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1. Determinants

1.1. The inverse of a 2× 2-matrix. For a 2× 2-matrix A ∈M2×2(F ), given as

A =

(
a b
c d

)
we define its determinant by the formula

det(A) = ad− bc.
Its importance can be seen from the following

Lemma 1.1. The 2 × 2-matrix A is invertible if and only if det(A) 6= 0. In this case, the
inverse is given by

A−1 =
1

det(A)

(
d −b
−c a

)
.

Proof. Let

B =

(
d −b
−c a

)
.

By carrying out the matrix multiplication, we see that

AB = det(A) I

where I is the identity matrix. If det(A) 6= 0, this verifies that det(A)−1B is a matrix inverse
of A. If det(A) = 0, the identity becomes AB = 0. If A were invertible, then this would give
B = A−1(AB) = A0 = 0. Hence, all matrix entries d,−b,−c, a of B are zero, which means
that A = 0, a contradiction. So, A cannot be invertible. �

Note: This is a formula that you should (and I’m sorry to say this) memorize!!! Namely:
A−1 = det(A)−1B; to get B from A, switch the diagonal entries and put minus signs for the
off-diagonal ones.

Example 1.2. Problem: Solve the system of equations

2x1 + 3x2 = 4

2x1 + x2 = 3

Solution: Invert the coefficient matrix, and apply to the column vector on the right side:(
x1
x2

)
=

(
2 3
2 1

)−1(
4
3

)
=

1

−4

(
1 −3
−2 2

)(
4
3

)
= −1

4

(
−5
−2

)
=

(
5
4
1
2

)
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so x1 = 5
4 , x2 = 1

2 .

1.2. Interpretion of the determinant. What’s the meaning of the mysterious expression
det(A) = ad− bc? Consider temporarily the case F = R. Let v1, v2 ∈ R2 be vectors v1, v2, and

vol(v1, v2) ∈ R

the signed area of the parallelogram spanned by the two vectors. (We write vol, since we will
soon generalize to higher dimensions, where one speaks of ‘volume’) Here the sign is taken to
be positive if the positively oriented angle from v1 to v2 is between 0 and π, and negative if it
is between π and 2π. The following facts are known (mostly from high school geometry).

P1. vol(av1, v2) = a vol(v1, v2) = vol(v1, av2),
P2. vol(v1 + av2, v2) = vol(v1, v2) = vol(v1, v2 + a vol v2),

for all vectors v1, v2 and scalars a. Note that this implies vol(v1, v2) = 0 if one of v1, v2 is zero,
and also

vol(v, v) = 0, v ∈ V
by taking v1 = 0, v2 = v, a = 1 in the second property. Furthermore, we can derive:

Lemma 1.3. The map vol : R2×R2 → R is bi-linear (i.e., linear in each arguments separately)

Proof. We have to show that

vol(v1 + v′1, v2) = vol(v1, v2) + vol(v′1, v2)

for all vectors v1, v
′
1, v2. If v2 = 0 this is clear, and if v1 or v′1 is a multiple a v2 it follows from

P2. Thus, we may assume that v1, v2 are a basis. Write v′1 = λv1 + µv2, and simplify

vol(v1 + v′1, v2) = vol((1 + λ)v1 + µv2, v2)

= vol((1 + λ)v1, v2)

= (1 + λ) vol(v1, v2)

= vol(v1, v2) + vol(v′1, v2).

Thus vol is linear in the first argument , similarly it’s also linear in the second argument. �

Remark 1.4. Using the bi-linearity, together with P1 we also see now that

0 = vol(v1+v2, v1+v2) = vol(v1, v1)+vol(v2, v2)+vol(v1, v2)+vol(v2, v1) = vol(v1, v2)+vol(v2, v1)

thus

vol(v1, v2) = − vol(v2, v1).

We can now calculate the volume of a parallelogram, using these formal properties of vol
and the fact that the volume of a square is

vol(e1, e2) = 1

for e1, e2 the standard basis of R2.

Proposition 1.5. Let v1, v2 ∈ R2 be the column vectors of a matrix A. Then

vol(v1, v2) = det(A).
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Proof. Write

v1 =

(
a
c

)
= ae1 + ce2, v2 =

(
b
d

)
= be1 + de2.

