (given by
submanifolds N ⊆M2 ×M1 and N ′ ⊆M3 ×M2) have clean composition if
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(i) N ′ ◦N is a submanifold, and
(ii) T (N ′ ◦N) = TN ′ ◦ TN fiberwise.

By (ii), we mean that for all mi ∈Mi with (m3,m2) ∈ N ′ and (m2,m1) ∈ N , we have that

T(m3,m1)(N
′ ◦N) = T(m3,m2)N

′ ◦ T(m2,m1)N.

We stress that there are various versions of ‘clean composition’ in the literature, and the
condition here is weaker (but also simpler) than the one found in [?] or [35, Definition (1.3.7)].
Our goal is to show that a clean composition of Poisson relations is again a Poisson relation.

We will need some facts concerning the composition of linear relations. For any linear relation
R : V1 99K V2, given by a subspace R ⊆ V2 × V1, define a relation R� : V ∗1 99K V

∗
2 of the dual

spaces, by
R� = {(α2, α1) ∈ V ∗2 × V ∗1 | (α2,−α1) ∈ ann(R)}.

For example, if ∆V ⊆ V × V is the diagonal (corresponding to the identity morphism), then
∆�V = ∆V ∗ . The main reason for including a sign change is the following property under
composition of relations.

Lemma 3.17. (Cf. [22, Lemma A.2]) For linear relations R : V1 99K V2 and R′ : V2 99K V3,
with composition R′ ◦R : V1 99K V3, we have that

(R′ ◦R′)� = (R′)� ◦R� : V ∗1 99K V
∗

3 .

Proof. It is a well-known fact in linear symplectic geometry that the composition of linear
Lagrangian relations in symplectic vector spaces is again a Lagrangian relation. (No transver-
sality assumptions are needed.) We will apply this fact, as follows. If V is a vector space, let
W = T ∗V = V ⊕V ∗ with its standard symplectic structure, and let W− be the same space with
the opposite symplectic structure. If S ⊆ V is any subspace, then S⊕ ann(S) is Lagrangian in
W . In our situation, let Wi = Vi ⊕ V ∗i . Then

R⊕R� ⊆W2 ⊕W−1 , R′ ⊕ (R′)� ⊆W3 ⊕W−2
are Lagrangian relations, hence so is their composition (R′ ◦R)⊕ ((R′)� ◦R�). This means that
(R′ ◦R)� = (R′)� ◦R�. �

Put differently, the Lemma says that

(26) ann(R′ ◦R) =
{

(α3,−α1)
∣∣∃α2 : (α3,−α2) ∈ ann(R′), (α2,−α1) ∈ ann(R)

}
.

The following result was proved by Weinstein [35] under slightly stronger assumptions.

Proposition 3.18 (Weinstein). Let N : M1 99K M2 and N ′ : M2 99K M3 be Poisson relations
with clean composition N ′ ◦N : M1 99KM3. Then N ′ ◦N is again a Poisson relation.

Proof. We have to show that N ′ ◦N is a coisotropic submanifold. Let

(α3,−α1) ∈ ann(T (N ′ ◦N))

be given, with base point (m3,m1) ∈ N ′ ◦ N . Choose m2 ∈ M2 with (m3,m2) ∈ N ′ and
(m2,m1) ∈ N . Since

T(m3,m1)(N
′ ◦N) = T(m3,m2)N

′ ◦ T(m2,m1)N,

Equation (26) gives the existence of α2 ∈ T ∗m2
M2 such that (α3,−α2) ∈ ann(TN ′) and

(α2,−α1) ∈ ann(TN). Letting vi = π]i (αi) we obtain (v3, v2) ∈ TN ′ and (v2, v1) ∈ TN ,
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since N ′, N are coisotropic. Hence (v3, v1) ∈ TN ′ ◦ TN = T (N ′ ◦ N), proving that N ′ ◦ N is
coisotropic. �

Example 3.19. [?, Corollary (2.2.5)] Suppose Φ: M1 → M2 is a Poisson map, and N ⊆ M1 is
a coisotropic submanifold. Suppose Φ(N) ⊆M2 is a submanifold, with

(27) (TmΦ)(TmN) = TΦ(m)(Φ(N))

for all m ∈M1. Then Φ(N) is a coisotropic submanifold. Indeed, this sat my be regarded as a
composition of relations Φ(N) = Gr(Φ) ◦N , and the assumptions given are equivalent to the
clean composition assumption. Similarly, if Q ⊆ M2 is a coisotropic submanifold, such that
Φ−1(Q) is a submanifold with Tm(Φ−1(Q)) = (TmΦ)−1(TΦ(m)Q), then Φ−1(Q) is a submanifold.

If R ⊆ M2 ×M−1 is a Poisson relation, we can consider the transpose (or inverse) Poisson
relation

R> ⊆M1 ×M−2
consisting of all (m1,m2) such that (m2,m1) ∈ R. We may then define new relations R> ◦ R
and R ◦ R>, provided that clean composition assumptions are satisfied. As a special case,
suppose R = Gr(Φ) is the graph of a Poisson map Φ: M1 →M2. Then

R> ◦R = {(m,m′) ∈M1 ×M−1 | Φ(m) = Φ(m′)} = M1 ×M2 M1

(the fiber product of M1 with itself over M2). is coisotropic, provided that the composition
is clean. The cleanness assumption is automatic if Φ is a submersion. In this case, one has a
partial converse, which may be regarded as a criterion for reducibility of a Poisson structure.

Proposition 3.20 (Weinstein). Let Φ: M1 → M2 be a surjective submersion, where M1 is a
Poisson manifold. Then the following are equivalent:

(a) The Poisson structure on M1 descends to M2. That is, M2 has a Poisson structure
such that Φ is a Poisson map.

(b) The fiber product M1 ×M2 M
−
1 ⊆M1 ×M−1 is a coisotropic submanifold of M1 ×M−1 .

Proof. One direction was discussed above. For the converse, suppose S := M1 ×M2 M1 is
coisotropic. To show that the Poisson structure descends, we have to show that functions of
the form Φ∗f with f ∈ C∞(M2) form a Poisson subalgebra. For any such function f , note that
F = pr∗1 Φ∗f −pr∗2 Φ∗f ∈ C∞(M1×M−1 ) vanishes on S. Given another function f ′ ∈ C∞(M2),
with corresponding function F ′, we have that {F, F ′} vanishes on S. But teh vanishing of

{F, F ′} = pr∗1{Φ∗f,Φ∗f ′} − pr∗2{Φ∗f,Φ∗f ′}
on S means precisely that {Φ∗f,Φ∗f ′} is constant along the fibers of Φ. In other words, it lies
in Φ∗(C∞(M2)). �

Remark 3.21. In [35], Weinstein also discussed the more general Marsden-Ratiu reduction
procedure along similar lines.

3.4. Applications to Lie algebroids. Recall that F ⊆ E is a Lie subalgebroid if and only if
{σ ∈ Γ(E)| σ|N ∈ Γ(F )} is a Lie subalgebra, with {σ ∈ Γ(E)| σ|N = 0} as an ideal (the latter
condition being equivalent to a(E) ⊆ TN). In the dual picture,

σ|N ∈ Γ(F ) ⇔ φσ vanishes on ann(F ) ⊆ T ∗M |N
σ|N = 0 ⇔ φσ vanishes on T ∗M |N .
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Proposition 3.22. Let E be a Lie algebroid, and F ⊆ E a vector subbundle along N ⊆ M .
Then F is a Lie subalgebroid if and only if ann(F ) ⊆ E∗ is a coisotropic submanifold.

Proof. ”⇐”. Suppose that ann(F ) ⊆ E∗ is coisotropic. If σ|N ∈ Γ(F ) and f |N = 0, then φσ
and p∗f vanish on ann(F ), hence so does their Poisson bracket

{φσ, p∗f} = p∗(a(σ)(f)).

Hence a(σ)(f)|N = 0, which proves that a(σ) is tangent to N . Since σ was any section
restricting to a section of N , this shows a(F ) ⊆ TN . Similarly, if σ, τ restrict to sections of F ,
then φσ, φτ vanish on ann(F ), hence so does

{φσ, φτ} = φ[σ,τ ]

which means that [σ, τ ] restricts to a section of F . This shows that F is a Lie subalgebroid.
”⇒”. Suppose F is a Lie subalgebroid. Then, for all σ, τ that restrict to sections of F , and

all f, g ∈ C∞(M) that restrict to zero on N , the Poisson brackets

{φσ, φτ} = φ[σ,τ ], {φσ, p∗f} = p∗(a(σ)(f)), {p∗f, p∗g} = 0

all restrict to 0 on ann(F ). Since these functions generate the vanishing ideal of ann(F )
inside C∞(E∗), this shows that this vanishing ideal is a Lie subalgebra; that is, ann(N) is
coisotropic. �

Remark 3.23. Note the nice symmetry:

• For a Poisson manifold (M,π), we have that N ⊆M is a coisotropic submanifold if and
only if ann(TN) ⊆ T ∗M is a Lie subalgebroid.
• For a Lie algebroid E, a a vector subbundle F ⊆ E is a Lie subalgebroid if and only if

ann(F ) ⊆ E∗ is a coisotropic submanifold.

Definition 3.24. We denote by VB∨Poi the category of vector bundles with linear Poisson
structures, with morphisms the vector bundle comorphisms that are also Poisson relations.

Proposition 3.25. Let E1 → M1, E2 → M2 be Lie algebroids. Then ΦE : E1 → E2 is a Lie
algebroid morphism if and only if the dual comorphism ΦE∗ : E∗1 99K E

∗
2 is a Poisson relation.

We conclude that there is an isomorphism of categories,

VB∨Poi
∼=−→ LA.

Proof. By definition, ΦE is an LA-morphism if and only if its graph is a Lie subalgebroid.
By Proposition 3.22, this is the case if and only if the dual comorphism ΦE∗ is a Poisson
relation �

3.5. Poisson-Dirac submanifolds. Aside from the Poisson submanifolds, there are other
classes of submanifolds of Poisson manifolds M , with naturally induced Poisson structures.
For example, suppose a submanifold N ⊆M has the property that its intersection with every
symplectic leaf of M is a symplectic submanifold of that leaf. Then one can ask if the resulting
decomposition of N into symplectic submanifolds defines a Poisson structure on N . This is
not automatic, as the following example shows.
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Example 3.26. Let M = R2 ×R3 as a product of Poisson manifolds, where the first factor has
the standard Poisson structure ∂

∂q ∧
∂
∂p , and the second factor has the zero Poisson structure.

Let N ⊆M be the image of the embedding

R3 →M, (q, p, t) 7→ (q, p, tq, tp, t).

Then N contains the symplectic leaf R2×{0} ⊆M , but intersects all other leaves transversally.
The resulting decomposition ofN into a single 2-dimensional submanifold together with isolated
points cannot correspond to a symplectic foliation. (Cf. Remark 3.8.) See Crainic-Fernandes
[?, Section 8.2] for a similar example.

Definition 3.27. Let M be a Poisson manifold. A submanifold N ⊆ M is called a Poisson-
Dirac submanifold if every f ∈ C∞(N) admits an extension f̃ ∈ C∞(M) (i.e., f̃ |N = f) for
which X

f̃
is tangent to N .

Note that in particular, every Poisson submanifold is a Poisson-Dirac submanifold.

Remark 3.28. Definition 3.27 follows Laurent-Gengoux, Pichereau and Vanhaecke, see [21, Sec-
tion 5.3.2]. Cranic-Fernandes [?] use the term for any submanifold N with a Poisson structure

πN such that ran(π]N ) = ran(π]) ∩ TN everywhere.

An equivalent condition is the following:

Lemma 3.29. N ⊆M is a Poisson-Dirac submanifold if and only if every 1-form α ∈ Ω1(N)
is the pull-back of a 1-form α̃ ∈ Ω1(M) such that π](α̃) is tangent to N .

Proof. The direction ”⇒” is obvious. For the other direction, we have to show that every

f ∈ C∞(M) admits an extension f̃ whose hamiltonian vector field is tangent to N . By using
a partition of unity, we may assume that f is contained in a submanifold chart of N . Thus
suppose xi, yj are local coordinates so that N is given by yj = 0. Let α = df , and choose an
extension α̃ as in the statement of the lemma. Then α̃|N has the form

α̃|N = df +
∑
j

cj(x)dyj .

The formula
f̃(x, y) = f(x) +

∑
j

cj(x)yj .

defines an extension of f , and since df̃ |N = α̃|N we have that X
f̃

= π](α̃) is tangent to N . �

Proposition 3.30. If N is a Poisson-Dirac submanifold, then N inherits a Poisson structure
via

{f, g}N = {f̃ , g̃}|N
where f̃ , g̃ are extensions of f, g whose Hamiltonian vector fields are tangent to N . In terms
of bivector fields,

(28) πN (α, β) = π(α̃, β̃)|N
whenever α̃ ∈ Ω1(M) pulls back to α ∈ Ω1(N) and π](α̃) is tangent to N , and similarly for

β̃. The symplectic leaves of N with respect to πN are the components of the intersections of N
with the symplectic leaves of M .
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Proof. To show that the bracket is well-defined, we have to show that the right hand side

vanishes if g̃|N = 0. But this follows from {f̃ , g̃}|N = X
f̃
(g̃)|N since X

f̃
is tangent to N .

