CHAPTER 1

Principal bundles and connections

1. Motivation: Gauge theory

The simplest example of a gauge theory in physics is electromagnetism. Recall
Maxwell’s equations for an electromagentic field,

0

(1) V-B= 0, VxE= —ag (homogeneous equations)
and

> = > = 0 - :
(2) V-E=p, VXB= EE + 7 (inhomogeneous equations) .

Here we have chosen units so that €g, g and ¢ are equal to 1. E is the electric field,
B the magnetic field, fthe current density, and p the electric charge density. All of
these fields are functions on space-time R* with coordinates 2° =t and (2!, 22, 2%) = 7.
One can re-write Maxwell’s equations in more concise, coordinate free form. Let the
electro-magnetic field strength F be the following 2-form on R*,

F=dz" A (Eldl'l + F*da? + E3d:1;3) — Bl'da? A da® + B?da® A dat + B3da! A da?,
and define a charge-current density 3-form by
J = pda' Ada? Ada® — da® A (j1da? A da® 4 j2da® A dat + Pdat A da?).

Also x : QF(RY) — Q**(R?) be the star operator with respect to the standard ori-
entation and the Minkowski metric on R* ! Then Maxwell’s equations are equivalent
to

(3) dF =0 (homogeneous equations)
and
(4) d* F=.J (inhomogeneous equations).

The inhomogeneous equations require the integrability condition dJ = 0, which is easily
recognized as charge conservation. Note that the Equations (4) are not quite as “natural”
as the homogenous Maxwell-equations: The homogeneous Maxwell equations make sense

!For any pseudo-Riemannian manifold (M, g) of dimension n, g extends to a metric on A*T* M.
If M is oriented, one therefore obtains a unique oriented volume form A such that ||A||*> = £1. The
Hodge star operator * : Qf (M) — Q"%(M) is defined by the equation (o, #3)A = a A 3. For R* with
Minkowski metric, one has A = dz® A dz! A d2? A da3, thus e.g. *(d2z® A dzl) = dz? A da3.
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2 1. PRINCIPAL BUNDLES AND CONNECTIONS

on any 4-manifold M while the inhomogeneous ones involve the choice of a (pseudo-
Riemannian) metric g. More precisely, since multiplying ¢ by a positive function does
not change the star operator on 2-forms in R*, they depend on the conformal structure
of g.

The homogeneous Maxwell equations just say that F' is a closed 2-form. Of course
on R* any closed 2-form is exact, so F' = dA for some 1-form A € Q'(R*) called the
electro-magnetic potential. The 1-form A is defined up to a closed 1-form. On R*, any
closed 1-form is exact so that any two potentials A, A’ for F are related by A’ = A+df
for some function f € Q°(R*). One says that f defines a gauge transformation of the
potential A. At this stage, the potential A on R*itself does not have “physical meaning”:
Only F = dA, i.e. the gauge equivalence class of A, can be interpreted in terms of B
and E and can be measured in experiments. 2

Using A the inhomogeneous Maxwell equation(s) can be obtained as Euler-Lagrange
equations for a Lagrange density (a 4-form)

L=1dAANxdA+ AN

-2
The first term in this expression can also be written %||FA||2d:1;0 Adxy A dxg A das, by

definition of the star operator. In terms of B and E, ||F4||? = ||B||? — ||E||?>. The
functional

A L dAAxdA

(defined on potentials A which decrease sufficiently fast at infinity) is a special case of
the Yang-Mills functional.

Gauge transformations become more interesting if the electromagnetic field is coupled
to some particle field. Consider for example an electron described according to Dirac’s
theory by a wave function ¢» : R* — C!. (Here C' accomodates both the electron

(as a spin % particle) and its anti-particle, the positron). Dirac’s equation for a free

electron reads, (1 Ei:o Y0, +m)yp = 0, where the gamma-matrices ¥* are 4 X 4 matrices
giving a representation of the Clifford algebra of R*. The equation for ¢ in a (non-

quantized) electromagnetic field A = Ei:o A, dz" are obtained by “minimal coupling”,

i.e. replacing derivatives +0, by covariant derivatives +0, — eA,:
Y 7 Y i

(5) (D 3"(10u + eAu) +m)eb = 0.

n=0
This equation is invariant under the gauge transformations,

(¥, 4) = (e, A+ df),

ZNote that on a non-simply connected space time M, it is possibly for two 1-forms A, A’ to have the
same differential without being gauge equivalent. Thus gauge equivalence of A is a finer invariant than
field strength F4 = dA. The famous Aharanov-Bohm experiment shows that the gauge equivalence
class does have physical meaning.



2. PRINCIPAL BUNDLES AND CONNECTIONS 3

for f : R* — R. Note that only ¢ = ¢/ : R* — U(1) really enters the gauge transfor-
mations. In terms of g,

(¥, A4) = (g9, A —idgg™).
In this sense, the theory of an electromagnetic field is a gauge theory with gauge group
G ={g: R* = U(1). Note that the theory of an electron without an EM field only has
a global U(1) gauge symmetry: Electromagnetism is necessary to turn the global U(1)
gauge symmetry into a local gauge symmetry.

