Exercise 1. Let Γ be a discrete group (a group with a countable number of elements, each one of which is an open set). Show (easy) that Γ is a zero-dimensional Lie group. Suppose that Γ acts smoothly on a manifold \tilde{M} , meaning that the action map

$$\begin{aligned} \theta : \Gamma \times \hat{M} &\longrightarrow \hat{M} \\ (h, x) &\mapsto h \cdot x \end{aligned}$$

is C^{∞} . Suppose also that the action is *free*, i.e. that the only group element with a fixed point is the identity. Finally suppose the action is *properly discontinuous*, meaning that the following conditions hold:

- i) Each $x \in \tilde{M}$ has a nbhd U s.t. $\{h \in \Gamma : (h \cdot U) \cap U \neq \emptyset\}$ is finite.
- ii) If $x, y \in \tilde{M}$ are not in the same orbit, then there are not U, V containing x, y respectively, such that $U \cap (\Gamma \cdot V) = \emptyset$.

Then show the following:

- a) Show that the quotient topological space $M = \tilde{M}/\Gamma$ is Hausdorff and has a countable basis of open sets.
- b) Show that M naturally inherits the structure of a smooth manifold.
- c) Let $\tilde{M} = S^n$ and Let $\Gamma = \mathbb{Z}/2\mathbb{Z}$ act via $h \cdot x = -x$, where h is the generator of Γ . Show that the hypotheses above are satisfied, and identify the resulting quotient manifold.
- d) Let $\tilde{M} = \mathbb{C}^n \{0\}$ and let the generator of $\Gamma = \mathbb{Z}$ act via $x \mapsto 2x$, for $x \in \tilde{M}$. Verify the hypotheses above and show the quotient manifold is diffeomorphic to $S^{2n-1} \times S^1$.
- d) Show that any discrete subgroup of a Lie group G acts freely and properly discontinuously on G by left multiplication.
- e) Show that the unipotent 3×3 matrices

$$\left\{ \begin{pmatrix} 1 & x & z \\ & 1 & y \\ & & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \right\}$$

form a Lie group G, and that the unipotent matrices with integer entries forms a discrete subgroup Γ . Show that G/Γ is a compact smooth 3dimensional manifold, where Γ acts by left multiplication.

Exercise 2. Show that the orthogonal, unitary and symplectic groups $O(n, \mathbb{R}), U(n)$ and $Sp(2n, \mathbb{R})$ are smooth manifolds and compute their dimension. Is U(n) diffeomorphic to $SU(n) \times S^1$? Are they isomorphic as groups?

Exercise 3. Determine the natural smooth manifold structure in each case, and establish which of the following are diffeomorphic:

- The intersection of the sphere $|z_1|^2 + |z_2|^2 + |z_3|^2 = 1$ in \mathbb{C}^3 with the complex cone $z_1^2 + z_2^2 + z_3^2 = 0$.
- The unit tangent vectors to the 2-sphere in \mathbb{R}^3
- The Lie group $SO(3,\mathbb{R})$ of 3×3 real special orthogonal matrices, i.e. $SO(3,\mathbb{R}) = \{T \in SL(3,\mathbb{R}) : TT^{\top} = 1\}$
- The solid unit 3-ball with antipodal boundary points identified
- $\mathbb{R}P^3$

Exercise 4. Prove that $S^2, S^1 \times S^1, S^3, S^1 \times S^2$, and $\mathbb{R}P^3$ are each null-cobordant, i.e. cobordant with the empty set. Prove that if M_i are compact smooth manifolds, then $M_1 \sqcup M_2$ is cobordant with the connect sum $M_1 \sharp M_2$.

Exercise 5. Prove that a smooth manifold with boundary is the disjoint union of its interior and its boundary. I.e. show that $M = Int(M) \sqcup \partial M$.