
SIGN CONVENTIONS

1. Lie groups and Lie algebras

The prototype of a Lie algebra is the Lie algebra associated to any associative algebra,
with bracket the commutator. Vector fields on manifolds can be viewed as opearting
on functions, and their Lie bracket in that sense is just the commutator, [X, Y ] =
X ◦ Y − Y ◦X. For any Lie group G, the associated Lie algebra g is the Lie algebra of
left-invariant vector fields, where vector fields are viewed as operators on functions. A
Lie group action on a manifold M is a group homomorphism G→ Diff(M). For any such
action, one obtains an action on the algebra of functions, i.e. a group homomorphism
G→ Aut(C∞(M)) by (g.f)(x) = f(g−1.x).

1.1. Flows of vector fields. A flow is the same thing as an R-action, R→ Diff(M), t 7→
Ft. The corresponding action on functions is thus, (t.f)(x) = f(F−1

t (x)). We define the
vector field for the given flow by

(Xf)(x) =
∂

∂t

∣∣
t=0
f(F−1

t x).

The definition of the flow of a vector field results in the following convention for the Lie
derivative,

LX =
∂

∂t

∣∣∣
t=0

(F−1
t )∗.

Alternatively, (F−1
t )∗ ◦ LX = ∂

∂t
(F−1

t )∗.

The flow for the vector field X = ∂
∂x

on the real line is

Ft(x) = x− t
(with a minus sign!). More generally, the flow of a vector field X =

∑
i a

i(x) ∂
∂xi

is given
by the differential equation

ẋi = −ai(x(t)).

We can also consider time dependent vector fields, where X depends on t as well. If X =∑
i a

i(x, t) ∂
∂xi

then the corresponding ODE should be ẋi = −ai(x(t), t). In coordinate-

free fashion, we define the flow Ft of X in terms of the flow F̃t of the time-independent

vector field X̃ = X − ∂
∂s

on M × R, i.e. F̃t(x, s) = (Ft(x), s + t). Indeed, in local
coordinates this gives

ẋi = −ai(x(t), s(t)), ṡ = 1.
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This is consistent with

(F−1
t )∗ ◦ LXt =

∂

∂t
(F−1

t )∗.

(Note that, unlike the case of constant vector fields, the operators on the left don’t

commute.) For example, the vector field Xt = t ∂
∂x

has Ft(x) = x − t2

2
, hence F−1

t (x) =

x+ t2

2
. It’s easy to verify the identities above for this case.

1.2. Lie algebra of G as left-invariant vector fields. Consider G = GL(n,R). If
ξ ∈ gl(n,R), consider exp(tξ) ∈ GL(n,R) (exponential of matrices). Then ξ defines a
left-invariant vector field ξL with flow g 7→ g exp(−tξ), and a right-invariant vector field
ξR with flow g 7→ exp(−tξ)g.

(ξLf)(g) =
∂

∂t

∣∣
t=0
f
(
g exp(tξ)

)
, (ξRf)(g) =

∂

∂t

∣∣
t=0
f
(

exp(tξ)g
)
.

We should verify that for G = GL(n,R), the Lie bracket on g = gl(n,R) corresponds
to the commutator of matrices. Thus, let ξ, η ∈ gl(n,R). Clearly, [ξL, ζL] is again a
left-invariant vector field. To determine what it is, we may use a linear function f (e.g.,
matrix elements f(A) = Aij), and evaluate at the group unit. We calculate,

ξL(ηL(f))(e) =
∂

∂t
|t=0η

L(f)(exp tξ)

=
∂

∂t
|t=0

∂

∂s
|s=0f(exp(tξ) exp(sη))

=
∂

∂t
|t=0

∂

∂s
|s=0f

(
I + tξ + sη +

t2

2
ξ2 + tsξη +

s2

2
η2 + . . .

)
= f(ξη).

Hence ξL(ηL(f))(e)− ηL(ξL(f))(e) = f([ξ, η]) = [ξ, η]L(f)(e). This verifies

[ξL, ηL] = [ξ, η]L.

