
1300Y Geometry and Topology

1 Manifolds

A manifold is a space which looks like Rn at small scales (i.e. “locally”), but which may be very different
from this at large scales (i.e. “globally”). In other words, manifolds are made up by gluing pieces of Rn
together to make a more complicated whole. We would like to make this precise.

1.1 Topological manifolds

Definition 1. A real, n-dimensional topological manifold is a Hausdorff, second countable topological space
which is locally homeomorphic to Rn.

Note: “Locally homeomorphic to Rn” simply means that each point p has an open neighbourhood U for
which we can find a homeomorphism ϕ : U −→ V to an open subset V ∈ Rn. Such a homeomorphism ϕ is
called a coordinate chart around p. A collection of charts which cover the manifold, i.e. whose union is the
whole space, is called an atlas.

We now give a bunch of examples of topological manifolds. The simplest is, technically, the empty set.
More simple examples include a countable set of points (with the discrete topology), and Rn itself, but there
are more:

Example 1.1 (Circle). Define the circle S1 = {z ∈ C : |z| = 1}. Then for any fixed point z ∈ S1, write it
as z = e2πic for a unique real number 0 ≤ c < 1, and define the map

νz : t 7→ e2πit. (1)

We note that νz maps the interval Ic = (c− 1
2 , c+ 1

2 ) to the neighbourhood of z given by S1\{−z}, and it is
a homeomorphism. Then ϕz = νz|−1

Ic
is a local coordinate chart near z.

By taking products of coordinate charts, we obtain charts for the Cartesian product of manifolds. Hence
the Cartesian product is a manifold.

Example 1.2 (n-torus). S1 × · · · × S1 is a topological manifold (of dimension given by the number n of
factors), with charts {ϕz1 × · · · × ϕzn : zi ∈ S1}.

Example 1.3 (open subsets). Any open subset U ⊂ M of a topological manifold is also a topological
manifold, where the charts are simply restrictions ϕ|U of charts ϕ for M .

For example, the real n × n matrices Mat(n,R) form a vector space isomorphic to Rn2
, and contain an

open subset
GL(n,R) = {A ∈ Mat(n,R) : detA 6= 0}, (2)

known as the general linear group, which therefore forms a topological manifold.

Example 1.4 (Spheres). The n-sphere is defined as the subspace of unit vectors in Rn+1:

Sn = {(x0, . . . , xn) ∈ Rn+1 :
∑

x2
i = 1}.

Let N = (1, 0, . . . , 0) be the North pole and let S = (−1, 0, . . . , 0) be the South pole in Sn. Then we may
write Sn as the union Sn = UN ∪ US, where UN = Sn\{S} and US = Sn\{N} are equipped with coordinate
charts ϕN , ϕS into Rn, given by the “stereographic projections” from the points S,N respectively

ϕN : (x0, ~x) 7→ (1 + x0)−1~x, (3)

ϕS : (x0, ~x) 7→ (1− x0)−1~x. (4)

We have endowed the sphere Sn with a certain topology, but is it possible for another topological manifold
S̃n to be homotopic to Sn without being homeomorphic to it? The answer is no, and this is known as the
topological Poincaré conjecture, and is usually stated as follows: any homotopy n-sphere is homeomorphic
to the n-sphere. It was proven for n > 4 by Smale, for n = 4 by Freedman, and for n = 3 is equivalent
to the smooth Poincaré conjecture which was proved by Hamilton-Perelman. In dimensions n = 1, 2 it is a
consequence of the (easy) classification of topological 1- and 2-manifolds.
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1.1 Topological manifolds 1300Y Geometry and Topology

Example 1.5 (Projective spaces). Let K = R or C (or even H). Then KPn is defined to be the space of
lines through {0} in Kn+1, and is called the projective space over K of dimension n.

More precisely, let X = Kn+1\{0} and define an equivalence relation on X via x ∼ y iff ∃λ ∈ K∗ = K\{0}
such that λx = y, i.e. x, y lie on the same line through the origin. Then

KPn = X/ ∼,

and it is equipped with the quotient topology.
The projection map π : X −→ KPn is an open map, since if U ⊂ X is open, then tU is also open

∀t ∈ K∗, implying that ∪t∈K∗tU = π−1(π(U)) is open, implying π(U) is open. This immediately shows, by
the way, that KPn is second countable.