The idea of Yang-Mills theory is to replace the abelian gauge group U(1) by non-
commutative Lie groups GG. The gauge fields A are now 1-forms with values in the Lie
algebra g of G. Again there is a notion of curvature 2-form F4, which is interpreted as
a field strength. The coupling of this gauge field to a particle field (with values in some
complex inner product space V') depends on the choice of a unitary representation of G
on V', and replacing derivatives by covariant derivatives in such a way that the coupled
theory becomes gauge invariant.

2. Principal bundles and connections

In this section we review basic material on principal bundles, connections, curvature
and parallel transport.

2.1. Fiber bundles. Let F' be a given manifold. A (smooth) fiber bundle with
standard fiber F is a smooth map 7 : £ — B from a manifold E (the total space) to a
manifold B (called base) with the following property, called local triviality: There exists
an open covering U, of B and diffeomorphisms

Do 7T_1(Ua) —U,x F
such that pry (¢(x)) = m(x). (That is, ¢ intertwines m with projection to the first
factor.) We will denote the fibers by E, = 7~1(b).
A morphism of fiber bundles 7; : E; — B, with fibers F}; is a smooth map ¢ :
E, — FE, taking fibers to fibers. In particular, ¢ induces a map B; — B; on the base.

Conversely, suppose E — B is a fiber bundle with fiber F, and ¢» : Y — B is a smooth
map. Then one can define a pull-back bundle »*E — Y as a fibered product

VB = {(y,x) € Y X E| ¥(y) = 7(x)}.

By construction one has a bundle map v*E — E. The bundle F is called trivializable if
there exists a bundle map ¢ : E — B x F'; the choice of ¢ is called a trivialization.

A special case of this construction is the fibered product of two fiber bundles E;, Fy —
B over the same base: Let E; x E3 — B x B be the direct product, and diagg : B —
B x B the diagonal map. One defines

E, xB B, = diagh(E, x E,).
Thus E, x® E, — B has fibers
(El XB Ez)b = (El)b X (Ez)b.
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Additional structures on F' give rise to special types of fiber bundles:

o If FF =V is a vector space, one defines a vector bundle with standard fiber V' to be
a fiber bundle 7 : E — B where all fibers 77!(b) are vector spaces and the local
trivializations ¢, can be chosen to be fiberwise linear. A homomorphism of two
vector bundles is a fiber bundle homomorphism that is fiberwise linear. The fibered
product of vector bundles Ey, E; is a vector bundle (also called Whitney sum and
denoted E; & E3). One has natural bundle maps £ & E — E (fiberwise addition)
and a map R x £ — E (fiberwise scalar multiplication).

o If F' = (G has the structure of a Lie group, one defines a group bundle G — B with
standard fiber G to be a fiber bundle where all fibers carry group structures and
the local trivializations can be chosen to be fiberwise group homomorphisms. A
group bundle homomorphism is a fiber bundle homomorphism which is fiberwise
a group homomorphism. The fibered product of group bundles is a group bundle.
One has natural bundle maps G x? G — G (fiberwise group multiplication) and
G — G (fiberwise inversion).

Similarly, one defines algebra bundles, Lie algebra bundles, ... An action of a group
bundle G — B on a fiber bundle E — B is a smooth map G x? E — E preserving fibers
and defining a group action fiberwise. Similarly one can define fiberwise linear actions
of group or algebra bundles on vector bundles, ...

EXAMPLE 2.1. Given a vector bundle 7 : E — B, one obtains a group bundle
GL(E) — B with fiber over b the invertible transformations (automorphisms) of the
vector space E, = 7~ !(b), and an algebra bundle End(E) — B with fibers the en-
domorphisms of Ej. There are natural fiberwise linear maps GL(E) x? E — E and
End(E) x® E — E.

2.2. Principal bundles. Let G be a Lie group. A principal homogeneous G-space
is a manifold X together with a transitive, free G-action. For example, G itself with
action g.a = ag™"' is a principal homogeneous space. (We could also use the left-action,
of course.) Any principal homogeneous G-space X is isomorphic to this example: Given
g € X there is a unique G-equivariant isomorphism X — G taking xq to e. The only
reason for introducing the pedantic notion of principal homogeneous G-space is that
in general, there is no distinguished choice of zo. Note that the group Diff(X)% of G-
equivariant diffeomorphisms of X to itself is diffeomorphic to G (but not canonically
so), and that the space of G-equivariant diffeomorphisms Diff (X, G)% is a principal
homogeneous G-space (with G acting on the target G by left multiplication) which is
canonically isomorphic to X itself.

EXAMPLE 2.2. If V is a real vector space of dimension n, the space Fr(V) of linear
isomorphisms (“frames”) V' — R”™ is a principal homogeneous GL(n,R)-space. The
abstract vector space V' can be recovered from X as a quotient,

V = (Ftr(V) x R")/ GL(n,R)
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by the diagonal action. In fact, all the “natural” (that is, GL(n,R)-equivariant) con-
structions with R™ give rise to the corresponding constructions of V' by a similar quo-
tient: For instance, P(V) = (Fr(V) x RP"™ ')/ GL(n,R) is the projectivization of V,
A¥(V) = (Fr(V) x AF(R™))/ GL(n, R) is the exterior algebra, and so on.

