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1. Linear maps

(Ctd’)

1.1. Isomorphisms.

Definition 1.1. An invertible linear map T : V → W is called a linear isomorphism from V to
W .

Etymology: morphism=shape, iso=same.

Examples 1.2. (a) The map

T : Pn(F )→ Fn+1, p 7→ (a0, . . . , an)

for p(x) =
∑
aix

i is an isomorphism. Similarly the map

T : Pn(F )→ Fn+1, p 7→ (b0, . . . , bn)

for p(x) =
∑
bi(x+ 1)i.

(b) Given distinct elements c0, . . . , cn ∈ F , the map

T : Pn(F )→ Fn+1, p 7→ (p(c0), . . . , p(cn))

is an isomorphism.
(c) Let V be the vector space of finite sequences. Then

P(R)→ V, p 7→ (a0, . . . , an, . . .)

for p(x) =
∑
aix

i is an isomorphism. (Why? Lagrange interpolation!)

An isomorphism ‘identifies’ spaces (but the choice of identification depends on the choice
of isomorphism). For instance, in the last example, the operator on polynomials given as
‘multiplication by x’, translates into a shift operator (a0, a1, a2 . . .) 7→ (0, a0, a1, . . .).

Theorem 1.3. If T : V →W is an isomorphism, then dimV = dimW .

Proof. If both V,W are infinite-dimensional there is nothing to show. If dimV <∞, then

dim(V ) = dim(N(T )) + dim(R(T )) = 0 + dim(W ) = dim(W )

by rank-nullity theorem. If dimW <∞, use the same argument for the isomorphism T−1 : W →
V . �

Theorem 1.4. Suppose T : V →W is linear, and that dim(V ) = dim(W ) <∞. Then

T is an isomorphism ⇔ N(T ) = {0} ⇔ R(T ) = W.
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Proof. We have N(T ) = {0} ⇔ dim(N(T )) = 0 and R(T ) = W ⇔ dim(R(T )) = dim(W ). By
rank-nullity, dim(W ) = dim(V ) = dim(N(T )) + dim(R(T )), it follows that T is onto if and
only if T is one-to-one. �

Note that finite-dimensionality is important here. For example,

T : P(R)→ P(R), p 7→ p′

is onto, but not one-to-one.

1.2. The space of linear maps. Let L(V,W ) be the set of all linear maps from V to W .
Define addition and scalar multiplication ‘pointwise’ by

(T1 + T2)(v) = T1(v) + T2(v), (aT )(v) = a T (v).

for T1, T2, T ∈ L(V,W ) and a ∈ F .

Theorem 1.5. With these operations, L(V,W ) is a vector space.

The proof is a straightforward check, left as an exercise. (Actually, for any set X, the space
F(X,U) of functions from X to a given vector space U is a vector space. L(V,W ) is a vector
subspace of F(V,W ).) Important special cases:

• L(F, V ) is identified with V , by the isomorphism V → L(F, V ) taking v ∈ V to the
linear map F → V, a 7→ av.
• The space L(V, F ) is called the dual space to V , denoted V ∗. Its elements are called

the linear functionals on V . We’ll return to this later.

Lemma 1.6. If T : V →W and S : U → V are linear maps, then the composition T ◦S : U → V
is linear.

Proof.
T (S(u1 + u2)) = T (S(u1) + S(u2)) = T (S(u1)) + T (S(u2)),

and similarly
T (S(au)) = (T (aS(u))) = a(T (S(u))).

�

Thus, we have a map

L(V,W )× L(U, V )→ L(U,W ), (T, S) 7→ T ◦ S.
Some simple properties of the composition:

(T1 + T2) ◦ S = T1 ◦ S + T2 ◦ S, (aT ) ◦ S = a T ◦ S,
meaning it’s linear in the first argument, and

T ◦ (S1 + S2) = T ◦ S1 + T ◦ S2, T ◦ (aS) = a T ◦ S,
meaning it’s also also linear in the second argument. (The composition is an example of a
bilinear map.)

