
MAT 157Y – Term exam #3: Solutions
No warranty: There may be lots of typos!

(1)

a)
∫

∞

0
x3e−x2

dx. We first consider the indefinite integral
∫

x3e−x2

dx. Substitute x2 = u, and use
integration by parts to get

∫

x3e−x2

dx =
1

2

∫

ue−udu = −1

2
ue−u +

1

2

∫

e−udu = −u + 1

2
e−u = −x2 + 1

2
e−x2

.

(Another approach: We guess a primitive of the form p(x)e−x2

, and get an equation for p by taking
the derivative.) From the primitive, we obtain the definitive integral as

∫

∞

0

x3e−x2

dx =
(

− x2 + 1

2
e−x2)

∣

∣

∣

∞

0
=

1

2
.

b)
∫

1
sin x

dx. This was discussed in class: We substitute tan(x/2) = u. Then dx = 2
1+u2 du and

sin(x) = 2u
1+u2 , so

∫

1

sin x
dx =

1

u
du = log |u| = log | tan(x/2)|.

c)
∫

9x+2
x2

−5x−6
dx. The denominator can be written as (x + 1)(x − 6). Using a partial fractions

decomposition, we obtain

f(x) =
9x + 2

x2 − 5x − 6
=

9x + 2

(x + 1)(x − 6)
=

1

x + 1
+

8

x − 6
.

(One reads off the coefficents of the partial fractions decomposition as discussed in class: for instance,
the coefficient of (x + 1)−1 is obtained by putting x = −1 in (x + 1)f(x) = 9x+2

x−6
. I don’t insist that

this step is discussed in detail.) Hence the integral is
∫

9x + 2

x2 − 5x − 6
dx = log |x + 1| + 8 log |x − 6|.

d)
∫

sin2(x) exdx =

∫

1 − cos(2x)

2
exdx

=
1

2
ex − 1

2

∫

cos(2x)exdx.

For the remaining integral, we use a double integration by parts:
∫

cos(2x)exdx =
1

2
sin(2x)ex − 1

2

∫

sin(2x)ex =
1

2
sin(2x)ex +

1

4
cos(2x)ex − 1

4

∫

cos(2x)ex

Hence
5

4

∫

cos(2x)exdx =
1

2
sin(2x)ex +

1

4
cos(2x)

and finally
∫

cos(2x)exdx = (
2

5
sin(2x) +

1

5
cos(2x))ex.



Again, an alternative method is to guess a primitive of the form (A sin(2x)+B sin(2x))ex, and find
A, B by differentiating.

(2) We use the following simple observation discussed in class: Suppose f, g are integrable over

each [a, b], and g ≥ f ≥ 0. Then
∫ b

a
g ≥

∫ b

a
f ≥ 0 for all b. Hence if

∫

∞

a
g exists, then so does

∫

∞

a
f .

a) The integral
∫

∞

0
exp(− 1

x2 ) dx does not exist: Since limx→∞ exp(− 1
x2 ) = exp(0) = 1, there exists

x0 with exp(− 1
x2 ) ≥ 1

2
for x ≥ x0. Hence

∫

∞

x0

exp(− 1
x2 ) dx does not exist.

b) The integral
∫

∞

1
1
x2 log(log(x))dx exists:

It is convenient to first substitute u = log(x), i.e. x = eu, dx = eudu. The integral becomes
∫

∞

0

e−2u log(u)eudu =

∫

∞

0

log(u)e−udu.

Now there are no convergence problems at the lower boundary, since for 0 < u ≤ 1, − log(u)e−u ≤
− log(u) and

∫ 1

0
log(u)(u log(u) − u)

∣

∣

1

0
= −1 exists. For the upper boundary we can e.g. use the

(very rough) estimate
log(u) ≤ u ≤ eu/2

for u ≥ u0 to see that the integral exists. (It’s also enough to use log(u) ≤ u, since we know that
∫

∞

0
ue−udu exists.)

(3)

a) f(x) = (xx)x. We have (xx)x = xx2

= exp(x2 log(x)). Hence, by chain rule

f ′(x) = exp(x2 log(x))(2x log(x) + x) = xx2+1(2 log(x) + 1).

b) Using the fundamental theorem of calculus and the chain rule, f ′(x) = sin(
√

x) exp(sin(x)) −
5x4 sin(

√
x5) exp(sin(x5)).

c) f(x) = exp(ex log log(x)) hence

f ′(x) = exp(ex log log(x))(ex log log(x) +
ex

x log x
) = log(x)(ex)(ex log log(x) +

ex

x log x
).

(4) a) Using the fundamental theorem of calculus, and the assumption f(x) ≤ h(x),

(log h)′(x) =
h′(x)

h(x)
=

f(x)g(x)

h(x)
≤ g(x).

b) Integrating this result from a to x, we obtain

log h(x) − log A = log h(x) − log h(a) ≤
∫ x

a

g(t)dt.

Hence

f(x) ≤ h(x) ≤ A exp(

∫ x

a

g(t)dt)

c) Integrating f ′ = fg with f(a) = 0, we obtain f(x) =
∫ x

a
f(t)g(t)dt for all t. Hence Gronwall’s

inequality holds for all A > 0:

0 ≤ f(x) ≤ A exp(

∫ x

a

g(t)dt)

for all A. Thus, for any given x, f(x) is less than any positive constant. This just means f(x) = 0.