A principal G-bundle is a fiber bundle 7 : P — B where each fiber P, carries the
structure of a principal homogeneous G-space, and such that the local trivializiations ¢,
can be chosen to be fiberwise G-equivariant.

EXAMPLES 2.3.  a. Let S' = R/Z the standard circle. The k-fold covering 7 :
St — S!is a principal bundle with structure group Zj = Z /kZ.
b. Let m# : E — B be a real vector bundle of rank n. Then the frame bundle Fr(E)
with fibers Fr(E), = Fr(E,) is a principal GL(n,R) bundle.
c. If in addition the fibers Ej carry inner products and orientations, depending
smoothly on b € B, one can define the bundle Frgo(E), = Frso(Ep) of special
orthogonal frames, which is a principal SO(n) bundle.

A homomorphism of principal G-bundles w; : P; — Bj is a G-equivariant smooth
map ¢ : Py — P, taking fibers to fibers. Any such map induces a smooth map ¢ :
B; — B; on the base. Conversely, given a smooth map v : Y — B and given a principal
G-bundle 7 : P — B, one can form the pull-back bundle ¥»*P — Y using the fibered
product of ¢» and 7: That is,

VP ={(y,p) €Y X P|¢(y) = 7(p)}.

The bundle projection »*P — Y is induced by projection ¥ x P — Y to the first
factor, and projection to the second factor Y x P — P gives rise to a principal bundle

homomorphism ©*P — P. In fact, any principal bundle homomorphism ¢ : P; — Ps
identifies Py with the pull-back of P; by the map By — B; on the base.

2.3. Associated bundles. Let 7 : P — B be a principal G-bundle. Given a
G-manifold F, one defines the associated fiber bundle by

F(P)=PxqgF:=(PxF)/G.

The space P X¢ F' is a fiber bundle over B = P/G with standard fiber F. The sections
I'*(B,P xg F) of this fiber bundle are naturally identified with the space C*(P, F)“
of equivariant maps P — F.

EXAMPLES 2.4.  a. If V is a vector space on which G acts linearly, then P xg V
is a vector bundle. Taking V' = g with the adjoint representation one obtains the
adjoint bundle g(P) := P X¢ @.

b. If K is a Lie group on which G acts by automorphisms, P X K is a group bundle.
Taking K = G with G acting by the adjoint action, one obtains a group bundle
G(P) := P X¢ G which is also called the adjoint bundle. It has g(P) as its Lie
algebra bundle.
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c. If F is a principal homogeneous H-space on which G acts H-equivariantly, the
associated bundle P x¢ F is a principal H-bundle. For example, if ¥ = H = G
with G acting by left multiplication one recovers P itself.

d. Let E be a real vector bundle of rank n, and Fr(E) its Gl(n) frame bundle. The
bundle associated to the defining representation of GL(n) on R™ is FE itself:

FI’(E) XGL(n) R"=F.

The representation on AR resp. S*R" gives the anti-symmetric resp. symmetric
powers A*E and S*E. The bundle associated to the conjugation action of GL(n)
on itself is the group bundle GL(E). For s € R, the real line bundle Fr(E) X qr,m) R
defined by the representation A — |det(A)|* of GL(n,R)is a real line bundle called
the bundle of s-densities. The line bundle for the representation A — det(A) is the
determinant line bundle det(E). The bundle to the contragredient representation

A (A" on R™ is the dual bundle E*.

G-equivariant maps Fy — F, give rise to fiber bundle homomorphisms Fy(P) —
F5(P). For instance, if V' is a G-representation, the map

GxV =V, (a,v) = av

is equivariant for the G-action g¢.(a,v) = (gag™',g.v) on G x V. It follows that one
obtains an action of the group bundle G(P) on V(P).

2.4. Sections. Let # : F — B be a fiber bundle with fiber F. A smooth map
oc: B — FE is called a section of £/ if m 0o 0 = Idg. The set of sections will be denoted
['*(B,E). For a vector bundle, it is a vector space, for an algebra bundle it is an
algebra, for a group bundle it is a group. Let P — B be a principal G-bundle, and
F a G-manifold. The pull-back bundle 7*F(P) is canonically isomorphic to the trivial
bundle:

T F(P)= P x F.
Hence, pull-back of sections gives a canonical isomorphism,
(B, F(P))= C™(P, F)“.

For sections o € T'™(B, F(P)) we will denote by & € C®(P,F)“ the corresponding
equivariant function.

Group bundles and vector bundles always have a distinguished section, the identity
section resp. zero section. In general, fiber bundles need not admit any sections at all.
A principal fiber bundle has a section if and only if it is trivializable, and the choice of a
section is equivalent to a choice of trivialization. Indeed, given ¢ : P — B X G one can
define a section o(b) = ¢~'(b, e). Conversely, given o one defines ¢~' : B x G — P by
¢~'(b,9) = g.o(b).