For the special case V = W , we will also use the notation L(V ) = L(V, V ). The map
I ∈ L(V ) given by I(v) = v is called the identity map (also denoted IV for emphasis). Note
that elements T ∈ L(V ) can be iterated:

T k = T ◦ · · · ◦ T,
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for k ≥ 0 with the convention T 0 = I. Note also that in general,

T ◦ S 6= S ◦ T.

Example 1.7. Let V be the vector space of infinitely-differentiable functions on R. Then ∂
∂x ∈

L(V ). Finite linear combinations

T =

N∑
i=0

ai(
∂

∂x
)i

are called constant coefficient differential operators.

Theorem 1.8. A linear map T ∈ L(V,W ) is invertible if and only if there exists a linear map
S ∈ L(W,V ) with S ◦ T = IV and T ◦ S = IW .

Proof. One direction is obvious: if T is invertible, then S = T−1 has the properties stated. For
the converse, if S with S ◦ T = IV and T ◦ S = IW is given, then N(T ) = {0} (since T (v) = 0
implies v = S(T (v)) = S(0) = 0), and R(T ) = W (since w = T (S(w)) for all w ∈W ). �

Note that, a bit more generally, it suffices to have two maps S1, S2 ∈ L(W,V ) with S1◦T = IV
and T ◦ S2 = IW . It is automatic that S1 = S2, since

S1 = S1 ◦ IW = S1 ◦ (T ◦ S2) = (S1 ◦ T ) ◦ S2 = IV ◦ S2 = S2.

in that case.

Remark 1.9. (a) If dimV = dimW < ∞, then the conditions S ◦ T = IV and T ◦ S = IW
are equivalent. Indeed, the first condition implies N(T ) = {0}, hence R(T ) = W by an
earlier theorem.

(b) If dimV 6= dimW then both conditions are needed. For example,

T : R→ R2, t 7→ (t, 0), S : R2 → R, (t1, t2) 7→ t1

satisfiies S ◦ T = I, but neither S nor T are invertible.
(c) If dimV = dimW =∞, then both conditions are needed. For example, let S, T : F∞ →

F∞ where

T (a0, a1, a2 . . .) = (0, a0, a1, . . .), S(a0, a1, a2 . . .) = (a1, a2, a3, . . .)

Then S ◦ T is the identity but T ◦ S is not.

2. Matrix representations of linear maps

2.1. Matrix representations. Let V be a vector space with dimV = n < ∞, and let β =
{v1, . . . , vn} be an ordered basis. By this, we mean that the basis vectors have been enumerated;
thus it is more properly an ordered list v1, . . . , vn. For v = a1v1 + . . .+ anvn ∈ V , write

[v]β =

 a1
...
an

 .

This is called the coordinate vector of v in the basis β. The map

ϕβ : V → Fn, v 7→ [v]β
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is a linear isomorphism, with inverse the map a1
...
an

 7→ a1v1 + . . .+ anvn.

(Well, we really defined ϕβ in terms of the inverse.)

Example 2.1. Let V = P3(R) with its standard basis 1, x, x2, x3. For p = 2x3−3x2 +1 we have

[v]β =


1
0
−3
2

 .

The choice of a basis ‘identifies’ V with Fn. Of course, the identification depends on the
choice of basis, and later we will investigate this dependence.

What about linear maps? Let β = {v1, . . . , vn} and γ = {w1, . . . , wm} be bases of V and W ,
respectively. Each T (vj) is a linear combination of the wi’s:

T (vj) = A1jw1 + . . .+Amjwm.

(Beware the ordering; we’re writing A1j not Aj1 etc.) The coefficients define a matrix,

[T ]γβ =

 A11 · · · A1n
...

...
Am1 · · · Amn


If W = V and γ = β, we also write [T ]β = [T ]ββ.

Note:

The coefficients of T (vj) form the j-th column of [T ]γβ.

In other words, the j-th column of [T ]γβ is [T (vj)]γ .

