Exercise 1. Let M, N be compact manifolds with boundary, and let ψ : $\partial M \longrightarrow \partial N$ be a diffeomorphism. Explain how to define a smooth structure on $M \sqcup_{\psi} N=M \sqcup N / \sim$, where $x \sim y$ iff $\psi(x)=y$ or $x=y$. Is the manifold resulting from your procedure uniquely specified (up to diffeomorphism) by the data (M, N, ψ) provided above? Give a simple example where the diffeomorphism class of $M \sqcup_{\psi} N$ depends on ψ.

Exercise 2. Let $f: M \longrightarrow M$ be a smooth map and suppose p is a fixed point under f, i.e. $f(p)=p$. The point p is called a Lefschetz fixed point when the derivative map $D f(p): T_{p} M \longrightarrow T_{p} M$ does not have +1 as an eigenvalue.

Show that if M is compact and all fixed points for f are Lefschetz, then there are only finitely many fixed points for f.
Exercise 3. Prove that there are no smooth functions on a compact manifold M without critical points.

Exercise 4. A Morse function on a manifold M is a real-valued function all of whose critical points are nondegenerate, in the sense that the Hessian matrix at every critical point p is nondegenerate (this is independent of which chart is used to compute the Hessian).

Note: Morse functions are important because, while they are not regular everywhere, they do have a local classification near each critical point - look up the "Morse Lemma" if you are interested, it says that near each critical point there is a coordinate chart for which $f=\sum_{i} \pm x_{i}^{2}$.

Show that if $U \subset \mathbb{R}^{n}$ is an open set and $f: U \longrightarrow \mathbb{R}$ is a smooth function, then for almost all n-tuples $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$, the modified function

$$
f_{a}=f+\sum_{i=1}^{n} a_{i} x_{i}
$$

is a Morse function. (Note: "almost all" means that the set of a for which f_{a} fails to be Morse is of measure zero in \mathbb{R}^{n}.)

Exercise 5 (Stability of Morse functions). Let f_{0} be a Morse function on a compact manifold M, and suppose that $f:(-1,1) \times M \longrightarrow \mathbb{R}$ is a smooth function with $\left.f\right|_{\{0\} \times M}=f_{0}$. Show that for ϵ sufficiently small, $\left.f\right|_{\{\epsilon\} \times M}$ is also Morse.
(Intuitively, we think of f as giving a smooth family of maps $M \longrightarrow \mathbb{R}$, parametrized by $t \in(-1,1)$.

Exercise 6. Consider the function $\mathbb{C}^{2} \longrightarrow \mathbb{C}$ given by $f\left(z_{1}, z_{2}\right)=z_{1}^{p}+z_{2}^{q}$, for integers p, q which are relatively prime and ≥ 2. Describe the regular and critical points and values of this map.

Show that the intersection $K=f^{-1}(0) \cap S^{3}$ is transverse, where we view $S^{3} \subset \mathbb{R}^{4} \cong \mathbb{C}^{2}$, and identify the manifold K. By considering the 2 -tori $\left\{\left(z_{1}, z_{2}\right)\right.$: $\left|z_{1}\right|=c_{1}$ and $\left.\left|z_{2}\right|=c_{2}\right\}$ for constants c_{1}, c_{2}, describe the way in which K is embedded in S^{3}, perhaps including a diagram.