The Jacobi identity for {·, ·}N follows from that for {·, ·}. The formula in terms of bivector
fields reduces to the one in terms of brackets if the 1-forms are all exact. To show that it is
well-defined in the general case, we have to show that the right hand vanishes if the pullback

of β̃ to N is zero, or equivalently if β|N takes values in ann(TN). But this is clear since

π(α̃, β̃)|N = 〈β̃|N , π](α̃)|N 〉 = 0

using that π](α̃)|N takes values in TN . From the formula in terms of 1-forms, we see that

π]N (α) = π](α̃), whenever the right hand side takes values in TN and α̃ pulls back to α. This

shows that the range of π]N is exactly the intersection of TN with the range of π]. �

What are conditions to guarantee that a given submanifold is Poisson-Dirac? The vector
field π](α̃) is tangent to N if and only if α̃|N takes values in (π])−1(TN). Hence, a necessary
condition is that the pullback map T ∗M |N → T ∗N restricts to a surjection (π])−1(TN) →
T ∗N . The kernel of this map is ann(TN), hence the necessary condition reads as

(29) T ∗M |N = ann(TN) + (π])−1(TN).

Taking annihilators on both sides, this is equivalent to

(30) TN ∩ π](ann(TN)) = 0.

If this condition holds, then one obtains a pointwise bivector ΠN |m for all m ∈ N , defined by
the pointwise version of (28). However, the collection of these pointwise bivector fields do not
define a smooth bivector field, in general. For instance, in Example 3.26 the condition (30) is
satisfied, but N is not Poisson-Dirac. A sufficient condition for N to be Poisson-Dirac is the
following.

Proposition 3.31. The submanifold N ⊆M is Poisson-Dirac if and only if the exact sequence

(31) 0→ ann(TN)→ T ∗M |N → T ∗N → 0,

admits a splitting j : T ∗N → T ∗M |N whose image is contained in (π])−1(TN). That is, N is
Poisson-Dirac if and only if

T ∗M |N = ann(TN)⊕K
where K is a subbundle contained in (π])−1(TN).

Proof. Suppose such a splitting j : T ∗N → T ∗MN is given. Given α ∈ Ω1(N), let α̃ ∈ Ω1(M)
be any extension of j(α) ∈ Γ(T ∗M |N ). Then α̃ pulls back to α, and π](α̃) is tangent to N . This
shows that N is Poisson-Dirac. Conversely, suppose that N is Poisson Dirac. Given a local
frame α1, . . . , αk for T ∗N , we may choose lifts α̃1, . . . , α̃k as in Lemma 3.29. These lifts span
a complement to ann(TN) in T ∗M |N , giving the desired splitting j : T ∗N → T ∗M |N locally.
But convex linear combinations of splittings are again splittings; and if these splittings take
values in (π])−1(TN), then so does their linear combination. Hence, we may patch the local
splittings with a partition of unity to obtain a global splitting with the desired property. �

Remark 3.32. If π](ann(TN)) has constant rank, and zero intersection with TN , then N is a
Poisson-Dirac submanifold.

Here is a typical example of a Poisson-Dirac submanifold.



28 INTRODUCTION TO POISSON GEOMETRY LECTURE NOTES, WINTER 2017

Proposition 3.33 (Damianou-Fernandes). Suppose a compact Lie group G acts on a Poisson
manifold M by Poisson diffeomorphisms. Then MG is a Poisson-Dirac submanifold.

Proof. We have a G-equivariant direct sum decomposition

T ∗M |MG = ann(TMG)⊕ (T ∗M)G.

By equivariance of the anchor map, π]((T ∗M)G) ⊆ (TM)G = T (MG) as required. �

Remark 3.34. In [36], Xu introduces a special type of Poisson-Dirac submanifolds which he
called Dirac submanifolds, but were later renamed as Lie-Dirac submanifolds. We will return
to this later. In the case of a compact group action, Fernandes-Ortega-Ratiu [13] prove that
MG is in fact a Lie-Dirac submanifold in the sense of Xu [36].

Remark 3.35. Given splitting of the exact sequence (31), with image K ⊆ T ∗M |N such that
π](K) ⊆ TN , the restriction of the Poisson tensor decomposes as π|N = πN + πK where
πN ∈ Γ(∧2TN) and πK ∈ Γ(∧2K). As shown in [36, Lemma 2.5], having such a decomposition
already implies that πN is a Poisson tensor.

Remark 3.36. Crainic-Fernandes [?] give an example showing that it is possible for a subman-

ifold of a Poisson manifold M to admit a Poisson structure πN with ran(π]N ) = ran(π]) ∩ TN ,
without admitting a splitting of (31).

3.6. Cosymplectic submanifolds. An important special case of Poisson-Dirac submanifold
is the following.

Definition 3.37. A submanifold N ⊆M is called cosymplectic if

TM |N = TN + π](ann(TN)).

Remark 3.38. Compare with the definition of a coisotropic submanifold, where π](ann(TN)) ⊆
TN .

Remark 3.39. If M is symplectic, then the cosymplectic submanifolds are the same as the
symplectic submanifolds.

Proposition 3.40. Let N be a submanifold of a Poisson manifold M . The following are
equivalent:

(a) N is cosymplectic
(b) TM |N = TN ⊕ π](ann(TN)).
(c) T ∗M |N = ann(TN)⊕ (π])−1(TN).
(d) ann(TN) ∩ (π])−1(TN) = 0.
(e) The restriction of π to ann(TN) ⊆ T ∗M |N is nondegenerate.
(f) N intersects every symplectic leaf of M transversally, with intersection a symplectic

submanifold of that leaf.

Proof. if N is cosymplectic, then the pointwise rank of π](ann(TN)) must be at least equal to
the codimension of N . Hence, it is automatic that the sum in Definition 3.37 is a direct sum,
which gives the equivalence with (b). Condition (c) is equivalent to (b) by dualization, and (d)
is equivalent to (a) by taking annihilators on both sides.
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Next, condition (e) means that if α ∈ ann(TN) is π-orthogonal to all of ann(TN), then
α = 0. The space of elements that are π-orthogonal to ann(TN) is

ann(π](ann(TN)) = (π])−1(TN),

so we see that (e) is equivalent to (d).
Condition (b) means in particular that TM |N = TN ⊕ ran(π]), so that N intersects the

symplectic leaves transversally. Let ωm be the symplectic form on ran(π]m). If α ∈ T ∗mM is such

that v = π]m(α) ∈ TmN is non-zero, then by (c) we can find β ∈ T ∗mM with w = π]m(β) ∈ TmN
and 〈β, v〉 6= 0. But this means ωm(v, w) 6= 0, thus TmN ∩ ran(π]m) is symplectic. This proves
(f); the converse is similar. �

The main example of a cosymplectic submanifold is the following:

Example 3.41. Let M be a Poisson manifold. Suppose m ∈M , and N is a submanifold passing
through m with

TmM = TmN ⊕ ran(π]m).

In other words, N intersects the symplectic leaf transversally and is of complementary dimen-
sion. Dualizing the condition means

T ∗mM = ann(TmN)⊕ ker(π]m),

which shows that πm is non-degenerate on ann(TN) at the point m. But then π remains
non-degenerate on an open neighborhood of m in N . This neighborhood is then a cosymplectic
submanifold, with an induced Poisson structure. One refers to this Poisson structure on N
near m as the ‘transverse Poisson structure’ at m. [?]

Remark 3.42. Cosymplectic submanifolds are already discussed in Weinstein’s article [?], al-
though the terminology appears later [36, 8]. They are also known as Poisson transversals [14],
presumably to avoid confusion with the so-called cosymplectic structures.

4. Dirac structures

Dirac structures were introduced by Courant and Weinstein [?, 9] as a differential geometric
framework for Dirac brackets in classical mechanics. The basic idea is to represent Poisson
structures in terms of their graphs

Gr(π) = {π](α) + α| α ∈ T ∗M} ⊆ TM = TM ⊕ T ∗M.

The maximal isotropic subbundles E ⊆ TM arising as graphs of Poisson bivector fields are
characterized by a certain integrability condition; dropping the assumption that E is the graph
of a map from T ∗M to TM one arrives at the notion of a Dirac structure. Dirac geometry is
extremely interesting in its own right; here we will use it mainly to prove facts about Poisson
manifolds. Specifically, we will use Dirac geometry to discuss, among other things,

(a) the Lie algebroid structure of the cotangent bundle of a Poisson manifold
(b) the Weinstein splitting theorem
(c) symplectic realizations and symplectic groupoids for Poisson manifolds
(d) Poisson Lie groups and Drinfeld’s classification

We begin with a discussion of the Courant algebroid structure of TM .
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4.1. The Courant bracket. Let M be a manifold, and

(32) TM = TM ⊕ T ∗M
the direct sum of the tangent and cotangent bundles. Elements of TM will be written x = v+µ,
with v ∈ TmM and µ ∈ T ∗mM , and similarly sections will be written as σ = X +α, where X is
a vector field and α a 1-form. The projection to the summand TM will be called the anchor
map

(33) a : TM → TM

thus a(v + µ) = v. Let 〈·, ·〉 denote the bundle metric, i.e. non-degenerate symmetric bilinear
form,

(34) 〈v1 + µ1, v2 + µ2〉 = 〈µ1, v2〉+ 〈µ2, v1〉;
here v1, v2 ∈ TM and µ1, µ2 ∈ T ∗M (all with the same base point in M).1 We will use
this metric to identify TM with its dual; for example, the anchor map dualizes to the map
a∗ : T ∗M → TM∗ ∼= TM given by the inclusion. The Courant bracket [9] (also know as the
Dorfman bracket [12]) is the following bilinear operation on sections σi = Xi + αi ∈ Γ(TM),

(35) [[σ1, σ2]] = [X1, X2] + LX1α2 − ιX2dα1

Remark 4.1. Note that this bracket is not skew-symmetric, and indeed Courant in [9] used the
skew-symmetric version [X1, X2] +LX1α2−LX2α1. However, the non-skew symmetric version
(35), introduced by Dorfman [12], turned out to be much easier to deal with; in particular it
satisfies a simple Jacobi identity (see (37) below). For this reason the skew-symmetric version
is rarely used nowadays.

Remark 4.2. One motivation for the bracket (35) is as follows. Using the metric on TM , one can
form the bundle of Clifford algebras Cl(TM). Thus, Cl(TmM) is the algebra generated by the
elements of TmM , subject to relations [x1, x2] ≡ x1x2 + x2x1 = 〈x1, x2〉 for xi ∈ TmM (using
graded commutators). The Clifford bundle has a spinor module ∧T ∗M , with the Clifford action
given on generators by %(x) = ι(v) + ε(µ) for x = v + µ; here ι(v) is contraction by v and ε(µ)
is wedge product with µ. Hence, the algebra Γ(Cl(TM)) acts on the space Γ(∧T ∗M) = Ω(M)
of differential forms. But on the latter space, we also have the exterior differential d. The
Courant bracket is given in terms of this action by

[[d, %(σ1)], %(σ2)] = %([[σ1, σ2]]).

It exhibits the Courant bracket as a derived bracket. For more on this viewpoint see [?, ?, ?, 6].

Proposition 4.3. The Courant bracket (35) has the following properties, for all sections σi, σ, τ
and all f ∈ C∞(M):

a(σ)〈τ1, τ2〉 = 〈[[σ, τ1]], τ2〉+ 〈τ1, [[σ, τ2]]〉,(36)

[[σ, [[τ1, τ2]]]] = [[[[σ, τ1]], τ2]] + [[τ1, [[σ, τ2]]]],(37)

[[σ, τ ]] + [[τ, σ]] = a∗ d 〈σ, τ〉.(38)

Furthermore, it satisfies the Leibnitz rule

(39) [[σ, fτ ]] = f [[σ, τ ]] + (a(σ)f) τ,

1Note that TM also has a natural fiberwise symplectic form, but it will not be used here.
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and the anchor map is bracket preserving:

(40) a([[σ, τ ]]) = [a(σ), a(τ)].

All of these properties are checked by direct calculation.

Generalizing these properties, one defines a Courant algebroid over M [25, ?] to be a vector
bundle A → M , together with a bundle metric 〈·, ·〉, a bundle map a : A → TM called the
anchor, and a bilinear Courant bracket on Γ(A) satisfying properties (36), (37), and (38)
above. One can show [31] that the properties (39) and (40) are consequences. The bundle
TM is called the standard Courant algebroid over M . We will encounter more general Courant
algebroids later on.

Remark 4.4. For a vector bundle V → M , denote by Aut(V ) the group of vector bundle
automorphisms of V . Its elements are diffeomorphism A of the total space of V respecting the
linear structure; any automorphism restricts to a diffeomorphism Φ of the base. It defines an
action A : Γ(V )→ Γ(V ) on sections; here A.τ = A ◦ τ ◦Φ−1 where on the right hand side, the
section is regarded as a map τ : M → V . This has the property

A(fτ) = (Φ∗f)A(τ)

for all f ∈ C∞(M) and τ ∈ Γ(V ), conversely, any such operator on Γ(V ) describes an automor-
phism of V . Taking derivatives, we see that the infinitesimal automorphism of a vector bundle
V → M may be described by operators D : Γ(V )→ Γ(V ) such that there exists a vector field
X satisfying the Leibnitz rule,

D(fτ) = fD(τ) +X(f)τ.