Example 2.2. Let V = P3(R), W = P2(R) and T (p) = p′ + p′′′. Let us find [T ]γβ in terms of

the standard bases β = {1, x, x2, x3} and γ = {1, x, x2}. Since

T (1) = 0, T (x) = 1, T (x2) = 2x, T (x3) = 3x2 + 6

we find

[T ]γβ =

 0 1 0 3
0 0 2 0
0 0 0 6


Example 2.3. The identity map I : V → V has the coordinate expression, for any ordered basis
β,

[I]ββ =


1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1
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This is the ‘identity matrix’. (Note however that for distinct bases β, γ, the matrix [I]γβ will

look different.)

Example 2.4. If T : V → W is an isomorphism, and β = {v1, . . . , vn} is a basis of V , then
wi = T (vi) form a basis γ = {w1, . . . , wn} of W . In terms of these bases, [T ]γβ is the identity
matrix.

Theorem 2.5. Let V,W be finite-dimensional vector spaces with bases β, γ. The map

L(V,W )→Mm×n(F ), T 7→ [T ]γβ

is an isomorphism of vector spaces. In particular,

dim(L(V,W )) = dim(V ) dim(W ).

Proof. Since [T1 + T2]
γ
β = [T1]

γ
β + [T2]

γ
β and [aT ]γβ = a[T ]γβ, the map is linear.

It is injective (one-to-one), since [T ]γβ = 0 means that [T (vi)]γ = 0 for all i, hence T (vi) = 0

for all i, hence T (v) = 0 for all v =
∑
aivi ∈ V .

It is surjective (onto) since every A ∈ Mm×n(F ), with matrix entries Aji, defines a linear
transformation by

T (
∑

aivi) =
∑
ij

Ajiaiwj ,

with [T ]γβ = A.

The dimension formula follows from dim(Mm×n(F )) = mn. �

Suppose T (v) = w. What is the relationship between [v]β, [w]γ , and [T ]γβ? If v =
∑
ajvj ∈ V

and w =
∑
biwi ∈W , then

T (v) = T (
n∑
i=1

ajvj)

=
n∑
j=1

ajT (vj)

=

n∑
j=1

aj

m∑
i=1

Aijwi

=

m∑
i=1

( n∑
j=1

Aijaj

)
wi

Hence

bi =
n∑
j=1

Aijaj ,
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or on full display:

b1 = A11a1 + . . .+A1nan

b2 = A21a1 + . . .+A2nan

· · · = · · ·
bm = Am1a1 + . . .+Amnan

We write this in matrix notation b1
...
bm

 =

 A11 · · · A1n
...

...
Am1 · · · Amn


 a1

...
an


In short,

(1) [w]γ = [T ]γβ [v]β.

2.2. Composition. Let T ∈ L(V,W ) and S ∈ L(U, V ) be linear maps, and T ◦ S ∈ L(U,W )
the composition. Let α = {u1, . . . , ul}, β = {v1, . . . , vn}, γ = {w1, . . . , wm} be ordered bases of
U, V,W , respectively. We are interested in the relationship between the matrices

A = [T ]γβ, B = [S]βα, C = [T ◦ S]γα.

We have

T (S(uk)) =

m∑
j=1

T (Bjkvj) =

m∑
i=1

n∑
j=1

BjkAijwi.

Hence,

Cik =
m∑
j=1

AijBjk.

We take the expression on the right hand side as the definition of (AB)ik:

(AB)ik :=
m∑
j=1

AijBjk

It defines a matrix multiplication,

Mm×n(F )×Mn×l(F )→Ml×n(F ), (A,B) 7→ AB

where  A11 · · · A1n
...

...
Am1 · · · Amn


 B11 · · · B1l

...
...

Bn1 · · · Bnl

 =

 C11 · · · C1n
...