To show KPn is Hausdorff (which we must do, since Hausdorff is preserved by subspaces and products,
but not quotients), we show that the graph of the equivalence relation is closed in X ×X (this, together with
the openness of π, gives us the Hausdorff property for KPn). This graph is simply

Γ∼ = {(x, y) ∈ X ×X : x ∼ y},

and we notice that Γ∼ is actually the common zero set of the following continuous functions

fij(x, y) = (xiyj − xjyi) i 6= j.

(Does this work for H? How can it be fixed?)
An atlas for KPn is given by the open sets Ui = π(Ũi), where

Ũi = {(x0, . . . , xn) ∈ X : xi 6= 0},

and these are equipped with charts to Kn given by

ϕi([x0, . . . , xn]) = x−1
i (x0, . . . , xi−1, xi+1, . . . , xn), (5)

which are indeed invertible by (y1, . . . , yn) 7→ (y1, . . . , yi, 1, yi+1, . . . , yn).
Sometimes one finds it useful to simply use the “coordinates” (x0, . . . , xn) for KPn, with the understand-

ing that the xi are well-defined only up to overall rescaling. This is called using “projective coordinates” and
in this case a point in KPn is denoted by [x0 : · · · : xn].

Example 1.6 (Connected sum). Let p ∈M and q ∈ N be points in topological manifolds and let (U,ϕ) and
(V, ψ) be charts around p, q such that ϕ(p) = 0 and ψ(q) = 0.

Choose ε small enough so that B(0, 2ε) ⊂ ϕ(U) and B(0, 2ε) ⊂ ϕ(V ), and define the map of annuli

φ :B(0, 2ε)\B(0, ε) −→ B(0, 2ε)\B(0, ε) (6)

x 7→ 2ε2

|x|2x. (7)

This is a homeomorphism of the annulus to itself, exchanging the boundaries. Now we define a new topological
manifold, called the connected sum M]N , as the quotient X/ ∼, where

X = (M\ϕ−1(B(0, ε))) t (N\ψ−1(B(0, ε))),

and we define an identification x ∼ ψ−1φϕ(x) for x ∈ ϕ−1(B(0, 2ε)). If AM and AN are atlases for M,N
respectively, then a new atlas for the connect sum is simply

AM |M\ϕ−1(B(0,ε))
∪ AN |N\ψ−1(B(0,ε))

Two important remarks concerning the connect sum: first, the connect sum of a sphere with itself is
homeomorphic to the same sphere:

Sn]Sn ∼= Sn.

Second, by taking repeated connect sums of T 2 and RP 2, we may obtain all compact 2-dimensional manifolds.
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1.2 Smooth manifolds 1300Y Geometry and Topology

Example 1.7 (General gluing construction). To construct a topological manifold “from scratch”, we should
be able to glue pieces of Rn together, as long as the gluing is consistent and by homeomorphisms. The
following is a method for doing so, tailor-made so that all the requirements are satisfied.

Begin with a countable collection of open subsets of Rn: A = {Ui}. Then for each i, we choose finitely
many open subsets Uij ⊂ Ui and gluing maps

Uij
ϕij // Uji , (8)

which we require to satisfy ϕijϕji = IdUji
, and such that ϕij(Uij ∩ Uik) = Uji ∩ Ujk for all k, and most

important of all, ϕij must be homeomorphisms.
Next, we want the pairwise gluings to be consistent (transitive) and so we require that ϕkiϕjkϕij =

IdUij∩Ujk
for all i, j, k.

Second countability of the glued manifold will be guaranteed since we started with a countable collection
of opens, but the Hausdorff property is not necessarily satisfied without a further assumption: we require that
∀p ∈ ∂Uij ⊂ Ui and ∀q ∈ ∂Uji ⊂ Uj, there exist neighbourhoods Vp ⊂ Ui and Vq ⊂ Uj of p, q respectively
with ϕij(Vp ∩ Uij) ∩ Vq = ∅.

The final glued topological manifold is then

M =
⊔
Ui
∼

, (9)

for the equivalence relation x ∼ ϕij(x) for x ∈ Uij. This space naturally comes with an atlas A, where the
charts are simply the inclusions of the Ui in Rn.

As an exercise, you may show that any topological manifold is homeomorphic to one constructed in this
way.