By a similar calculation, [ξR, ηR] = −[ξ, η]R. This motivates defining the Lie bracket for
general Lie groups in terms of left-invariant vector fields, in such a way that ξ 7→ ξL is
a Lie algebra homomorphism. One defines the exponential map exp: g→ G by

Ft(g) = g exp(−tξ),

where Ft is the flow of ξL. (One may also use ξR to define exp; the two definitions
coincide.)

Remark 1.1. Some authors prefer that a left G-action on a manifold defines a right-
action on functions, by (φg)(x) = φ(gx). Likewise a right-action on M defines a left-
action on C∞(M). (We generally prefer working with left actions throughout, but there
can be situations where right actions are ‘natural’: For example, if one considers ac-
tions of semi-groups.) Note that with this convention, a group homomorphism (resp.
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anti-homomorphism) G → Diff(M) induces a group anti-homomorphism (resp. homo-
morphism) G→ Aut(C∞(M)).

For an abelian group, left and right actions coincide. But in any case one obtains
a sign change in the definition of flow of a vector field: (Xf)(x) = ∂

∂t
|t=0f(Ft(x)). In

particular, the flow of ∂
∂x

on R is now x 7→ x + t. For GL(n,R), the flow g 7→ exp(tξ)g

corresponds to a right invariant vector field as (ξRf)(g) = ∂
∂t
|0f(exp(tξ)g), while similarly

g 7→ g exp(tξ) corresponds to a left invariant vector field ξL. Thus ξL defines a left-action
on C∞(G) corresponding to the right action on M = G, a 7→ ag. Likewise ξR defines
a right-action on C∞(G) corresponding to the left-action on G, a 7→ ga. Note that the
definition of left-invariant vector field is just as before; the same calculation as above
show [ξL, η]L = [ξ, η]L, as one would expect from a left action.

2. Symplectic forms

Consider he phase space R2, with coordinates q, p. The Hamiltonian for a particle in
a potential V is H = 1

2
p2 + V (q). Hamilton’s equation decree that the flow defined by

H is the solution of the differential equation

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
.

By our conventions, this is the flow of the vector field

XH =
∂H

∂q

∂

∂p
− ∂H

∂p

∂

∂q
.

The standard symplectic form on R2n is

ω =
∑
i

dqi ∧ dpi.

Thus, our sign convention for a Hamiltonian vector field is

ι(XH)ω = −dH.

If we put z = q + ip then ω = i
2
dz ∧ dz. In polar coordinates q = r cosφ, p = r sinφ,

ω = rdrdφ. We define Poisson brackets by

{F,H} = ω(XF , XH).

With this sign convention

X{F,H} = [XF , XH ], {H, ·} = LXH

We check:

d{F,H} = d(ω(XF , XH)) = dι(XH)ι(XF )ω = LXH ι(XF )ω = ι([XH , XF ])ω.

so X{F,H} = [XF , XH ], and

LXHF = ιXHdF = −ω(XF , XH) = −{F,H} = {H,F}.
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Explicitly, on R2n,

{F,H} =
n∑
i=1

(∂F
∂qi

∂H

∂pi
− ∂H

∂qi
∂F

∂pi

)
.

In particular, Xqi = ∂
∂pi
, Xpi = − ∂

∂qi
, and hence {qi, pj} = δij.

The Poisson bracket of functions F,H depends only on theit differentials. This defines
a bi-vector field

P (dF, dH) = {F,H}.
For the standard symplectic form, one gets

P =
n∑
i=1

∂

∂qi
∧ ∂

∂pi
.

Note that the maps P ] and ω[ are related by

P ] = −(ω[)−1.

Remark 2.1. There doesn’t seem to be a deep reason for this sign convention for P ; one
could also agree that P ] is the inverse to ω[, which then results in P (dF, dH) = −{F,H}.

