
CHAPTER 1Principal bundles and connections1. Motivation: Gauge theoryThe simplest example of a gauge theory in physics is electromagnetism. RecallMaxwell's equations for an electromagentic �eld,~r � ~B = 0; ~r� ~E = � @@t ~B (homogeneous equations)(1)and ~r � ~E = �; ~r� ~B = @@t ~E +~j (inhomogeneous equations) :(2)Here we have chosen units so that �0; �0 and c are equal to 1. ~E is the electric �eld,~B the magnetic �eld, ~j the current density, and � the electric charge density. All ofthese �elds are functions on space-time R4, with coordinates x0 = t and (x1; x2; x3) = ~x.One can re-write Maxwell's equations in more concise, coordinate free form. Let theelectro-magnetic �eld strength F be the following 2-form on R4,F = dx0 ^ (E1dx1 + E2dx2 + E3dx3)�B1dx2 ^ dx3 +B2dx3 ^ dx1 +B3dx1 ^ dx2;and de�ne a charge-current density 3-form byJ = �dx1 ^ dx2 ^ dx3 � dx0 ^ (j1dx2 ^ dx3 + j2dx3 ^ dx1 + j3dx1 ^ dx2):Also � : 
k(R4) ! 
4�k(R4) be the star operator with respect to the standard ori-entation and the Minkowski metric on R4 1 Then Maxwell's equations are equivalentto dF = 0 (homogeneous equations)(3)and d � F = J (inhomogeneous equations):(4)The inhomogeneous equations require the integrability condition dJ = 0, which is easilyrecognized as charge conservation. Note that the Equations (4) are not quite as \natural"as the homogenous Maxwell-equations: The homogeneous Maxwell equations make sense1For any pseudo-Riemannian manifold (M; g) of dimension n, g extends to a metric on ^kT �M .If M is oriented, one therefore obtains a unique oriented volume form � such that jj�jj2 = �1. TheHodge star operator � : 
k(M ) ! 
n�k(M ) is de�ned by the equation (�; ��)� = � ^ �. For R4 withMinkowski metric, one has � = dx0 ^ dx1 ^ dx2 ^ dx3, thus e.g. �(dx0 ^ dx1) = dx2 ^ dx3.1



2 1. PRINCIPAL BUNDLES AND CONNECTIONSon any 4-manifold M while the inhomogeneous ones involve the choice of a (pseudo-Riemannian) metric g. More precisely, since multiplying g by a positive function doesnot change the star operator on 2-forms in R4, they depend on the conformal structureof g.The homogeneous Maxwell equations just say that F is a closed 2-form. Of courseon R4, any closed 2-form is exact, so F = dA for some 1-form A 2 
1(R4) called theelectro-magnetic potential. The 1-form A is de�ned up to a closed 1-form. On R4, anyclosed 1-form is exact so that any two potentials A;A0 for F are related by A0 = A+dffor some function f 2 
0(R4). One says that f de�nes a gauge transformation of thepotential A. At this stage, the potential A on R4 itself does not have \physical meaning":Only F = dA, i.e. the gauge equivalence class of A, can be interpreted in terms of ~Band ~E and can be measured in experiments. 2Using A the inhomogeneous Maxwell equation(s) can be obtained as Euler-Lagrangeequations for a Lagrange density (a 4-form)L = 12dA ^ �dA+A ^ J:The �rst term in this expression can also be written 12 jjFAjj2dx0 ^ dx1 ^ dx2 ^ dx3, byde�nition of the star operator. In terms of ~B and ~E, jjFAjj2 = jj ~Bjj2 � jj ~Ejj2. Thefunctional A 7! 12 RR4 dA ^ �dA(de�ned on potentials A which decrease su�ciently fast at in�nity) is a special case ofthe Yang-Mills functional.Gauge transformations becomemore interesting if the electromagnetic �eld is coupledto some particle �eld. Consider for example an electron described according to Dirac'stheory by a wave function  : R4 ! C 4 . (Here C 4 accomodates both the electron(as a spin 12 particle) and its anti-particle, the positron). Dirac's equation for a freeelectron reads, (iP3�=0 
�@�+m) = 0, where the gamma-matrices 
� are 4�4 matricesgiving a representation of the Cli�ord algebra of R4. The equation for  in a (non-quantized) electromagnetic �eld A =P3�=0A�dx� are obtained by \minimal coupling",i.e. replacing derivatives 1i@� by covariant derivatives 1i @� � eA�:� 3X�=0 
�(i@� + eA�) +m� = 0:(5)This equation is invariant under the gauge transformations,( ;A) 7! (eif ;A+ df);2Note that on a non-simply connected space timeM , it is possibly for two 1-forms A;A0 to have thesame di�erential without being gauge equivalent. Thus gauge equivalence of A is a �ner invariant than�eld strength FA = dA. The famous Aharanov-Bohm experiment shows that the gauge equivalenceclass does have physical meaning.



