
1300Y Geometry and Topology

1 Manifolds

A manifold is a space which looks like Rn at small scales (i.e. “locally”), but which may be very different
from this at large scales (i.e. “globally”). In other words, manifolds are made up by gluing pieces of Rn
together to make a more complicated whole. We would like to make this precise.

1.1 Topological manifolds

Definition 1. A real, n-dimensional topological manifold is a Hausdorff, second countable topological space
which is locally homeomorphic to Rn.

Note: “Locally homeomorphic to Rn” simply means that each point p has an open neighbourhood U for
which we can find a homeomorphism ϕ : U −→ V to an open subset V ∈ Rn. Such a homeomorphism ϕ is
called a coordinate chart around p. A collection of charts which cover the manifold, i.e. whose union is the
whole space, is called an atlas.

We now give a bunch of examples of topological manifolds. The simplest is, technically, the empty set.
More simple examples include a countable set of points (with the discrete topology), and Rn itself, but there
are more:

Example 1.1 (Circle). Define the circle S1 = {z ∈ C : |z| = 1}. Then for any fixed point z ∈ S1, write it
as z = e2πic for a unique real number 0 ≤ c < 1, and define the map

νz : t 7→ e2πit. (1)

We note that νz maps the interval Ic = (c− 1
2 , c+ 1

2 ) to the neighbourhood of z given by S1\{−z}, and it is
a homeomorphism. Then ϕz = νz|−1

Ic
is a local coordinate chart near z.

By taking products of coordinate charts, we obtain charts for the Cartesian product of manifolds. Hence
the Cartesian product is a manifold.

Example 1.2 (n-torus). S1 × · · · × S1 is a topological manifold (of dimension given by the number n of
factors), with charts {ϕz1 × · · · × ϕzn : zi ∈ S1}.

Example 1.3 (open subsets). Any open subset U ⊂ M of a topological manifold is also a topological
manifold, where the charts are simply restrictions ϕ|U of charts ϕ for M .

For example, the real n × n matrices Mat(n,R) form a vector space isomorphic to Rn2
, and contain an

open subset
GL(n,R) = {A ∈ Mat(n,R) : detA 6= 0}, (2)

known as the general linear group, which therefore forms a topological manifold.

Example 1.4 (Spheres). The n-sphere is defined as the subspace of unit vectors in Rn+1:

Sn = {(x0, . . . , xn) ∈ Rn+1 :
∑

x2
i = 1}.

Let N = (1, 0, . . . , 0) be the North pole and let S = (−1, 0, . . . , 0) be the South pole in Sn. Then we may
write Sn as the union Sn = UN ∪ US, where UN = Sn\{S} and US = Sn\{N} are equipped with coordinate
charts ϕN , ϕS into Rn, given by the “stereographic projections” from the points S,N respectively

ϕN : (x0, ~x) 7→ (1 + x0)−1~x, (3)

ϕS : (x0, ~x) 7→ (1− x0)−1~x. (4)

We have endowed the sphere Sn with a certain topology, but is it possible for another topological manifold
S̃n to be homotopic to Sn without being homeomorphic to it? The answer is no, and this is known as the
topological Poincaré conjecture, and is usually stated as follows: any homotopy n-sphere is homeomorphic
to the n-sphere. It was proven for n > 4 by Smale, for n = 4 by Freedman, and for n = 3 is equivalent
to the smooth Poincaré conjecture which was proved by Hamilton-Perelman. In dimensions n = 1, 2 it is a
consequence of the (easy) classification of topological 1- and 2-manifolds.
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Example 1.5 (Projective spaces). Let K = R or C (or even H). Then KPn is defined to be the space of
lines through {0} in Kn+1, and is called the projective space over K of dimension n.

More precisely, let X = Kn+1\{0} and define an equivalence relation on X via x ∼ y iff ∃λ ∈ K∗ = K\{0}
such that λx = y, i.e. x, y lie on the same line through the origin. Then

KPn = X/ ∼,

and it is equipped with the quotient topology.
The projection map π : X −→ KPn is an open map, since if U ⊂ X is open, then tU is also open

∀t ∈ K∗, implying that ∪t∈K∗tU = π−1(π(U)) is open, implying π(U) is open. This immediately shows, by
the way, that KPn is second countable.