3. Group actions

For any G-action on a manifold M , we obtain a G-action on C∞(M) by g.f = (g−1)∗f .
Thus if g = exp(tξ) is a 1-parameter group, the infinitesimal action is given by ξ.f =
d
dt
|t=0 exp(−tξ)∗f . Thus if we define

ξM(f) =
d

dt
|t=0 exp(−tξ)∗f,

we obtain a Lie homomorphism g 7→ X(M). For the standard (= counterclockwise)
S1 = R/Z action on C given by t.z = e2πitz, the generating vector field corresponding
to 1 ∈ R is obtained from the calculation

(1Cf)(z, z) =
d

dt
|t=0f(e−2πitz, e2πitz) = −2πiz

∂f

∂z
+ 2πiz

∂f

∂z
,

thus

1C = −2πiz
∂

∂z
+ 2πiz

∂

∂z
.

We have

ι(1C)ω = π(zdz + zdz) = πd|z|2.
We define the moment map Φ : M → g∗ for a Hamiltonian G-action to be an equivariant
map with X〈Φ,ξ〉 = −ξM , that is,

ι(ξM)ω = −d〈Φ, ξ〉.
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For example, the moment map for the S1 action on C is −π(q2 + p2). The extra sign
is natural, because the flow of the harmonic oscillator gives a rotation opposite to the
standard circle action (again, since q̇ > 0 if p > 0).

Remark 3.1. This is also natural from the point of view of “quantization”: The induced
action on the space of holomorphic functions (eiφ.f)(z) = f(e−iφz) has spectrum the
non-positive integers.

Let Cn have the symplectic form i
2

∑
i dzi ∧ dzi. The moment map for the T -action

on Cn, with weights α1, . . . , αn ∈ t∗, is

〈Φ(z), ξ〉 = −π
n∑
i=1

〈αi, ξ〉|zi|2.

4. Coadjoint orbits, Poisson bracket on g∗

Consider the coadjoint action,

g.µ = (Adg−1)∗µ.

Any ξ ∈ g defines a function on g∗, fξ : µ 7→ 〈µ, ξ〉. The action on such functions is then

g.fξ = fAdg ξ.

(Check: (g.fξ)(µ) = fξ(g
−1.µ) = 〈Ad∗g µ, ξ〉 = 〈µ,Adg ξ〉.) Infinitesimally, Lξg∗fη = f[ξ,η].

The symplectic form on a coadjoint orbit O ⊂ g∗ should be such that the action is
Hamiltonian, with moment map the inclusion. We claim that this gives

ω(ξO(µ), ηO(µ)) = 〈µ, [ξ, η]〉.

We check:

ω(ξO, ηO) = ι(ηO)ι(ξO)ω

= −ι(ηO)dfξ|O
= −(ι(ηg∗)dfξ)

∣∣∣
O

= −(L(ηg∗)fξ)
∣∣∣
O

= f[ξ,η]|O.
The Poisson structure on g∗ is defined in such a way that the inclusion of an orbit is a
Poisson map. This gives

{f, g}(µ) = 〈µ, [df(µ), dg(µ)]〉.

It is enough to check for f(µ) = 〈µ, ξ〉 and g(µ) = 〈µ, η〉. We have Xf (µ) = −ξO(µ),
and similarly for Xg. Thus

{f, g}(µ) = ω(Xf , Xg)(µ) = ω(ξO, ηO)(µ) = 〈µ, [ξ, η]〉,
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as claimed. Let ei be a basis of g, with dual basis ei ∈ g∗, and let µi be the corresponding
coordinates on g∗. Let ckij be the structure constants defined as [ei, ej] =

∑
k c

k
ijek. Then

the Poisson bivector is

Pg∗ = 1
2

∑
ijk

ckij µk
∂

∂µi
∧ ∂

∂µj
.

Indeed, for f = µi and g = µj we have df = ei, dg = ek, hence the above formula gives
P (dµi, dµj) = 〈µ, [ei, ej]〉 =

∑
k c

k
ijµk.

4.1. Symplectic volume of coadjoint orbits. The symplectic volume of a coadjoint
orbit, for G compact, may be computed as follows. Vhoose a positive Weyl chamber
t∗+ ⊂ t∗ ⊂ g∗. Choose an invariant inner product on g, thus identifying g ∼= g∗.

Proposition 4.1. For µ ∈ t∗+,

Vol(G.µ) =
∏′

α>0

〈α, µ〉
〈α, ρ〉

.