...
Cl1 · · · Cln


with Cik =

∑m
j=1AijBjk. Note:

The matrix entry Cik is the product of the i-th row of A with the j-th column of B.
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Example 2.6. An example with numbers:

(
1 −3 4 3
0 4 7 −1

)
1 2 −1
2 −2 0
0 0 −1
1 4 3

 =

(
−2 20 4
7 −12 −10

)

Example 2.7. Another example:(
−2 20

)( 5
1

)
=
(
10
)
,

(
5
1

)(
−2 20

)
=

(
−10 100
−2 20

)
In any case, with this definition of matrix multiplication we have that

(2) [T ◦ S]γα = [T ]γβ [S]βα.

In summary, the choice of bases identifies linear transformations with matrices, and composition
of linear maps becomes matrix multiplication.

Remark 2.8. We could also say it as follows: Under the identification

L(Fn, Fm) ∼= Mm×n(F ),

the composition of operators F l
S−→ Fn

T−→ Fm corresponds to matrix multiplication.

Mathematicians like to illustrate this with commutative diagrams, as follows: [...]

Some remarks:

1. The action of a matrix on a vector is a special case of matrix multiplication, by viewing
a column vector as an n× 1-matrix.

2. Using the standard bases for Fn, Fm we have the isomorphism

L(Fn, Fm)→Mm×n(F ).

Suppose the matrix A corresponds to the linear map T . Writing the elements of Fn, Fm

as column vectors, the j-column of A is the image of the j-th standard basis vector under
T . [Example...] In the opposite direction, every A ∈Mm×n(F ) determines a linear map.
We denote this by

LA : Fn → Fm.

Writing the elements of Fn as column vectors, this is just the matrix multiplication
from the left (hence the notation).

3. Since matrix multiplication is just a special case of composition of linear maps, it’s clear
that it is linear in both arguments:

(A1 +A2)B = A1B +A2B, (aA)B = a(AB),

A(B1 +B2) = AB1 +AB2, A(aB) = a(AB).

4. Taking n = m, we have addition and multiplication on the space Mn×n(F ) of square
matrices. There is also an ‘additive unit’ 0 given by the zero matrix, and a ‘multiplica-
tive unit’ 1 given by the identity matrix (with matrix entries 1ij = δij , equal to 1 if
i = j and zero otherwise). If n = 1, these are just the usual addition and multiplication
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of M1×1(F ) = F . But if n ≥ 2, it violates several of the field axioms. First of all, the
product is non-commutative:

AB 6= BA

in general. Secondly, A 6= 0 does not guarantee the existence of an inverse. As a
consequence, AB = 0 does not guarantee that A = 0 or B = 0. (One even has
examples with A2 = 0 but A 6= 0 – can you think of one?)

2.3. Change of bases. As was mentioned before, we have to understand the dependence of
all constructions on the choice of bases. Let β, β′ be two ordered bases of V , and [v]β, [v]β′
the expression in the two bases. What’s the relation between these coordinate vectors?

Actually, we ‘know’ the answer already, as a special case of Equation (1) – the formula
(T (v))[γ] = [T ]γβ[v]β tells us that:

[v]β′ = [IV ]β
′

β [v]β, [v]β = [IV ]ββ′ [v]β′ .

(matrix multiplication) where IV is the identity. We call

[IV ]ββ′

the change of coordinate matrix, for changing the basis from β′ to β. The change-of coordinate
matrix in the other direction is the inverse:(

[IV ]ββ′
)−1

= [IV ]β
′

β .

This follows from the action on coordinate vectors, or alternatively from

[IV ]ββ′ ◦ [IV ]β
′

β = [IV ◦ IV ]ββ = [IV ]ββ = 1.

Example 2.9. Let V = R2. Given an angle θ, consider the basis

β = {(cos θ, sin θ), (− sin θ, cos θ)}.

of V = R2. Given another angle θ′, we get a similar basis β′. What is the change of basis
matrix? Since β, β′ are obtained from the standard basis of R2 by rotation by θ, θ′, one expects
that the change of basis matrix should be a rotation by θ′ − θ.

Indeed, using the standard trig identities,

cosα (cos θ, sin θ) + sinα (− sin θ, cos θ)

=
(

cos(θ + α), sin(θ + α)
)
,

− sinα (cos θ, sin θ) + cosα (− sin θ, cos θ)

=
(
− sin(θ + α), cos(θ + α)

)
.