For vector bundles E — B, one can define a space of E-valued differential forms

O¥(B,E)=T>(B,\*T"M © E).
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It is a module for the algebra Q*(B) but does not carry a natural differential. Suppose
E =P XV is an associated bundle. Then there is a canonical identification,

OMB,EY= (Of (P2 V)9 = QF . (P, V).

basic

The isomorphism is obtained as follows: By construction we have a bundle homomor-
phism P x V — E, (p,v) — G.(p,v) covering the bundle projection 7 : P — B. This
identifies the pull-back 7*E — P with the trivial bundle P x V. It follows that 7>
induces a map

™ : Q(B,E) = QYP,mE) = Q¥(P)a V.
The image takes values in horizontal forms (since the pull-back of a form under 7 vanishes

on vectors tangent to the fibers) which are G-invariant (since 7 is G-invariant). It is
easy to check that this map is 1-1 and onto QF . (P, V).

basic
We will often use this isomorphism, since it is usually easier to work with vector-

space valued forms rather than vector-bundle valued forms. If & € Q*(B,V(P)), we will
denote by & the corresponding form in QF (P, V)¢.

2.5. Gauge transformations. A principal bundle automorphism is a G-
equivariant diffeomorphism ¢ : P — P taking fibers to fibers. The group of principal
bundle automorphisms will be denoted Aut(P). The gauge group Gau(P) C Aut(P)
consists of automorphisms ¢ : P — P inducing the identity map on the base B. That
is, Gau(P) is defined by an exact sequence of groups

(6) 1 — Gau(P) — Aut(P) — Diff(B).

In general the last map is not onto. )
Any ¢ € Gau(P) gives rise to amap ¢: P — G by

(7) é(p) = o(p) " p.
The map qg 1s equivariant since
go(p)~".p = g.0(p) = d(g-p) = S(9-p)"'g-p

Conversely, given any equivariant map ¢ : P — G the map ¢ defined by (7) o(p) =
o(p)~t.pis a gauge transformation. The map ¢ +— ¢ is a group homomorphism since

(¢162)(p) = &1(D2(p) ™ p) = Da(p) - 01(p) = S2(p) ™' d1(p) " op = (4162)(p) " p
It therefore defines a canonical isomorphism
Gau(P) = C™(P,G)° = T>(B,G(P)).

The Lie algebra of the group Aut(P) is the Lie algebra aut(P) = X(P)¢ of G-invariant
vector fields on P, and the Lie algebra of the gauge group is the subspace gau(P) of
vertical invariant vector fields. One has an exact sequence of Lie algebras

(8) 0 — gau(P) — aut(P) — X(B) — 0.
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Here surjectivity of the map aut(P) — X(B) can be proved using a trivializing open
cover U, of B and a partition of unity subordinate to that cover. gau(P) can be identified
with sections of g(P):
gau(P) = Q°(B,g(P)).
The group Gau(P) acts on all associated bundles F(P), since ¢ xid: Px F — Px F

descends to quotients by the G-action. Furthermore it acts on the space of sections
['*(B,F(P)) by (¢.0)(b) = ¢.(0(b)). One has
bo=0d5 .

It F =V is a vector space on which G acts linearly, this action extends uniquely to
O (B,V(P)) in such a way that ¢.(aAB) = aA¢.ffor o € QF(B) and 8 € Q*(B,V(P)).
One has -

p.a=¢.&, a€ (B, V(P)).
Infinitesimally one has a Lie algebra action of gau(P) = Q°(B, g(P)); this action extends
to an action of the graded Lie algebra Q*(B,g(P)).

3. Connections

3.1. Connections on fiber bundles. For any fiber bundle 7 : E — B the tangent
bundle TE of the total space has a distinguished subbundle, the vertical bundle VE —
TE. The fiber V. E for m(x) = bis the image of T,( F}) under the natural inclusion T Fy, —
TE. An (Ehresmann) connection on E is the choice of a complementary horizontal
subbundle HE such that TE = VE ¢ HE. Equivalently, a connection is a bundle
projection TE — V E which is left-inverse to the inclusion VE — T FE; one defines HE
as the kernel of this projection. Ehresmann connections always exist: For instance, one
may take HE to be the orthogonal complement of V E for some Riemannian metric on
the total space of E. If ¢» : Y — B is a smooth map and HE C T F a given connection,
one obtains a connection on the pull-back bundle ¥»*E — Y by defining

HY"E = (¢,)"'HE.

Here ¢ : ¥v*E — F is the bundle map covering ¢, and ¢, : TY*E — TE its differential.

For any smooth path v : [to,t1] — B from by = ¥(to) to by = ~(t1), the connection
defines a parallel transport

II7: Ebo — E61
as follows: Given py € Eyp, let ¥ : [to,t1] — E be the unique path with 7 04 = ~ and
%’Ny(t) € HyyE. Put II'(po) := 7(t1). The definition extends uniquely to piecewise
smooth paths, in such a way that for any two paths 71,72 such that the end point of v,
equals the initial point of 7,,
TI72*" = 1172 o TI™

where 7, % 1 is the concatenation of v and ;. (This can be nicely phrased in terms of
“groupoid homomorphisms” but we won’t do this here.) If one fixes b = by and considers
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only loops v based at b, one obtains a map from the group L(M,b) of piecewise smooth
loops based at b into Diff(b), called holonomy of the connection:

Hol : L(M,b) — Diff(E,).

If B is connected, the holonomy subgroups with respect to different base points b, b’ are
isomorphic, each choice of a path from b, defines an isomorphism. A connection is
called flat if the holonomy for any contractible loop is trivial.

