You may only quote theorems we have covered in the class so far.

Question 1. Let $\mu \in \Omega^1(M, \mathbb{R})$ be a 1-form on a smooth manifold M such that $d\mu = 0$ and $\mu(p) \neq 0$ for some $p \in M$. Show there exists a neighbourhood U of p and coordinates (x_1, \ldots, x_n) in this neighbourhood such that $\mu = dx_1$ in U.

Question 2. Consider the differential 2-form on \mathbb{R}^3 given by

$$\rho = xdy \wedge dz + ydz \wedge dx + zdx \wedge dy,$$

and let $\iota: S^2 \hookrightarrow \mathbb{R}^3$ be the usual inclusion of the unit sphere. Show that $\iota^* \rho$ determines an orientation on S^2 , and compute $\int_{S^2} \iota^* \rho$ with respect to this orientation.

Question 3. Computations of de Rham cohomology: justify all computations.

- i) Determine the de Rham cohomology groups of $D^2 \setminus \{(0,0)\}$, where D^2 is the open unit disc in \mathbb{R}^2 . Give differential forms representing a basis for each cohomology group. Which of these forms can be chosen to have compact support¹?
- ii) Using Mayer-Vietoris, determine the de Rham cohomology groups of $D^2 \setminus \{p_1, \ldots, p_k\}$, for $\{p_i\}$ distinct points in D^2 .
- iii) Determine the de Rham cohomology groups of $\mathbb{R}^3 \setminus Z$, where Z is the union of three distinct rays emanating from the origin.
- iv) Using Mayer-Vietoris, determine the de Rham cohomology groups of Σ_g , the compact orientable surface of genus g.

Question 4. Computations of fundamental groups: give justification for all computations.

- i) S^{n-1} is naturally included in S^n via the inclusion of \mathbb{R}^n in \mathbb{R}^{n+1} ; by composition this defines a natural inclusion $S^1 \subset S^3$. Compute $\pi_1(S^3 \setminus S^1)$. Hint: write $S^3 = \mathbb{R}^3 \sqcup \{\infty\}$.
- ii) By composing the above inclusions we also have $S^m \subset S^n$ for m < n. Compute $\pi_1(S^n \setminus S^m)$.
- iii) The above inclusions induce inclusions $\mathbb{R}P^m \subset \mathbb{R}P^n$ for m < n; compute $\pi_1(\mathbb{R}P^n \setminus \mathbb{R}P^m)$.

Question 5. Give an example of a space with fundamental group $\mathbb{Z}_3 \times \mathbb{Z}_4$ (hint: build a cell complex)

Question 6. Give an example of a covering which is not normal (abnormal?)

Bonus question: Compute $\pi_1((S^2 \times S^2) \setminus (S^1 \times S^1))$, where $S^1 \times S^1$ includes via the product of the standard inclusion (as in Q. 4) with itself.

 $^{{}^{1}\}rho$ has compact support when the closure of $\{x : \rho(x) \neq 0\}$ is compact.