Using bi-linearity to expand, we find

vol(v1, v2) = a vol(e1, v2) + c vol(e2, v2)

= ac vol(e1, e1) + ad vol(e1, e2) + cb vol(e2, e1) + cd vol(e2, e2)

= ad− bc
= det(A). �

Although this interpretation as an area only works for F = R, we can generalize the definition
of vol to arbitrary F – although it seems reasonable now to rename it as det.

Namely, we see that there is a unique bi-linear functional

det : F 2 × F 2 → F, (v1, v2) 7→ det(v1, v2)

such that det(v, v) = 0 for all v ∈ F 2, and with det(e1, e2) = 1 for the standard basis. In fact,
the calculation above shows that det(v1, v2) = det(A) = ad− bc.

Remark 1.6. If φ : V × V → F 2 is a bilinear functional on a vector space V , then

φ(v, v) = 0 for allv ∈ V ⇒ φ(v1, v2) = −φ(v2, v1) for all v1, v2 ∈ V.

Is this an equivalence? Only if the characteristic of the field is 6= 2. In fact we have

φ(v1, v2) = −φ(v2, v1) for all v1, v2 ∈ V ⇒ 2φ(v, v) = 0 for allv ∈ V

(this follows by putting v1, v2 = v). Thus, if 2 6= 0 in F we can divide by 2, and we recover
φ(v, v) = 0. On the other hand, if 2 = 0 in F , this conclusion is wrong in general. E.g., the
bilinear functional

φ
((

a
c

)(
b
d

))
= ab+ cd

(dot product) on F 2 is symmetric. If 2 = 0 in F , then 1 = −1, and so symmetric forms are
also skew-symmetric. But it does not satisfy φ(v, v) = 0 for all v.

1.3. Generalization to higher dimensions. In Rn, we consider the signed volume of the
parallelepiped spanned by v1, . . . , vn, denoted vol(v1, . . . , vn). If the vi are the standard basis
vectors, we get the volume of the unit cube: vol(e1, . . . , en) = 1. As above, we find that this
is linear in each argument. For general fields, we use these properties to define a ‘volume
function’. Generalizing to arbitrary fields, we have

Theorem 1.7. There exists a unique multi-linear functional

det : Fn × · · · × Fn → F

with the property that det(v1, . . . , vn) = 0 whenever two of the vi’s coincide, and with

det(e1, . . . , en) = 1,

for the standard ordered basis e1, . . . , en of Fn.
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Here, multi-linear means that det is linear in each argument, keeping the others fixed. E.g.,

det(v1, . . . , vi−1, vi+v′i, vi+1, . . .) = det(v1, . . . , vi−1, v
′
i, vi+1, . . .) + det(v1, . . . , vi−1, v

′
i, vi+1, . . .).

and

det(v1, . . . , vi−1, avi, vi+1, . . .) = adet(v1, . . . , vi−1, vi, vi+1, . . .).

Before proving the theorem, a few facts about permutations.

Definition 1.8. A permutation of {1, . . . , n} is an invertible map, σ from this set to itself. The
permutation is called even (resp. odd) if the number of pairs (i1, i2) such that i1 < i2 but
σ(i1) > σ(i2) is even (resp. odd) . One writes sign(σ) = 1 resp. −1 depending on whether the
permutation is even or odd.

Example 1.9. Here n = 4. The permutation

σ(1) = 4, σ(2) = 3, σ(3) = 1, σ(4) = 2,

depicted as

(4, 3, 1, 2),

is odd; sign(σ) = −1, because there are five pairs of indices in wrong order,

(4, 3), (4, 1), (4, 2), (3, 1), (3, 2).

Note that if one modifies a permutation by interchanging two adjacent elements, then the
parity of σ changes. Namely, the ordering of that pair changes from right to wring or the other
way; whereas all other orderings are preserved.

Example 1.10. In the example above, the permutation σ′ written as (4, 1, 3, 2) (obtained by
switching 1 and 3 in σ) is even: sign(σ′) = 1.

By induction, we conclude that for any permutation σ, we have that sign(σ) = (−1)N if one
can put the elements back into their original order by N transpositions of adjacent elements.

Example 1.11.

(4, 3, 1, 2)→ (4, 1, 3, 2)→ (1, 4, 3, 2)→ (1, 4, 2, 3)→ (1, 2, 4, 3)→ (1, 2, 3, 4).

Here N = 5, so we recover that sign(σ) = −1.