3.2. Principal connections. If F' has additional structure, one is interested in
connections such that parallel transport preserves that structure. For example, if E is a
vector bundle, each II” should be a linear map, for group bundles it should be a fiberwise
group homomorphism and so on.

To construct such connections it is most convenient to work with the corresponding
principal bundle.

For a principal G-bundle 7 : P — B, the map

d
PXQ%VR(%QH&@%Z@MWWF%M

defines a canonical trivialization of the vertival bundle VP. Since g.({p(p)) =
(Ady &)p(g.p), the trivialization is G-equivariant for the adjoint action of G on its Lie
algebra.

Hence an Ehresmann connection on P is equivalent to a vector bundle homomorphism
TP — P x g taking {p(p) to €. Equivalently, a connection is a Lie-algebra valued 1-form
8 € QY(P,g) with

(9) t(Ep)f =€ for all € € g.
The connection is G-equivariant if and only if the projection map TP — P X g is
G-equivariant, that is,

(10) g0 =Ad, 0 for all g € G.

DEFINITION 3.1. A (principal) connection on a fiber bundle is an equivariant Lie-
algebra valued 1-form # € QY(P,g)” such that «({p)f = € for all £ € g. The space of

principal connections will be denoted A(P).

For later reference let us note the infinitesimal version of the invariance condition:
Le, 0 =—[€,0].

PROPOSITION 3.2. The space A(P) of principal connections has a natural affine
structure, with underlying vector space the space Q' (B, g(P)) of 1-forms on B with values
in the adjoint bundle.

PROOF. We first show that A(P) is non-empty. This is obvious if P is a trivial
bundle P = B x GG. If P is non-trivial, choose an open cover U, of B with trivializations
do + T HU,) 2 U, X G, and a subordinate partition of unity p,. Over each U,, th
trivialization defines a principal connection #,. A global connection is given by 6 =
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Y o (m*pa)bs. The difference v = 6; — 6, between any two connections satisfies «(€p)(61 —
6;) = 0. It is thus a 1-form in (QL_(P) @ @)% = QY(B,g(P)). Conversely, adding such a

form 7 to a principal connection produces a new principal connection. O

By construction, parallel transport IIy with respect to a principal connection is a
G-equivariant map. That is, the holonomy at b € B becomes a group homomorphism
Hol: L(B,b) — Diff(P;)“.
Any choice of a base point p € P, identifies P, = G and therefore Diff(P,) = G.

3.3. Connections on associated bundles. If F is any G-manifold, the principal
connection on P defines a connection on P X F as follows: Let ¢: P X F — P xg F
the quotient map, and note that

HP & TF G ker(q.) =T(P x F).
Hence ¢.(TF) = V(P x¢ F), and
H(P x¢ F)=q.(HP)

defines a complementary subbundle. If G acts by automorphisms of a given structure
on F', parallel transport on the associated bundle preserves that structure.

(Say F'is a vector space V with G acting linearly. View P xV as a G-equivariant fiber
bundle over P. The pull-back of the connection on P x¢g V is given by the horizontal
subbundle H(P x V) = HP & ker(q.) (the horizontal subspace of P together with
orbit directions). Vectorfields taking values in HP preserve the linear structure, as do
generating vector field for the diagonal G-action. By equivariance, parallel transport on
P x V descends to parallel transport on the associated bundle.)

3.4. Covariant derivative. A form o € QF(P) is called horizontal if ((ép ) = 0 for
all ¢, and basic if in addition « is G-invariant. Denote the space of horizontal k-forms by
QF (P) and the space of basic k-forms by QF . (P). Pull-back induces an isomorphism
™ QFB) = QF

Fasic(P). A principal connection gives rise to a G-equivariant projection
operator

Hot? : QF(P) — QF (P).
The covariant derivative defined by # is the composition,
4% = Hor? od : QF(P) — QFHH(P).

More generally, let V' be a G-representation, and £ = P X V the corresponding asso-
ciated vector bundle. As we remarked earlier, pull-back defines an isomorphism

Qk(B7 E) = Qﬁor(/])7 W*E)G = Qﬁor(/])7 V)G

since 7*E = P x V canonically. The differential d’ (extended to V-valued forms) pre-
serves this space, so it defines an operator

4% QF(B,V(P)) — Q*(B,V(P)).
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Often one denotes this operator by VY or simply V. It respects the Q*(B)-module
structure, in the sense that
d(anp)=danp+(-1)rands,
for all a« € QF(B), 3 € QY(B,V(P)).
LEMMA 3.3. For all o € Of (P, V)“,
da =da+6.a
Here the “.7 denotes the Lie algebra representation of g on V.
ProOF. The right hand side is horizontal, since
t(ép)(da+0.6) = Le, & — du(€p)a+ £.a = 0.

Here we have used that «(&p)& = 0 by horizontality and L, & + £.& = 0 by invariance.
It remains to show that the two sides agree on horizontal vectors. But this is clear since
6.¢ vanishes on any k + 1 horizontal vector fields, and d’& = Hor? dé and dé agree on
any k + 1 horizontal vector fields, by definition. O

3.5. Curvature. Let 6 be a principal connection on 7 : P — B. The curvature of
f is the g-valued 2-form )
F?=a%.
By definition, F? is G-invariant and horizontal, so it can also be viewed as a 2-form
F? € O*(B,g(P)). One has the alternative expression
F'=d9+ 1[6,9).

