Linear Algebra Notes

Lecture Notes, University of Toronto, Fall 2016

1. DUAL SPACES

Given a vector space V, one can consider the space of linear maps $\phi: V \to F$. Typical examples include:

• For the vector space $V = \mathcal{F}(X, F)$ of functions from a set X to F, and any given $c \in X$, the evaluation

$$\operatorname{ev}_c \colon \mathcal{F}(X, F) \to F, \quad f \mapsto f(c).$$

• The *trace* of a matrix,

tr: $V = \operatorname{Mat}_{n \times n}(F) \to F, A \mapsto A_{11} + A_{22} + \ldots + A_{nn}.$

More generally, for a fixed matrix $B \in Mat_{n \times n}(F)$, there is a linear functional

$$A \mapsto \operatorname{tr}(BA).$$

• For the vector space F^n , written as column vectors, the *i*-th coordinate function

$$\left(\begin{array}{c} x_1\\ \vdots\\ x_n \end{array}\right)\mapsto x_i.$$

More generally, any given b_1, \ldots, b_n defines a linear functional

$$\left(\begin{array}{c} x_1\\ \vdots\\ x_n \end{array}\right)\mapsto x_1b_1+\ldots+x_nb_n.$$

(Note that this can also be written as matrix multiplication with the row vector (b_1, \ldots, b_n) .) • This generalizes to the space F^{∞} of infinite sequences: We have maps

$$F^{\infty} \to F, \quad x = (x_1, x_2, \ldots) \mapsto a_i.$$

More generally, letting $F_{\text{fin}}^{\infty} \subset F^{\infty}$ denote the subspace of finite sequences, every $y = (y_1, y_2, \ldots) \in F_{\text{fin}}^{\infty}$ defines a linear map

$$F^{\infty} \to F, \quad x = (x_1, x_2, \ldots) \mapsto \sum_{i=1}^{\infty} x_i y_i;$$

similarly every $x = (x_1, x_2, \ldots) \in F^{\infty}$ defines a linear map

$$F_{\text{fin}}^{\infty} \to F, \quad y \mapsto \sum_{i=1}^{\infty} x_i y_i.$$

Definition 1.1. For any vector space V over a field F, we denote by

$$V^* = \mathcal{L}(V, F)$$

the dual space of V.

Proposition 1.2.

$$\dim(V^*) = \dim(V).$$

Proof.

$$\dim(V^*) = \dim \mathcal{L}(V, F) = \dim(V) \dim(F) = \dim(V).$$

If V is finite-dimensional, this means that V and V^* are isomorphic. But this is false if dim $V = \infty$. For instance, if V has an infinite, but countable basis (such as the space $V = \mathcal{P}(F)$), one can show that V^* does *not* have a countable basis, and hence cannot be isomorphic to V. In a homework problem, you were asked to show that the map associating to $x \in F^{\infty}$ a linear functional on F_{fin}^{∞} defines an isomorphism

$$F^{\infty} \cong (F_{\text{fin}}^{\infty})^*;$$

thus $(F_{\text{fin}}^{\infty})^*$ is much bigger than F_{fin}^{∞} (the latter has a countable basis, the former does not).

Definition 1.3. Suppose V, W are vector spaces, and V^*, W^* their dual spaces. Given a linear map

$$T: V \to W$$

one defines a dual map (or transpose map)

$$T^* \colon W^* \to V^*, \quad \psi \mapsto \psi \circ T.$$

The composition of $\psi \in W^* = \mathcal{L}(W, F)$ with $T \in \mathcal{L}(V, W)$.

Note that T^* is a linear map from W^* to V^* since

$$T^*(\psi_1 + \psi_2) = (\psi_1 + \psi_2) \circ T = \psi_1 \circ T + \psi_2 \circ T;$$

similarly for scalar multiplication. Note that the dual map goes in the 'opposite direction'. In fact, under composition of $T \in \mathcal{L}(V, W), T \in \mathcal{L}(U, V)$,

$$(T \circ S)^* = S^* \circ T^*.$$

(We leave this as an Exercise.)

Bases Let us now see what all this means in terms of bases. We will take all the vector spaces involves to be finite-dimensional.

Thus let dim $V < \infty$, and let $\beta = \{v_1, \ldots, v_n\}$ be a basis of V.

Lemma 1.4. The dual space V^* has a unique basis $\beta^* = \{v_1^*, \ldots, v_n^*\}$ with the property

$$v_j^*(v_i) = \delta_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

One calls $\beta^* = \{v_1^*, \dots, v_n^*\}$ the *dual basis* to β .

Proof. Any linear map, and in particular every linear functional, is uniquely determined by its action on basis vectors. Hence, the formulas above define n linear functionals v_1^*, \ldots, v_n^* . To check that they are linearly independent, let $a_1v_1^* + \ldots + a_nv_n^* = 0$. Evaluating on v_i , we obtain $a_i = 0$, for all $i = 1, \ldots, n$.

