Quantization of group-valued moment maps I

Eckhard Meinrenken

June 2, 2011

- G a compact simply connected Lie group,
- · invariant inner product on $\mathfrak{g} = Lie(G)$.

$$\Sigma = \bigcirc$$

$$M(\Sigma) = \frac{\{A \in \Omega^1(\Sigma, \mathfrak{g}) | dA + \frac{1}{2}[A, A] = 0\}}{\text{gauge transformations}}$$

- G a compact simply connected Lie group,
- · invariant inner product on $\mathfrak{g} = Lie(G)$.

$$\Sigma = \bigcirc$$

$$M(\Sigma) = \frac{\{A \in \Omega^1(\Sigma, \mathfrak{g}) | dA + \frac{1}{2}[A, A] = 0\}}{\text{gauge transformations}}$$

This is a symplectic manifold!

- G a compact simply connected Lie group,
- · invariant inner product on $\mathfrak{g} = Lie(G)$.

$$\Sigma = \bigcirc$$

$$M(\Sigma) = \frac{\{A \in \Omega^1(\Sigma, \mathfrak{g}) | dA + \frac{1}{2}[A, A] = 0\}}{\text{gauge transformations}}$$

This is a symplectic manifold! (with singularities).

Construction of symplectic form, after Atiyah-Bott

• $\mathcal{A} = \Omega^1(\Sigma, \mathfrak{g})$ carries symplectic form $\omega(a, b) = \int_{\Sigma} a \cdot b$.

Construction of symplectic form, after Atiyah-Bott

- $\mathcal{A} = \Omega^1(\Sigma, \mathfrak{g})$ carries symplectic form $\omega(a, b) = \int_{\Sigma} a \cdot b$.
- $C^{\infty}(\Sigma, G)$ acts by gauge action,

$$g.A = \operatorname{Ad}_{g}(A) - \operatorname{d}g g^{-1},$$

Construction of symplectic form, after Atiyah-Bott

- $A = \Omega^1(\Sigma, \mathfrak{g})$ carries symplectic form $\omega(a, b) = \int_{\Sigma} a \cdot b$.
- $C^{\infty}(\Sigma, G)$ acts by gauge action,

$$g.A = \operatorname{Ad}_g(A) - \operatorname{d}g g^{-1},$$

This action is Hamiltonian with moment map

$$\mathsf{curv} \colon A \mapsto \mathsf{d} A + \tfrac{1}{2} [A,A]$$

Construction of symplectic form, after Atiyah-Bott

- $\mathcal{A} = \Omega^1(\Sigma, \mathfrak{g})$ carries symplectic form $\omega(a, b) = \int_{\Sigma} a \cdot b$.
- $C^{\infty}(\Sigma, G)$ acts by gauge action,

$$g.A = \operatorname{Ad}_g(A) - \operatorname{d}g g^{-1},$$

• This action is Hamiltonian with moment map

$$\mathsf{curv} \colon A \mapsto \mathsf{d} A + \tfrac{1}{2} [A,A]$$

Moduli space is symplectic quotient

$$M(\Sigma) = \operatorname{curv}^{-1}(0)/C^{\infty}(\Sigma, G).$$

Holonomy description of the moduli space

$$M(\Sigma) = \operatorname{\mathsf{Hom}}(\pi_1(\Sigma), G)/G = \Phi^{-1}(e)/G$$

where $\Phi \colon G^{2g} \to G$ (with g the genus of Σ) is the map

$$\Phi(a_1, b_1, \ldots, a_g, b_g) = \prod_{i=1}^g a_i b_i a_i^{-1} b_i^{-1}.$$

Holonomy description of the moduli space

$$M(\Sigma) = \operatorname{\mathsf{Hom}}(\pi_1(\Sigma), G)/G = \Phi^{-1}(e)/G$$

where $\Phi \colon G^{2g} \to G$ (with g the genus of Σ) is the map

$$\Phi(a_1, b_1, \ldots, a_g, b_g) = \prod_{i=1}^g a_i b_i a_i^{-1} b_i^{-1}.$$

We'd like to view Φ as a moment map, and $\Phi^{-1}(e)/G$ as a symplectic quotient!

Group-valued moment maps

- $oldsymbol{ heta} heta^L = g^{-1} \, \mathrm{d} g \in \Omega^1(G,\mathfrak{g})$ left-Maurer-Cartan form
- $\bullet \,\, \theta^R = \mathsf{d} g g^{-1} \in \Omega^1(\mathit{G},\mathfrak{g}) \qquad \text{ right Maurer-Cartan form }$
- $\eta = \frac{1}{12} [\theta^L, \theta^L] \cdot \theta^L \in \Omega^3(G)$ Cartan 3-form

Definition (Alekseev-Malkin-M.)