For a Lie algebroid, the operator given by the Lie algebroid bracket with a fixed section is
such a vector bundle automorphisms; the property a([σ, τ ]) = [a(σ), a(τ)] says that this au-
tomorphism preserves the anchor, and the Jacobi identity for the bracket signifies that this
infinitesimal automorphism preserves the bracket. In a similar fashion, for a Courant algebroid
A be a Courant algebroid (e.g., the standard Courant algebroid TM), the operator [[σ, ·]] on
sections defines an infinitesimal vector bundle automorphism. The property (36) says that this
infinitesimal automorphism preserves the metric, (40) says that it preserves the anchor, and
(37) says that it preserves the bracket [[·, ·]] itself.

4.2. Dirac structures. For any subbundle E ⊆ TM , we denote by E⊥ its orthogonal with
respect to the metric 〈·, ·〉. The subbundle E is called isotropic if E ⊆ E⊥, co-isotropic if
E ⊃ E⊥, and maximal isotropic, or Lagrangian if E = E⊥. The terminology is borrowed from
symplectic geometry, where it is used for subspaces of a vector space with a non-degenerate
skew-symmetric bilinear form. Immediate examples of Lagrangian subbundles are TM and
T ∗M . Given a bivector field π ∈ X2(M), its graph

Gr(π) = {π](µ) + µ| µ ∈ T ∗M} ⊆ TM,

is Lagrangian; in fact, the Lagrangian subbundles E ⊆ TM with E ∩ TM = 0 are exactly the
graphs of bivector fields. Similarly, given a 2-form ω its graph

Gr(ω) = {v + ω[(v)| v ∈ TM} ⊆ TM
is Lagrangian; the Lagrangian subbundles E ⊆ TM with E ∩ TM = 0 are exactly the graphs
of 2-forms.
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Note that although the Courant bracket is not skew-symmetric, it restricts to a skew-
symmetric bracket on sections of Lagrangian subbundles, because the right hand side of (38)
is zero on such sections.

Definition 4.5. A Dirac structure on M is a Lagrangian subbundle E ⊆ TM whose space of
sections is closed under the Courant bracket.

Proposition 4.6. Any Dirac structure E ⊆ TM acquires the structure of a Lie algebroid,
with the Lie bracket on sections given by the Courant bracket on Γ(E) ⊆ Γ(TM), and with the
anchor obtained by restriction of the anchor a : TM → TM .

Proof. By (38), the Courant bracket is skew-symmetric on sections of E, and (37) gives the
Jacobi identity. The Leibnitz identity follows from that for the Courant bracket, Equation
(39). �

The integrability of a Lagrangian subbundle E ⊆ TM is equivalent to the vanishing of the
expression

(41) ΥE(σ1, σ2, σ3) = 〈σ1, [[σ2, σ3]]〉
for all σ1, σ2, σ3 ∈ Γ(E). Indeed, given σ2, σ3 ∈ Γ(E), the vanishing for all σ1 ∈ Γ(E) means
precisely that [[σ2, σ3]] takes values in E⊥ = E. Using the properties (36) and (38) of the
Courant bracket, one sees that ΥE is skew-symmetric in its entries. Since ΥE is clearly tensorial
in its first entry, it follows that it is tensorial in all three entries: that is

ΥE ∈ Γ(∧3E∗).

In particular, to calculate ΥE it suffices to determine its values on any collection of sections
that span E everywhere.

Proposition 4.7. For a 2-form ω, the graph Gr(ω) is a Dirac structure if and only if dω = 0.
In this case, the projection Gr(ω)→ TM along T ∗M is an isomorphism of Lie algebroids.

Proof. We calculate,

[[X + ω[(X), Y + ω[(Y )]] = [X,Y ] + LXιY ω − ιY dιXω

= [X,Y ] + ι[X,Y ]ω + ιY ιXdω.

This takes values in Gr(ω) if and only if the last term is zero, that is, dω = 0. In fact, the
calculation shows that ΥGr(ω) coincides with dω under the isomorphism Gr(π) ∼= TM . �

Proposition 4.8. A bivector field π ∈ X2(M) is Poisson if and only if its graph Gr(π) is a
Dirac structure. In this case, the projection Gr(π)→ T ∗M (along TM) is an isomorphism of
Lie algebroids, where T ∗M has the cotangent Lie algebroid structure determined by π.

Proof. We want to show that ΥGr(π) vanishes if and only if π is a Poisson structure. It suffices

to evaluate ΥGr(π) on sections of the form Xf + df for f ∈ C∞(M), where Xf = π](df). Thus
let f1, f2, f3 ∈ C∞(M) and put σi = Xfi + dfi. We have

[[σ2, σ3]] = [Xf2 , Xf3 ] + dLXf2 (f3),

hence
〈σ1, [[σ2, σ3]]〉 = L[Xf2 ,Xf3 ](f1) + LXf1LXf2 (f3) = Jac(f1, f2, f3).
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The result follows. In fact, we have shown that ΥGr(π) coincides with Υπ under the isomorphism
Gr(π) ∼= T ∗M .

Finally, it is immediate from the formulas for the Courant bracket and the cotangent Lie
algebroid that the isomorphism Gr(π) ∼= T ∗M intertwines the anchor with the map π], and
takes the bracket of two sections of Gr(π) to the Lie bracket of the corresponding 1-forms,

(42) [α, β] = Lπ](α)β − ιπ](β)dα

�

4.3. Tangent lifts of Dirac structures. As we had explained earlier, the cotangent Lie
alegbroid structure on T ∗M for a Poisson manifold (M,π) corresponds to the tangent lift to
a Poisson structure on TM . What about tangent lifts of more general Dirac structures? Let
p : TM →M be the bundle projection.

We had defined tangent lifts and vertical lifts of functions. The tangent lift of a vector field
X is characterized by XT (fT ) = X(f)T ; the vertical lift by XV (fT ) = X(f)V . In local tangent
coordinates, if X =

∑
i a
i(x) ∂

∂xi
,

XT =
∑
i

ai(x)
∂

∂xi
+
∑
ij

∂ai

∂xj
yj

∂

∂yi
, XV =

∑
i

ai(x)
∂

∂yi
.

We have

[XT , YT ] = [X,Y ]T , [XV , YT ] = [X,Y ]V , [XV , YV ] = 0.

Similar formulas define the tangent and vertical lifts of multi-vector fields, e.g. for a bivector
field πT (dfT ,dgT ) = (π(df, dg))T , πV (dfT , dgT ) = (π(df,dg))V . With this notation, the
tangent lift of a Poisson structure πTM is indeed just πT . For differential forms, we define the
vertical lift αV to be simply the pull-back. The tangent lift of functions extends uniquely to a
tangent lift of differential forms, in such a way that (df)T = d(fT ) and

(α ∧ β)T = αV ∧ βT + αT ∧ βV .
For 1-forms α =

∑
i αidx

i, one finds,

αT =
∑
i

αi dyi +
∑
ij

∂αi
∂xj

yj dxi.

Here are some basic formulas for tangent and vertical lifts:

ι(XT )αT = (ι(X)α)T , ι(XT )αV = (ι(X)α)V = ι(XV )αT , ι(XV )αV = 0;

L(XT )αT = (L(X)α)T , L(XT )αV = (L(X)α)V = L(XV )αT , L(XV )αV = 0.

For σ = X + α ∈ Γ(TM), consider σT = XT + αT ∈ Γ(T(TM)) and σV = XV + αV . From
the properties of tangent and vertical lifts of 1-forms and vector fields, we obtain,

〈σT , τT 〉 = 〈σ, τ〉T , 〈σV , τV 〉 = 0, 〈σV , τT 〉 = 〈σ, τ〉T
[[σT , τT ]] = [[σ, τ ]]T , [[σV , τV ]] = 0, [[σV , τT ]] = [[σ, τ ]]V = [[σT , τV ]]

and finally,

a(σT ) = (a(σ))T , a(σV ) = a(σ)V .

As an application, we can prove:
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Theorem 4.9. For any Dirac structure E ⊆ TM there is a unique Dirac structure ET ⊆ TMT

such that σT ∈ Γ(ET ) for all σ ∈ Γ(E).

Proof. For non-zero v ∈ TM , there is at least one function f such that fT (v) 6= 0. Since
(fσ)T = fV σT + fTσV , we conclude that the subspace (ET )v ⊆ Tv(TM) spanned by the
tangent lifts of sections of E is the same as the subspace spanned by the tangent and cotangent
lifts of sections of E.

Inside T(TM), we have a subbundle (TM)V , spanned by all vertical lifts of sections of TM .
It is canonically isomorphic to the vector bundle pull-back of p∗(TM). The quotient space
(TM)H := T(TM)/(TM)V is isomorphic to p∗(TM) as well; looking at the explicit formulas
we see that it is spanned by image of horizontal lifts. The vertical lifts of sections of E span a
subbundle EV ∼= p∗E, while the images of tangent lifts in (TM)H span a subbundle EH ∼= p∗E.
It hence follows that at any v ∈ TM , the span (ET )v of the vertical and tangent lifts of sections
of E has dimension at least 2 rank(E) = 2 dimM . From the properties of tangent and vertical
lifts, it is immediate that this subspace is isotropic, hence its dimension is exactly 2 dimM .
We conclude that ET is a subbundle, and using the Courant bracket relations of tangent and
vertical lifts it is clear that ET defines a Dirac structure. �

5. Gauge transformations of Poisson and Dirac structures

One simple way to produce new Dirac structures from given ones is to apply a bundle
automorphism of TM preserving the Courant algebroid structures.

5.1. Automorphisms of the Courant algebroid structure. Recall from Remark 4.4 that if
V →M is any vector bundle, we denote by Aut(V ) the group of vector bundle automorphisms.
Any such automorphisms restricts to a diffeomorphism Φ of the zero section; the kernel of
the restriction map Aut(V ) → Diff(M) is denoted Gau(V ); its elements are called gauge
transformations of V . We have an exact sequence,

1→ Gau(V )→ Aut(V )→ Diff(M)

where the last map need not be surjective, in general. Similarly, we denote by gau(V ) the
kernel of the restriction map aut(V )→ X(M), it fits into an exact sequence of Lie algebras

0→ gau(V )→ aut(V )→ X(M)→ 0.

Let AutCA(TM) denote the group of Courant algebroid automorphisms of TM , that is, A ∈
Aut(TM), preserves the metric, bracket and anchor. In terms of the resulting action on sections,
letting Φ: M →M be the base map, this means

〈Aσ,Aτ〉 = Φ∗〈σ, τ〉,
[[Aσ,Aτ ]] = A[[σ, τ ]],

a ◦A = TΦ ◦ a.
The group homomorphism AutCA(TM) → Diff(M) is surjective, since every diffeomorphism
Φ ∈ Diff(M) defines a standard Courant algebroid automorphism

TΦ ∈ AutCA(TM)

by taking the sum of the tangent and cotangent maps. This gives a split exact sequence

1→ GauCA(TM)→ AutCA(TM)→ Diff(M),
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where the splitting identifies the Courant automorphisms with a semi-direct product,

AutCA(TM) = GauCA(TM) o Diff(M).

For any 2-form ω, define an automorphism

Rω ∈ Aut(TM), x 7→ x+ ιa(x)ω.

Obviously, Rω1+ω2 = Rω1 ◦ Rω2 .

Proposition 5.1. [18] The automorphism Rω preserves the metric and anchor; it preserves
the Courant bracket if and only if dω = 0. The map

Ωcl(M)→ GauCA(TM), ω 7→ R−ω
is a group isomorphism.

Proof. For σ = X + α and τ = Y + β, we have that

[[Rωσ,Rωτ ]] = [X,Y ] + LX(β + ιY ω)− ιY d(α+ ιXω)

= [X,Y ] + LXβ − ιY dα+ LXιY ω − ιY dιXω

= [X,Y ] + LXβ − ιY dα+ ι[X,Y ]ω + ιY ιXdω

= Rω[[σ, τ ]] + ιY ιXdω

The fact that Rω preserves the metric and anchor is similar, but easier. Suppose now that
A ∈ GauCA(TM) is given. In particular, a ◦ A = a. Since A preserves the metric, we have
A∗ = A−1 under the identification of TM with its dual. Hence A−1 ◦ a∗ = a∗, which means
that A−1, hence also A, fixed T ∗M pointwise, while on the other hand A′v − v ∈ T ∗M for all
v ∈ TM . Since A preserves the metric,

0 = 〈v, w〉〈Av,Aw〉 = 〈Av,w〉+ 〈v,Aw〉
for all v, w ∈ TM . Hence there is a well-defined 2-form ω such that

ω(v, w) = 〈v, Aw〉,
and A = R−ω. But R−ω preserves the Courant bracket if and only if ω is closed. �

Remark 5.2. The calculation applies more generally to twisted Courant brackets: Given a
closed 3-form η ∈ Ω3(M), one has the η-twisted Courant bracket

[[σ, τ ]]η = [X,Y ] + LXβ − ιY dα+ ιXιY η.

For Φ ∈ C∞(M) one has [[TΦ.σ, TΦ.τ ]]η = TΦ.([[σ, τ ]]Φ∗η). Given a 2-form ω, one has that

[[Rωσ,Rωτ ]]η+dω = Rω[[σ, τ ]]η.

In summary, we have shown that

AutCA(TM) = Ω2
cl(M) o Diff(M),

where (ω,Φ) acts as R−ω ◦ TΦ.
We can similarly discuss the Lie algebra autCA(TM) of infinitesimal Courant algebroid auto-

morphisms. Regarded as operators on sections, these are the linear maps D : Γ(TM)→ Γ(TM)
such that there exists a vector field X with

D(fσ) = fD(σ) +X(f)σ,
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〈Dσ, τ〉+ 〈σ,Dτ〉 = X〈σ, τ〉,

[[Dσ, τ ]] + [[σ,Dτ ]] = D[[σ, τ ]],

a(Dτ) = [X, a(τ)].

