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2 Homology

We now turn to Homology, a functor which associates to a topological space X a sequence of abelian groups
Hk(X). We will investigate several important related ideas:

• Homology, relative homology, axioms for homology, Mayer-Vietoris

• Cohomology, coefficients, Poincaré Duality

• Relation to de Rham cohomology (de Rham theorem)

• Applications

The basic idea of homology is quite simple, but it is a bit difficult to come up with a proper definition. In
the definition of the homotopy group, we considered loops in X, considering loops which could be “filled in”
by a disc to be trivial.

In homology, we wish to generalize this, considering loops to be trivial if they can be “filled in” by
any surface; this then generalizes to arbitrary dimension as follows (let X be a manifold for this informal
discussion).

A k-dimensional chain is defined to be a k-dimensional submanifold with boundary S ⊂ X with a chosen
orientation σ on S. A chain is called a cycle when its boundary is empty. Then the kth homology group is
defined as the free abelian group generated by the k-cycles (where we identify (S, σ) with −(S,−σ)), modulo
those k-cycles which are boundaries of k+1-chains. Whenever we take the boundary of an oriented manifold,
we choose the boundary orientation given by the outward pointing normal vector.

Example 2.1. Consider an oriented loop separating a genus 2 surface into two genus 1 punctured surfaces.
This loop is nontrivial in the fundamental group, but is trivial in homology, i.e. it is homologous to zero.

Example 2.2. Consider two parallel oriented loops L1, L2 on T 2. Then we see that L1 −L2 = 0, i.e. L1 is
homologous to L2.

Example 2.3. This definition of homology is not well-behaved: if we pick any embedded submanifold S in a
manifold and slightly deform it to S′ which still intersects S, then there may be no submanifold with S ∪ S′
as its boundary. We want such deformations to be homologous, so we slightly relax our requirements: we
allow the k-chains to be smooth maps ι : S −→M which needn’t be embeddings.

This definition is still problematic: it’s not clear what to do about non-smooth topological spaces, and also
the definition seems to require knowledge of all possible manifolds mapping into M . We solve both problems
by cutting S into triangles (i.e. simplices) and focusing only on maps of simplices into M .

Definition 11. An n-simplex [v0, · · · , vn] is the convex hull of n+ 1 ordered points (called vertices)in Rm
for which v1 − v0, . . . , vn − v0 are linearly independent.

The standard n-simplex is

∆n = {(t0, . . . , tn) ∈ Rn+1 |
∑
i

ti = 1 and ti ≥ 0 ∀i},

and there is a canonical map ∆n −→ [v0, · · · , vn] via

(t0, . . . , tn) 7→
∑
i

tivi,

called barycentric coordinates on [v0, · · · , vn]. A face of [v0, · · · , vn] is defined as the simplex obtained by
deleting one of the vi, we denote it [v0, · · · , v̂i, · · · , vn]. The union of all faces is the boundary of the simplex,
and its complement is called the interior, or the open simplex.
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Definition 12. A ∆-complex decomposition of a topological space X is a collection of maps σα : ∆n −→ X
(n depending on α) such that σα is injective on the open simplex ∆n

o , every point is in the image of exactly
one σα|∆n

o
, and each restriction of σα to a face of ∆n(α) coincides with one of the maps σβ , under the

canonical identification of ∆n−1 with the face (which preserves ordering). We also require the topology to
be compatible: A ⊂ X is open iff σ−1

α (A) is open in the simplex for each α.

It is easy to see that such a structure on X actually expresses it as a cell complex.

Example 2.4. Give the standard decomposition of 2-dimensional compact manifolds.

We may now define the simplicial homology of a ∆-complex X. We basically want to mod out cycles by
boundaries, except now the chains will be made of linear combinations of the n-simplices which make up X.

Let ∆n(X) be the free abelian group with basis the open n-simplices enα = σα(∆n
o ) of X. Elements∑

α nασα ∈ ∆n(X) are called n-chains (finite sums).
Each n-simplex has a natural orientation based on its ordered vertices, and its boundary obtains a natural

orientation from the outward-pointing normal vector field. Algebraically, this induced orientation is captured
by the following formula (which captures the interior product by the outward normal vector to the ith face):

∂[v0, · · · , vn] =
∑
i

(−1)i[v0, · · · , v̂i, · · · , vn].

This allows us to define the boundary homomorphism:

Definition 13. The boundary homomorphism ∂n : ∆n(X) −→ ∆n−1(X) is determined by

∂n(σα) =
∑
i

(−1)iσα|[v0,··· ,v̂i,··· ,vn].

This definition of boundary is clearly a triangulated version of the usual boundary of manifolds, and
satisfies ∂ ◦ ∂ = ∅, i.e.

Lemma 2.5. The composition ∂n−1 ◦ ∂n = 0.

Proof.

∂∂[v0 · · · vn] =
∑
j<i

(−1)i+j [v0, · · · , v̂j , · · · v̂i, · · · , vn] +
∑
j>i

(−1)i+j−1[v0, · · · , v̂i, · · · v̂j , · · · , vn]

the two displayed terms cancel.

Now we have produced an algebraic object: a chain complex (just as we saw in the case of the de Rham
complex). Let Cn be the abelian group ∆n(X); then we get the simplicial chain complex:

· · · // Cn+1
∂n+1 // Cn

∂n // Cn−1
// · · · // C1

∂1 // C0
∂0 // 0

and the homology is defined as the simplicial homology

H∆
n (X) :=

Zn = ker ∂n
Bn = im ∂n+1

Example 2.6. The circle is a ∆-complex with one vertex and one 1-simplex. so ∆0(S1) = ∆1(S1) = Z and
∂1 = 0 since ∂e = v − v. hence H∆

0 (S1) = Z = H∆
1 (S1) and H∆

k (S1) = 0 otherwise.

Example 2.7. For T 2 and Klein bottle: ∆0 = Z, ∆1 = 〈a, b, c〉 and ∆2 = 〈P,Q〉. For RP 2, same except
∆0 = Z2.
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Simplicial homology, while easy to calculate (at least by computer!), is not entirely satisfactory, mostly
because it is so rigid - it is not clear, for example, that the groups do not depend on the triangulation. We
therefore relax the definition and describe singular homology.

Definition 14. A singular n-simplex in a space X is a continuous map σ : ∆n −→ X. The free abelian
group on the set of n-simplices is called Cn(X), the group of n-chains.

There is a linear boundary homomorphism ∂n : Cn(X) −→ Cn−1(X) given by

∂nσ =
∑
i

(−1)iσ|[v0,··· ,v̂i,··· ,vn],

where [v0, · · · , v̂i, · · · , vn] is canonically identified with ∆n−1. The homology of the chain complex (C•(X), ∂)
is called the singular homology of X:

Hn(X) :=
ker ∂ : Cn(X) −→ Cn−1(X)
im∂ : Cn+1(X) −→ Cn(X)

.
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