To see this, note that df + %[9,9] agrees with df on horizontal vectors, and that it is
horizontal since

(p)d8 = Leph = —[£,6] = —Lu(p)[8, ).
PROPOSITION 3.4. The curvature satisfies the Bianchi identity
dF = 0.
PROOF. Since F? € Q2 (P,g)% Lemma 3.3 applies, and we can calculate
d°F% = dF? + [0, F¥) = Ld[8,6] + [0, 48] + 1[9, 16, 9]].

-2
The first two terms cancel and the last vanishes by the Jacobi identity for g. O
There are many different interpretations of what curvature “measures”. The following
Proposition says that curvature measures the extent to which the bracket of horizontal

vector fields fails to be horizontal. Equivalently (by Frobenius’ theorem) curvature mea-
sures the extent to which the horizontal distribution ker(8) C T'P fails to be integrable.

PROPOSITION 3.5. If X, Y € X(P) are horizontal vector fields on P,
9([X7 Y]) = _FG(va)‘
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Proor. Using that cx8 = y8 =0,
(9([X, Y]) = G(LXY) = LX(Ly(g) — LyLX(g = —LyLX(g = —Lbed(g = —FG(X,Y).
U

One can look at this result from a slightly different angle. The connection 6 determines
a horizontal lift of vector fields Lift’ : ¥(B) — %(P) such Lift’(X) is horizontal and
projects down to X (i.e. is m-related to X). In general, the lift is not a Lie algebra
homomorphism. However, since with any two pairs of m-related vector fields their bracket
is also 7m-related, the difference Lift’([X,Y]) — [Lift?(X), Lift?(Y)] is vertical. By the

proposition, if X,Y are any two vector fields on B,
FO(Lift?(X), Lift’(Y)) = 6( Lift’([X, Y]) — [Lift"(X), Lift"(V)]).

Thus curvature measures the extent to which the horizontal lift Lift? fails to be a Lie
algebra homomorphism. Finally, curvature measures the extent to which the covariant
differential d? fails to define a differential:

LEMMA 3.6. Let V' be a linear G-representation. In the notation of Lemma 3.3, if
o€ Qk(B,P X@a V),

(dg)zoz = FY.0.
PROOF. Using Lemma 3.3, (d°)%a = (d+6.)%a = (df).a+6.8.6 = (d6+1[0.6)).a O

3.6. Gauge transformations of connections. The group of automorphisms ¢ €
Aut(P) acts on the space A(P) of principal connections by pull-back by the inverse. For
the action of the subgroup Gau(P), there is an alternative formula for this action which
we derive below. Let 8%, 8% € Q!(G, g) the left- and right-invariant Maurer Cartan forms.
Thus if &, € are the left- and right-invariant vector fields on G equal to ¢ € g = T.G at
the group unit, ¢(£2)0L = € and +(¢7)9% = £. In a matrix representation of G, #F = g~'dg
and 6% = dgg~!. One has 6% = Ad,(#"). Under the inversion map ¢ : G — G, g+ g~ !
one has (*8 = —4%.

PROPOSITION 3.7. Let ¢ € Gau(P) and be C>=(P,G)Y the corresponding equivari-
ant function. For all X € aut(P) = X(P)°,

$.X — X € gau(P) = Xyere(P)“.
The corresponding section ¢ € Q°(B,g(P)) = gau(P) is given by
¢ = ex (976"

PRroOOF. The vector field ¢.X is invariant since ¢ commutes with the G-action, and
under m, projects to the same vector field as X since m o ¢ = w. This shows that
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0. X —X ¢ %Vert(P)G. Let ¥, denote the flow of X. Then

(6.X) = <] _sw)
= %t:oﬁg(‘lft(pﬁ‘l-‘l’t@)
= ] _ow )+ 3| s

The first term is Xy;,) since
o(p) ™ Wi(p) = Wi(S(p) ™ .p) = Lul((p)).

For the second term, define a curve on G starting at e by

9 = o(Ti(p)) "' d(p).

Then
d ~ d . d
d¢ t:0¢( t(p))_l b= T tzogtﬁb(}?)_l-? = a‘tzogt-ﬁb(}?) = (5P)¢(p),
with
d ~ . .
§=—gp|_ g = oX)(0F,)) = (1x(¢76")) , = (1x(676%)) ;)

O

PROPOSITION 3.8. The natural action of Gau(P) on A(P) is given by the formula,
¢.0 = (671)0 = Ady 0 — ¢"6".