1.2 Smooth manifolds

Given coordinate charts (Ui, ϕi) and (Uj , ϕj) on a topological manifold, if we compare coordinates on the
intersection Uij = Ui ∩ Uj , we see that the map

ϕj ◦ ϕ−1
i |ϕi(Uij) : ϕi(Uij) −→ ϕj(Uij)

is a homeomorphism, simply because it is a composition of homeomorphisms. We can say this another way:
topological manifolds are glued together by homeomorphisms.

This means that we may be able to differentiate a function in one coordinate chart but not in another,
i.e. there is no way to make sense of calculus on topological manifolds. This is why we introduce smooth
manifolds, which is simply a topological manifold where the gluing maps are required to be smooth.

First we recall the notion of a smooth map of finite-dimensional vector spaces.

Remark 1 (Aside on smooth maps of vector spaces). Let U ⊂ V be an open set in a finite-dimensional
vector space, and let f : U −→ W be a function with values in another vector space W . The function f is
said to be differentiable at p ∈ U if there exists a linear map Df(p) : V −→W such that

||f(p+ x)− f(p)−Df(p)(x)|| = o(||x||),

where o : R+ −→ R is continuous at 0 and o(0) = 0, and we choose any inner product on V,W , defining the
norm || · ||. For infinite-dimensional vector spaces, the topology is highly sensitive to which norm is chosen,
but we will work in finite dimensions.

Given linear coordinates (x1, . . . , xn) on V , and (y1, . . . , ym) on W , we may express f in terms of its
m components fj = yj ◦ f , and then the linear map Df(p) may be written as an m × n matrix, called the
Jacobian matrix of f at p.

Df(p) =


∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fm

∂x1
· · · ∂fm

∂xn

 (10)
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1.2 Smooth manifolds 1300Y Geometry and Topology

We say that f is differentiable on U when it is differentiable at all p ∈ U and we say it is continuously
differentiable when

Df : U −→ Hom(V,W )

is continuous. The vector space of continuously differentiable functions on U with values in W is called
C1(U,W ).

The first derivative Df is also a map from U to a vector space (Hom(V,W )), therefore if its derivative
exists, we obtain a map

D2f : U −→ Hom(V,Hom(V,W )),

and so on. The vector space of k times continuously differentiable functions on U with values in W is called
Ck(U,W ). We are most interested in C∞ or “smooth” maps, all of whose derivatives exist; the space of
these is denoted C∞(U,W ), and hence we have

C∞(U,W ) =
⋂
k

Ck(U,W ).

Note: for a C2 function, D2f actually has values in a smaller subspace of V ∗ ⊗ V ∗ ⊗W , namely in
S2V ∗ ⊗W , since “mixed partials are equal”.

After this aside, we can define a smooth manifold.

Definition 2. A smooth manifold is a topological manifold equipped with an equivalence class of smooth
atlases, explained below.

Definition 3. An atlas A = {Ui, ϕi} for a topological manifold is called smooth when all gluing maps

ϕj ◦ ϕ−1
i |ϕi(Uij) : ϕi(Uij) −→ ϕj(Uij)

are smooth maps, i.e. lie in C∞(ϕi(Uij),Rn). Two atlases A,A′ are equivalent if A ∪ A′ is itself a smooth
atlas.

Note: Instead of requiring an atlas to be smooth, we could ask for it to be Ck, or real-analytic, or even
holomorphic (this makes sense for a 2n-dimensional topological manifold when we identify R2n ∼= Cn.

We may now verify that all the examples from section 1.1 are actually smooth manifolds:

Example 1.8 (Circle). For Example 1.1, only two charts, e.g. ϕ±1, suffice to define an atlas, and we have

ϕ−1 ◦ ϕ−1
1 =

{
t+ 1 − 1

2 < t < 0
t 0 < t < 1

2 ,

which is clearly C∞. In fact all the charts ϕz are smoothly compatible. Hence the circle is a smooth manifold.

The Cartesian product of smooth manifolds inherits a natural smooth structure from taking the Carte-
sian product of smooth atlases. Hence the n-torus, for example, equipped with the atlas we described in
Example 1.2, is smooth. Example 1.3 is clearly defining a smooth manifold, since the restriction of a smooth
map to an open set is always smooth.