To show KPn is Hausdorff (which we must do, since Hausdorff is preserved by subspaces and products,
but not quotients), we show that the graph of the equivalence relation is closed in X ×X (this, together with
the openness of π, gives us the Hausdorff property for KPn). This graph is simply

Γ∼ = {(x, y) ∈ X ×X : x ∼ y},

and we notice that Γ∼ is actually the common zero set of the following continuous functions

fij(x, y) = (xiyj − xjyi) i 6= j.

(Does this work for H? How can it be fixed?)
An atlas for KPn is given by the open sets Ui = π(Ũi), where

Ũi = {(x0, . . . , xn) ∈ X : xi 6= 0},

and these are equipped with charts to Kn given by

ϕi([x0, . . . , xn]) = x−1
i (x0, . . . , xi−1, xi+1, . . . , xn), (5)

which are indeed invertible by (y1, . . . , yn) 7→ (y1, . . . , yi, 1, yi+1, . . . , yn).

Example 1.6 (Connected sum). Let p ∈M and q ∈ N be points in topological manifolds and let (U,ϕ) and
(V, ψ) be charts around p, q such that ϕ(p) = 0 and ψ(q) = 0.

Choose ε small enough so that B(0, 2ε) ⊂ ϕ(U) and B(0, 2ε) ⊂ ϕ(V ), and define the map of annuli

φ :B(0, 2ε)\B(0, ε) −→ B(0, 2ε)\B(0, ε) (6)

x 7→ 2ε2

|x|2x. (7)

This is a homeomorphism of the annulus to itself, exchanging the boundaries. Now we define a new topological
manifold, called the connected sum M]N , as the quotient X/ ∼, where

X = (M\ϕ−1(B(0, ε))) t (N\ψ−1(B(0, ε))),

and we define an identification x ∼ ψ−1φϕ(x) for x ∈ ϕ−1(B(0, 2ε)). If AM and AN are atlases for M,N
respectively, then a new atlas for the connect sum is simply

AM |M\ϕ−1(B(0,ε))
∪ AN |N\ψ−1(B(0,ε))

Two important remarks concerning the connect sum: first, the connect sum of a sphere with itself is
homeomorphic to the same sphere:

Sn]Sn ∼= Sn.

Second, by taking repeated connect sums of T 2 and RP 2, we may obtain all compact 2-dimensional manifolds.
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Example 1.7 (General gluing construction). To construct a topological manifold “from scratch”, we should
be able to glue pieces of Rn together, as long as the gluing is consistent and by homeomorphisms. The
following is a method for doing so, tailor-made so that all the requirements are satisfied.

Begin with a countable collection of open subsets of Rn: A = {Ui}. Then for each i, we choose finitely
many open subsets Uij ⊂ Ui and gluing maps

Uij
ϕij // Uji , (8)

which we require to satisfy ϕijϕji = IdUji
, and such that ϕij(Uij ∩ Uik) = Uji ∩ Ujk for all k, and most

important of all, ϕij must be homeomorphisms.
Next, we want the pairwise gluings to be consistent (transitive) and so we require that ϕkiϕjkϕij =

IdUij∩Ujk
for all i, j, k.

Second countability of the glued manifold will be guaranteed since we started with a countable collection
of opens, but the Hausdorff property is not necessarily satisfied without a further assumption: we require that
∀p ∈ ∂Uij ⊂ Ui and ∀q ∈ ∂Uji ⊂ Uj, there exist neighbourhoods Vp ⊂ Ui and Vq ⊂ Uj of p, q respectively
with ϕij(Vp ∩ Uij) ∩ Vq = ∅.

The final glued topological manifold is then

M =
⊔
Ui
∼

, (9)

for the equivalence relation x ∼ ϕij(x) for x ∈ Uij. This space naturally comes with an atlas A, where the
charts are simply the inclusions of the Ui in Rn.

As an exercise, you may show that any topological manifold is homeomorphic to one constructed in this
way.

1.2 Smooth manifolds

Given coordinate charts (Ui, ϕi) and (Uj , ϕj) on a topological manifold, if we compare coordinates on the
intersection Uij = Ui ∩ Uj , we see that the map

ϕj ◦ ϕ−1
i |ϕi(Uij) : ϕi(Uij) −→ ϕj(Uij)

is a homeomorphism, simply because it is a composition of homeomorphisms. We can say this another way:
topological manifolds are glued together by homeomorphisms.

This means that we may be able to differentiate a function in one coordinate chart but not in another,
i.e. there is no way to make sense of calculus on topological manifolds. This is why we introduce smooth
manifolds, which is simply a topological manifold where the gluing maps are required to be smooth.