PROOF. We will prove the equivalent property ¢ = Ad;_. 8 + QB*QL. It suffices to
check this identity on invariant vector fields X € X(P)“. By Proposition 3.7, and since
¢ f = Adg-, fforall f € C>(P,g)",

U(X)p™0 = ¢ (L(:X)8) = Adgoi ((9 X)) = o(X)(Ad o 0 + ¢76").
as desired. O

Let us (informally) regard A(P) as an infinite dimensional manifold, equipped with
an action of an infinite-dimensional Lie group. What are the generating vector fields, and
what are the stabilizer subgroupsI’ Given ¢ € Q°(P,g(P)) = gau(P), and identifying
TyA(P) = Q(P,g(P)), one has:

COROLLARY 3.9. The generating vector field for the action of ¢ on A(P) is given by
the covariant differential:

Cary(0) = &
PROOF. Let ( € Q%(P,g)¢ be the equivariant function corresponding to (. Then

d d xR
dt li=o exp(—t().6 = At li—o Adexp(—tf) 0 — exp(—1t(¢)"0
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where we have used Lemma 3.3. O

The stabilizer subgroups Gau(P)y can be characterized in terms of the holonomy.
Let us first describe how gauge transformations act on parallel transport. For any path
v i [to,t1] = B, let

0 .
H7 : 737(,50) — 737(,51)

denote parallel transport with respect to 8. We will need:
LEMMA 3.10. For all ¢ € Gau(P),
57 = ¢((t1)) o I 0 d(7(to)) ™"

We leave the proof as an exercise. (Hint: Pulling back P under v, we may assume B
is 1-dimensional.)
Suppose B is connected, and let b € B. Recall the holonomy homomorphism

Hol”: L(B.,b) — Aut(Py), v+ 1Y

from the group of loops based at b into the group Aut(P) = G of automorphisms of the
fiber. Let the holonomy subgroup G° C Aut(P,) be the image of the holonomy map, and
the restricted holonomy subgroup GY the image of the subgroup Lo(B,b) of contractible
loops. GY is a closed subgroup (hence, Lie subgroup) of Aut(P;), while G’ need not be
a closed subgroup.

PrOPOSITION 3.11. Let P — B be a principal G-bundle over a connected base, b €
B, and § € A(P). The evaluation map Gau(P)g — Aut(Ps), ¢ — &(b) is injective,
and defines an isomorphism of Gau(P)e with the centralizer in Aut(Py) of the holonomy
group:
Gau(P)o = Zaur,) (G”).

PROOF. A gauge transformation ¢ € Gau(P) preserves 8 if and only if it preserves
the horizontal subbundle HP C T'P. Equivalently, by the Lemma (with ¢! in place of
®) ¢ € Gau(P)g if and only if for all paths v : [to, 1] = B, ¢ commutes with parallel
transport:

(11) 6(3(11)) = TL, 0 6((to)) o 17",

Taking paths v with y(to) = b, it follows that if ¢ is trivial at b then ¢ is trivial
everywhere. That is, the evaluation map ¢ — ¢(b) is injective. Taking v € L(B,b), (11)
shows that ¢(b) centralizes GY. Conversely, if ¢(b) € Z(GY), then we can define a gauge
transformation ¢ € Gau(P)y by putting

6(b) =1L, 0 6(b) o I17"

where v is any path from b to V'; the condition ¢ € Gau(P)y guarantees that the right
hand side does not depend on the choice of ~. O

The proposition shows in particular that all stabilizer subgroups are finite dimensional
Lie groups. Moreover:
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COROLLARY 3.12. The based gauge group Gau(P,b) = {¢ € Gau(P)| ¢(b) = e} acts
freely on A(P).

COROLLARY 3.13. If G is abelian, every principal connection has stabilizer equal to
G, viewed as constant gauge transformations in Gau(P) = I'*(B,G(P))“ = C=(B, G).

The quotient A(P)/ Gau(P) is called the moduli space of connections. It is still
infinite-dimensional. To obtain finite dimensional moduli spaces, one has to impose
additional (gauge-invariant) constraints on #: E.g. that 4 is a flat connection, or more
generally a Yang-Mills connection. (See below.)

3.7. Reducible connections. Let P — B be a principal G-bundle.

DEFINITION 3.14. A reduction of the structure group from G to a Lie subgroup H C
G 1s a principal H-bundle @ — B together with an H-equivariant fiber bundle map
t: Q — P making Q into an H-invariant submanifold of P. A principal connection 6
on P is called reducible to H if the horizontal distribution HP for 6 is tangent to Q. A
connection on P — B is called irreducible if it is not reducible to a subgroup H of G.

Thus, 6 is a reducible connection if and only if its pull-back (*# takes values in b,
and is a principal connection for Q. The principal bundle P can be recovered from Q
as an assoclated bundle P & Q xg G where H acts on & from the left. The reducible
connections on P are those which come from connections on Q, using the construction
for associated bundles.

EXAMPLES 3.15. A choice of an inner product on a real vector bundle is equivalent
to a reduction of the structure group of the frame bundle Fr(E) from GL(n,R) to O(n),
a choice of an orientation is equivalent to a reduction of the structure group to the
identity component GL*(n,R). Similarly the choice of a complex structure, symplectic
structure, Hermitian structure, etc. are equivalent to various reductions of the structure
group. Connections which are reducible to these subgroups have parallel transports
preserving these extra structures.

Reducible connections can be recognized from their holonomy groups. Indeed, if 8 is
reducible to an H C G connection on @ C P, then its holonomy subgroup is contained
in Aut(Q,) C Aut(P,). Conversely, if the holonomy subgroup G’ C Aut(P,) at b € B
is a proper subgroup of Aut(P), pick p € Py and let Q be the set of all points in P
that can be reached from p by parallel transport. Then @ is a principal H-bundle for
the subgroup H corresponding to GY under the identification Aut(P,) = G given by the
choice of p.