Example 1.9 (Spheres). The charts for the n-sphere given in Example 1.4 form a smooth atlas, since

ϕN ◦ ϕ−1
S : ~z 7→ 1−x0

1+x0
~z = (1−x0)

2

|~x|2 ~z = |~z|−2~z,

which is smooth on Rn\{0}, as required.

Example 1.10 (Projective spaces). The charts for projective spaces given in Example 1.5 form a smooth
atlas, since

ϕ1 ◦ ϕ−1
0 (z1, . . . , zn) = (z−1

1 , z−1
1 z2, . . . , z

−1
1 zn), (11)

which is smooth on Rn\{z1 = 0}, as required, and similarly for all ϕi, ϕj.

The two remaining examples were constructed by gluing: the connected sum in Example 1.6 is clearly
smooth since φ was chosen to be a smooth map, and any topological manifold from Example 1.7 will be
endowed with a natural smooth atlas as long as the gluing maps ϕij are chosen to be C∞.
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1.3 Manifolds with boundary

The concept of manifold with boundary is important for relating manifolds of different dimension. Our
manifolds are defined intrinsically, meaning that they are not defined as subsets of another topological space;
therefore, the notion of boundary will differ from the usual boundary of a subset.

To introduce boundaries in our manifolds, we need to change the local model which they are based on.
For this reason, we introduce the half-space Hn = {(x1, . . . , xn) ∈ Rn : xn ≥ 0}, equip it with the induced
topology from Rn, and model our spaces on this one.

Definition 4. A topological manifold with boundary M is a second countable Hausdorff topological space
which is locally homeomorphic to Hn. Its boundary ∂M is the (n − 1) manifold consisting of all points
mapped to xn = 0 by a chart, and its interior IntM is the set of points mapped to xn > 0 by some chart.
We shall see later that M = ∂M t IntM .

A smooth structure on such a manifold with boundary is an equivalence class of smooth atlases, in the
sense below.

Definition 5. Let V,W be finite-dimensional vector spaces, as before. A function f : A −→ W from an
arbitrary subset A ⊂ V is smooth when it admits a smooth extension to an open neighbourhood Up ⊂W of
every point p ∈ A.

For example, the function f(x, y) = y is smooth on H2 but f(x, y) =
√
y is not, since its derivatives do

not extend to y ≤ 0.
Note the important fact that if M is an n-manifold with boundary, IntM is a usual n-manifold, without

boundary. Also, even more importantly, ∂M is an n− 1-manifold without boundary, i.e. ∂(∂M) = ∅. This
is sometimes phrased as the equation

∂2 = 0.

Example 1.11 (Möbius strip). The mobius strip E is a compact 2-manifold with boundary. As a topological
space it is the quotient of R× [0, 1] by the identification (x, y) ∼ (x+ 1, 1− y). The map π : [(x, y)] 7→ e2πix

is a continuous surjective map to S1, called a projection map. We may choose charts [(x, y)] 7→ ex+iπy for
x ∈ (x0 − ε, x0 + ε), and for any ε < 1

2 .
Note that ∂E is diffeomorphic to S1. This actually provides us with our first example of a non-trivial

fiber bundle, as we shall see. In this case, E is a bundle of intervals over a circle.

1.4 Cobordism

(n + 1)-Manifolds with boundary provide us with a natural equivalence relation on n-manifolds, called
cobordism.

Definition 6. n-manifolds M1,M2 are cobordant when there exists a n+ 1-manifold with boundary N such
that ∂N is diffeomorphic to M1 tM2. The class of manifolds cobordant to M is called the cobordism class
of M .

Note that while the Cartesian product of manifolds is a manifold, the Cartesian product of two manifolds
with boundary is not a manifold with boundary. On the other hand, the Cartesian product of manifolds
only one of which has boundary, is a manifold with boundary (why?)

Cobordism classes of manifolds inherit two natural operations, as follows: If [M1], [M2] are cobordism
classes, then the operation [M1] · [M2] = [M1×M2] is well-defined. Furthermore [M1] + [M2] = [M1 tM2] is
well-defined, and the two operations satisfy the axioms defining a commutative ring. The ring of cobordism
classes of compact manifolds is called the cobordism ring and is denoted Ω•. The subset of classes of
k-dimensional manifolds is denoted Ωk ⊂ Ω•.

