Exercise 1. Let $\varphi: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ be given by

$$
(r, \phi, \theta) \mapsto(r \sin \phi \cos \theta, r \sin \phi \sin \theta, r \cos \phi),
$$

where (r, ϕ, θ) are standard Cartesian coordinates on \mathbb{R}^{3}.

- Show that φ is a diffeomorphism onto its image when restricted to $U=\{(r, \phi, \theta): 0<r, 0<\phi<$ $\pi, 0<\theta<2 \pi\}$.
- Compute $\varphi^{*} d x, \varphi^{*} d y, \varphi^{*} d z$ where (x, y, z) are Cartesian coordinates for \mathbb{R}^{3}.
- Compute $\varphi^{*}(d x \wedge d y \wedge d z)$.
- For any vector field X, define ι_{X} to be the unique degree -1 (i.e. it reduces degree by 1) derivation (i.e. $\left.\iota_{X}(\alpha \wedge \beta)=\iota_{X}(\alpha) \wedge \beta+(-1)^{|\alpha|} \alpha \wedge \iota_{X}(\beta)\right)$ of the algebra of differential forms such that $i_{X}(f)=0$ and $i_{X} d f=X(f)$ for $f \in \Omega^{0}(M)$. Compute the integral

$$
\int_{S_{r}^{2}} \iota_{X}(d x \wedge d y \wedge d z),
$$

for the vector field $X=\varphi_{*} \frac{\partial}{\partial r}$, where S_{r}^{2} is the sphere of radius r.
Exercise 2. Let z be the standard complex coordinate on \mathbb{C}, i.e. $z=x+i y$, and form the complex differential form $\frac{d z}{z}$. Where is this well-defined? Decompose it into real and imaginary parts. Are these closed forms? Compute the integrals

$$
\int_{S^{1}} \iota^{*} \mu,
$$

for $\iota: S^{1} \longrightarrow \mathbb{C}$ the standard inclusion and μ the real or imaginary part of $\frac{d z}{z}$. What consequence does Stokes' theorem have in this context, for each part of $\frac{d z}{z}$?
Exercise 3. Let $f_{0}: M \longrightarrow N, f_{1}: M \longrightarrow N$ be smoothly homotopic maps, i.e. there exists a smooth map

$$
h: M \times \mathbb{R} \longrightarrow N
$$

such that $h(x, i)=f_{i}(x)$ for $i=0,1$. Then show that $\left(f_{1}^{*}-f_{0}^{*}\right) \alpha$ is exact when α is closed.
Exercise 4. Let $\left\{U_{i}\right\}, i=1, \ldots, N$ be a finite cover of a compact, oriented n-manifold M, and let $\alpha \in$ $\Omega^{n}(M)$. Express $\int_{M} \alpha$ in terms of the integrals

$$
\int_{U_{i_{1} \cap \ldots \cap U_{i_{k}}}} \alpha
$$

for k ranging from 1 to N.
Exercise 5. Compute all these de Rham cohomology groups for all degrees.

- What is the de Rham cohomology of $\mathbb{R}^{3}-\left\{p_{1} \cup \cdots \cup p_{k}\right\}$ where p_{i} are a collection of k distinct points?
- What is the de Rham cohomology of $\mathbb{R}^{3}-\left\{l_{1} \cup \cdots \cup l_{m}\right\}$ where l_{i} are a collection of m non-intersecting lines?
- What is the de Rham cohomology of $\mathbb{R}^{3}-\left\{p_{1} \cup \cdots \cup p_{k} \cup l_{1} \cup \cdots \cup l_{m}\right\}$, assuming no p_{i} lies on a l_{j}, $\left\{p_{i}\right\}$ are distinct, and $\left\{l_{j}\right\}$ are non-intersecting?
- What is the de Rham cohomology of $\mathbb{R}^{3}-\left\{l_{1} \cup l_{2}\right\}$, assuming that l_{1} intersects l_{2} in exactly one point?
- What is the de Rham cohomology of $\mathbb{R}^{3}-\left\{l_{1} \cup \cdots \cup l_{m}\right\}$, assuming that all the lines intersect the origin but are distinct?
- What is the de Rham cohomology of $\mathbb{R}^{3}-\left\{l_{1} \cup l_{2} \cup l_{3}\right\}$, assuming the lines intersect in exactly three distinct points?
- What is the de Rham cohomology of $\mathbb{R}^{n}-\left\{X_{i}\right\}$, where X_{i} is a i-dimensional linear subspace?

Note: The preceding question is similar to John Nash's blackboard question in the movie "A Beautiful Mind".

Exercise 6. Let $N=T^{*} M$ be the total space of the cotangent bundle of a smooth manifold M, and let $\pi: N \longrightarrow M$ be the usual bundle projection. We now describe a natural 1-form $\theta \in \Omega^{1}(N)$. At each point $p=(x, \xi) \in N$ (here $x \in M$ is a point and $\xi \in T_{x}^{*} M$ is a covector at x), the 1-form takes the following value on a vector $V \in T_{p} N$:

$$
\theta(V)=\xi\left(\pi_{*} V\right)
$$

i) Choosing coordinates $\left(x^{1}, \ldots, x^{n}\right)$ for an open set U containing x and using coordinates $\left(x^{1}, \ldots, x^{n}, \xi_{1}, \ldots \xi_{n}\right)$ to represent the points $\left(x \in U, \xi=\sum \xi_{i} d x^{i}\right) \in T^{*} U$, write the coordinate expression of θ and verify that it is smooth.
ii) Compute $\omega=d \theta \in \Omega^{2}(N)$. View the result as a smooth family of skew-symmetric 2 -forms on N. Compute the rank of this 2 -form at the point $p=(x, \xi)$ (i.e. if we write $\omega=\sum \omega_{i j} d x^{i} \wedge d x^{j}$, the rank is the rank of the matrix $\omega_{i j}$).
iii) Let $\mu \in \Omega^{1}(M)$ be a 1-form on M, and view it as a smooth section $\mu: M \longrightarrow T^{*} M$ of the cotangent bundle. Therefore it defines a smooth map $\mu: M \longrightarrow N$. Compute the pullbacks $\mu^{*}(\theta) \in \Omega^{1}(M)$ and $\mu^{*}(\omega) \in \Omega^{2}(M)$ as a function of μ.
iv) Just as a natural 1-form θ was defined on $T^{*} M$, define a natural k-form $\theta \in \Omega^{k}\left(N_{k}\right)$ on the total space of the bundle $N_{k}=\wedge^{k} T^{*} M$. If $\mu \in \Omega^{k}(M)$, view it as a smooth map $\mu: M \longrightarrow N_{k}$ and compute $\mu^{*}(d \theta)$. Does all this work for $k=0$?

