You may only quote theorems we have covered in the class so far.

Question 1. Let $\mu \in \Omega^{1}(M, \mathbb{R})$ be a 1 -form on a smooth manifold M such that $d \mu=0$ and $\mu(p) \neq 0$ for some $p \in M$. Show there exists a neighbourhood U of p and coordinates $\left(x_{1}, \ldots, x_{n}\right)$ in this neighbourhood such that $\mu=d x_{1}$ in U.

Question 2. Consider the differential 2-form on \mathbb{R}^{3} given by

$$
\rho=x d y \wedge d z+y d z \wedge d x+z d x \wedge d y
$$

and let $\iota: S^{2} \hookrightarrow \mathbb{R}^{3}$ be the usual inclusion of the unit sphere. Show that $\iota^{*} \rho$ determines an orientation on S^{2}, and compute $\int_{S^{2}} \iota^{*} \rho$ with respect to this orientation.

Question 3. Computations of de Rham cohomology: justify all computations.
i) Determine the de Rham cohomology groups of $D^{2} \backslash\{(0,0)\}$, where D^{2} is the open unit disc in \mathbb{R}^{2}. Give differential forms representing a basis for each cohomology group. Which of these forms can be chosen to have compact support표
ii) Using Mayer-Vietoris, determine the de Rham cohomology groups of $D^{2} \backslash\left\{p_{1}, \ldots, p_{k}\right\}$, for $\left\{p_{i}\right\}$ distinct points in D^{2}.
iii) Determine the de Rham cohomology groups of $\mathbb{R}^{3} \backslash Z$, where Z is the union of three distinct rays emanating from the origin.
iv) Using Mayer-Vietoris, determine the de Rham cohomology groups of Σ_{g}, the compact orientable surface of genus g.

Question 4. Computations of fundamental groups: give justification for all computations.
i) S^{n-1} is naturally included in S^{n} via the inclusion of \mathbb{R}^{n} in \mathbb{R}^{n+1}; by composition this defines a natural inclusion $S^{1} \subset S^{3}$. Compute $\pi_{1}\left(S^{3} \backslash S^{1}\right)$. Hint: write $S^{3}=\mathbb{R}^{3} \sqcup\{\infty\}$.
ii) By composing the above inclusions we also have $S^{m} \subset S^{n}$ for $m<n$. Compute $\pi_{1}\left(S^{n} \backslash S^{m}\right)$.
iii) The above inclusions induce inclusions $\mathbb{R} P^{m} \subset \mathbb{R} P^{n}$ for $m<n$; compute $\pi_{1}\left(\mathbb{R} P^{n} \backslash \mathbb{R} P^{m}\right)$.

Question 5. Give an example of a space with fundamental group $\mathbb{Z}_{3} \times \mathbb{Z}_{4}$ (hint: build a cell complex)
Question 6. Give an example of a covering which is not normal (abnormal?)

Bonus question: Compute $\pi_{1}\left(\left(S^{2} \times S^{2}\right) \backslash\left(S^{1} \times S^{1}\right)\right)$, where $S^{1} \times S^{1}$ includes via the product of the standard inclusion (as in Q. 4) with itself.

[^0]
[^0]: ${ }^{1} \rho$ has compact support when the closure of $\{x: \rho(x) \neq 0\}$ is compact.