2. PRINCIPAL BUNDLES AND CONNECTIONS 3for f : R4 ! R. Note that only g = eif : R4 ! U(1) really enters the gauge transfor-mations. In terms of g, ( ;A) 7! (g  ;A� idgg�1):In this sense, the theory of an electromagnetic �eld is a gauge theory with gauge groupG = fg : R4 ! U(1). Note that the theory of an electron without an EM �eld only hasa global U(1) gauge symmetry: Electromagnetism is necessary to turn the global U(1)gauge symmetry into a local gauge symmetry.The idea of Yang-Mills theory is to replace the abelian gauge group U(1) by non-commutative Lie groups G. The gauge �elds A are now 1-forms with values in the Liealgebra g of G. Again there is a notion of curvature 2-form FA, which is interpreted asa �eld strength. The coupling of this gauge �eld to a particle �eld (with values in somecomplex inner product space V ) depends on the choice of a unitary representation of Gon V , and replacing derivatives by covariant derivatives in such a way that the coupledtheory becomes gauge invariant.2. Principal bundles and connectionsIn this section we review basic material on principal bundles, connections, curvatureand parallel transport.2.1. Fiber bundles. Let F be a given manifold. A (smooth) �ber bundle withstandard �ber F is a smooth map � : E ! B from a manifold E (the total space) to amanifold B (called base) with the following property, called local triviality: There existsan open covering U� of B and di�eomorphisms�� : ��1(U�)! U� � Fsuch that prU�(�(x)) = �(x). (That is, � intertwines � with projection to the �rstfactor.) We will denote the �bers by Eb = ��1(b).A morphism of �ber bundles �j : Ej ! Bj with �bers Fj is a smooth map � :E1 ! E2 taking �bers to �bers. In particular, � induces a map B1 ! B2 on the base.Conversely, suppose E ! B is a �ber bundle with �ber F , and  : Y ! B is a smoothmap. Then one can de�ne a pull-back bundle  �E ! Y as a �bered product �E = f(y; x) 2 Y � Ej  (y) = �(x)g:By construction one has a bundle map  �E ! E. The bundle E is called trivializable ifthere exists a bundle map � : E ! B � F ; the choice of � is called a trivialization.A special case of this construction is the �bered product of two �ber bundles E1; E2 !B over the same base: Let E1 � E2 ! B � B be the direct product, and diagB : B !B �B the diagonal map. One de�nesE1 �B E2 = diag�B(E1 �E2):Thus E1 �B E2 ! B has �bers(E1 �B E2)b = (E1)b � (E2)b:



4 1. PRINCIPAL BUNDLES AND CONNECTIONSAdditional structures on F give rise to special types of �ber bundles:� If F = V is a vector space, one de�nes a vector bundle with standard �ber V to bea �ber bundle � : E ! B where all �bers ��1(b) are vector spaces and the localtrivializations �� can be chosen to be �berwise linear. A homomorphism of twovector bundles is a �ber bundle homomorphism that is �berwise linear. The �beredproduct of vector bundles E1; E2 is a vector bundle (also called Whitney sum anddenoted E1 � E2). One has natural bundle maps E � E ! E (�berwise addition)and a map R� E ! E (�berwise scalar multiplication).� If F = G has the structure of a Lie group, one de�nes a group bundle G ! B withstandard �ber G to be a �ber bundle where all �bers carry group structures andthe local trivializations can be chosen to be �berwise group homomorphisms. Agroup bundle homomorphism is a �ber bundle homomorphism which is �berwisea group homomorphism. The �bered product of group bundles is a group bundle.One has natural bundle maps G �B G ! G (�berwise group multiplication) andG ! G (�berwise inversion).Similarly, one de�nes algebra bundles, Lie algebra bundles, ... An action of a groupbundle G ! B on a �ber bundle E ! B is a smooth map G�B E ! E preserving �bersand de�ning a group action �berwise. Similarly one can de�ne �berwise linear actionsof group or algebra bundles on vector bundles, ...Example 2.1. Given a vector bundle � : E ! B, one obtains a group bundleGL(E) ! B with �ber over b the invertible transformations (automorphisms) of thevector space Eb = ��1(b), and an algebra bundle End(E) ! B with �bers the en-domorphisms of Eb. There are natural �berwise linear maps GL(E) �B E ! E andEnd(E)�B E ! E.2.2. Principal bundles. Let G be a Lie group. A principal homogeneous G-spaceis a manifold X together with a transitive, free G-action. For example, G itself withaction g:a = ag�1 is a principal homogeneous space. (We could also use the left-action,of course.) Any principal homogeneous G-space X is isomorphic to this example: Givenx0 2 X there is a unique G-equivariant isomorphism X ! G taking x0 to e. The onlyreason for introducing the pedantic notion of principal homogeneous G-space is thatin general, there is no distinguished choice of x0. Note that the group Di�(X)G of G-equivariant di�eomorphisms of X to itself is di�eomorphic to G (but not canonicallyso), and that the space of G-equivariant di�eomorphisms Di�(X;G)G is a principalhomogeneous G-space (with G acting on the target G by left multiplication) which iscanonically isomorphic to X itself.Example 2.2. If V is a real vector space of dimension n, the space Fr(V ) of linearisomorphisms (\frames") V ! Rn is a principal homogeneous GL(n;R)-space. Theabstract vector space V can be recovered from X as a quotient,V = (Fr(V )�Rn)=GL(n;R)