Here the product is over all those roots such that α · µ 6= 0.

Proof. We’ll explain a proof for the case that µ is regular. Let {eα, fα, α ∈ R+} be an
orthonormal basis of t⊥, such that adξ(eα) = 2π〈α, ξ〉fα. Let ω0 be the symplectic form
on t⊥ given by ω0(eα, fα) = 1. The symplectic form on G.µ at µ is given by

ω(eα, fα) = 〈µ, [eα, fα]〉 = 2π〈µ, α〉 = 2π〈µ, α〉ω0(eα, fα)..

Hence, the two Liouville forms differ by a factor
∏

α>0 2π〈α, µ〉. The volume with respect
to ω0 is just the Riemannian volume for the inner product on t⊥. It follows that

Vol(G.µ) =
∏
α>0

2π〈α, µ〉 vol(G/T ).

One may compute vol(G/T ) explicitly to

vol(G/T ) =
1∏

α>0 2π〈α, ρ〉
.

so that

Vol(G.µ) =
∏
α>0

〈α, µ〉
〈α, ρ〉

.

�

In particular, the symplectic volume of the coadjoint orbit through ρ is equal to 1.
This last fact may be seen, for example, by computing the Fourier transform of the
DH-measure of the coadjoint orbit, and taking the limit ξ → 0.
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5. Equivariant de Rham theory

LetM be aG-manifold. Recall that the Weil algebraWg = Sg∗⊗∧g∗ has a differential,

dW = ya(La ⊗ 1) + (va − 1
2
fabcy

byc)ιa.

Let M be a G-manifold. Then projecting out the ∧g∗ part should give a homomorphism
of differential algebras,

(W g ⊗ Ω(M))basic
∼= ΩG(M).

The term vaιa in the Weil differential determines the Cartan differential to be

dG = d− vaιMa = d− ι(ξM).

The corresponding equivariant symplectic form is

ωG(ξ) = ω − 〈Φ, ξ〉.

(Sometimes one does not insist on this correspondence with the Weil algebra, and uses
other choice dG = d + λι(ξM). Then ωG(ξ) = ω + λ〈Φ, ξ〉.

Let M be a compact oriented T -manifold with isolated fixed points. The correct
statement of the localization formula reads,∫

M

α(ξ) = (−1)dimM/2
∑
p

α(ξ)[p]∏
〈a, ξ〉

where the product is over the (real) weights of the T -action. To see this, consider
M = R2 ∼= C with standard orientation given by dxdy. Let S1 act on C with weight
a ∈ Z 6= 0. The generating vector field corresponding to ξ ∈ R is ξR2 = −2πaξ ∂

∂φ
. Let

χ ∈ C∞(R) be equal to 1 for t < 1 and equal to 0 for t > 2, and define an equivariantly
closed form by

α(ξ) = dG(χ(r)dφ) = χ′(r)drdφ+ 2πaξχ(r).

The integral of χ′(r)drdφ = χ′(r)
r

dxdy is equal to −2π (note that it should come out
negative, since we may arrange χ′(r) ≤ 0). On the other hand, α(ξ)[0] = 2π〈a, ξ〉.
Comparing, we find the above formula.

The formula for the Fourier transform of coadjoint orbits reads,∫
O
eω+2πi〈Φ,ξ〉 =

∑
w∈W (−1)l(w)e2πi〈wµ,ξ〉∏

2πi〈α, ξ〉

(Indeed, this is a special case of the localization formula applied to eωG(ζ) with ζ =
−2πiξ.) The factors may be verified by observing that the limit ξ → 0 should recover
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the symplectic volume. Set ξ = sρ and let s→ 0. Write t = exp(sµ). Then∏
α∈R+

2π〈α, ρ〉 vol(O) = lim
s→0+

(is)−#R+

∑
w∈W

(−1)l(w)e2πis〈wµ,ρ〉

= lim
s→0+

(is)−#R+

∏
α∈R+

(tα/2 − t−α/2)

= lim
s→0+

s−#R+

∏
α∈R+

2 sin(πs〈α, µ〉)

=
∏
α∈R+

2π〈α, µ〉.