Thus, taking α = θ′ − θ, this expresses the basis β′ in terms of β. We read off the columns of

(IV )ββ′ as the coefficients for this change of bases:

(IV )ββ′ =

(
cos(θ′ − θ) − sin(θ′ − θ)
sin(θ′ − θ) cos(θ′ − θ)

)
.
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Example 2.10. Suppose c0, . . . , cn are distinct. Let V = Pn(F ), let

β = {1, x, . . . , xn}
be the standard basis, and

β′ = {p0, . . . , pn}
the basis given by the Lagrange interpolation polynomials. What is the change-of-coordinate

matrix [IV ]β
′

β ? Recall that if p is given, then

p(x) =
∑
i

p(ci) pi(x)

by the Lagrange interpolation. We can use this to express the standard basis in terms of the
Lagrange basis.

xk =
∑
i

cki pi(x).

The coefficients of the β-basis vectors in terms of the β′-basis vectors form the columns of the

change-of-basis matrix from β to β′. Hence, Q := [IV ]β
′

β is the matrix,

Q =


1 c0 · · · cn0
1 c1 · · · cn1
...

...
...

1 cn · · · cnn


The matrix for the other direction [IV ]ββ′ is less straightforward, as it amounts to computing

the coefficients of the Lagrange interpolation polynomials in terms of the standard basis. By
the way, note what we’ve stumbled upon the following fact:

The coefficients of the Lagrange interpolation polynomials are obtained as the
columns of the matrix Q−1, where Q is the matrix above.

Let us next consider how the matrix representations of operators T ∈ L(V ) change with the

change of basis. We write [T ]β = [T ]ββ.

Proposition 2.11. Let V be a finite-dimensional vector space, and β, β′ two ordered bases.
Then the change of coordinate matrix Q (from β to β′) is invertible, with inverse Q−1 the
change of coordinate matrix from β′ to β. We have

[v]β′ = Q [v]β.

for all v ∈ V . Given a linear map T ∈ L(V ), we have

[T ]β′ = Q [T ]β Q
−1.

Proof. The formula [v]β′ = Q [v]β holds by the calculation above. Since

[IV ]ββ′ [IV ]β
′

β = [IV ]ββ, [IV ]β
′

β [IV ]ββ′ = [IV ]β
′

β′

are both the identity matrix, we see that the change of coordinate matrix from β′ to β is the
inverse matrix:

[IV ]ββ′ = Q−1.
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Similarly, using (2),

[T ]β
′

β′ = [IV ]β
′

β [T ]ββ [IV ]ββ′ = Q [T ]β Q
−1.

�

Definition 2.12. To matrices A,A′ ∈ Matn×n are called similar if there exists an invertible
matrix Q such that

A′ = QAQ−1.

Thus, we see that the matrix representations of T ∈ L(V ) in two different bases are related
by a similarity transformation.

3. Dual spaces

Given a vector space V , one can consider the space of linear maps φ : V → F . Typical
examples include:

• For the vector space of functions from a set X to F , and any given c ∈ X, the evaluation

evc : F(F, F )→ F, f 7→ f(c).

• For the vector space Fn, written as column vectors, the i-th coordinate function x1
...
xn

 7→ xi.

More generally, any given b1, . . . , bn defines a linear functional x1
...
xn

 7→ x1b1 + . . .+ xnbn.

(Note that this can also be written as matrix multiplication with the row vector (b1, . . . , bn).)
• The trace of a matrix,

tr : V = Matn×n(F )→ F, A 7→ A11 +A22 + . . .+Ann.

More generally, for a fixed matrix B ∈ Matn×n(F ), there is a linear functional

A 7→ tr(BA).

Definition 3.1. For any vector space V over a field F , we denote by

V ∗ = L(V, F )

the dual space of V .

Note that
dim(V ∗) = dimL(V, F ) = dim(V ) dim(F ) = dim(V ).