A q-Hamiltonian G-space (M, ω, Φ) is a G-manifold M, with $\omega \in \Omega^2(M)^G$ and $\Phi \in C^{\infty}(M, G)^G$, satisfying

Comparison

Hamiltonian G-space $\Phi: M \to \mathfrak{g}^*$

- $\mathbf{0}$ d $\omega = \mathbf{0}$,

q-Hamiltonian G-space $\Phi: M \to G$

- $\bullet \iota(\xi_M)\omega = -\frac{1}{2}\Phi^*(\theta^L + \theta^R) \cdot \xi,$
- **③** $\ker(\omega)$ ∩ $\ker(d\Phi) = 0$.

Examples: Coadjoint orbits, conjugacy classes

Example

Co-adjoint orbits $\Phi \colon \mathcal{O} \hookrightarrow \mathfrak{g}^*$ are Hamiltonian G-spaces

$$\omega(\xi_{\mathcal{O}}, \xi_{\mathcal{O}}')_{\mu} = \langle \mu, [\xi, \xi'] \rangle$$

Example

Conjugacy classes $\Phi \colon \mathcal{C} \hookrightarrow \mathcal{G}$ are q-Hamiltonian \mathcal{G} -spaces

$$\omega(\xi_{\mathcal{C}},\xi_{\mathcal{C}}')_{\mathsf{a}} = \tfrac{1}{2}(\mathsf{Ad}_{\mathsf{a}} - \mathsf{Ad}_{\mathsf{a}^{-1}})\xi \cdot \xi'$$

Examples; Cotangent bundle, double

Example

Cotangent bundle $T^*G \cong G \times \mathfrak{g}^*$ (with cotangent lift of conjugation action) is Hamiltonian G-space with

$$\Phi(g,\mu) = \mathsf{Ad}_g(\mu) - \mu$$

Example

The double $D(G) = G \times G$ is a q-Hamiltonian G-space with

$$\Phi(a, b) = aba^{-1}b^{-1}$$

Examples: Planes and spheres

Example

Even-dimensional plane $\mathbb{C}^n = \mathbb{R}^{2n}$ is Hamiltonian U(n)-space.

Example

Even-dimensional sphere S^{2n} is a q-Hamiltonian U(n)-space (Hurtubise-Jeffrey-Sjamaar).

Examples: Planes and spheres

Example

Even-dimensional plane $\mathbb{C}^n = \mathbb{R}^{2n}$ is Hamiltonian U(n)-space.

Example

Even-dimensional sphere S^{2n} is a q-Hamiltonian U(n)-space (Hurtubise-Jeffrey-Sjamaar).

Similar examples with $G = \operatorname{Sp}(n)$, and $M = \mathbb{H}P(n)$ resp. \mathbb{H}^n (Eshmatov).

Basic constructions: Products

Products: If $(M_1, \omega_1, \Phi_1), (M_2, \omega_2, \Phi_2)$ are q-Hamiltonian *G*-spaces then so is

$$(M_1 \times M_2, \ \omega_1 + \omega_2 + \frac{1}{2} \Phi_1^* \theta^L \cdot \Phi_2^* \theta^R, \ \Phi_1 \Phi_2).$$

Basic constructions: Products

Products: If $(M_1, \omega_1, \Phi_1), (M_2, \omega_2, \Phi_2)$ are q-Hamiltonian *G*-spaces then so is

$$(M_1 \times M_2, \ \omega_1 + \omega_2 + \frac{1}{2} \Phi_1^* \theta^L \cdot \Phi_2^* \theta^R, \ \Phi_1 \Phi_2).$$

Example

For instance, $D(G)^g = G^{2g}$ is a q-Hamiltonian G-space with moment map

$$\Phi(a_1, b_1, \dots, a_g, b_g) = \prod_{i=1}^g a_i b_i a_i^{-1} b_i^{-1}.$$

Basic constructions: Reduction

Reduction: If (M, ω, Φ) is a q-Hamiltonian G-space then the symplectic quotient

$$M/\!\!/ G := \Phi^{-1}(e)/G$$

is a symplectic manifold. with singularities

Basic constructions: Reduction

Reduction: If (M, ω, Φ) is a q-Hamiltonian G-space then the symplectic quotient

$$M/\!\!/G := \Phi^{-1}(e)/G$$

is a symplectic manifold. with singularities

Example (and Theorem)

The symplectic quotient

$$\textit{G}^{2g} \times \textit{C}_{1} \times \cdots \times \textit{C}_{r} /\!\!/ \textit{G} = \mathcal{M}(\Sigma_{g}^{r}; \textit{C}_{1}, \ldots, \textit{C}_{r})$$

is the moduli space of flat *G*-bundles over a surface with boundary, with boundary holonomies in prescribed conjugacy classes.