2. PRINCIPAL BUNDLES AND CONNECTIONS 5by the diagonal action. In fact, all the \natural" (that is, GL(n;R)-equivariant) con-structions with Rn give rise to the corresponding constructions of V by a similar quo-tient: For instance, P (V ) = (Fr(V ) � RP n�1)=GL(n;R) is the projectivization of V ,^k(V ) = (Fr(V )�^k(Rn))=GL(n;R) is the exterior algebra, and so on.A principal G-bundle is a �ber bundle � : P ! B where each �ber Pb carries thestructure of a principal homogeneous G-space, and such that the local trivializiations ��can be chosen to be �berwise G-equivariant.Examples 2.3. a. Let S1 = R=Zthe standard circle. The k-fold covering � :S1 ! S1 is a principal bundle with structure group Zk =Z=kZ.b. Let � : E ! B be a real vector bundle of rank n. Then the frame bundle Fr(E)with �bers Fr(E)b = Fr(Eb) is a principal GL(n;R) bundle.c. If in addition the �bers Eb carry inner products and orientations, dependingsmoothly on b 2 B, one can de�ne the bundle FrSO(E)b = FrSO(Eb) of specialorthogonal frames, which is a principal SO(n) bundle.A homomorphism of principal G-bundles �j : Pj ! Bj is a G-equivariant smoothmap � : P1 ! P2 taking �bers to �bers. Any such map induces a smooth map  :B1 ! B2 on the base. Conversely, given a smooth map  : Y ! B and given a principalG-bundle � : P ! B, one can form the pull-back bundle  �P ! Y using the �beredproduct of  and �: That is, �P = f(y; p) 2 Y �Pj (y) = �(p)g:The bundle projection  �P ! Y is induced by projection Y � P ! Y to the �rstfactor, and projection to the second factor Y �P ! P gives rise to a principal bundlehomomorphism  �P ! P. In fact, any principal bundle homomorphism � : P1 ! P2identi�es P1 with the pull-back of P2 by the map B1 ! B2 on the base.2.3. Associated bundles. Let � : P ! B be a principal G-bundle. Given aG-manifold F , one de�nes the associated �ber bundle byF (P) � P �G F := (P � F )=G:The space P �G F is a �ber bundle over B = P=G with standard �ber F . The sections�1(B;P �G F ) of this �ber bundle are naturally identi�ed with the space C1(P; F )Gof equivariant maps P ! F .Examples 2.4. a. If V is a vector space on which G acts linearly, then P �G Vis a vector bundle. Taking V = g with the adjoint representation one obtains theadjoint bundle g(P ) := P �G g.b. If K is a Lie group on which G acts by automorphisms, P �GK is a group bundle.Taking K = G with G acting by the adjoint action, one obtains a group bundleG(P ) := P �G G which is also called the adjoint bundle. It has g(P ) as its Liealgebra bundle.



6 1. PRINCIPAL BUNDLES AND CONNECTIONSc. If F is a principal homogeneous H-space on which G acts H-equivariantly, theassociated bundle P �G F is a principal H-bundle. For example, if F = H = Gwith G acting by left multiplication one recovers P itself.d. Let E be a real vector bundle of rank n, and Fr(E) its Gl(n) frame bundle. Thebundle associated to the de�ning representation of GL(n) on Rn is E itself:Fr(E)�GL(n) Rn = E:The representation on ^kRn resp. SkRn gives the anti-symmetric resp. symmetricpowers ^kE and SkE. The bundle associated to the conjugation action of GL(n)on itself is the group bundle GL(E). For s 2 R, the real line bundle Fr(E)�GL(n)Rde�ned by the representation A 7! jdet(A)js of GL(n;R) is a real line bundle calledthe bundle of s-densities. The line bundle for the representation A 7! det(A) is thedeterminant line bundle det(E). The bundle to the contragredient representationA 7! (A�1)t on Rn is the dual bundle E�.G-equivariant maps F1 ! F2 give rise to �ber bundle homomorphisms F1(P) !F2(P). For instance, if V is a G-representation, the mapG � V ! V; (a; v) 7! a:vis equivariant for the G-action g:(a; v) = (gag�1; g:v) on G � V . It follows that oneobtains an action of the group bundle G(P) on V (P).2.4. Sections. Let � : E ! B be a �ber bundle with �ber F . A smooth map� : B ! E is called a section of E if � � � = IdB. The set of sections will be denoted�1(B;E). For a vector bundle, it is a vector space, for an algebra bundle it is analgebra, for a group bundle it is a group. Let P ! B be a principal G-bundle, andF a G-manifold. The pull-back bundle ��F (P) is canonically isomorphic to the trivialbundle: ��F (P) �= P � F:Hence, pull-back of sections gives a canonical isomorphism,�1(B;F (P)) �= C1(P; F )G:For sections � 2 �1(B;F (P)) we will denote by ~� 2 C1(P; F )G the correspondingequivariant function.Group bundles and vector bundles always have a distinguished section, the identitysection resp. zero section. In general, �ber bundles need not admit any sections at all.A principal �ber bundle has a section if and only if it is trivializable, and the choice of asection is equivalent to a choice of trivialization. Indeed, given � : P ! B �G one cande�ne a section �(b) = ��1(b; e). Conversely, given � one de�nes ��1 : B �G ! P by��1(b; g) = g:�(b).For vector bundles E ! B, one can de�ne a space of E-valued di�erential forms
k(B;E) = �1(B;^kT �M 
E):