(This also holds true if V is infinite dimensional.)

Remark 3.2. If V is finite-dimensional, this means that V and V ∗ are isomorphic. But this
is false if dimV = ∞. For instance, if V has an infinite, but countable basis (such as the
space V = P(F )), one can show that V ∗ does not have a countable basis, and hence cannot be
isomorphic to V .
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Suppose dimV < ∞, and let β = {v1, . . . , vn} be a basis of V . Then any linear functional
f : V → F is determined by its values on the basis vectors: Given b1, . . . , bn ∈ F , we obtain a
unique linear functional such that

f(vi) = bi, i = 1, . . . , n.

Namely, f(a1v1 + . . .+anvn) = a1b1 + . . .+anbn. In particular, given j there is a unique linear
functional taking on the value 1 on vj and the value 0 on all other basis vectors. This linear
functional is denoted v∗j :

v∗j (vi) = δij =

{
0 i 6= j

1 i = j

Proposition 3.3. The set β∗ = {v∗1, . . . , v∗n} is a basis of V ∗, called the dual basis.

Proof. Since dim(V ∗) = dim(V ) = n, it suffices to show that the v∗i are linearly independent.
Thus suppose

λ1v
∗
1 + · · ·+ λnv

∗
n = 0.

Evaluating on vi, and using the definition of dual basis, we get λi = 0. �

Example 3.4.

Definition 3.5. Suppose V,W are vector spaces, and V ∗,W ∗ their dual spaces. Given a linear
map

T : V →W

define a dual map (or transpose map) T t : W ∗ → V ∗ as follows: If ψ : W → F is a linear
functional, then

T t(ψ) = ψ ◦ T : V → F.

Note that T t is a linear map from W ∗ to V ∗ since

T t(ψ1 + ψ2) = (ψ1 + ψ2) ◦ T = ψ1 ◦ T + ψ2 ◦ T ;

similarly for scalar multiplication. Note also that the dual map goes in the ‘opposite direction’.
In fact, under composition,

(T ◦ S)t = St ◦ T t.
(We leave this as an Exercise.)

Theorem 3.6. Let β, γ be ordered bases for V,W respectively, and β∗, γ∗ the dual bases of
V ∗,W ∗ respectively. Then the matrix of T t with respect to the dual bases β∗, γ∗ of V ∗,W ∗ is
the transpose of the matrix [T ]γβ:

[T t]β
∗

γ∗ =
(

[T ]γβ

)t
.

Proof. Write β = {v1, . . . , vn}, γ = {w1, . . . , wm} and β∗ = {v∗1, . . . , v∗n}, γ = {w∗1, . . . , w∗m}.
Let A = [T ]γβ be the matrix of T . By definition,

T (vj) =
∑
k

Akjwk.
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Similarly, the matrix B = [T t]β
∗

γ∗ is defined by

(T t)(w∗i ) =
∑
l

Bliv
∗
l .

Applying w∗i to the first equation, we get

w∗i (T (vj)) =
∑
k

Akjw
∗
i (wk) = Aij .

On the other hand,

w∗i (T (vj)) = (T t(w∗i ))(vj) =
∑
l

Bliv
∗
l (vj) = Bji.

This shows Aij = Bji. �

This shows that the dual map is the ‘coordinate-free’ version of the transpose of a matrix.

4. Elementary matrix operations

4.1. The Gauss elmination in terms of matrices. Consider a system of linear equations,
such as,

−2y + z = 5

x− 4y + 6z = 10

4x− 11y + 11z = 12

The standard method of solving such a system is Gauss elimination. We first interchange the
first and second equation (since we’d like to have an x in the first equation).

x− 4y + 6z = 10

−2y + z = 5

4x− 11y + 11z = 12

Next, we subtract 4 times the first equation from the last (to get rid of x’s in all but the first
equation),

x− 4y + 6z = 10

−2y + z = 5

5y − 13z = −28

Now, divide the second equation by −2,

x− 4y + 6z = 10

y − 1

2
z = −5

2
5y − 13z = −28
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and subtract suitable multiples of it from the first and third equation, to arrive at

x+ 4z = 0

y − 1

2
z = −5

2

−21

2
z = −31

2

Finally, multiply the last equation by − 2
21 ,

x+ 4z = 0

y − 1

2
z = −5

2

z = −31

21

and subtract suitable multiples of it from the second and third equation:

x = −124

21

y = −37

21

z = −31

21

What we used here is the fact that for a given system of equations

A11x1 + . . .+A1nxn = b1

A21x1 + . . .+A2nxn = b2

...