As mentioned before, D = [[σ, ·]] has all these properties.

Proposition 5.3 (Infinitesimal automorphisms of the Courant bracket). [18]

(a) The Lie algebra of infinitesimal Courant automorphisms is a semi-direct product

autCA(TM) = Ω2
cl(M) o X(M),

where the action of (γ,X) on a section τ = Y + β ∈ Γ(TM) is given by

(43) (γ,X).τ = [X,Y ] + LXβ − ιY γ.

(b) For any section σ = X + α ∈ Γ(TM), the Courant bracket [[σ, ·]] is the infinitesimal
automorphism (dα, X).

Proof. The proof of a) is similar to the global case. The given formula defines an injective map
from Ω2

cl(M)oX(M) to autCA(TM). To see that it is surjective, let D ∈ autCA(TM) be given,
with base vector field X. By subtracting LX ∈ autCA(TM), we obtain D′ = D − LX with
corresponding vector field equal to 0. Since D′(fσ) = fD′(σ), it follows that D′ is given by an
infinitesimal gauge transformation of TM , i.e. by a section of the bundle of endomorphisms of
TM . Since a ◦D′ = 0, we see that this endomorphism takes values in T ∗M . Dually, we obtain
D′ ◦ a∗ = 0, hence D′ vanishes on T ∗M . Hence, it is given by a bundle map TM → T ∗M .
Since D′ preserves metrics,

〈D′X,Y 〉+ 〈X,D′Y 〉 = 0.

Hence, there is a well-defined 2-form γ such that γ(X,Y ) = 〈X,D′(Y )〉, and the action of D′

is

D′(X + α) = −ιXγ.
Finally, using that D′ preserves brackets one finds that γ must be closed. Property b) is
immediate from (43) and the formula for the Courant bracket. �

We are interested in the integration of infinitesimal Courant automorphisms, especially those
generated by sections of TM . In the discussion below, we will be vague about issues of com-
pleteness of vector fields; in the general case one has to work with local flows. The following
result is an infinite-dimensional instance of a formula for time dependent flows on semi-direct
products V oG, where G is a Lie group and V a G-representation.

Proposition 5.4. [18, 19] Let (ωt,Φt) ∈ AutCA(TM) be the family of automorphisms inte-
grating the time-dependent infinitesimal automorphisms (γt, Xt) ∈ autCA(TM). Then Φt is the
flow of Xt, while

ωt =

∫ t

0

(
(Φs)∗γs

)
ds.

Proof. Recall (cf. Appendix ??) that the flow Φt of a time dependent vector field Xt is defined
in terms of the action on functions by d

dt(Φt)∗ = (Φt)∗ ◦LXt . Similarly, the 1-parameter family
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of Courant automorphisms (ωt,Φt) integrating (γt, Xt) is defined in terms of the action on
sections τ ∈ Γ(TM) by

d

dt

(
(ωt,Φt).τ

)
= (ωt,Φt).(γt, Xt).τ.

Write τ = Y + β ∈ Γ(TM). Then

d

dt

(
(ωt,Φt).τ

)
=

d

dt

(
(Φt)∗τ − ι

(
(Φt)∗Y

)
ωt

)
= (Φt)∗LXtτ − ι

(
(Φt)∗LXtY

)
ωt − ι

(
(Φt)∗Y

)dωt
dt
.

On the other hand,

(ωt,Φt).(γt, Xt).τ = (ωt,Φt).
(
LXtτ − ι(Y )γt

)
= (Φt)∗LXtτ − ι

(
(Φt)∗Y

)
(Φt)∗γt − ι

(
(Φt)∗LXtY

)
ωt.

Comparing, we see (Φt)∗γt = d
dtωt. �

This calculation applies in particular to the infinitesimal automorphisms (γt, Xt) defined by
σt = Xt + αt ∈ Γ(TM); here γt = dαt. Note that in this case,

ωt = d

∫ t

0

(
(Φs)∗αs

)
ds

is a family of exact 2-forms.

5.2. Moser method for Poisson manifolds. For any Dirac structure E ⊆ TM , and closed
2-form ω ∈ Ω2

cl(M), one obtains a new Dirac structure Eω = Rω(E) called the gauge trans-
formation of E by ω. We are interested in the special case that E is the graph of a Poisson
bivector field.

Lemma 5.5. Let π be a Poisson structure on M , and ω ∈ Ω2
cl(M) a closed 2-form. Then

Gr(π)ω is transverse to TM if and only if the bundle map

id +ω[ ◦ π] : T ∗M → T ∗M

is invertible. In this case, the Poisson structure πω defined by Gr(π)ω = Gr(πω) satisfies

(44) (πω)] = π] ◦ (id +ω[ ◦ π])−1.

Proof. By definition,

Gr(π)ω = {π](µ) + µ+ ιπ](µ)ω| µ ∈ T ∗M}
This is transverse to TM if and only if the projection to T ∗M is an isomorphism, that is, if
and only if for all ν ∈ T ∗M there is a unique solution of

ν = µ+ ιπ](µ)ω ≡ (id +ω[ ◦ π])µ.

Furthermore, in this case the resulting πω is given by (πω)](ν) = π](µ), which proves (44). �

One calls πω the gauge transformation of π by the closed 2-form ω.

Lemma 5.6. [5] The Poisson structure πω and π define the same symplectic foliation. The
2-forms on leaves are related by pull-back of ω.
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Proof. From (44), it is immediate that ran((πω)]) = ran(π]). For the second claim, given

m ∈M , let σ be the 2-form on Sm = ran(π]m) defined by πm. If v1, v2 ∈ Sm with vi = π]m(µi),
we have

σ(v1, v2) = −πm(µ1, µ2) = 〈µ1, v2〉.
Similarly, let σω be the 2-form defined by πω:

σω(v1, v2) = 〈ν1, v2〉,

where ν1 is such that (πω)]ν1 = v1. As we saw above,

ν1 = (id +ω[π])µ1 = µ1 + ιv1ω.

Hence, σω(v1, v2) = 〈ν1, v2〉 = σ(v1, v2) + ω(v1, v2). �

The standard Moser argument for symplectic manifolds shows that for a compact symplectic
manifold, any 1-parameter family of deformations of the symplectic forms in a prescribed
cohomology class is obtained by the action of a 1-parameter family of diffeomorphisms. The
following version for Poisson manifolds can be proved from the symplectic case, arguing ‘leaf-
wise’, or more directly using the Dirac geometric methods described above.

Theorem 5.7. [1, 2] Suppose πt ∈ X2(M) is a 1-parameter family of Poisson structures related
by gauge transformations,

πt = (π0)ωt ,

where ωt ∈ Ω2(M) is a family of closed 2-forms with ω0 = 0. Suppose that

dωt
dt

= −dat,

with a smooth family of 1-forms at ∈ Ω1(M), defining a time dependent vector field Xt = π]t(at).
Let Φt be the flow of Xt. Then

(Φt)∗πt = π0.

Proof. Let

bt = at − ι(Xt)ωt,

so that X + t + b + t = R−ωt(Xt + at). Since Xt + at is a section of Gr(πt) = Rωt
(

Gr(π0)
)

it follows that Xt + bt is a section of Gr(π0). Hence, Courant bracket with Xt + bt preserves
Γ(Gr(π0)). Equivalently, teh family of infinitesimal automorphisms (dbt, Xt) ∈ autCA(TM)
preserves Gr(π0), hence so does its flow (ut,Φt) ∈ AutCA(TM). By Proposition 5.4, the 2-forms
ut are given in terms of their derivative by

d

dt
ut = (Φt)∗dbt

= (Φt)∗(dat − L(Xt)ωt)

= −(Φt)∗(
dωt
dt

+ L(Xt)ωt)

= − d

dt
((Φt)∗ωt).
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Thus, ut = −(Φt)∗ωt. It follows that

Gr(π0) = R−ut ◦ TΦt(Gr(π0))

= TΦt ◦ Rωt(Gr(π0))

= TΦt(Gr(πt))

= Gr
(
(Φt)∗πt

)
which shows that π0 = (Φt)∗πt. �

6. Dirac morphisms

We still have to express ‘Poisson maps’ in terms of Dirac geometry.

6.1. Morphisms of Dirac structures. Let ϕ ∈ C∞(N,M) be a smooth map. Recall that
the vector bundle morphism Tϕ : TN → TM dualizes to a comorphism T ∗ϕ : T ∗N 99K T ∗M ,
given fiberwise by maps in the opposite direction, T ∗ϕ(n)M → T ∗nN . The comorphism T ∗ϕ, or

rather its graph Gr(T ∗ϕ) ⊆ T ∗M × T ∗N defines a relation from T ∗N to T ∗M . Similarly, we
define

Tϕ : TN 99K TM
as a relation from TN to TM ; its graph is the sum of the graphs of the tangent and cotangent
maps. We write

y ∼ϕ x ⇔ (x, y) ∈ Gr(Tϕ).

Given x = v + µ ∈ TmM , y = w + ν ∈ TnN this means m = ϕ(n) and v = (Tnϕ)w, ν =
(Tnϕ)∗µ. For sections σ, τ ∈ Γ(TM) we write

τ ∼ϕ σ ⇔ (σ, τ) restricts to a section of Gr(Tϕ).

For σ = X + α, τ = Y + β, this means Y ∼ϕ X (related vector fields2) and β = ϕ∗α.

Lemma 6.1. The relation Tϕ preserves Courant brackets, in the sense that

τ1 ∼ϕ σ1, τ2 ∼ϕ σ2 ⇒ 〈τ1, τ2〉 = ϕ∗〈σ1, σ2〉,
τ1 ∼ϕ σ1, τ2 ∼ϕ σ2 ⇒ [[τ1, τ2]] ∼ϕ [[σ1, σ2]]

τ ∼ϕ σ ⇒ a(τ) ∼ϕ a(σ)

Proof. Straightforward computation, using that if two pairs of vector fields are related, then
their Lie brackets are related. �

Definition 6.2. Let F ⊆ TN and E ⊆ TM be Dirac structures. Then ϕ ∈ C∞(N,M) defines
a (forward) Dirac morphism

Tϕ : (TN,F ) 99K (TM,E)

if it has the following property: For every n ∈ N and x ∈ Eϕ(n), there exists a unique y ∈ Fn
such that y ∼ϕ x.

Remark 6.3. We will use the term weak Dirac morphism for a similar definition where we omit
the uniqueness condition. For instance, Tϕ : (TN,T ∗N) 99K (TM,T ∗M) is a Dirac morphism,
but Tϕ : (TN,TN) 99K (TM,TM) is only a weak Dirac morphism.

2Recall that vector fields Y ∈ X(N) and X ∈ X(M) are ϕ-related (written Y ∼ϕ X) if (Tnϕ)(Yn) = Xϕ(n)
for all n ∈ N . If Y1 ∼ϕ X1 and Y2 ∼ϕ X2 then [Y1, Y2] ∼ϕ [X1, X2].
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Proposition 6.4. Let (N, πN ) and (M,πM ) be Poisson manifolds. Then ϕ : N → M is a
Poisson map if and only if Tϕ : (TN,Gr(πN )) 99K (TM,Gr(πM )) is a Dirac morphism.

Proof. ϕ is a Poisson map if and only if

πN (ϕ∗µ1, ϕ
∗µ2) = πM (µ1, µ2)

for all µ1, µ2 ∈ T ∗M . Equivalently, this means

Tϕ(π]N (ϕ∗µ)) = π]M (µ)

for all µ ∈ T ∗M , i.e.

π]N (ϕ∗µ)) + ϕ∗µ ∼ϕ π]M (µ) + µ

for all µ ∈ T ∗M . This precisely means that for every x ∈ Gr(πM )ϕ(n) there exists y ∈ Gr(πN )n,
necessarily unique, with y ∼ x. �

Let Tϕ : (TN,F ) 99K (TM,E) be a Dirac morphism. Using the uniqueness assumption in
the definition, one obtains a linear maps Eϕ(n) → Fn, taking x ∈ Eϕ(n) to the unique y ∈ Fn
such that y ∼ϕ x. It is not hard to see that this depends smoothly on n, and hence gives a
comorphism of vector bundles.

Proposition 6.5. Any Dirac morphism Tϕ : (TN,F ) 99K (TM,E) defines a Lie algebroid
comorphism F 99K E.

Proof. We have to check that (i) the pull-back map ϕ∗ : Γ(E)→ Γ(F ) preserves brackets, and
(ii) the anchor satisfies Tϕ(a(y)) = a(x) for y ∼ϕ x. But both properties are immediate from
the previous Lemma. �

6.2. Pull-backs of Dirac structures. In general, there is no natural way of pulling back a
Poisson structure under a smooth map ϕ : N → M . However, such pull-back operations are
defined for Dirac structures, under transversality assumptions.

Proposition 6.6. Suppose E ⊆ TM is a Dirac structure, and ϕ : N →M is transverse to the
anchor of E. Then

ϕ!E = {y ∈ TN | ∃x ∈ E : y ∼ϕ x}
is again a Dirac structure.

Put differently, ϕ!E is the pre-image of E under the relation Tϕ.