2. PRINCIPAL BUNDLES AND CONNECTIONS 7It is a module for the algebra 
?(B) but does not carry a natural di�erential. SupposeE = P �G V is an associated bundle. Then there is a canonical identi�cation,
k(B;E) �= (
khor(P)
 V )G =: 
kbasic(P; V ):The isomorphism is obtained as follows: By construction we have a bundle homomor-phism P � V ! E; (p; v) 7! G:(p; v) covering the bundle projection � : P ! B. Thisidenti�es the pull-back ��E ! P with the trivial bundle P � V . It follows that ��induces a map �� : 
k(B;E)! 
k(P; ��E) = 
k(P)
 V:The image takes values in horizontal forms (since the pull-back of a form under � vanisheson vectors tangent to the �bers) which are G-invariant (since � is G-invariant). It iseasy to check that this map is 1-1 and onto 
kbasic(P; V ).We will often use this isomorphism, since it is usually easier to work with vector-space valued forms rather than vector-bundle valued forms. If � 2 
?(B;V (P)), we willdenote by ~� the corresponding form in 
?hor(P; V )G.2.5. Gauge transformations. A principal bundle automorphism is a G-equivariant di�eomorphism � : P ! P taking �bers to �bers. The group of principalbundle automorphisms will be denoted Aut(P). The gauge group Gau(P) � Aut(P)consists of automorphisms � : P ! P inducing the identity map on the base B. Thatis, Gau(P) is de�ned by an exact sequence of groups1 �! Gau(P)! Aut(P)! Di�(B):(6)In general the last map is not onto.Any � 2 Gau(P) gives rise to a map ~� : P ! G by�(p) = ~�(p)�1:p:(7)The map ~� is equivariant sinceg ~�(p)�1:p = g:�(p) = �(g:p) = ~�(g:p)�1g:pConversely, given any equivariant map ~� : P ! G the map � de�ned by (7) �(p) =~�(p)�1:p is a gauge transformation. The map � 7! ~� is a group homomorphism since(�1�2)(p) = �1(~�2(p)�1:p) = ~�2(p)�1:�1(p) = ~�2(p)�1 ~�1(p)�1:p = (~�1 ~�2)(p)�1:pIt therefore de�nes a canonical isomorphismGau(P) �= C1(P; G)G �= �1(B;G(P)):The Lie algebra of the group Aut(P) is the Lie algebra aut(P) = X(P)G of G-invariantvector �elds on P, and the Lie algebra of the gauge group is the subspace gau(P) ofvertical invariant vector �elds. One has an exact sequence of Lie algebras0 �! gau(P) �! aut(P) �! X(B)! 0:(8)



8 1. PRINCIPAL BUNDLES AND CONNECTIONSHere surjectivity of the map aut(P) �! X(B) can be proved using a trivializing opencover U� of B and a partition of unity subordinate to that cover. gau(P) can be identi�edwith sections of g(P): gau(P) �= 
0(B; g(P)):The group Gau(P) acts on all associated bundles F (P), since ��id : P�F ! P�Fdescends to quotients by the G-action. Furthermore it acts on the space of sections�1(B;F (P)) by (�:�)(b) = �:(�(b)). One hasf�:� = ~�:~� :If F = V is a vector space on which G acts linearly, this action extends uniquely to
?(B;V (P)) in such a way that �:(�^�) = �^�:� for � 2 
?(B) and � 2 
?(B;V (P)).One has g�:� = ~�:~�; � 2 
?(B;V (P)):In�nitesimally one has a Lie algebra action of gau(P) = 
0(B; g(P)); this action extendsto an action of the graded Lie algebra 
?(B; g(P)).3. Connections3.1. Connections on �ber bundles. For any �ber bundle � : E ! B the tangentbundle TE of the total space has a distinguished subbundle, the vertical bundle V E ,!TE. The �ber VxE for �(x) = b is the image of Tx(Fb) under the natural inclusion TFb ,!TE. An (Ehresmann) connection on E is the choice of a complementary horizontalsubbundle HE such that TE = V E � HE. Equivalently, a connection is a bundleprojection TE ! V E which is left-inverse to the inclusion V E ! TE; one de�nes HEas the kernel of this projection. Ehresmann connections always exist: For instance, onemay take HE to be the orthogonal complement of V E for some Riemannian metric onthe total space of E. If  : Y ! B is a smooth map and HE � TE a given connection,one obtains a connection on the pull-back bundle  �E ! Y by de�ningH �E = (��)�1HE:Here � :  �E ! E is the bundle map covering  , and �� : T �E ! TE its di�erential.For any smooth path 
 : [t0; t1] ! B from b0 = 
(t0) to b1 = 
(t1), the connectionde�nes a parallel transport �
 : Eb0 ! Eb1as follows: Given p0 2 Eb0 let ~
 : [t0; t1] ! E be the unique path with � � ~
 = 
 andddt~
(t) 2 H~
(t)E. Put �
(p0) := ~
(t1). The de�nition extends uniquely to piecewisesmooth paths, in such a way that for any two paths 
1; 
2 such that the end point of 
1equals the initial point of 
2, �
2�
1 = �
2 ��
1where 
2 � 
1 is the concatenation of 
2 and 
1. (This can be nicely phrased in terms of\groupoid homomorphisms" but we won't do this here.) If one �xes b = b0 and considers