5.1. Euler class. The Euler class (form) is defined in such a way that it is the pullback
of the Thom class. For R2 = C, with the circle action of weight a, the equivariant Thom
form is

Th(ξ) =
−1

2π
χ′(r)drdφ− aξχ(r),

where χ ∈ C∞(R) is a bump function, equal to 1 for t close to 0 and equal to 0 for large
t. The pull-back to 0 is −aξ. Thus, we see:

Lemma 5.1. Let T act on Cn with weights a1, . . . , an. The equivariant Euler form for
this action is

Eul(Cn, ξ) = (−1)n
∏
〈ai, ξ〉.

For non-isolated fixed points, the localization formula becomes∫
M

α(ξ) =
∑
F

∫
F

ι∗Fα(ξ)

Eul(νF , ξ)
.

(Actually, the formula holds for any F containing the fixed point set of ξ.) Note that the
signs have been absorbed into the Euler form. The formula for the Fourier transform of
coadjoint orbits generalizes to the following version of Duistermaat-Heckman:

〈m, e−2πi〈µ,ξ〉〉 =

∫
M

eω−2πi〈Φ,ξ〉 =
∑
F

∫
F

eωF−2πi〈ΦF ,ξ〉

Eul(νF , 2πiξ)
.

(Note that we now have the minus signs in the enumerator.)

6. Group-valued moment maps

Let θL = g−1dg, θR = dgg−1 be the left-/right invariant Maurer Cartan forms. They
satisfy

dθL = −1
2
[θL, θL], dθR = 1

2
[θR, θR].

Let η = 1
12
B(θL, [θL, θL]). The equivariant extension of η reads

ηG(ξ) = η − 1
2
B(θL + θR, ξ).
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We check: Since ξG = ξL − ξR,

ι(ξG)η =
1

4
B(ξ, [θL, θL])− 1

4
B(ξ, [θR, θR]) = −1

2
dB(ξ, θL + θR)

so

(d− ι(ξG))η = 1
2
dB(ξ, θL + θR) = (d− ι(ξG))B(ξ, θL + θR).

The moment map condition for a space with G-valued moment map should be ι(ξM)ω =
−1

2
B(θL + θR, ξ), so that its linearization reproduces the standard theory. We thus

require

dGω = Φ∗ηG.

The localization formula for DH-measures of group-valued moment maps states that 1

〈m, χλ〉 = dimVλ
∑

F⊂F(λ+ρ)

∫
F

eωFΦλ+ρ
F

Eul(νF ,−2πi(λ+ ρ))

We’d prefer a formula inolving χ∗λ = χλ. Recall that ∗(λ + ρ) = ∗λ + ρ = −w0(λ + ρ).
The fixed point set of −(λ = ρ) is, of course, the same as the fixed point set of (λ+ ρ),
and w0 moves the fixed point set by the corresponding element of NG(T ). Because of all
this, I think we also have

〈m, χλ〉 = dimVλ
∑

F⊂F(λ+ρ)

∫
F

eωFΦ
−(λ+ρ)
F

Eul(νF , 2πi(λ+ ρ))

Example 6.1. Let’s verify for a conjugacy class C = G. exp ξ. For simplicity, assume that
exp ξ is regula so that the volume is

Vol C =

∑
w(−1)l(w) twρ∏
α>0 2πi〈ρ, α〉

Clearly, we must have 〈m, χλ〉 = χλ(exp ξ). And this is exactly what we get from the
localization formula:

〈m, χλ〉 = dimVλ
∑
w∈W

w(t)−(λ+ρ)∏
2πi〈−w(α), λ+ ρ〉

=
dimVλ∏

2πi〈α, λ+ ρ〉
∑
w

(−1)l(w)tw(∗λ+ρ).

here replaced w−1 with ww−1
0 and used −w0(λ+ ρ) = ∗λ+ ρ.

One should verify this for conjugacy classes.

7. Pre-quantization

In this section, we take the equivariant differential d + λι(ξM). Later we specialize to
λ = −1.