Proof. Consider first the case that ϕ is the embedding of a submanifold, ϕ : N ↪→ M . The
transversality condition ensures that ϕ!E is a subbundle of TN of the right dimension; since
Tϕ preserves metrics it is isotropic, hence Lagrangian. It also follows from the transversality
that for any y ∈ ϕ!E, the element x ∈ E such that y ∼ϕ x is unique; this defines an inclusion

ϕ!E ↪→ E|N
with image a−1(TN) ∩ E. Hence, every section τ ∈ Γ(ϕ!E) admits an extension to a section
σ ∈ Γ(E); thus τ ∼ϕ σ. Conversely, given σ ∈ Γ(E) such that a(σ) is tangent to N we have

τ ∼ϕ σ for a (unique) section τ . Suppose τ1, τ2 are sections of ϕ!E, and choose σi ∈ Γ(E) such

that τi ∼ϕ σi. Then [[τ1, τ2]] ∼ϕ [[σ1, σ2]], so that [[τ1, τ2]] is a section of ϕ!E. This proves the
proposition for the case of an embedding.
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In the general case, given ϕ consider the embedding of N as the graph of ϕ,

j : N →M ×N, n 7→ (ϕ(n), n).

It is easy to see that

ϕ!E = j!(E × TN)

as subsets of TN . Since j!(E × TN) is a Dirac structure by the above, we are done. �

In particular, if π is a Poisson structure on M , and ϕ : N → M is transverse to the map
π], we can define the pull-back ϕ! Gr(π) ⊆ TN as a Dirac structure. In general, this is not a
Poisson structure. We have the following necessary and sufficient condition.

Proposition 6.7. Suppose (M,π) is a Poisson manifold, and ϕ : N →M is transverse to π].
Then ϕ! Gr(π) ⊆ TN defines a Poisson structure πN if and only if ϕ is an immersion as a
cosymplectic submanifold. That is,

(45) TM |N = TN ⊕ π](ann(TN)).

Proof. ϕ! Gr(π) defines a Poisson structure if and only if it is transverse to TN ⊆ TN . But
ϕ! Gr(π) ∩ TN contains in particular elements y ∈ TN with y ∼ϕ 0. Writing y = w + ν with
a tangent vector w and covector ν, this means that ν = 0 and w ∈ ker(Tϕ). Hence, it is
necessary that ker(Tϕ) = 0.

Let us therefore assume that ϕ is an immersion. For w ∈ TN ⊆ TN , we have

w ∼ϕ π](µ) + µ ∈ Gr(π) ⇔ (Ti)(w) = π](µ), µ ∈ ker(ϕ∗) = ann(TN).

Hence, the condition i!E ∩ TN = 0 is equivalent to π](ann(TN)) ∩ TN = 0. �

7. Normal bundles and Euler-like vector fields

In this section we will develop some differential geometric machinery, in preparation for our
approach to the Weinstein splitting theorem.

7.1. Normal bundles. Consider the category of manifold pairs: An object (M,N) in this
category is a manifold M together with a submanifold N ⊆M , and a morphism Φ: (M1, N1)→
(M2, N2) is a smooth map Φ: M1 →M2 taking N1 to N2. The normal bundle functor ν assigns
to (M,N) the vector bundle

ν(M,N) = TM |N/TN,

over N , and to a morphism Φ: (M1, N1)→ (M2, N2) the vector bundle morphism

ν(Φ): ν(M1, N1)→ ν(M2, N2).

Under composition of morphisms, ν(Φ′ ◦ Φ) = ν(Φ′) ◦ ν(Φ).

Example 7.1 (Tangent functor). Given a pair (M,N), the tangent functor gives a new pair
(TM, TN) with a morphism

p : (TM, TN)→ (M,N)
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defined by the bundle projection. Applying the normal functor, we obtain an example of a
double vector bundle

ν(TM, TN) //

��

ν(M,N)

��

TN // N

On the other hand, by applying the tangent functor to ν(M,N) → N we obtain a similar
double vector bundle,

Tν(M,N) //

��

ν(M,N)

��

TN // N

There is a canonical identification Tν(M,N) ∼= ν(TM, TN) identifying these two double vector
bundles, in such a way that for morphisms Φ of pairs, ν(TΦ) = Tν(Φ). See [?] for details.

Example 7.2. Suppose X is a vector field on M such that X|N is tangent to N . Viewed as a
section of the tangent bundle p : TM → M , it defines a morphism X : (M,N) → (TM, TN),
inducing

ν(X) : ν(M,N)→ ν(TM, TN) = T
(
ν(M,N)

)
.

From p ◦X = idM we get

Tν(p) ◦ ν(X) = ν(Tp) ◦ ν(X) = ν(idM ) = idν(M,N) .

That is, ν(X) is a vector field on ν(M,N). It is called the linear approximation to X along N .
In local bundle trivializations, the linear approximation is the first order Taylor approximation
in the normal directions.

Lemma 7.3. For a vector bundle V →M , there is a canonical identification ν(V,M) ∼= V .

Proof. The restriction of TV → V to M ⊆ V splits into the tangent bundle of the fiber and
the tangent space to the base: TV |M = V ⊕ TM . Hence ν(V,M) = TV |M/TM = V . �

7.2. Tubular neighborhood embeddings. Given a pair (M,N), Lemma 7.3, applied to
ν(M,N)→ N , gives an identification ν(ν(M,N), N) = ν(M,N).

Definition 7.4. A tubular neighborhood embedding is a map of pairs

ϕ : (ν(M,N), N)→ (M,N)

such that ϕ : ν(M,N) → M is an embedding as an open subset, and the map ν(ϕ) is the
identity.

Definition 7.5. Let X be a vector field on M that is tangent to N . By a linearization of the
vector field X along N , we mean a tubular neighborhood embedding ϕ taking ν(X) to X on
a possibly smaller neighborhood of N .

The problem of C∞-linearizability of vector fields is quite subtle; the main result (for N = pt)
is the Sternberg linearization theorem [28] which proves existence of linearizations under non-
resonance conditions.
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Example 7.6. The vector field on R2 given as

x
∂

∂x
+ (2y + x2)

∂

∂y

does not satisfy Sternberg’s non-resonance conditions, and turns out to be not linearizable.3.
On the other hand,

2x
∂

∂x
+ (y + x2)

∂

∂y

is linearizable.

Example 7.7. A vector field on Rn of the form∑
i

xi
∂

∂xi
+ higher order terms

satisfies the non-resonance condition, and hence is always linearizable.

We will make the following definition.

Definition 7.8. [7] A vector field X ∈ X(M) is called Euler-like along N if it is complete,
with X|N = 0, and with linear approximation ν(X) the Euler vector field E on ν(M,N).

Remark 7.9. (a) In a submanifold chart, with coordinates x1, . . . , xn on N and y1 . . . , yk in
the transverse direction, an Euler-like vector field has the form

X =
∑
i

yi
∂

∂yi
+
∑
i

gi(x, y)
∂

∂yi
+
∑
j

hj(x, y)
∂

∂xj
,

where gi vanish to second order for y → 0, while hj vanish to first order.
(b) Another coordinate-free characterization of Euler-like vector fields is as follows [?] Let
I ⊆ C∞(M) be the ideal of functions vanishing along N . Its powers Ik are the functions
vanishing to order k along N . Then a complete vector field X is Euler-like along N if
and only if for all f ∈ I, we have that LEf equals f modulo functions vanishing on N
to second order (or higher). That is,

LX − id : I → I2.

More generally, this property implies that

LX − k id : Ik → Ik+1

for all k = 0, 1, 2, . . ..

An Euler-like vector field determines a tubular neighborhood embedding:

Theorem 7.10. If X ∈ X(M) is Euler-like along N , then X determines a unique tubular
neighborhood embedding ϕ : ν(M,N)→M such that

E ∼ϕ X.

3See http://mathoverflow.net/questions/76971/nice-metrics-for-a-morse-gradient-field-counterexample-
request
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Proof. The main point is to show that X is linearizable along N . Start out by picking any
tubular neighborhood embedding to assume M = ν(M,N). Since ν(X) = E , it follows that
the difference Z = X−E vanishes to second order along N . Let κt denote scalar multiplication
by t on ν(M,N), and consider the family of vector fields, defined for t 6= 0,

Zt =
1

t
κ∗tZ

Since Z vanishes to second order along N , this is well-defined even at t = 0. Let φt be its
(local) flow. 4 On a sufficiently small open neighborhood of N in ν(M,N), it is defined for all
|t| ≤ 1. The flow Ψs of the Euler vector field E is

Ψs = κexp(−s)

by substitution t = exp(s) this shows that

d

dt
κ∗t = t−1κ∗t ◦ LE .

Consequently,
d

dt
(tZt) =

d

dt
(κ∗tZ) = LEZt = [E , Zt].

Therefore,
d

dt
(φt)∗(E + tZt) = (φt)∗(LZt(E + tZt) + [E , Zt]) = 0,

which shows that (φt)∗(E+ tZt) does not depend on t. Comparing the values at t = 0 and t = 1
we obtain (φ1)∗X = E , so that (φ1)−1 giving the desired linearization on a neighborhood of
N . In summary, this shows that there exists a map from a neighborhood of the zero section of
ν(M,N) to a neighborhood of N in M , intertwining the two vector fields E and X, and hence
also their flows. Since X is complete, we may use the flows to extend globally to a tubular
neighborhood embedding of the full normal bundle. This proves existence.

For uniqueness, suppose that a tubular neighborhood embedding ψ satisfying E ∼ψ X is
given. Let Ψs be the flow of E and Φs the flow of X. We have that κt = Ψ− log(t) for t > 0;
accordingly we define λt = Φ− log(t). Since νN is invariant under κt for all t > 0, its image
U = ψ(νN ) is invariant under λt for all t > 0. Furthermore, since limt→0 κt is the retraction p
from νN onto N ∈ νN , we have

(46) U = {m ∈M | lim
t→0

λt(m) exists and lies in N ⊆M}.

We want to give a formula for the inverse map ψ−1 : U → ν(M,N). For all v ∈ ν(M,N), with
base point x ∈ N , the curve κt(v) in ν(M,N) has tangent vector at t = 0 equal to v itself
(using the identification Tν(M,N)|N = TN ⊕ ν(M,N)). Hence

v =
( d
dt

∣∣∣
t=0

κt(v)
)

mod TxN.

Using λt ◦ ψ = ψ ◦ κt, and writing ψ(v) = m, this shows,

(47) ψ−1(m) =
( d
dt

∣∣∣
t=0

λt(m)
)

mod TxN ∈ TxM/TxN

4Thus d
dt

(φt)∗ = (φt)∗ ◦ LZt as operators on tensor fields (e.g., functions, vector fields, and so on).
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Formulas (46) and (47) give a description of the tubular neighborhood embedding directly in
terms of the flow of X, which proves the uniqueness part. �

Example 7.11. Let V →M be a vector bundle. Its Euler vector field EV determines a tubular
neighborhood embedding

ν(V,M)→ V.

This is just the ‘canonical identification’ from Lemma 7.3.

Proposition 7.12. Let Φ: (M1, N1) → (M2, N2) be smooth map of pairs. Suppose Xi are
Euler-like vector fields for these pairs, and that X1 ∼Φ X2. Then the following diagram, where
the vertical maps are the tubular neighborhood embeddings defined by the Xi, commutes:

M1
Φ // M2

ν(M1, N1)
ν(Φ)

//

ϕ1

OO

ν(M2, N2)

ϕ2

OO

Proof. Let Ui be the images of the tubular neighborhood embeddings ϕi. Since Φ intertwines
the Euler-like vector fields, it follows that Φ(U1) ⊆ U2. We need to show that

ν(Φ) ◦ ϕ−1
1 = ϕ−1

2 ◦ Φ,

but this is immediate from the explicit formula for ϕ−1
i . �

7.3. The Grabowski-Rotkiewicz theorem. This result has the following remarkable con-
sequence for vector bundles, due to Grabowski-Rotkiewicz [17, Corollary 2.1].

Theorem 7.13 (Grabowski-Rotkiewicz). Let V1 → M1 and V2 → M2 be vector bundles, and
Ψ: V1 → V2 a smooth map. Then Ψ is a vector bundle morphism if and only if Ψ intertwines
the Euler vector fields.

Proof. Proposition 7.12 gives a commutative diagram

V1
Ψ // V2

ν(V1,M1)
ν(Ψ)

//

ϕ1

OO

ν(V2,M2)

ϕ2

OO

Here the vertical maps, given as the tubular neighborhood embeddings for the Euler(-like)
vector fields, are just the standard identifications of the normal bundle of the zero section
inside a vector bundle, with the vector bundle itself. In particular, they are vector bundle
isomorphisms. Since the lower horizontal map is a vector bundle map, the upper horizontal
map is one also. �

This result shows that a smooth map of vector bundles is a vector bundle morphism if
and only if it intertwines the scalar multiplications – the fact that it intertwines additions is
automatic. We may thus characterize vector bundles as manifold pairs (V,M) together with a
smooth map action κt : V → V of the multiplicative group R>0 such that

• for all v ∈ V , limt→0 κt(v) ∈M ,
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• the action preserves M , i.e. κt : (V,M)→ (V,M),
• the resulting action ν(κt) : ν(V,M)→ ν(V,M) is the standard scalar multiplication by
t > 0.