3. CONNECTIONS 9only loops 
 based at b, one obtains a map from the group L(M; b) of piecewise smoothloops based at b into Di�(b), called holonomy of the connection:Hol : L(M; b)! Di�(Eb):If B is connected, the holonomy subgroups with respect to di�erent base points b; b0 areisomorphic, each choice of a path from b; b0 de�nes an isomorphism. A connection iscalled 
at if the holonomy for any contractible loop is trivial.3.2. Principal connections. If F has additional structure, one is interested inconnections such that parallel transport preserves that structure. For example, if E is avector bundle, each �
 should be a linear map, for group bundles it should be a �berwisegroup homomorphism and so on.To construct such connections it is most convenient to work with the correspondingprincipal bundle.For a principal G-bundle � : P ! B, the mapP � g! V P; (p; �) 7! �P (p) := ddtjt=0 exp(�t�):pde�nes a canonical trivialization of the vertival bundle V P. Since g�(�P (p)) =(Adg �)P(g:p); the trivialization is G-equivariant for the adjoint action of G on its Liealgebra.Hence an Ehresmann connection on P is equivalent to a vector bundle homomorphismTP ! P�g taking �P (p) to �. Equivalently, a connection is a Lie-algebra valued 1-form� 2 
1(P; g) with �(�P )� = � for all � 2 g:(9)The connection is G-equivariant if and only if the projection map TP ! P � g isG-equivariant, that is, g�� = Adg � for all g 2 G:(10)Definition 3.1. A (principal) connection on a �ber bundle is an equivariant Lie-algebra valued 1-form � 2 
1(P; g)G such that �(�P )� = � for all � 2 g. The space ofprincipal connections will be denoted A(P).For later reference let us note the in�nitesimal version of the invariance condition:L�P� = �[�; �]:Proposition 3.2. The space A(P) of principal connections has a natural a�nestructure, with underlying vector space the space 
1(B; g(P)) of 1-forms on B with valuesin the adjoint bundle.Proof. We �rst show that A(P) is non-empty. This is obvious if P is a trivialbundle P = B�G. If P is non-trivial, choose an open cover U� of B with trivializations�� : ��1(U�) �= U� � G, and a subordinate partition of unity ��. Over each U�, thtrivialization de�nes a principal connection ��. A global connection is given by � =



10 1. PRINCIPAL BUNDLES AND CONNECTIONSP�(����)��: The di�erence 
 = �1� �2 between any two connections satis�es �(�P )(�1��2) = 0. It is thus a 1-form in (
1hor(P)
 g)G �= 
1(B; g(P)). Conversely, adding such aform 
 to a principal connection produces a new principal connection.By construction, parallel transport �
 with respect to a principal connection is aG-equivariant map. That is, the holonomy at b 2 B becomes a group homomorphismHol : L(B; b)! Di�(Pb)G:Any choice of a base point p 2 Pb identi�es Pb �= G and therefore Di�(Pb)G �= G.3.3. Connections on associated bundles. If F is any G-manifold, the principalconnection on P de�nes a connection on P �G F as follows: Let q : P � F ! P �G Fthe quotient map, and note thatHP � TF � ker(q�) = T (P � F ):Hence q�(TF ) = V (P �G F ), andH(P �G F ) = q�(HP)de�nes a complementary subbundle. If G acts by automorphisms of a given structureon F , parallel transport on the associated bundle preserves that structure.(Say F is a vector space V with G acting linearly. View P�V as a G-equivariant �berbundle over P. The pull-back of the connection on P �G V is given by the horizontalsubbundle H(P � V ) = HP � ker(q�) (the horizontal subspace of P together withorbit directions). Vector�elds taking values in HP preserve the linear structure, as dogenerating vector �eld for the diagonal G-action. By equivariance, parallel transport onP � V descends to parallel transport on the associated bundle.)3.4. Covariant derivative. A form � 2 
k(P) is called horizontal if �(�P)� = 0 forall �, and basic if in addition � is G-invariant. Denote the space of horizontal k-forms by
khor(P) and the space of basic k-forms by 
kbasic(P). Pull-back induces an isomorphism�� : 
k(B) �= 
kbasic(P). A principal connection gives rise to a G-equivariant projectionoperator Hor� : 
k(P)! 
khor(P):The covariant derivative de�ned by � is the composition,d� = Hor� �d : 
k(P)! 
k+1hor (P):More generally, let V be a G-representation, and E = P �G V the corresponding asso-ciated vector bundle. As we remarked earlier, pull-back de�nes an isomorphism
k(B;E) �= 
khor(P; ��E)G = 
khor(P; V )Gsince ��E = P � V canonically. The di�erential d� (extended to V -valued forms) pre-serves this space, so it de�nes an operatord� : 
k(B;V (P))! 
k+1(B;V (P)):



3. CONNECTIONS 11Often one denotes this operator by r� or simply r. It respects the 
?(B)-modulestructure, in the sense thatd�(� ^ �) = d� ^ � + (�1)k� ^ d��;for all � 2 
k(B); � 2 
l(B;V (P)).Lemma 3.3. For all � 2 
?hor(P; V )G,d� ~� = d~� + �:~�Here the \." denotes the Lie algebra representation of g on V .Proof. The right hand side is horizontal, since�(�P)(d~� + �:~�) = L�P ~�� d�(�P )~�+ �:~� = 0:Here we have used that �(�P)~� = 0 by horizontality and L�P ~� + �:~� = 0 by invariance.It remains to show that the two sides agree on horizontal vectors. But this is clear since�:~� vanishes on any k + 1 horizontal vector �elds, and d� ~� = Hor� d~� and d~� agree onany k + 1 horizontal vector �elds, by de�nition.3.5. Curvature. Let � be a principal connection on � : P ! B. The curvature of� is the g-valued 2-form ~F � = d��:By de�nition, ~F � is G-invariant and horizontal, so it can also be viewed as a 2-formF � 2 
2(B; g(P)). One has the alternative expression~F � = d� + 12[�; �]:To see this, note that d� + 12 [�; �] agrees with d� on horizontal vectors, and that it ishorizontal since �(�P)d� = L�P� = �[�; �] = �12�(�P)[�; �]:Proposition 3.4. The curvature satis�es the Bianchi identityd�F � = 0:Proof. Since ~F � 2 
2hor(P; g)G, Lemma 3.3 applies, and we can calculated� ~F � = d ~F � + [�; ~F �] = 12d[�; �] + [�;d�] + 12[�; [�; �]]:The �rst two terms cancel and the last vanishes by the Jacobi identity for g.There are many di�erent interpretations of what curvature \measures". The followingProposition says that curvature measures the extent to which the bracket of horizontalvector �elds fails to be horizontal. Equivalently (by Frobenius' theorem) curvature mea-sures the extent to which the horizontal distribution ker(�) � TP fails to be integrable.Proposition 3.5. If X;Y 2 X(P) are horizontal vector �elds on P,�([X;Y ]) = � ~F �(X;Y ):