1The sign in the Euler class wasn’t there in our papers; perhaps a matter of definition of Euler class??
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7.1. Circle bundles. Let π : P →M be a S1 = R/Z-bundle over a symplectic manifold
M . An invariant connection 1-form θ ∈ Ω1(P ) has curvature dθ. We call P a pre-
quantum circle bundle if dθ = π∗ω.

Suppose M is a Hamiltonian G-manifold, and that G acts on P , preserving θ. Then

0 = L(ξP )θ = ι(ξP )π∗ω + dι(ξP )θ = −π∗d〈Φ, ξ〉+ dι(ξP )θ.

One calls P a G-equivariant pre-quantum circle bundle if

ι(ξP )θ = π∗〈Φ, ξ〉.

Equivalently,

ξP = Lift(ξM) + π∗〈Φ, ξ〉 ∂
∂t
,

where ∂
∂t

is the generator of the S1-action with ι( ∂
∂t

)θ = 1. In terms of the equivariant
curvature

F θ
G(ξ) = dGθ = dθ + λι(ξP )θ,

the pre-quantum condition reads F θ
G = π∗ωG.

To fix signs, consider the example of a pre-quantized coadjoint orbit O = G.µ for µ
a weight. The pre-quantum line bundle should be Lµ = G ×Gµ Cµ, with the unique
left-invariant connection, and the pre-quantum circle bundle is the unit circle bundle in
Lµ. It’s easy to see that the left-invariant connection on P = G×Gµ U(1) is represented
by the 1-form ψ = 〈θL, µ〉 on G. The equivariant curvature of ψ is

dGψ = dψ + λι(−ξR)ψ = dψ − λ〈ξ,Ad∗g(µ)〉.

Since the moment map for a coadjoint orbit is the inclusion, this indicates that the
moment map condition should read

dGθ = −ωG.

7.2. Hermitian line bundles. Next, let L→M be a complex Hermitian line bundle.
We want to arrange the pre-quantization condition in such a way that for M = C, the
space of square integrable holomorphic sections for the canonical Hermitian connection
is non-empty.

A connection ∇ on L is a map on Γ∞(M,L) with the usual derivation property. The
curvature of∇ is the 2-form valued endomorphism defined as F∇ = ∇2 ∈ Ω2(M,End(L)).
For a complex line bundle, one usually identifies Aut(L) with C∞(M,C?) (acting by
multiplication) and End(L) with C∞(M,C), so F∇ becomes a complex-valued 2-form.
In local coordinates, if

∇σ = dσ + Aσ,

for a connection 1-form A ∈ Ω1(M,End(L)) = Ω1(M,C), ∇2σ = Adσ+ d(Aσ) = (dA)σ,
so

∇2 = dA.
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Consider M = C with trivial line bundle, with its standard holomorphic structure and
with a fiber metric 〈λz, λz〉 = h(z, z)|λz|2. It is well-known that the corresponding
Hermitian connection 1-form is given by

A = h−1∂h

(see e.g. [BGV], p.137 or [Wells], p. 79). Hence the curvature is

dA = ∂∂ log(h).

Suppose h = exp(−π|z|2), so that the space of square integrable sections of L is non-
empty. Then

dA = −π∂∂|z|2 = πdz ∧ dz =
2π

i
ω

This motivates the pre-quantization condition,

ω =
i

2π
F∇ = c1(∇).

(The factor 2π is not so important, but the sign is.) The sign convention for the first
Chern form seems standard. (See e.g. [Wells] p.93).

Given a G-action on L, leaving ∇ invariant, one defines the equivariant covariant
derivative

∇G = ∇+ λι(ξM)

(recall that λ = −1 is appearantly the most natural choice) and the equivariant curvature

F∇,G = ∇2
G − λLξL

where LξL is the infinitesimal action on sections. (Note that without this term the
expression on the right hand side would not be C∞-linear). The equivariant curvature
is equivariantly closed: ∇GF∇,G = 0. The equivariant moment map condition reads,

λ(∇ξM − LξL)σ =
2π

i
〈Φ, ξ〉σ,

so if we make the natural choice λ = −1,

∇ξM − LξL = 2πi〈Φ, ξ〉σ.