Actually, one can speed up calculations a bit using the following

Exercise. Show that if σ′ is obtained from σ by interchanging two elements (not necessariy
adjacent), then σ′, σ have opposite parity.

Example 1.12.

(4, 3, 1, 2)→ (1, 3, 4, 2)→ (1, 2, 4, 3)→ (1, 2, 3, 4)

Here N = 3 so sign(σ) = −1.

Let us return to the proof of the theorem.
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Proof. We start with the uniqueness proof (assuming existence.) Any multi-linear functional is
uniquely determined by its values on n-tuples of basis vectors, since the general formula then
follows by multi-linearity. Thus, we need to specify

det(ei1 , . . . , ein)

for arbitrary i1, . . . , in ∈ {1, . . . , n}. By assumption, this has to be zero if two of the indices
coincide. So, the only case one gets something non-zero is if

i1 = σ(1), i1 = σ(2), . . . , in = σ(n)

for some permutation of the indices. In that case, we can put eσ(1), . . . , eσ(n) into the right
order by a finite number of interchanges (‘transposition’) of indices. As in the case n = 2, we
see that the interchange of any two arguments of det gives a minus sign. Thus we must have

det(eσ(1), . . . , eσ(n)) = sign(σ) det(e1, . . . , en) = sign(σ).

Consider now general vectors vj ∈ Fn, expressed in terms of the basis as

vj =
∑
i

Aijei.

By multi-linearity,

det(v1, . . . , vn) =
∑
i1···in

det(Ai1,1ei1 , · · · , Ain,nein)

=
∑
i1···in

Ai1,1 · · ·Ain,n det(ei1 , . . . , ein)

As we just mentioned, the summand are zero unlessi1, . . . , in are a permutation of 1, . . . , n. We
thus obtain

det(v1, . . . , vn) =
∑
σ

sign(σ) Aσ(1),1 · · ·Aσ(n),n.

This explicit formula shows that det is uniquely determined by its properties.
For existence, we use this formula as a definition of a multi-linear functional. Clearly,

with this definition det(e1, . . . , en) = 1, because in this case Aij = δij and only the trivial
permutation σ = id contributes.

We have to show that det(v1, . . . , vn) vanishes whenever vr = vs for some r < s. In this
case we have that Air = Ais for all i = 1, . . . , n. If σ is any permutation, there is a unique
permutation σ′ 6= σ such that σ(i) = σ′(i) for all i 6= r, s. In fact,

σ′(i) =


σ(i) i 6= r, s

σ(s) i = r

σ(r) i = s.

Since

Aσ(r),rAσ(s),s = Aσ(r),sAσ(s),r = Aσ′(r),rAσ′(s),s

we get

Aσ(1),1 · · ·Aσ(n),n = Aσ′(1),1 · · ·Aσ′(n),n.
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Note that the two permutations σ, σ′ have opposite sign, since one is obtained from the other
by interchanging two elements: sign(σ) = − sign(σ′). It follows that the corresponding terms
in the sum cancel. We conclude det(v1, . . . , vn) = 0. �

After all this hard work, we can finally define:

Definition 1.13. The determinant of a square matrix A ∈Mn×n(F ) is defined as

det(A) = det(v1, . . . , vn),

where v1, . . . , vn are the columns of A.

The proof above gave us a formula for the determinant:

det(A) =
∑
σ

sign(σ) Aσ(1)1 · · ·Aσ(n)n.

If n = 2 we recover the formula det(A) = A11A22 −A21A12.

Remark 1.14. There are a number of methods of computing determinants. The ( complicated)
formula is not very efficient in practice (except for n ≤ 2), since the number of terms of this
expression is n! (the number of permutations). E.g. for 5 × 5 matrices we already get 120
terms!

Theorem 1.15 (Properties of the determinant). Let A,B ∈Mn×n(F ).

(a) The determinant det(A) vanishes if and only if the columns of A are linearly dependent.
(b) If A′ is obtained from A by interchange of two columns, the det(A′) = −det(A).
(c) If A′ is obtained from A by taking the c-th multiple of one column, the det(A′) =

cdet(A).
(d) If A′ s obtained from A by adding a scalar multiple of one column to another column,

then det(A′) = det(A).
(e) det(At) = det(A); hence the above statements also hold for columns replaced with rows.
(f) det(AB) = det(A) det(B). In particular, det(A−1) = det(A)−1.

