MAT 240F – Assignment #1

Problem #1: Suppose that F is a field with 3 distinct elements $\{0, 1, a\}$. Prove that

 $1+1=a, a+1=0, a \cdot a = 1.$

- We cannot have a+1 = 1, since the cancellation property would give a = 0. We cannot have a + 1 = a, since the cancellation property would give 1 = 0. Hence, we must have a + 1 = 0.
- We cannot have 1 + 1 = 1, since the cancellation property would give 0 = 1. We cannot have 1 + 1 = 0, since adding *a* to both sides would give

	a + (1+1) = a + 0	
\Rightarrow	(a+1)+1 = a	using $F2$ and $F3$
\Rightarrow	0 + 1 = a	since $a + 1 = 0$
\Rightarrow	1 = a	using $F1$ and $F3$.

which is impossible. Hence, the only remaining possibility is 1 + 1 = a.

• By F3, the element a has a multiplicative inverse a^{-1} . This inverse cannot be 1 or 0, since

$$a \cdot 1 = a \neq 1, \quad a \cdot 0 = 0 \neq 1.$$

The only possibility is $a^{-1} = a$. That is, $a \cdot a = 1$.

Problem #2: Let F be any field. Show that if 1 + 1 + 1 + 1 = 0 in F, then 1 + 1 = 0. Indicate clearly which properties of fields you are using. (Hint: consider $(1 + 1) \cdot (1 + 1)$.)

We have

$$(1+1) \cdot (1+1) = (1+1) \cdot 1 + (1+1) \cdot 1$$
 by F5
= $(1+1) + (1+1)$ by F1 and F3
= $1+1+1+1$ using F2 to drop parentheses
= 0 by assumption.

But $a \cdot b = 0$ implies a = 0 or b = 0. Hence 1 + 1 = 0.

Problem #3: For the field $\mathbb{Z}_7 = \{0, 1, \ldots, 6\}$, list the multiplicative inverses of all non-zero elements. That is, find 1^{-1} , 2^{-1} , ..., 6^{-1} as

elements of \mathbb{Z}_7 . (Note: If preferred, you may write the elements of \mathbb{Z}_7 with square brackets, as in class.)

We have

 $[1]^{-1} = [1], \ [2]^{-1} = [4], \ [3]^{-1} = [5], \ [4]^{-1} = [2], \ [5]^{-1} = [3], \ [6]^{-1} = [6],$ since

$$\begin{split} & [1] \cdot [1] = [1], \\ & [2] \cdot [4] = [8] = [1], \\ & [3] \cdot [5] = [15] = [1], \\ & [6] \cdot [6] = [36] = [1] \end{split}$$

Problem #4: Find the last digit of the number $((7^7)^7)^7$.

Working modulo 10, we have that

$$[7]^7 = [-3]^7 = [-3] \cdot [-3]^6 = [-3] \cdot [9]^3 = [-3] \cdot [-1]^3 = [3].$$

Hence

$$([7]^7)^7 = [3]^7 = [3] \cdot [3]^6 = [3] \cdot [9]^3 = [3] \cdot [-1]^3 = [-3] = [7]$$

and finally

$$(([7]^7)^7)^7 = [7]^7 = [3],$$

by the first line. Hence, the final digit is a 3.

Problem #5: Let F be a field, and $a \in F$ an element with the property $a \cdot a = 1$. Using only the field axioms, and properties proved from it, show that

$$a = 1$$
 or $a = -1$

At each step, indicate clearly which properties you are using.

We have

$$a \cdot a = 1 \Rightarrow a \cdot a - 1 = 0$$
 adding -1 to both sides, and using F4
$$\Rightarrow a \cdot a - 1 \cdot 1 = 0$$
 by F3
$$\Rightarrow (a - 1) \cdot (a + 1) = 0$$
 by formula $a^2 - b^2 = (a - b)(a + b)$
$$\Rightarrow a = 1 \text{ or } a = -1$$
 since $ab = 0$ implies $a = 0$ or $b = 0$.