Notation: Weyl chambers and Weyl alcoves

Notation

- G compact and simply connected (e.g. G = SU(n)),
- T a maximal torus in G, $\mathfrak{t} = Lie(T)$,
- $\mathfrak{t}_+ \cong \mathfrak{t}$ fundamental Weyl chamber,
- $A \subset \mathfrak{t}_+ \subset \mathfrak{t}$ fundamental Weyl alcove

Moment polytope

For every $\nu \in \mathfrak{g}^*$ there is a unique $\mu \in \mathfrak{t}_+^*$ with $\nu \in G.\mu$.

Theorem (Atiyah, Guillemin-Sternberg, Kirwan)

For a compact connected Hamiltonan G-space (M, ω, Φ) , the set

$$\Delta(M) = \{ \mu \in \mathfrak{t}_+^* | \ \mu \in \Phi(M) \}$$

is a convex polytope.

Moment polytope

For every $\nu \in \mathfrak{g}^*$ there is a unique $\mu \in \mathfrak{t}_+^*$ with $\nu \in G.\mu$.

Theorem (Atiyah, Guillemin-Sternberg, Kirwan)

For a compact connected Hamiltonan G-space (M, ω, Φ) , the set

$$\Delta(M) = \{ \mu \in \mathfrak{t}_+^* | \ \mu \in \Phi(M) \}$$

is a convex polytope.

For every $g \in G$ there is a unique $\xi \in A$ with $g \in G$. $\exp(\xi)$.

Theorem (M-Woodward)

For any connected q-Hamiltonian G-space (M, ω, Φ) , the set

$$\Delta(M) = \{ \xi \in A | \exp(\xi) \in \Phi(M) \}$$

is a convex polytope.

Application to eigenvalue problems

The Hamiltonian convexity theorem gives eigenvalue inequalities for sums of Hermitian matrices with prescribed eigenvalues. (Schur-Horn problem).

Application to eigenvalue problems

The Hamiltonian convexity theorem gives eigenvalue inequalities for sums of Hermitian matrices with prescribed eigenvalues. (Schur-Horn problem).

The q-Hamiltonian convexity theorem gives eigenvalue inequalities for products of unitary matrices with prescribed eigenvalues.

Examples of moment polytopes (due to C. Woodward)

A multiplicity-free Hamiltonian SU(3)-space

A multiplicity-free q-Hamiltonian SU(3)-space

Volume forms

Let

$$\Upsilon = \mathsf{det}^{1/2}\Big(\frac{1 + \mathsf{Ad}_g}{2}\Big) \exp\Big(\frac{1}{4}\frac{\mathsf{Ad}_g - 1}{\mathsf{Ad}_g + 1}\theta^L \cdot \theta^L\Big).$$

It turns out that $\Upsilon \in \Omega(G)$ is a well-defined smooth differential form.

Theorem (Alekseev-M-Woodward)

For any q-Hamiltonian G-space (M, ω, Φ) , the form

$$(\Phi^* \Upsilon \exp \omega)_{[top]} \in \Omega(M)$$

is non-vanishing, i.e. a volume form.

This is the analogue of the Liouville form $(\exp \omega)_{[top]} \in \Omega(M)$

Further parallels between Hamiltonian / q-Hamiltonian theories:

- Liouville volumes are computable by localization
- ② Duistermaat-Heckman theory
- Intersection pairings on symplectic quotients via localization
- Connectivity of fibers of the moment map
- Cross-section theorems
- 6 Kirwan surjectivity theorems (Bott-Tolman-Weitsman)
- **0** ..

Further parallels between Hamiltonian / q-Hamiltonian theories:

- Liouville volumes are computable by localization
- ② Duistermaat-Heckman theory
- Intersection pairings on symplectic quotients via localization
- Connectivity of fibers of the moment map
- Cross-section theorems
- 6 Kirwan surjectivity theorems (Bott-Tolman-Weitsman)
- **0** ..

In these lectures, we will focus on the *quantization* of q-Hamiltonian *G*-spaces.