Indeed, letting E be the vector field on V with flow s 7→ κexp(−s), the second condition shows
that E is tangent to M , the last condition shows that E is Euler-like (in particular, it van-
ishes along M), and the first condition guarantees that the resulting tubular neighborhood
embedding ν(V,M)→ V is surjective. The manifold V inherits the vector bundle structure via
this identification with ν(V,M). Grabowski-Rotkiewicz [17] also have the following attractive
characterization of vector subbundles.

Proposition 7.14. Let V → M be a vector bundle. A subset L ⊆ V is a vector subbundle if
and only if it is invariant under scalar multiplication κt, for all t ≥ 0 (including t = 0)

Proof. It is a general result (see e.g. [?]) that if Q is a manifold and Φ: Q → Q is a smooth
projection (i.e., Φ◦Φ = Φ), then the image Φ(Q) ⊆ Q is a submanifold. In our case, κ0 : V → V
is such a projection, and so is its restriction to L. It follows that κ0(L) = κ0(V )∩L = M ∩L is
a smooth submanifold of L. The Euler vector field of V restricts to L, and is Euler-like along
M ∩ L. Hence, L acquires the structure of a vector bundle over M ∩ L. Since the inclusion
L→ V intertwines Euler vector fields, it is a vector bundle morphism. �

Remark 7.15. One of the main applications of the Grabowski-Rotkiewicz theorem is a simple
characterization of double vector bundles. A double vector bundle is a commutative square

D //

��

A

��

B // M

where all maps are vector bundle maps, with suitable compatibility conditions between the
horizontal and vertical vector bundle structures. In the original definition, this was given
by a long list of conditions for vertical and horizontal addition and multplication. Accord-
ing to Grabowski-Rotkiewicz, the compatibility conditions are equivalent to stating that the
horizontal and vertical Euler vector fields (equivalently the horizontal and vertical scalar mul-
tiplication) commute! A typical example is the tangent bundle of a vector bundle,

TV //

��

V

��

TM // M

8. The splitting theorem for Lie algebroids

8.1. Statement of the theorem. Our goal in this section is to prove the following result.

Theorem 8.1. Let (E, a, [·, ·]) be a Lie algebroid over M , and N ⊆M a submanifold transverse
to the anchor. Then there exists a tubular neighborhood embedding ϕ : ν(M,N)→ U ⊆M with
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an isomorphism of Lie algebroids,

p!i!E //

��

E|U ⊆ E

��

ν(M,N) ϕ
// U ⊆M

Here p : ν(M,N)→ N and i : N →M are the projection and inclusion.

See (25) for the definition of a pull-back of a Lie algebroid under a smooth map transverse
to the anchor. In this case, we have that

i!E = a−1(TN),

and

p!i!E = i!E ×TN Tν(M,N).

Remark 8.2. If the normal bundle is trivial, ν(M,N) = N × S where S is a vector space, then
p!i!E is simply the direct product i!E × TS. Hence, we obtain an isomorphism

i!E × TS ∼= E|U

which justifies the name ‘splitting theorem’. Note that this isomorphism also shows

a(i!E)× TS = a(E)|U .

Hence, the leaves (if any) of the singular distribution a(E)|U are of the product form L × S,
where L is a leaf of the singular distribution i!E.

Remark 8.3. We can use this to show that there exists an integral submanifold (leaf) through
every given m ∈M . Indeed, take N ⊆M to be any submanifold passing through m, with

TmM = a(Em)⊕ TmN.

Taking N smaller if necessary, we can assume that N is transverse to a everywhere, and that
ν(M,N) = N × S as above. Then a(i!E)m = 0, so that i!E has the single point {m} as an
integral submanifold. We conclude that {m} × S is an integral submanifold of E|U .

8.2. Normal derivative. The key idea in the proof of the splitting theorem 8.1 is to choose
a section ε ∈ Γ(E) such that the vector field X = a(ε) is Euler-like. The tubular neighborhood
embedding ϕ will be defined by X, and the bundle map lifting ϕ will be determined by the
choice of ε.

To prove the existence of ε, we need yet another characterization of Euler-like vector fields.
Let V →M be a vector bundle. If a section σ ∈ Γ(V ) vanishes along N ⊆M , then by applying
the normal functor to σ : (M,N)→ (V,M), and recalling ν(V,M) = V , we obtain a map

dNσ : ν(M,N)→ V |N

called the normal derivative of σ along N . Using partitions of unity, it is easy to see that any
bundle map ν(M,N)→ V |N arises in this way, as teh normal derivative of a section.
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Remark 8.4. The normal derivative of σ can be characterized in several other ways. for example,
note that for τ ∈ Γ(V ∗), the restriction d〈σ, τ〉|N ∈ Γ(T ∗M |N ) vanishes on vector tangent to
N , hence it is a section of ann(TN), and is tensorial in τ . Hence

d〈σ, ·〉|N ∈ Γ(ann(TN)⊗ V |N ),

and this is the normal derivative. If σ1, . . . , σr is a local frame of sections of V , so that
σ =

∑
i fiσi with fi|N = 0, then

dNσ =
∑
i

dfi ⊗ σi|N .

Example 8.5. If X is a vector field vanishing along N , then X is Euler-like if and only if its
normal derivative

dNX : ν(M,N)→ TM |N
defines a splitting of the quotient map TM |N → ν(M,N). To see this, let f ∈ C∞(M) with
f |N = 0. Then

〈dNX, df |N 〉 = d〈X, df〉|N = dX(f)|N
This coincides with df |N if and only if X(f) = f modulo functions vanishing to second order.

8.3. Anchored vector bundles. For the following considerations, the Lie bracket on sections
of E does not play a role, hence we will work in the more general context of anchored vector
bundles. An anchored vector bundle is a vector bundle E → M together with a bundle map
a : E → TM , called the anchor. Morphism of anchored vector bundles are defined in the obvious

way. We denote by AutAV (E) the bundle automorphisms Φ̂ (with base map Φ) compatible
with the anchor, i.e.

a ◦ Φ̂ = TΦ ◦ a;

its Lie algebra is denoted autAV (E) and consists of infinitesimal vector bundle automorphisms
D : Γ(E) → Γ(E), with corresponding vector feld X, such that a(Dσ) = [X, a(σ)]. In this

section, we prefer to regard the elements of aut(E) has vector fields X̂ on the total space of
E, homogeneous of degree 0 and with base vector field X. The compatibility with the anchor
a : E → TM is then expressed as the property

(48) X̃ ∼a XT ,

where XT ∈ X(TM) is the tangent lift of X. Given a submanifold N ⊆ M that is transverse
to a, we can define a ‘pull-back’ i!E = a−1(TN); it is an anchored subbundle of E.

Proposition 8.6. There exists a section ε ∈ Γ(E) such that ε|N = 0, and with a(ε) Euler-like.

Proof. The transversality condition means precisely that the map E|N → ν(M,N), given by
the anchor map to TM |N followed by the quotient map, is surjective. Its kernel is the subbundle
i!E. We obtain a commutative diagram

0 // i!E //

a

��

E|N //

a

��

ν(M,N) //

=

��

0

0 // TN // TM |N // ν(M,N) // 0
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Choose a section ε ∈ Γ(E) with ε|N = 0, whose normal derivative dN ε : ν(M,N) → EN splits
the map E|N → ν(M,N). Its image under the anchor is a vector field X = a(ε), with X|N = 0,
such that dNX splits the map TM |N → ν(M,N). That is, a(ε) is Euler-like. �

The definition of i!E generalizes to any smooth map Φ: N → M that is transverse to E.
Indeed, transversality implies that the fiber product Φ!E = E ×TM TN is a vector bundle
over N , with anchor given by projection to TN . It comes with a morphism of anchored vector
bundles Φ!E → E.

Lemma 8.7. Suppose (E, a) is an anchored vector bundle over M , and N ⊆M is a submanifold
transverse to a. Then there is a canonical isomorphism (of double vector bundles)

ν(E, i!E) ∼= p!i!E,

where i : N →M is the inclusion and p : ν(M,N)→ N is the projection.

Proof. By applying the normal functor to (E, i!E) → (TM, TN), we obtain a double vector
bundle

ν(E, i!E) //

��

ν(TM, TN)

��

i!E // TN

A dimension count shows that this is a fiber product diagram. But the fiber product of i!E
and ν(TM, TN) = Tν(M,N) over TN s just the pullback p!i!E. �

8.4. Proof of the splitting theorem for Lie algebroids. For any Lie algebroid, the anchor
map on sections has a canonical lift

autLA(E)

��

Γ(E)

ã

99

a
// X(M)

here ã(σ) = [σ, ·], viewed as an infinitesimal Lie algebroid automorphism. In particular, our

Euler-like vector field X = a(ε) gets lifted to X̃ = ã(ε). We will think of X̃ as a linear vector

field on E (that is, X̃ is homogeneous of degree 0).

Lemma 8.8. The vector field X̃ is Euler-like for (E, i!E).

Proof. We have to show that ν(X̃) is the Euler vector field for ν(E, i!E) → i!E. Since X̃

preserves the anchor, we have that X̃ ∼a XT , the tangent lift of X. Hence, under the map
a : (E, i!E)→ (TM, TN),

ν(X̃) ∼ν(a) ν(XT ) = ν(X)T = ET
where ET ∈ X(Tν(M,N)) is the tangent lift of E ∈ X(ν(M,N). But the tangent lift of an
Euler vector field on a vector bundle V → M is just the Euler vector field of TV → TM .

We conclude that ν(X̃) is ν(a)-related to the Euler vector field of ν(TM, TN) → TN . But
by the pullback diagram 8.7, the bundle ν(E, i!E) → i!E is just the pull-back of the bundle

ν(TM, TN)→ TN under a : i!E → TN . We conclude that ν(X̃) is an Euler vector field. �
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We are now in position to prove the splitting theorem for Lie algebroids, Theorem 8.1.

Proof of the splitting theorem. Let Φs, Φ̃s be the flow of X, X̃, respectively. Put

λt = Φ− log(t), λ̃t = Φ̃− log(t).

Let φ : ν(M,N) → U be the tubular neighborhood embedding defined by X. Since λ̃t covers
the flow of λt, it is defined over E|U even for t = 0. Consider the following diagram, defined
for all 0 ≤ t ≤ 1,

E|U ∼=
//

��

λ!
t(E|U ) ∼=

//

��

φ!λ!
t(E|U )

��

U
id

// U
φ−1

// ν(M,N)

Here the first upper horizontal arrow is given by the Lie algebroid morphism

E|U → λ!
t(E|U ) ⊆ TU × E|U , v 7→ (a(v), λ̃t(v)).

This map is an isomorphism for all t: If t > 0, this is clear since λ̃t is an isomorphism then. If
t = 0 we note that it is an isomorphism along N ⊆ U , hence also on some neighborhood of N ,
and using e.g. λ0 = λ0 ◦ λt we conclude that it is an isomorphism over all of U .

We hence obtain a family of Lie algebroid isomorphisms φ!λ!
t(E|U )→ E|U , all with the base

map φ. For t = 0, we have

λ0 ◦ φ = φ ◦ κ0 = i ◦ p,
so we obtain the desired Lie algebroid isomorphism

φ̃ : p!i!(E|U )→ E|U ,

with base map φ. �

Remark 8.9. The map φ̃ can itself be regarded as a tubular neighborhood embedding. Indeed,
under the isomorphism ν(E, i!E) ∼= p!i!E = Tν(M,N) ×TN (i!E), the inverse of the tubular
neighborhood embedding is given by

E|U → ν(E, i!E) ∼= Tν(M,N)×TN (i!E), v 7→
(
Tφ−1(a(v)), λ̃0(v)

)
(where we regard λ̃0 as a map to i!E ⊆ E|U ). Indeed, this is the unique map of anchored

vector bundles, with base map φ−1, such that the i!E-component is λ̃0(v). But this is just the

description of φ̃−1.

8.5. The Stefan-Sussmann theorem. The idea of proof of the splitting theorem for Lie
algebroids also works for anchored vector bundles, provided that they satisfy the following
condition.

Definition 8.10. [7] An anchored vector bundle (E, a) is called involutive if Γ(a(E)) ⊆ X(M)
is closed under Lie brackets.

For example, Lie algebroids are involutive, due to the property [a(σ), a(τ)] = a([σ, τ ]) for
sections σ, τ ∈ Γ(E). Courant algebroids are involutive as well.



INTRODUCTION TO POISSON GEOMETRY LECTURE NOTES, WINTER 2017 51

Remark 8.11. Stefan [27] and Sussmann [30] defined a ‘singular distribution’ on a manifold M
to be a subset D ⊆ TM spanned locally by a finite collection of vector fields. They developed
necessary and sufficient conditions of integrability for such singular distributions; in terms of
the submodule D ⊆ X(M) of vector fields taking values in D. However, their results contain
some errors that were corrected by Balan [4].

Androulidakis-Skandalis [3] take a ‘singular distribution’ to be a locally finitely generated
submodule C ⊆ X(M), and call it ‘integrable’ if C is involutive. Our definition of involutive
anchored vector bundles is very similar to this viewpoint.

Theorem 8.12. [7] Let (E, a) be an involutive anchored vector bundle over M , and N ⊆ M
a submanifold transverse to the anchor. Then there exists a tubular neighborhood embedding
φ : ν(M,N)→ U ⊆M , which is the base map for an isomorphism of anchored vector bundles,

p!i!E → E|U .

The discussion for Lie algebroids in Remark 8.3 applies to the more general setting, and
shows that every point of m ∈M is contained in a leaf S of a(E).