Am1x1 + . . .+Amnxn = bn

the following three operations don’t change the solution sets:

• interchange of two equations
• multiplying an equation by a non-zero scalar
• adding a scalar multiple of one equation to another equation

It is convenient to write the equation in matrix form A11 · · · A1n
...

...
Am1 · · · Amn


 x1

...
xn

 =

 b1
...
bm


The three operations above correspond to the elementary row operations on A, namely

• interchange of two rows
• multiplying a row by a non-zero scalar
• adding a scalar multiple of one row to another row
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Of course, we have to apply the same operations to the right hand side, the b-vector. For this,
it is convenient to work with the augmented matrixA11 · · · A1n b1

...
...

...
Am1 · · · Amn bm


and perform the elementary row operations on this larger matrix. One advantage of this method
(aside from not writing the xi’s) is that we can at the same time solve several such equations
with different right hand sides; one just has to augment one column for each right hand side:A11 · · · A1n b1 c1

...
...

...
...

Am1 · · · Amn bm cm


In the concrete example given above, the augmented matrix reads as0 −2 1 5

1 −4 6 10
4 −11 11 12


the first step was to exchange two rows:1 −4 6 10

0 −2 1 5
4 −11 11 12


Subtract 4 times the first row from the second row,1 −4 6 10

0 −2 1 5
0 5 −13 −28


and so on. Eventually we get an augmented matrix of the form1 0 0 −124

21
0 1 0 −37

21
0 0 1 −31

21


which tells us the solution, x = −124

21 and so on.

We will soon return to the theoretical and computational aspects of Gauss elimination. At
this point, we simply took it as a motivation for considering the row operations.

Proposition 4.1. If A′ ∈ Mm×n(F ) is obtained from A ∈ Mm×n(F ) by an elementary row
operation, then

A′ = PA

for a suitable invertible matrix P ∈ Mm×m(F ). In fact, P is obtained by applying the given
row operation to the identity matrix Im ∈Mm×m(F ).
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Idea of proof: The row operations can be interpreted as changes of bases for Fn. That is,
letting T = LA : V = Fn →W = Fm be the linear map defined by A,

A = [T ]γβ

where β, γ are the standard bases, then

A′ = [T ]γ
′

β

for some new ordered basis γ′. So the formula is a special case of

[T ]γ
′

β = [IW ]γ
′
γ [T ]γβ.

where P = [IW ]γ
′
γ is the change of basis matrix.

We won’t spell out more details of the proof, but instead just illustrate it for with some
examples where m = 2, n = 3. Consider the matrix

A =

(
A11 A12 A13

A21 A22 A23

)
Interchange of rows:(

0 1
1 0

)(
A11 A12 A13

A21 A22 A23

)
=

(
A21 A22 A23

A11 A12 A13

)
.

Multiplying the first row by non-zero scalar a:(
a 0
0 1

)(
A11 A12 A13

A21 A22 A23

)
=

(
a A11 a A12 a A13

A21 A22 A23

)
.

Adding c-th multiple of first row to second row:(
1 0
c 1

)(
A11 A12 A13

A21 A22 A23

)
=

(
A11 A12 A13

A21 + cA11 A22 + cA12 A23 + cA13

)
.

Similar to the elementary row operations, we can also consider elementary column operations
on matrices A ∈Mm×n(F ),

• interchange of two columns
• multiplying a column by a scalar
• adding a scalar multiple of one column to another column

Proposition 4.2. Suppose A′ is obtained from A ∈ Mm×n(F ) by an elementary column op-
eration. Then A′ = AQ where Q ∈ Mn×n is an invertible matrix. In fact, Q is obtained by
applying the given column operation to the identity matrix.