8. Components of a linear map

Let V be a vector space and A : V → V a linear map. In a given basis ea of V we
define the components of A as

Aea = Abaeb.

With this convention,

(AB)ea = (AB)baaeb = A(B(ea)) = Bc
aA(ec) = Bc

aA
b
ceb,

that is,

AbcB
c
a = (AB)ba.
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Also, the dual map A∗ : V ∗ → V ∗ has components in the corresponding dual basis ea,

(A∗)a
b = Aba.

Check: (A∗)a
bea = A∗(eb), so

(A∗)c
b = 〈(A∗)abea, ec〉 = 〈A∗(eb), ec〉 = 〈eb, A(ec)〉 = Ac

r〈eb, er〉 = Ac
b.

Let g be a Lie algebra, with structure constants f cab in a basis ea defined as

[ea, eb] = f cabec.

For ξ = ξrer ∈ g we have [ξ, ea] = ξrf sraes, so

(adξ)
b
a = ξcf bra.

The corresponding formula for the co-adjoint action ad∗ξ = −(adξ)
∗ involves a minus

sign:

(ad∗ξ)a
b = −ξcf bra.

9. Orientation on the boundary

The usual definition of the integral of a differential form α = f(x1, . . . , xn)dx1 · dxn is
as an iterated integral:∫

α =

∫ ∞
−∞
· · ·
∫ ∞
−∞

(∫ ∞
−∞

f(x1, . . . , xn)dx1

)
dx2 · · · dxn.

For an oriented manifold with boundary, one wants to define the orientation on the
boundary in such a way that Stokes’ theorem holds:

∫
M

dα =
∫
∂M

α. Suppose the
boundary is defined by x1 = 0, and the manifold is on the side x1 ≥ 0. Then if
dx1 · · · dxn defines the orientation of M , the orientation of ∂M is given by −dx2 · · · dxn.
Put differently, if Λ is the volume form on M , and X an outward-pointing vector field
along ∂M , the orinetation on the boundary is defined by ιXΛ.

10. Integration over fibers

If π : E →M is a fiber bundle, one defines integration over the fibers π∗ : Ω∗cp(E)→
Ω∗(M) in such a way that ∫

E

π∗α ∧ β =

∫
M

α ∧ π∗β.

Suppose E = M × F where M,F are oriented. Let E be equipped with the product
orientation. If α is a form on M and β a form on F (viewed as a form on E), we have∫

E

π∗α ∧ β =

∫
M

α

∫
F

β.

Thus integration over the fiber of a form on the fiber just integrates out the fiber variables.
Thus

π∗(π
∗α ∧ β) = α ∧ π∗β.
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(Note that this depended on the choice of orientation on E as the product orienation on
M × F rather than F ×M .) Taking α = 1 we have the composition rule,

fE∗ = fM∗ ◦ π∗
where fE : E → pt is the map to a point. Push-forward is a chain map: π∗dβ = dπ∗β,
as can be seen from the definition: For α a k-form,

fM∗ (α ∧ π∗dβ) = fE∗ (π∗α ∧ dβ)

= (−1)kfE∗ (dπ∗α ∧ β)

= (−1)kfM∗ (dα ∧ π∗β)

= fM∗ α ∧ dπ∗β.

Now suppose F has a boundary, so E is a fiber bundle with boundary ∂E. Let π∂E be
the boundary projection. Then we have the following generalization of Stokes’ theorem:

π∗dβ = dπ∗β + (−1)dimMπ∂E∗ β.

We check, using the usual Stokes’ theorem:

fM∗ (α ∧ π∗dβ) = fE∗ (π∗α ∧ dβ)

= (−1)kfE∗ (d(π∗α ∧ β)− π∗dα ∧ β)

= (−1)kf∂E(π∗α ∧ β)− (−1)kfE∗ (π∗dα ∧ β)

= (−1)kfM∗ α ∧ π∂E∗ β + fM∗ α ∧ dπ∗β.

We could have avoided the extra sign, if we orient the fiber bundle as F ×M rather than
M × F .