The proof of this theorem is parallel to that for Lie algebroids, once the following result is
established:

Proposition 8.13. [7] An anchored vector bundle (E, a) is involutive if and only if the map
a : Γ(E) → X(M) lifts to a map ã : Γ(E) → autAV (E). In this case, one can arrange that the
lift satisfies

(49) ã(fσ)τ = f ã(σ)τ − (a(τ)f)σ

for all σ, τ ∈ Γ(E).

Proof. Given such a lift ã, the submodule a(Γ(E)) is involutive because

[a(σ), a(τ)] = a
(
ã(σ)τ

)
(by definition of autAV (E)). In the other direction, one constructs ã with the help of a connec-
tion. (See [7].) �

Having chosen such a lift, and having chosen a section ε ∈ Γ(E) such that X = a(ε) is

Euler-like, one proves as in the case of Lie algebroids that X̃ = a(ε) is Euler-like. The same

approach as for Lie algebroids, using the flow of X̃, gives an isomorphism of anchored vector
bundles p!i!E → E|U .

8.6. The Weinstein splitting theorem. We begin with a statement of the theorem.

Theorem 8.14 (Weinstein splitting theorem [33]). Let (M,π) be a Poisson manifold, and
m ∈ M . There exists a system of local coordinates q1, . . . , qk, p1, . . . , pk, y

1, . . . , yr centered at
m in which π takes on the following form:

π =
k∑
i=1

∂

∂qi
∧ ∂

∂pi
+

1

2

r∑
i,j=1

cij(y)
∂

∂yi
∂

∂yj
,

where cij = −cji are smooth functions with cij(0) = 0.
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Thus, π splits into a sum π = πS + πN on S × N , where S ∼= R2k with the standard non-
degenerate Poisson structure πS , and N = Rr with a Poisson structure πN having a critical
point at y = 0. The remarkable fact is that one can eliminate any ‘cross-terms’. Of course, the
transverse Poisson structure πN can still be quite complicated.

A direct consequence of the splitting theorem is the existence of a symplectic foliation:

Corollary 8.15 (Symplectic leaves). Let M be a Poisson manifold, and m ∈ M . Then there
exists a unique maximal (injectively immersed) integral submanifold S ⊆ M of the singular
distribution ran(π]) ⊆ TM .

Proof. In the model, it is immediate that the submanifold S ⊆M given by yi = 0 is a symplectic
leaf. (The passage from local integrability to global integrability merely involves patching of
the local solutions, and is the same as in the standard proofs of Frobenius’ theorem.) �

To give a coordinate-free formulation of Weinstein’s theorem, let

S := π](T ∗mM).

By definition, πm ∈ ∧2S ⊆ ∧2TmM , defining a constant bivector field πS ∈ Γ(∧2TS). It is non-
degenerate, corresponding to a symplectic form on S. Let N ⊆ M be a submanifold through
m, with the property that

TmM = TmN ⊕ S.

As we saw in Example 3.41, taking N smaller if necessary, it is a cosymplectic submanifold and
hence inherits a Poisson structure πN (see Proposition 6.7). This is referred to as the transverse
Poisson structure. The coordinate-free formulation of the splitting theorem is as follows:

Theorem 8.16 (Weinstein splitting theorem, II). The Poisson manifold (M,π) is Poisson
diffeomorphic near m ∈M to the product of Poisson manifolds,

N × S

where S is the symplectic vector space ran(π]m), and N is a transverse submanifold as above,
equipped with the transverse Poisson structure. More precisely, there exists a Poisson diffeo-
morphism between open neighborhoods of m in M and of (m, 0) in N × S, taking m to (m, 0),
and with differential at m equal to the given decomposition TmM → TmN ⊕ S.

Weinstein’s theorem has been generalized by Frejlich-Mărcuţ [14] to a normal form theorem
around arbitrary cosymplectic submanifolds N ⊆ M . Their result is best phrased using some
Dirac geometry. Recall again that any cosymplectic manifold inherits a Poisson structure πN
such that

Gr(πN ) = i! Gr(πM )

(as subbundles of TN). See Proposition 6.7. On the other hand, the vector bundle

V = π](ann(TN))→ N

has a fiberwise symplectic structure ωV, defined by the restriction of π to ann(TN). Since it is
a complement to TN in TM |N , we will identify

V ∼= ν(M,N);

in particular, the projection map will be denoted p : V→ N .
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As for any symplectic vector bundle, it is possible to find a closed 2-form ω on the total space
of V, such that ω(v, ·) = 0 for v ∈ TN , and such that ω pulls back to the given symplectic form
on the fibers. (A particularly nice way of obtaining such a 2-form is the ‘minimal coupling’
construction of Sternberg [29] and Weinstein [32].)

Remark 8.17 (Minimal coupling). The following construction is due to Sternberg [29] and
Weinstein [32]. Let P → B be a principal G-bundle, and Q is a manifold with an invariant
closed r-form ωQ. Then the associated bundle P ×G Q has a fiberwise form induced by ωQ.
One may wonder if it is possibly to extend ωQ to a global closed r-form on P ×GQ which pulls
back to the given forms on the fibers.

The minimal coupling gives such a construction if r = 2, and the 2-form ωQ admits a
moment map ΦQ : Q → g∗, that is, ιξQωQ = −〈dΦ, ξ〉. (Actually, the construction generalizes
to arbitrary r, provided that ωQ has an equivariant extension in the sense of de Rham theory.)
Choose a principal connection θ ∈ Ω1(P, g); thus θ has the equivariance property A∗gθ = Adg θ
for g ∈ G (where Ag denotes the action of g on P ), and ι(ξP )θ = ξ (where ξP are the generating
vector fields for the action). Then the 2-form

ωQ − d〈θ,Φ〉 ∈ Ω2(P ×Q)

is G-invariant for the diagonal action. In fact it is G-basic, by the calculation

ι(ξQ)〈dθ,Φ〉 = −dι(ξQ)〈θ,Φ〉 = −d〈Φ, ξ〉 = ι(ξQ)ωQ

(where we used Cartan’s identity and the invariance of 〈θ,Φ〉 ∈ Ω1(P ×Q)). Hence it descends
to a closed 2-form

ω̃Q ∈ Ω2(P ×G Q)

pulls back to ωQ on the fibers. As a special case, one can apply this construction to symplectic
vector bundles V→M . Any such vector bundle is an associated bundle

V = P ×Sp(2k) R2k

where P is the associated symplectic frame bundle, and R2k has the standard symplectic
structure. That is, the fiberwise symplectic form extends to a global closed 2-form on the total
space of V.

Consider the pull-back Dirac structure p! Gr(πN ) ⊆ TV. It is not the graph of a Poisson
structure (see Proposition 6.7), indeed

p! Gr(πN ) ∩ TV = ker(Tp).

However, once we take a gauge transformation by ω ∈ Ω2(V), the resulting

(50) Rω
(
p! Gr(πN )

)
⊆ TV

is transverse to TV near N ⊆ V, hence it defines a Poisson structure πV on a neighborhood of
N . In fact, this Poisson structure agrees with π along N , in terms of the identification

TM |N = TN ⊕ V ∼= V|N .

The Poisson structures for different choices of ω are related by the Moser method (Theorem
5.7).
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Theorem 8.18 (Frejlich-Mărcuţ [14]). Let N ⊆M be a cosymplectic submanifold of a Poisson
manifold, with normal bundle V. Define a Poisson structure πV on a neighborhood of N in V,
as explained above. Then there exists a tubular neighborhood embedding V ↪→ M which is a
Poisson map on a possibly smaller neighborhood of N ⊆ V.

If the bundle V admits a trivialization V = N ×S, then the 2-form ω can simply be taken as
pull-back of ωS under projection to the second factor. Furthermore, p! Gr(πN ) = Gr(πN )× TS
in this case, with

Rω(p! Gr(πN )) = Gr(πN )×Gr(ωS).

In particular, we recover the Weinstein splitting theorem.
For the proof of the Frejlich-Marcut theorem, we will use:

Lemma 8.19. Let N ⊆ M be cosymplectic. Then there exists a 1-form α ∈ Ω1(M), with
α|N = 0, such that the vector field X = π](α) is Euler-like.

Proof. @@ This is a special case of ??, applied to the cotangent Lie algebroid E = T ∗πM , with
the section ε ∈ Γ(T ∗πM) interpreted as a 1-form. Indeed, the condition that N is cosymplectic
means in particular that π] : T ∗M → TM is transverse to N . �

Proof of the Frejlich-Mărcuţ theorem 8.18, after [7]. Choose a 1-form α as in the Lemma. The
Euler-like vector field X = π](α) gives a tubular neighborhood embedding

ψ : ν(M,N)→M,

with E ∼ψ X. Using this embedding, we may assume M = ν(M,N) is a vector bundle, with
X = E the Euler vector field. Let Φs be the flow, and κt = Φ− log(t) as before. Consider the
infinitesimal automorphism

(dα,X) ∈ Ωcl(M) o X(M) ∼= autCA(TM)

defined by σ = X + α ∈ Γ(Gr(π)). By Proposition 5.4, the corresponding 1-parameter group
of automorphisms is

(−ωt,Φt) ∈ Ωcl(M) o Diff(M) ∼= AutCA(TM),

where

ωt = −d

∫ t

0
(Φs)∗α ds = −d

∫ t

0
(Φ−s)

∗α ds = d

∫ 1

exp(t)

1

v
κ∗vα dv.

Since σ is a section of Gr(π), the action Rωt ◦ TΦt of this 1-parameter group preserves Gr(π).
That is,

Rωt
(
(Φ−t)

! Gr(π)
)

= Gr(π)

for all t ≥ 0. Consider the limit t→ −∞ in this equality. Since α vanishes along N , the family
of forms 1

vκ
∗
vα extends smoothly to v = 0. Hence ω := ω−∞ is well-defined:

ω = d

∫ 1

0

1

v
κ∗vα dv.

On the other hand,
Φ∞ = κ0 = i ◦ p

where p : ν(M,N)→ N is the projection, and i : N →M is the inclusion. Thus

Rω(p!i! Gr(π)) = Gr(π).
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Since i! Gr(π) = Gr(πN ), the left hand side is Rω(p! Gr(πN )), which coincides with the model
Poisson structure πV near N . �

Remark 8.20. A similar argument can be used to prove more general normal form theorems
for Dirac structures whose anchor is transverse to a submanifold N ⊆M .

9. The Karasev-Weinstein symplectic realization theorem

9.1. Symplectic realizations. Our starting point is the following definition, due to Wein-
stein.

Definition 9.1. [33] A symplectic realization of a Poisson manifold (M,πM ) is a symplectic
manifold (P, ωP ), with associated Poisson structure πP , together with a surjective submersion
ϕ : P →M such that

ϕ : (P, πP )→ (M,πM )

is a Poisson map .

Remark 9.2. In Weinstein’s original definition, it is not required that ϕ is a surjective submer-
sion. For instance, the inclusion of a symplectic leaf would be a symplectic realization in the
more general sense. The definition above is what Weinstein calls a full symplectic realization.
We will drop ‘full’ to simplify the terminology.

Examples 9.3. (a) (See [11].) Let M = R2 with the Poisson structure π = x ∂
∂x ∧

∂
∂y .

A symplectic realization is given by P = T ∗R2 with the standard symplectic form
ω =

∑2
i=1 dqi ∧ dpi, and

ϕ(q1, q2, p1, p2) = (q1, q2 + p1q
1).

To check that this is indeed a realization, we calculate the Poisson brackets:

{q1, q2 + p1q
1}P = {q1, p1}P q1 = q1,

corresponding to {x, y}M = x.
(b) Let G be a Lie group, with Lie algebra g. The space M = g∗, with the Lie-Poisson

structure, has a symplectic realization

ϕ : T ∗G→ g∗,

where T ∗G has the standard symplectic structure, and the map ϕ is given by left
trivialization. (The first example (a) may be seen as a special case, using that x ∂

∂x ∧
∂
∂y

is a linear Poisson structure, corresponding to a 2-dimensional Lie algebra.)
(c) Let (P, ωP ) be a symplectic manifold, with a proper, free action preserving the sym-

plectic form ωP . Then the Poisson structure πP descends to a Poisson structure πM
on the quotient space M = P/G. (Indeed, smooth functions on M are identified with
G-invariant smooth functions on P , and these are a Poisson subalgebra of C∞(P ).) The
manifold P is then a symplectic realization of M . (Example (b) is a special case, with
G acting on T ∗G by the cotangent lift of the left-multiplication.)

(d) Let M be a manifold with the zero Poisson structure. Then the cotangent bundle, with
its standard symplectic structure, and with ϕ the cotangent projection

τ : T ∗M →M,

is a symplectic realization.
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(e) Let M be a manifold with a symplectic structure. Then P = M , with ϕ the identity
map, is a symplectic realization.

(f) Every symplectic manifold P can be regarded as a symplectic realization of M = pt
with the zero Poisson structure.

Does every Poisson manifold admit a symplectic realization? Before addressing this question,
let us first consider the opposite problem: when does a symplectic structure descend under a
surjective submersion.

Proposition 9.4. Let (P, πP ) be a Poisson manifold, and ϕ : P →M a surjective submersion
with connected fibers.

(a) Then πP descend to a bivector field πM on M if and only if

ann(kerTϕ) ⊆ T ∗P
is a subalgebroid of the cotangent Lie algebroid.