Again, Q is the change of basis matrix for three elementary types of base changes of Fn.

Warning: Performing column operations on the matrix for a system of equations does
change the solution set! It should really be thought of as change of coordinates of the xi’s.
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4.2. The rank of a matrix. Recall that the rank of a linear transformation T : V → W is
the dimension of the range,

rank(T ) = dim(R(T )).

Some observations: If S : V ′ → V is an isomorphism, then rank(T ◦ S) = rank(T ), since
R(T ◦ S) = R(T ). If U : W → W ′ is an isomorphism, then rank(U ◦ T ) = rank(T ), since U
restricts to an isomorphism from R(T ) to R(U ◦ T ). Putting the two together, we have

rank(U ◦ T ◦ S) = rank(T )

if both U, S are linear isomorphisms.

Definition 4.3. For A ∈ Mm×n(F ), we define the rank of A to be the rank of the linear map
LA : Fn → Fm defined by A.

An easy consequence of this definition is that for any linear map T : V →W between finite-
dimensional vector spaces, the rank of T coincides with the rank of [T ]γβ for any ordered bases

β, γ.

Theorem 4.4. The rank of A ∈ Mm×n(F ) is the maximum number of linearly independent
columns of A.

Proof. Note that since the column vectors of A are the images of the standard basis vectors,
the range of LA is the space spanned by the columns. Hence, the rank is the dimension of the
space spanned by the columns. But the dimension of the space spanned by a subset of a vector
space is the cardinality of the largest linearly independent subset. �

Example 4.5. The matrices 1 1 1
1 1 1
1 1 1

 ,

 1 1 1
1 0 1
1 1 1

 ,

 1 0 −1
0 −1 1
−1 1 0


have rank 1, 2, 2 respectively.

Since we regard matrices as special cases of linear maps, we have that

rank(PAQ) = rank(A)

whenever P,Q are both invertible. In particular, we have:

Proposition 4.6. The rank of a matrix is unchanged under elementary row or column opera-
tions.

Proof. As we saw above, these operations are multiplications by invertible matrices, from the
left or from the right. �

In examples, we can often use it to compute ranks of matrices rather quickly. Roughly, the
strategy is to use the row-and columns operations to produce as many zeroes as possible.

Proposition 4.7. Using elementary row and column operations, any matrix A ∈Mm×n(F ) of
rank r can be put into ‘block form’(

Ir×r 0r×(n−r)
0(m−r)×r 0(m−r)×(n−r)

)
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where the upper left block is the r× r identity matrix, and the other blocks are zero matrices of
the indicated size.

Proof. Start with a matrix A. If r > 0, then A is non-zero, so it has at least one non-zero
entry. Using interchanges of columns, and interchanges of rows, we can achieve that the entry
in position 1, 1 is non-zero. Having achieved this, we divide the 1st row by this 1,1 entry, to
make the 1,1 entry equal to 1. Subtracting multiples of the first row from the remaining rows,
and then multiples of the first column from the remaining columns, we can arrange that the
only entry in the first row or column is the entry A11 = 1. If there are further non-zero entries
left, use interchanges of rows with row index > 1, or columns with column index > 1, to make
the A22 entry non-zero. Divide by this entry to make it 1, and so forth. �

Example 4.8. 1 0 −1
0 −1 1
−1 1 0

 
 1 0 −1

0 −1 1
0 1 −1

 
 1 0 −1

0 −1 1
0 0 0

 
 1 0 0

0 −1 1
0 0 0


 

 1 0 0
0 −1 0
0 0 0

 
 1 0 0

0 1 0
0 0 0


Note the following consequence of this result:

Proposition 4.9. For every matrix A, we have that

rank(A) = rank(At).

More generally, for any linear map T : V → W between finite-dimensional vector spaces we
have rank(T ) = rank(T t).
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