Theorem 1.5. Let β, γ be ordered bases for V, W respectively, and $T \in \mathcal{L}(V, W)$. Then the matrix of $T^* \in \mathcal{L}(W^*, V^*)$ relative to the dual bases γ^*, β^* is the transpose of the matrix $[T]_{\beta}^{\gamma}$:

$$[T^*]^{\beta^*}_{\gamma^*} = \left([T]^{\gamma}_{\beta} \right)^t.$$

Proof. Write

$$\beta = \{v_1, \dots, v_n\}, \ \gamma = \{w_1, \dots, w_m\}, \ \beta^* = \{v_1^*, \dots, v_n^*\}, \ \gamma = \{w_1^*, \dots, w_m^*\}.$$

Let $A = [T]^{\gamma}_{\beta}$, $B = [T^*]^{\beta^*}_{\gamma^*}$. By definition,

$$T(v_j) = \sum_k A_{kj} w_k, \quad (T^*)(w_i^*) = \sum_l B_{li} v_l^*.$$

Applying w_i^* to the first equation, we get

$$w_i^*(T(v_j)) = \sum_k A_{kj} w_i^*(w_k) = A_{ij}$$

On the other hand,

$$w_i^*(T(v_j)) = (T^*(w_i^*))(v_j) = \sum_l B_{li}v_l^*(v_j) = B_{ji}.$$

This shows $A_{ij} = B_{ji}$.

This shows that the dual map is the 'coordinate-free' version of the transpose of a matrix. For this reason, one also calls the dual map the 'transpose map', denoted T^t .

Given a subspace $S \subset V$, one can consider the space of all linear functional vanishing on S. This space is denoted S^0 (also $\operatorname{ann}(S)$), and is called the *annihilator of S*:

$$S^0 = \{ \phi \in V^* | \phi(v) = 0 \forall v \in S \} \subset V^*.$$

Given a linear functional $[\phi]$ on the quotient space V/S, one obtains a linear functional ϕ on V by composition: $V \to V/S \to F$. Note that ϕ obtained in this way vanishes on S. Thus, we have a map

$$(V/S)^* \to S^0.$$

Lemma 1.6. This map is an isomorphism. In particular, if dim $V < \infty$, then dim $S^0 = \dim V - \dim S$.

Proof. Exercise.

Consider a linear map $T \in \mathcal{L}(V, W)$, with dual map $T^* \in \mathcal{L}(W^*, V^*)$.

Lemma 1.7. The null space of T^* is the annhibitor of the range of T:

$$N(T^*) = R(T)^0.$$

Proof.

$$\psi \in N(T^*) \Leftrightarrow T^*(\psi) = 0$$

$$\Leftrightarrow T^*(\psi)(v) = 0 \text{ for all } v \in V$$

$$\Leftrightarrow \psi(T(v)) = 0 \text{ for all } v \in V$$

$$\Leftrightarrow \psi(w) = 0 \text{ for all } w \in R(T)$$

$$\Leftrightarrow \psi \in R(T)^0$$

As a consequence, we see that

$$\dim N(T^*) = \dim R(T)^0 = \dim W - \dim R(T),$$

hence

$$\dim R(T^*) = \dim W - \dim N(T^*) = \dim R(T).$$

This is the basis-free proof of the fact that a matrix and its transpose have the same rank. We also see (for finite-dimensional spaces) that T is injective (resp. surjective) if and only if T^* is surjective (resp. injective).

More on dual spaces. (not covered in class)

- 0. Every element $v \in V$ defines a linear functional on V^* , by $\phi \mapsto \phi(v)$. This gives a map $V \to (V^*)^*$, which for dim $V < \infty$ is an isomorphism. (For dim $(V) = \infty$, it is not.)
- 1. The physicist Dirac invented the 'bra-ket' notation, where elements of a vector spaces V are denoted by 'ket' $|v\rangle$ etc, and the elements of the dual space V^* by 'bra' $\langle \phi |$. The pairing is then a bracket (*bra-ket*) $\langle \phi | v \rangle$. The linear map

$$T: V \to V, \ x \mapsto \phi(x)v$$

defined by v, ϕ is denoted $T = |v\rangle \langle \phi|$; this works nicely since

$$|x\rangle \mapsto |v\rangle \langle \phi | x\rangle.$$

Given a basis $v_i \in V$ as above, one write $v_i = |v_i\rangle$ and $v_i^* = \langle v_i|$ (now omitting the star). The definition of dual basis now reads as $\langle v_i | v_j \rangle = \delta_{ij}$. One has the following expression for the identity map:

$$I_V = \sum_i |v_i\rangle \langle v_i|.$$

The matrix elements of a linear map $T: V \to W$ are

$$\langle w_j | T | v_i \rangle,$$

and T itself can be written

$$T = \sum_{ij} |w_j\rangle \langle w_j| \ T| \ v\rangle \langle v_i|$$

The claim that the matrices for T, T^* are transposes of each other becomes the statement

$$\langle w_j | T | v_i \rangle = \langle v_i | T^* | w_j \rangle$$

4