Exercise 1. Let M, N be compact manifolds with boundary, and let ψ : $\partial M \longrightarrow \partial N$ be a diffeomorphism. Explain how to define a smooth structure on $M \sqcup_{\psi} N = M \sqcup N / \sim$, where $x \sim y$ iff $\psi(x) = y$ or x = y. Is the manifold resulting from your procedure uniquely specified (up to diffeomorphism) by the data (M, N, ψ) provided above? Give a simple example where the diffeomorphism class of $M \sqcup_{\psi} N$ depends on ψ .

Exercise 2. Let $f: M \longrightarrow M$ be a smooth map and suppose p is a fixed point under f, i.e. f(p) = p. The point p is called a *Lefschetz fixed point* when the derivative map $Df(p): T_pM \longrightarrow T_pM$ does not have +1 as an eigenvalue.

Show that if M is compact and all fixed points for f are Lefschetz, then there are only finitely many fixed points for f.

Exercise 3. Prove that there are no smooth functions on a compact manifold M without critical points.

Exercise 4. A *Morse function* on a manifold M is a real-valued function all of whose critical points are nondegenerate, in the sense that the Hessian matrix at every critical point p is nondegenerate (this is independent of which chart is used to compute the Hessian).

Note: Morse functions are important because, while they are not regular everywhere, they do have a local classification near each critical point - look up the "Morse Lemma" if you are interested, it says that near each critical point there is a coordinate chart for which $f = \sum_i \pm x_i^2$.

Show that if $U \subset \mathbb{R}^n$ is an open set and $f : U \longrightarrow \mathbb{R}$ is a smooth function, then for almost all *n*-tuples $a = (a_1, \ldots, a_n) \in \mathbb{R}^n$, the modified function

$$f_a = f + \sum_{i=1}^n a_i x_i$$

is a Morse function. (Note: "almost all" means that the set of a for which f_a fails to be Morse is of measure zero in \mathbb{R}^n .)

Exercise 5 (Stability of Morse functions). Let f_0 be a Morse function on a compact manifold M, and suppose that $f : (-1,1) \times M \longrightarrow \mathbb{R}$ is a smooth function with $f|_{\{0\}\times M} = f_0$. Show that for ϵ sufficiently small, $f|_{\{\epsilon\}\times M}$ is also Morse.

(Intuitively, we think of f as giving a smooth family of maps $M \longrightarrow \mathbb{R}$, parametrized by $t \in (-1, 1)$.

Exercise 6. Consider the function $\mathbb{C}^2 \longrightarrow \mathbb{C}$ given by $f(z_1, z_2) = z_1^p + z_2^q$, for integers p, q which are relatively prime and ≥ 2 . Describe the regular and critical points and values of this map.

Show that the intersection $K = f^{-1}(0) \cap S^3$ is transverse, where we view $S^3 \subset \mathbb{R}^4 \cong \mathbb{C}^2$, and identify the manifold K. By considering the 2-tori $\{(z_1, z_2) : |z_1| = c_1 \text{ and } |z_2| = c_2\}$ for constants c_1, c_2 , describe the way in which K is embedded in S^3 , perhaps including a diagram.