First we recall the notion of a smooth map of finite-dimensional vector spaces.

Remark 1 (Aside on smooth maps of vector spaces). Let U ⊂ V be an open set in a finite-dimensional
vector space, and let f : U −→ W be a function with values in another vector space W . The function f is
said to be differentiable at p ∈ U if there exists a linear map Df(p) : V −→W such that

||f(p+ x)− f(p)−Df(p)(x)|| = o(||x||),

where o : R+ −→ R is continuous at 0 and o(0) = 0, and we choose any inner product on V,W , defining the
norm || · ||. For infinite-dimensional vector spaces, the topology is highly sensitive to which norm is chosen,
but we will work in finite dimensions.

Given linear coordinates (x1, . . . , xn) on V , and (y1, . . . , ym) on W , we may express f in terms of its
m components fj = yj ◦ f , and then the linear map Df(p) may be written as an m × n matrix, called the
Jacobian matrix of f at p.

Df(p) =


∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fm

∂x1
· · · ∂fm

∂xn

 (10)
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We say that f is differentiable on U when it is differentiable at all p ∈ U and we say it is continuously
differentiable when

Df : U −→ Hom(V,W )

is continuous. The vector space of continuously differentiable functions on U with values in W is called
C1(U,W ).

The first derivative Df is also a map from U to a vector space (Hom(V,W )), therefore if its derivative
exists, we obtain a map

D2f : U −→ Hom(V,Hom(V,W )),

and so on. The vector space of k times continuously differentiable functions on U with values in W is called
Ck(U,W ). We are most interested in C∞ or “smooth” maps, all of whose derivatives exist; the space of
these is denoted C∞(U,W ), and hence we have

C∞(U,W ) =
⋂
k

Ck(U,W ).

Note: for a C2 function, D2f actually has values in a smaller subspace of V ∗ ⊗ V ∗ ⊗W , namely in
S2V ∗ ⊗W , since “mixed partials are equal”.

After this aside, we can define a smooth manifold.

Definition 2. A smooth manifold is a topological manifold equipped with an equivalence class of smooth
atlases, explained below.

Definition 3. An atlas A = {Ui, ϕi} for a topological manifold is called smooth when all gluing maps

ϕj ◦ ϕ−1
i |ϕi(Uij) : ϕi(Uij) −→ ϕj(Uij)

are smooth maps, i.e. lie in C∞(ϕi(Uij),Rn). Two atlases A,A′ are equivalent if A ∪ A′ is itself a smooth
atlas.

Note: Instead of requiring an atlas to be smooth, we could ask for it to be Ck, or real-analytic, or even
holomorphic (this makes sense for a 2n-dimensional topological manifold when we identify R2n ∼= Cn.

We may now verify that all the examples from section 1.1 are actually smooth manifolds:

Example 1.8 (Circle). For Example 1.1, only two charts, e.g. ϕ±1, suffice to define an atlas, and we have

ϕ−1 ◦ ϕ−1
1 =

{
t+ 1 − 1

2 < t < 0
t 0 < t < 1

2 ,

which is clearly C∞. In fact all the charts ϕz are smoothly compatible. Hence the circle is a smooth manifold.

The Cartesian product of smooth manifolds inherits a natural smooth structure from taking the Carte-
sian product of smooth atlases. Hence the n-torus, for example, equipped with the atlas we described in
Example 1.2, is smooth. Example 1.3 is clearly defining a smooth manifold, since the restriction of a smooth
map to an open set is always smooth.

Example 1.9 (Spheres). The charts for the n-sphere given in Example 1.4 form a smooth atlas, since

ϕN ◦ ϕ−1
S : ~z 7→ 1−x0

1+x0
~z = (1−x0)

2

|~x|2 ~z = |~z|−2~z,

which is smooth on Rn\{0}, as required.

Example 1.10 (Projective spaces). The charts for projective spaces given in Example 1.5 form a smooth
atlas, since

ϕ1 ◦ ϕ−1
0 (z1, . . . , zn) = (z−1

1 , z−1
1 z2, . . . , z

−1
1 zn), (11)

which is smooth on Rn\{z1 = 0}, as required, and similarly for all ϕi, ϕj.

The two remaining examples were constructed by gluing: the connected sum in Example 1.6 is clearly
smooth since φ was chosen to be a smooth map, and any topological manifold from Example 1.7 will be
endowed with a natural smooth atlas as long as the gluing maps ϕij are chosen to be C∞.
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