12 1. PRINCIPAL BUNDLES AND CONNECTIONSProof. Using that �X� = �Y � = 0,�([X;Y ]) = �(LXY ) = LX(�Y �)� �Y LX� = ��Y LX� = ��Y �Xd� = � ~F �(X;Y ):One can look at this result from a slightly di�erent angle. The connection � determinesa horizontal lift of vector �elds Lift� : X(B) ! X(P) such Lift�(X) is horizontal andprojects down to X (i.e. is �-related to X). In general, the lift is not a Lie algebrahomomorphism. However, since with any two pairs of �-related vector �elds their bracketis also �-related, the di�erence Lift�([X;Y ]) � [Lift�(X);Lift�(Y )] is vertical. By theproposition, if X;Y are any two vector �elds on B,~F �(Lift�(X);Lift�(Y )) = ��Lift�([X;Y ])� [Lift�(X);Lift�(Y )]�:Thus curvature measures the extent to which the horizontal lift Lift� fails to be a Liealgebra homomorphism. Finally, curvature measures the extent to which the covariantdi�erential d� fails to de�ne a di�erential:Lemma 3.6. Let V be a linear G-representation. In the notation of Lemma 3.3, if� 2 
k(B;P �G V ), (d�)2� = F �:�:Proof. Using Lemma 3.3, (d�)2~� = (d+�:)2~� = (d�):~�+�:�:~� = (d�+ 12 [�; �]):~�3.6. Gauge transformations of connections. The group of automorphisms � 2Aut(P) acts on the space A(P) of principal connections by pull-back by the inverse. Forthe action of the subgroup Gau(P), there is an alternative formula for this action whichwe derive below. Let �L; �R 2 
1(G; g) the left- and right-invariant Maurer Cartan forms.Thus if �L; �R are the left- and right-invariant vector �elds on G equal to � 2 g = TeG atthe group unit, �(�L)�L = � and �(�R)�R = �. In a matrix representation ofG, �L = g�1dgand �R = dgg�1. One has �R = Adg(�L). Under the inversion map � : G! G; g 7! g�1one has ���L = ��R.Proposition 3.7. Let � 2 Gau(P) and ~� 2 C1(P; G)G the corresponding equivari-ant function. For all X 2 aut(P) = X(P)G,��X �X 2 gau(P) = Xvert(P)G:The corresponding section � 2 
0(B; g(P)) �= gau(P) is given by~� = �X(~���R):Proof. The vector �eld ��X is invariant since � commutes with the G-action, andunder �� projects to the same vector �eld as X since � � � = �. This shows that



3. CONNECTIONS 13��X �X 2 Xvert(P)G. Let 	t denote the 
ow of X. Then(��X)p = ddt���t=0�(	t(p))= ddt���t=0 ~�(	t(p))�1:	t(p)= ddt���t=0 ~�(p)�1:	t(p) + ddt���t=0 ~�(	t(p))�1:p:The �rst term is X�(p) since~�(p)�1:	t(p) = 	t(~�(p)�1:p) = 	t(�(p)):For the second term, de�ne a curve on G starting at e bygt = ~�(	t(p))�1 ~�(p):Then ddt���t=0 ~�(	t(p))�1:p = ddt���t=0gt ~�(p)�1:p = ddt���t=0gt:�(p) = (�P )�(p);with � = � ddt���t=0gt = �(~��Xp)(�L~�(p)) = ��X(~���L)�p = ��X(~���R)��(p):Proposition 3.8. The natural action of Gau(P) on A(P) is given by the formula,�:� = (��1)�� = Ad~� � � ~���R:Proof. We will prove the equivalent property ��� = Ad~��1 � + ~���L: It su�ces tocheck this identity on invariant vector �elds X 2 X(P)G. By Proposition 3.7, and since��f = Ad~��1 f for all f 2 C1(P; g)G,�(X)��� = ��(�(��X)�) = Ad~��1(�(��X)�) = �(X)(Ad~��1 � + ~���L):as desired.Let us (informally) regard A(P) as an in�nite dimensional manifold, equipped withan action of an in�nite-dimensional Lie group. What are the generating vector �elds, andwhat are the stabilizer subgroups? Given � 2 
0(P; g(P)) �= gau(P), and identifyingT�A(P) �= 
1(P; g(P)), one has:Corollary 3.9. The generating vector �eld for the action of � on A(P) is given bythe covariant di�erential: �A(P)(�) = d��:Proof. Let ~� 2 
0(P; g)G be the equivariant function corresponding to �. Thenddt���t=0 exp(�t�):� = ddt���t=0Adexp(�t~�) � � exp(�t~�)��R= �[~�; �] + d~� = d� ~�



14 1. PRINCIPAL BUNDLES AND CONNECTIONSwhere we have used Lemma 3.3.The stabilizer subgroups Gau(P)� can be characterized in terms of the holonomy.Let us �rst describe how gauge transformations act on parallel transport. For any path
 : [t0; t1]! B, let ��
 : P
(t0) ! P
(t1)denote parallel transport with respect to �. We will need:Lemma 3.10. For all � 2 Gau(P),��:�
 = �(
(t1)) ���
 � �(
(t0))�1:We leave the proof as an exercise. (Hint: Pulling back P under 
, we may assume Bis 1-dimensional.)Suppose B is connected, and let b 2 B. Recall the holonomy homomorphismHol� : L(B; b)! Aut(Pb); 
 7! ��
from the group of loops based at b into the group Aut(Pb) �= G of automorphisms of the�ber. Let the holonomy subgroup G� � Aut(Pb) be the image of the holonomy map, andthe restricted holonomy subgroup G�0 the image of the subgroup L0(B; b) of contractibleloops. G�0 is a closed subgroup (hence, Lie subgroup) of Aut(Pb), while G� need not bea closed subgroup.Proposition 3.11. Let P ! B be a principal G-bundle over a connected base, b 2B, and � 2 A(P). The evaluation map Gau(P)� ! Aut(Pb); � 7! �(b) is injective,and de�nes an isomorphism of Gau(P)� with the centralizer in Aut(Pb) of the holonomygroup: Gau(P)� �= ZAut(Pb)(G�):Proof. A gauge transformation � 2 Gau(P) preserves � if and only if it preservesthe horizontal subbundle HP � TP. Equivalently, by the Lemma (with ��1 in place of�) � 2 Gau(P)� if and only if for all paths 
 : [t0; t1] ! B, � commutes with paralleltransport: �(
(t1)) = �
 � �(
(t0)) ���1
 :(11)Taking paths 
 with 
(t0) = b, it follows that if � is trivial at b then � is trivialeverywhere. That is, the evaluation map � 7! �(b) is injective. Taking 
 2 L(B; b), (11)shows that �(b) centralizes G�. Conversely, if �(b) 2 Z(G�), then we can de�ne a gaugetransformation � 2 Gau(P)� by putting�(b0) = �
 � �(b) ���1
 ;where 
 is any path from b to b0; the condition � 2 Gau(P)� guarantees that the righthand side does not depend on the choice of 
.The proposition shows in particular that all stabilizer subgroups are �nite dimensionalLie groups. Moreover:



3. CONNECTIONS 15Corollary 3.12. The based gauge group Gau(P; b) = f� 2 Gau(P)j�(b) = eg actsfreely on A(P).Corollary 3.13. If G is abelian, every principal connection has stabilizer equal toG, viewed as constant gauge transformations in Gau(P) = �1(B;G(P))G = C1(B;G).The quotient A(P)=Gau(P) is called the moduli space of connections. It is stillin�nite-dimensional. To obtain �nite dimensional moduli spaces, one has to imposeadditional (gauge-invariant) constraints on �: E.g. that � is a 
at connection, or moregenerally a Yang-Mills connection. (See below.)3.7. Reducible connections. Let P ! B be a principal G-bundle.Definition 3.14. A reduction of the structure group from G to a Lie subgroup H �G is a principal H-bundle Q ! B together with an H-equivariant �ber bundle map� : Q ,! P making Q into an H-invariant submanifold of P. A principal connection �on P is called reducible to H if the horizontal distribution HP for � is tangent to Q. Aconnection on P ! B is called irreducible if it is not reducible to a subgroup H of G.Thus, � is a reducible connection if and only if its pull-back ��� takes values in h,and is a principal connection for Q. The principal bundle P can be recovered from Qas an associated bundle P �= Q�H G where H acts on G from the left. The reducibleconnections on P are those which come from connections on Q, using the constructionfor associated bundles.Examples 3.15. A choice of an inner product on a real vector bundle is equivalentto a reduction of the structure group of the frame bundle Fr(E) from GL(n;R) to O(n),a choice of an orientation is equivalent to a reduction of the structure group to theidentity component GL+(n;R). Similarly the choice of a complex structure, symplecticstructure, Hermitian structure, etc. are equivalent to various reductions of the structuregroup. Connections which are reducible to these subgroups have parallel transportspreserving these extra structures.Reducible connections can be recognized from their holonomy groups. Indeed, if � isreducible to an H � G connection on Q � P, then its holonomy subgroup is containedin Aut(Qb) � Aut(Pb). Conversely, if the holonomy subgroup G� � Aut(Pb) at b 2 Bis a proper subgroup of Aut(Pb), pick p 2 Pb and let Q be the set of all points in Pthat can be reached from p by parallel transport. Then Q is a principal H-bundle forthe subgroup H corresponding to G� under the identi�cation Aut(Pb) �= G given by thechoice of p.We have shown above that the stabilizer group of � under gauge transformations isisomorphic to the centralizer of G�. Hence, for an irreducible connection it is isomorphicto the center Z(G). The converse is not true (cf. Corollary 3.13).Reducibility can also be detected from the curvature, using that the holonomy groupand restricted holonomy group coincide in this case, together with:



16 1. PRINCIPAL BUNDLES AND CONNECTIONSTheorem 3.16 (Ambrose-Singer theorem). Let P ! B be a principal bundle over aconnected base B, and � a principal connection. Given p 2 P let Q � B be the set ofall points which can be connected to p by parallel transport. Then the Lie algebra of theholonomy subgroup relative to p is equal to the set of all ~F �(X;Y )q 2 g with q 2 Q.For a proof, see e.g. Kobayashi-Nomizu I, p. 89.3.8. The universal connection. Consider A(P) � B as an in�nite-dimensionalmanifold, which is the base for a universal principal bundleA(P)�P ! A(P)�B(not, of course, to be confused with the classifying bundle EG ! BG, which often isalso called universal bundle). The tangent space at any point (�; p) is the direct sumof 
1(B; g(P)) and of TpP. Let � 2 
1(A(P) � P; g) be the 1-form such that �(�;p)vanishes on 
1(B; g(P)) and equals �p on TpP. Clearly, � is a connection 1-form. It iscalled the universal connection. Let us calculate its curvature F� = d�+ 12 [�;�] of thisconnection. For a; b 2 
1(B; g(P)) and X 2 TpP we have�(a)�(b)(d�)(�;p) = �(a) ddt���t=0�(�+tb;p) = 0;�(X)�(a)(d�)(�;p) = �(X) ddt���t=0�(�+ta;p) = �(X)apand �nally �(X)�(Y )d� = �(X)�(Y )d�: ThusF�(a; b) = 0; F�(X;Y ) = F �(X;Y ); F�(X; a) = a(X):The group Gau(P) acts on A(P)�P by automorphisms, preserving the universal con-nection �, hence also preserving the curvature F�.3.9. Yang-Mills connections. Suppose � : P ! B is a principal G-bundle over acompact, oriented, Riemannian manifold B. The inner product on TB gives rise to aninner product on T �M and on all ^kT �M . Taking the inner product of di�erential form,followed by integration over B with respect to the Riemannian volume form, de�nes aninner product on 
?(B). In terms of the Hodge star operator,h�; �i = ZB � ^ ��:This inner product extends to g(O)-valued forms, using the inner product on the vectorbundle g(P): h�; �i = ZB(�; ��):Let jj � jj be the norm corresponding to h�; �i. The Yang-Mills functional on A(P) is thefunctional YM(�) = jjF �jj2 = ZB(F �; �F �):



3. CONNECTIONS 17It is invariant under the action of the gauge groupYM(�) = YM(�:�);hence all its critical points (called Yang-Mills connections) are invariant as well. If Padmits 
at connections, then A
at(P) is the absolute minimum of YM.Proposition 3.17. A connection � is a critical point of the Yang-Mills functionalif and only if it satis�es the Yang-Mills equation,d� � F � = 0:Proof. We use the formula ~F � = d� + 12 [�; �]. For any � 2 
1hor(P; g)G,~F �+� = ~F � + d� + 12 [�; �] + [�; �] = ~F � + d�� + 12 [�; �]:Hence YM(� + �)�YM(�) = ZB(d��; �F �) + ZB(F �; �d��) + : : := 2ZB(�;d� � F �) + : : :where : : : denotes terms which are at least quadratic in �. Thus � is a stationary pointif and only if RB(�;d� � F �) = 0 for all �, that is, d� � F � = 0.The quotient of the space of Yang-Mills connections by the action of the gauge group iscalled the Yang-Mills moduli space.The Yang Mills-equations depend upon the Riemannian metric on B only via thestar operator on 
2(B). The case dimB = 4 is special in that � takes 
2(B) to itself,since 4 � 2 = 2. We mentioned already that in this case, the Yang-Mills equations areconformally invariant: Multiplying the metric by a positive function does not change thestar operator in middle dimension, hence does not change the Yang-Mills equations. Aspecial type of Yang-Mills connections in 4 dimensions are those satisfying one of theequations �F � = F � or � F � = �F �(self-duality resp. anti-self-duality) because for such connections, the Yang-Mills equa-tions are a consequence of the Bianchy identity d�F � = 0. A change of orientation ofB changes the sign of the � operator, and therefore exchanges the notion of duality andanti-self duality. The value of the Yang-Mills functional for an ASD connection isYM(�) = �ZB(F �; F �):From the theory of charactersitic classes, one knows that the right hand side is inde-pendent of � (it is a multiple of the second Chern number c2(P)). Using this fact, anddecomposing the curvature of a connection into its self-dual ann ASD part, one �nds thatfor c2(P) � 0, ASD connections give the absolute minimum of the Yang-Mills functional.



18 1. PRINCIPAL BUNDLES AND CONNECTIONSAnti-self dual connections over S4 are also called instantons. Up to gauge trans-formation, they can be viewed as connections on the trivial bundle over R4 which are
at outside a compact set. The famous ADHM construction (Atiyah-Drinfeld-Hitchin-Manin, 1978) gives a complete description of such instantons.The moduli space for anti-self dual YM-connections for G = SU(2) is the startingpoint for Donaldson theory of 4-manifolds. As realized by Donaldson, they contain infor-mation not only about the topology but also the di�erentiable structure of 4-manifolds.In this course, we will be concerned with the very di�erent case dimB = 2, and infact mostly with 
at connections.