We have shown above that the stabilizer group of  under gauge transformations is
isomorphic to the centralizer of GY. Hence, for an irreducible connection it is isomorphic
to the center Z(G). The converse is not true (cf. Corollary 3.13).

Reducibility can also be detected from the curvature, using that the holonomy group
and restricted holonomy group coincide in this case, together with:
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THEOREM 3.16 (Ambrose-Singer theorem). Let P — B be a principal bundle over a
connected base B, and 6 a principal connection. Given p € P let ) C B be the set of
all points which can be connected to p by parallel transport. Then the Lie algebra of the
holonomy subgroup relative to p is equal to the set of all FG(X, V), €g with ¢ € Q.

For a proof, see e.g. Kobayashi-Nomizu I, p. 89.

3.8. The universal connection. Consider A(P) X B as an infinite-dimensional
manifold, which is the base for a universal principal bundle

A(P) x P — A(P) x B

(not, of course, to be confused with the classifying bundle EG — BG, which often is
also called universal bundle). The tangent space at any point (6, p) is the direct sum
of Q'(B,g(P)) and of T,P. Let © € Q'(A(P) x P,g) be the 1-form such that Oy
vanishes on Q'(B,g(P)) and equals 8, on T,P. Clearly, © is a connection 1-form. It is
called the universal connection. Let us calculate its curvature F® = dO + 1[0, 0] of this

connection. For a,b € Q'(B,g(P)) and X € T,P we have
d
(a)(B)(AO) o) = (a) | _ Oosny) = 0.

(X)) (dO) 0 = 11X) S| Oppragy = (X,
and finally «(X)(Y)dO = «(X)e(Y)dé. Thus
F®a,b) =0, FP(X,Y)=F’(X)Y), F°X, a)=a(X).
The group Gau(P) acts on A(P) x P by automorphisms, preserving the universal con-

nection ©, hence also preserving the curvature F©.

3.9. Yang-Mills connections. Suppose 7 : P — B is a principal G-bundle over a
compact, oriented, Riemannian manifold B. The inner product on T'B gives rise to an
inner product on T*M and on all A¥T*M. Taking the inner product of differential form,
followed by integration over B with respect to the Riemannian volume form, defines an
inner product on Q*(B). In terms of the Hodge star operator,

= fans

This inner product extends to g(O)-valued forms, using the inner product on the vector

bundle g(P):
() = [ ()

Let || - || be the norm corresponding to (-,-). The Yang-Mills functional on A(P) is the
functional

M) = [P = [ (),
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It is invariant under the action of the gauge group
YM(6) = YM(¢.6),

hence all its critical points (called Yang-Mills connections) are invariant as well. If P
admits flat connections, then Ag,:(P) is the absolute minimum of YM.

PROPOSITION 3.17. A connection 8 is a critical point of the Yang-Mills functional
if and only if it satisfies the Yang-Mills equation,

&« F = 0.
PROOF. We use the formula F¥ = df + %[97 f]. For any n € O .(P,g)“,
PO = FO 4 dy+ 3]+ [8.9] = F° + d°n + L[n,n).

Hence
YM(6+n) - YM() = /(d"n,*F") —|—/(F9,>x<d977) + ...
B B
= 2/(n,d9*F9)—|—...
B
where ... denotes terms which are at least quadratic in . Thus # is a stationary point
if and only if fB(n,de * F?) = 0 for all 5, that is, d? x F? = 0. O

The quotient of the space of Yang-Mills connections by the action of the gauge group is
called the Yang-Mills moduli space.

The Yang Mills-equations depend upon the Riemannian metric on B only via the
star operator on Q?(B). The case dim B = 4 is special in that * takes Q?(B) to itself,
since 4 — 2 = 2. We mentioned already that in this case, the Yang-Mills equations are
conformally invariant: Multiplying the metric by a positive function does not change the
star operator in middle dimension, hence does not change the Yang-Mills equations. A
special type of Yang-Mills connections in 4 dimensions are those satisfying one of the
equations

«F'=F’ oo *F'=—F’
(self-duality resp. anti-self-duality) because for such connections, the Yang-Mills equa-
tions are a consequence of the Bianchy identity d°F% = 0. A change of orientation of
B changes the sign of the * operator, and therefore exchanges the notion of duality and
anti-self duality. The value of the Yang-Mills functional for an ASD connection is

YM(4) = —/(F",F").

From the theory of charactersitic classes, one knows that the right hand side is inde-
pendent of § (it is a multiple of the second Chern number ¢;(P)). Using this fact, and
decomposing the curvature of a connection into its self-dual ann ASD part, one finds that
for ¢3(P) > 0, ASD connections give the absolute minimum of the Yang-Mills functional.
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Anti-self dual connections over $* are also called instantons. Up to gauge trans-
formation, they can be viewed as connections on the trivial bundle over R* which are
flat outside a compact set. The famous ADHM construction (Atiyah-Drinfeld-Hitchin-
Manin, 1978) gives a complete description of such instantons.

The moduli space for anti-self dual YM-connections for G = SU(2) is the starting
point for Donaldson theory of 4-manifolds. As realized by Donaldson, they contain infor-
mation not only about the topology but also the differentiable structure of 4-manifolds.

In this course, we will be concerned with the very different case dim B = 2, and in
fact mostly with flat connections.