Proof. By construction, the determinant function A 7→ det(A) is linear in the columns of A,
and vanishes whenever two columns coincide. This already implies (c), as well as (d). As in
the case n = 2, the fact that det(A) vanishes whenever two of the columns are equal, implies
that it changes sign under exchange of two columns, i.e. (b).

Using column operations, we may bring A into reduced column echelon form A′ (which
amounts to using row operations on At to bring At to reduced row echelon form). By (b),(c),(d)
this changes the determinant by a non-zero scalar. If rank(A) < n, it then follows that some
column of A′ is zero, hence det(A′) = 0 by linearity. We then conclude det(A) = 0. If
rank(A) = n, then A′ is the identity matrix, hence det(A′) = 1. We conclude det(A) 6= 0. This
proves (a).

Property (e) follows from the explicit ‘complicated formula’, using the fact that sign(σ−1) =
− sign(σ), or using (f) and the fact that every matrix can be written as a product of elementary
matrices. (For elementary matrices, the property is obvious.)
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For property (f), we argue as follows. If A is not invertible, then AB is also not invertible,
and both sides are zero. Hence we may assume that A is invertible. The multilinear functional

φ(w1, . . . , wn) =
det(Aw1, . . . , Awn)

det(A)

vanishes if any two of the wi coincide, and φ(e1, . . . , en) = 1 (since Aei are the columns of A).
Hence φ = det. Now take wi = Bei, the columns of B. Then

det(w1, . . . , wn) = det(B),

det(Aw1, . . . Awn) = det(AB(e1), . . . , AB(en)) = det(AB).

We conclude det(B) = det(AB)/ det(A). �

Part (a) of this theorem has a very important consequence: A square matrix A ∈ Mn×n is
invertible if and only if det(A) 6= 0. In particular, in this case the equation Ax = b has a unique
solution for all b ∈ Fn. In fact, there is a simple formula expressing the solution in terms of
determinants.

Theorem 1.16 (Cramer’s rule). Let A ∈Mn×n be an invertible matrix, with columns v1, . . . , vn.
Then the unique solution x = (x1, . . . , xn)t to the equation Ax = b is given by the formula

xi =
1

detA
det(v1, . . . , vi−1, b, vi+1, . . . , vn).

(Thus, for each i one takes the determinant of the matrix obtained by replacing the i-th column
vi with b, and divides by det(A).)

Proof. The unique solution is, of course, x = A−1b. By definition of matrix multiplication,

b = Ax = x1v1 + . . .+ xnvn.

Thus, expending by linearity in the ith column,

det(v1, . . . , vi−1, b, vi+1, . . . , vn) =

n∑
r=1

xr det(v1, . . . , vi−1, vr, vi+1, . . . , vn).

But det(v1, . . . , vi−1, vr, vi+1, . . . , vn) = 0 unless r = i, in which case it is det(A). This shows

det(v1, . . . , vi−1, b, vi+1, . . . , vn) = xi det(A).

�

For invertible matrices, this is a rather useful formula – provided we learn how to calculate
determinants.

Example 1.17. The solution of the equation Ax = b, for A ∈M3×3(R) given as

A =

 3 0 −1
0 2 4
−3 −2 1

 , b =

 1
7
−1
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is

x1 =

det

 1 0 −1
7 2 4
−1 −2 1


det

 3 0 −1
0 2 4
−3 −2 1

 , x2 =

det

 3 1 −1
0 7 4
−3 −1 1


det

 3 0 −1
0 2 4
−3 −2 1

 , x3 =

det

 3 0 1
0 2 7
−3 −2 −1


det

 3 0 −1
0 2 4
−3 −2 1


We’ll see below how to efficiently calculate the determinants.

Note that Cramer’s rule also gives a formula for the inverse matrix A−1. Let (v1, . . . , vn)
be the columns of A, and w1, . . . , wn the columns of A−1. Thus wj = A−1ej , i.e., wj is the
solution to Ax = ej , and the matrix entry (A−1)ij is the i-th component of this solution. Thus,
by Cramer’s rule

(A−1)ij =
1

det(A)
det(v1, . . . , vi−1, ej , vi+1, . . . , vn).

To calculate det(v1, . . . , vi−1, ej , vi+1, . . . , vn), note that we can use ej to clear out all entries in
the j-th row.
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