(b) (Libermann’s theorem [23].) If πP is the Poisson structure for a symplectic form ωP ,
then πP descends if and only if the ωP -orthogonal distribution to ker(Tϕ) is involutive
in the sense of Frobenius.

Proof. (a) “⇒”. Suppose πP descends to πM . Then πM necessarily is a Poisson structure, and
ϕ is a Poisson map. Then

[d ϕ∗f, d ϕ∗g] = d {ϕ∗f, ϕ∗g}P = d ϕ∗{f, g}M ,
for all f, g ∈ C∞(M). Since the bundle ann(kerTϕ) is spanned by all d ϕ∗f with f ∈ C∞(M),
this shows that ann(kerTϕ) is a Lie subalgebroid.

“⇐”. If ann(kerTϕ) is a Lie subalgebroid, it follows that for all f, g ∈ C∞(M), d{ϕ∗f, ϕ∗g}P
vanishes on ker(Tϕ). Since the fibers of ϕ are connected, this means that the function
{ϕ∗f, ϕ∗g}P is fiberwise constant, and hence is the pull-back of a function on M . Taking
this function to be the definition of {f, g}M , it follows that there is a unique bilinear form
{·, ·}M on M such that

{ϕ∗f, ϕ∗g}P = ϕ∗{f, g}M
for all f, g ∈ C∞(M). Since {·, ·}P is a Poisson structure, it follows that {·, ·}M is a Poisson
structure, and the identity above shows that ϕ is a Poisson map.

(b) The map π]P : T ∗P → TP is a Lie algebroid isomorphism, taking ann(ker(Tϕ)) to the ωP -
orthogonal bundle of ker(Tϕ). The latter being a Lie subalgebroid is equivalent to Frobenius
integrability. �

Libermann’s theorem shows that if ϕ : P →M is a symplectic realization, then the foliation
given by the ϕ-fibers is symplectically orthogonal to another foliation.

Example 9.5. Let (P, ωP ) be a symplectic manifold with a free, proper G-action. As we saw,
M = P/G inherits a Poisson structure, and the quotient map is a symplectic realization. In this
case, the transverse distribution is given by the ω-orthogonal spaces to the G-orbit directions:

{v ∈ TpP | ∀ξ ∈ g : ωP (ξP (p), v) = 0}
If the action admits an equivariant moment map Φ: P → g∗, then this foliation is given exactly
by the level sets of Φ. Indeed, for v tangent to a level set, and any ξ ∈ g,

ωP (ξP (p), v) = −ι(v) d〈Φ, ξ〉 = 0.
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Note that the moment map Φ is again a Poisson map (possibly up to reversing the sign of teh
Poisson structure – this depends on sign conventions). The assumption that G acts freely means
that it is a submersion. That is, Φ (viewed as a map to Φ(M) ⊆ g∗) provides a symplectic
realization of g∗. (The assumption on existence of a moment map is not very restrictive; at
least locally, on a neighborhood of a G-orbit, a moment map always exists.)

This is a good time to state the Karasev-Weinstein theorem.

Theorem 9.6 (Karasev [20], Weinstein [33]). Let (M,π) be a Poisson manifold. Then there
exists a symplectic manifold (P, ω), with an inclusion i : M ↪→ P as a Lagrangian submanifold,
and with two surjective submersions t, s : P →M such that t ◦ i = s ◦ i = idM , and

• t is a Poisson map,
• s is an anti-Poisson map,
• The t-fibers and s-fibers are ω-orthogonal.

In fact, much more is true: There exists a structure of a local symplectic groupoid on P ,
having s, t as the source and target maps, and i as the inclusion of units. We postpone the
discussion of the multiplicative structure to Section ?? below. Let us first illustrate the theorem
for some of the Examples 9.3.

Examples 9.7. (a) For M = R2 with π = x ∂
∂x ∧

∂
∂y , and P = T ∗(R2) with the standard

symplectic form,

t(q1, q2, p1, p2) = (q1, q2 + p1q
1), s(q1, q2, p1, p2) = (q1 exp(p1), q2).

(Note in particular that s is anti-Poisson, and that the component functions of t Poisson
commute with the component functions of s.) Here i is the inclusion as the zero section.

(b) For M = g∗, we may take P = T ∗G, with t the left trivialization, s the right trivializa-
tion, and i the inclusion as units.

(c) For M with the zero Poisson structure, we take P = T ∗M , with t = s = τ the cotangent
projection and i the inclusion as units.

(d) For a symplectic manifold M , the choice of P = M with ϕ = id is a symplectic
realization, but it does not have the properties described in the Karasev-Weinstein
theorem 9.6. Instead we may take P = M ×M−, where the minus sign signifies the
opposite symplectic structure. Here t is projection to the first factor, s is projection to
the second factor, and i is the diagonal inclusion.

The three conditions that t be Poisson, s anti-Poisson, and the t- and s-fibers being sym-
plectically orthogonal can be combined into a single condition that the map

(t, s) : P →M ×M−

be Poisson. Here M− indicates M with the opposite Poisson structure. We also have the
following Dirac-geometric characterization of the condition.

Lemma 9.8 (Frejlich-Mărcuţ [15]). Let (P, ω) be a symplectic manifold, i : M → P a La-
grangian submanifold, and t, s : P →M two surjective submersions such that t◦ i = s◦ i = idM .
Let πM be a Poisson structure on M . Then (t, s) : (P, πP )→ (M,πM )× (M,−πM ) is Poisson
if and only if

Rω(t! Gr(π)) = s! Gr(π),

as Dirac structures in TP .
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Proof. We will write s∗ = T s, and similar, to simplify notation.
“⇐”. Observe ker(t∗) ⊆ t! Gr(π), ker(s∗) ⊆ s! Gr(π). For v ∈ ker(t∗) and ω ∈ ker(s∗), we

have

ω(v, w) = 〈v + ιvω, w〉 = 〈Rω(v), w〉 = 0,

since both w and Rω(v) are in the Lagrangian subbundle s! Gr(π) ⊆ TP . This shows that the
subbundles ker(t∗), ker(s∗) ⊆ TP are ω-orthogonal; for dimension reasons ker(t∗) is exactly
the ω-orthogonal bundle to ker(s∗). We next show that s is anti-Poisson. Given µ ∈ T ∗s(p)M ,

define v ∈ TpP by

ιvω = s∗µ.

That is,

v = −π]P (s∗µ) ∈ TpP.
Since ιvω = s∗µ pairs to zero with all vectors of ker(s∗), it follows that v is in the ω-orthogonal
space to ker(s∗). Hence v ∈ ker(t∗). But

−π]P (s∗µ) + s∗µ = v + ιvω = Rω(v) ∈ Rω(t! Gr(π)) = s! Gr(π)

is s-related to some element of Gr(π)s(p). Since the T ∗P -component is s∗µ, that element must

be π](µ) + µ ∈ Gr(π). This shows that

s∗(−π]P (s∗µ)) = π](µ),

hence s is anti-Poisson. A similar argument shows that t is Poisson.
“⇒” For the converse, suppose that (t, s) : P → M ×M is a Poisson map with respect to

(πM ,−πM ). Equivalently, for all v, w ∈ TpP, µ ∈ T ∗t(p)M, ν ∈ T ∗s(p)M

ι(v)ω = −t∗µ ⇒ t∗v = π](µ), s∗v = 0,(51)

ι(w)ω = −s∗ν ⇒ t∗w = 0, s∗w = −π](ν)(52)

Consider the direct sum decompositions

t! Gr(π) = ker(t∗)⊕ (t! Gr(π) ∩Gr(πP ))(53)

s! Gr(π) = ker(s∗)⊕ (s! Gr(π) ∩Gr(πP )).(54)

Elements in the second summand of (53) are of the form v + t∗µ, with v uniquely determined
by ιvω = −t∗µ. Elements in the second summand of (54) are of the form w + s∗ν with
ι(w)ω = −s∗ν.

Let v+ t∗µ ∈ (t! Gr(π)∩Gr(πP )). The property ιvω = −t∗µ shows Rω(v+ t∗µ) = v, by (51)
this lies in ker(s∗). Hence

Rω(t! Gr(π) ∩Gr(πP )) = ker(s∗).

Similarly, R−ω is an isomorphism from the second summand of (54) to the first summand of
(53); equivalently,

Rω(ker t∗) = (s! Gr(π) ∩Gr(πP ))).

This shows Rω(t! Gr(π)) = s! Gr(π); in fact, Rω interchanges the two summands in the decom-
positions (53) and (54). �
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9.2. The Crainic-Mărcuţ formula. Our proof of Theorem 9.6 will use an explicit construc-
tion of the realization due to Crainic-Mărcuţ [10], with later simplifications due to Frejlich-
Mărcuţ [15]. As the total space P for the symplectic realization, we will take a suitable open
neighborhood of M inside the cotangent bundle

τ : T ∗M →M.

Definition 9.9 (Crainic-Mărcuţ [10]). Let (M,π) be a Poisson manifold. A vector field X ∈
X(T ∗M) is called a Poisson spray if it homogeneous of degree 1 in fiber directions, and for all
µ ∈ T ∗M ,

(Tµτ)(Xµ) = π](µ).

The homogeneity requirement means κ∗tX = tX, where κt is fiberwise multiplication by
t 6= 0. In local coordinates, for a given Poisson structure

(55) π =
1

2

∑
ij

πij(q)
∂

∂qi
∧ ∂

∂qj
,

a Poisson spray is of the form

(56) X =
∑
ij

πij(q) pi
∂

∂qj
+

1

2

∑
ijk

Γijk (q) pi pj
∂

∂pk

where pi are the cotangent coordinates, and Γijk = Γjik are functions.

Lemma 9.10. Every Poisson manifold (M,π) admits a Poisson spray.

Proof. In local coordinates, Poisson sprays can be defined by the formula above (e.g., with

Γijk = 0). To obtain a global Poisson spray, one patches these local definitions together, using
a partition of unity on M . �

Let X be a Poisson spray, and Φt its local flow. Since X vanishes along M ⊆ T ∗M , there
exists an open neighborhood of M on which the flow is defined for all |t| ≤ 1. On such a
neighborhood, put

ω =

∫ 1

0
(Φs)∗ωcan ds,

where ωcan is the standard symplectic form of the cotangent bundle.

Lemma 9.11. The 2-form ω is symplectic along M .

Proof. For m ∈M ⊆ T ∗M , consider the decomposition

Tm(T ∗M) = TmM ⊕ T ∗mM.

Since the vector field X is homogeneous of degree 1, it vanishes along M . In particular,
its flow Φt fixes M ⊆ P , hence TΦt is a linear transformation of Tm(T ∗M). Consequently,
(TmΦt)(v) = v for all m ∈M and v ∈ TmM . Again by homogeneity, the linear approximation
along M ⊆ T ∗M vanishes: ν(X) = 0 as a vector field on ν(T ∗M,M) ∼= T ∗M . (This is not to be
confused with the linear approximation of X at {m}, which may be non-zero.) Consequently,
ν(Φt) = idT ∗M , which shows that

(TmΦt)(w) = w mod TmM
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for all w ∈ T ∗mM . Hence ((Φs)∗ωcan)(v, ·) = ωcan(v, ·) for all v ∈ TmM , and therefore

ω(v, ·) = ωcan(v, ·).
Since TM is a Lagrangian subbundle (in the symplectic sense!) of T (T ∗M)|M with respect to
ωcan, this implies that the 2-form ω is symplectic along M . �

Theorem 9.12 (Crainic-Mărcuţ [10]). Let P ⊆ T ∗M be an open neighborhood of the zero
section, with the property that Φt(m) is defined for all m ∈ P and |t| ≤ 1, and such that ω is
symplectic on P . Let i : M ↪→ P be the inclusion as the zero section, and put

s = τ, t = τ ◦ Φ−1.

Then the symplectic manifold (P, ω) together with the maps t, s, i has the properties from the
Karasev-Weinstein theorem 9.6.

Proof. [15]. Let α ∈ Ω1(T ∗M) be the canonical (Liouville) 1-form. That is, for all µ ∈ T ∗M ,

αµ = (Tµτ)∗µ.

Recall that ωcan = −dα. In local cotangent coordinates, α =
∑

i pidq
i and ωcan =

∑
i dqi∧dpi.

Given a Poisson spray X, observe that

X + α ∈ Γ
(
T(T ∗M)

)
is a section of τ !

(
Gr(π)

)
⊆ T(T ∗M). Indeed, the definition of a spray (and of the canonical

1-form α) means precisely that for all µ ∈ T ∗M ,

Xµ + αµ ∼τ π](µ) + µ ∈ Gr(π).

The infinitesimal automorphism (dα,X) ∈ aut
(
T(T ∗M)

)
defined by the section X+α preserves

τ ! Gr(π). By Proposition 5.3, the (local) 1-parameter group of automorphisms exponentiating
(dα,X) ∈ aut

(
T(T ∗M)

)
is given by (−ωt,Φt), where Φt is the (local) flow of X, and

ωt = −d

∫ t

0
(Φs)∗α =

∫ t

0
(Φs)∗ωcan.

We conclude

Rωt ◦ TΦt(τ
! Gr(π)) = τ ! Gr(π).

Putting t = 1 in this identity, and use the definition of t, s, ω, together with the fact that
TΦ1(E) = (Φ−1)!E for any Dirac structure E ⊆ T(T ∗M), we obtain Rω ◦ t! Gr(π) = s! Gr(π).
By Lemma 9.8, this is equivalent to the conditions from the Karasev-Weinstein theorem. �
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