Proposition 1. The cobordism ring is 2-torsion, i.e. x+ x = 0 ∀x.
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Proof. The zero element of the ring is [∅] and the multiplicative unit is [∗], the class of the one-point manifold.
For any manifold M , the manifold with boundary M×[0, 1] has boundary MtM . Hence [M ]+[M ] = [∅] = 0,
as required.

Example 1.12. The n-sphere Sn is null-cobordant (i.e. cobordant to ∅), since ∂Bn+1(0, 1) ∼= Sn, where
Bn+1(0, 1) denotes the unit ball in Rn+1.

Example 1.13. Any oriented compact 2-manifold Σg is null-cobordant , since we may embed it in R3 and
the “inside” is a 3-manifold with boundary given by Σg.

We would like to state an amazing theorem of Thom, which is a complete characterization of the cobordism
ring.

Theorem 1.14. The cobordism ring is a (countably generated) polynomial ring over F2 with generators in
every dimension n 6= 2k − 1, i.e.

Ω• = F2[x2, x4, x5, x6, x8, . . .].

This theorem implies that there are 3 cobordism classes in dimension 4, namely x2
2, x4, and x2

2 + x4.
Can you find 4-manifolds representing these classes? Can you find connected representatives?

1.5 Smooth maps

For topological manifolds M,N of dimension m,n, the natural notion of morphism from M to N is that of a
continuous map. A continuous map with continuous inverse is then a homeomorphism from M to N , which
is the natural notion of equivalence for topological manifolds. Since the composition of continuous maps is
continuous and associative, we obtain a category C0-Man of topological manifolds and continuous maps.
Recall that a category is simply a class of objects C (in our case, topological manifolds) and an associative

class of arrows A (in our case, continuous maps) with source and target maps A
s

((

t

66 C and an identity

arrow for each object, given by a map Id : C −→ A (in our case, the identity map of any manifold to itself).
Conventionally we write the set of arrows {a ∈ A : s(a) = x and t(a) = y} as Hom(x, y). Also note that
the associative composition of arrows mentioned above then becomes a map

Hom(x, y)×Hom(y, z) −→ Hom(x, z).

If M,N are smooth manifolds, the right notion of morphism from M to N is that of a smooth map
f : M −→ N .

Definition 7. A map f : M −→ N is called smooth when for each chart (U,ϕ) for M and each chart (V, ψ)
for N , the composition ψ ◦ f ◦ ϕ−1 is a smooth map, i.e. ψ ◦ f ◦ ϕ−1 ∈ C∞(ϕ(U),Rn). The set of smooth
maps (i.e. morphisms) from M to N is denoted C∞(M,N). A smooth map with a smooth inverse is called
a diffeomorphism.

If g : L −→ M and f : M −→ N are smooth maps, then so is the composition f ◦ g, since if charts
ϕ, χ, ψ for L,M,N are chosen near p ∈ L, g(p) ∈ M , and (fg)(p) ∈ N , then ψ ◦ (f ◦ g) ◦ ϕ−1 = A ◦ B, for
A = ψfχ−1 and B = χgϕ−1 both smooth mappings Rn −→ Rn. By the chain rule, A ◦ B is differentiable
at p, with derivative Dp(A ◦B) = (Dg(p)A)(DpB) (matrix multiplication).

Now we have a new category, which we may call C∞-Man, the category of smooth manifolds and smooth
maps; two manifolds are considered isomorphic when they are diffeomorphic. In fact, the definitions above
carry over, word for word, to the setting of manifolds with boundary. Hence we have defined another category,
C∞-Man∂ , the category of smooth manifolds with boundary.

In defining the arrows for the category C∞-Man∂ , we may choose to consider all smooth maps, or only
those smooth maps M −→ N such that ∂M is sent to ∂N , i.e. boundary-preserving maps. Call the resulting
category in the latter case C∞∂ -Man∂ .
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Note that the boundary map, ∂, maps the objects of C∞∂ -Man∂ to objects in C∞-Man, and similarly
for arrows, and such that the following square commutes:

M
ψ //

∂

��

M ′

∂

��
∂M

ψ|∂M

// ∂M ′

(12)

This is precisely what it means for ∂ to be a (covariant) functor, from the category of manifolds with
boundary and boundary-preserving smooth maps, to the category of manifolds without boundary.

Fix a smooth manifold N and consider the class of pairs (M,ϕ) where M is a smooth manifold with
boundary and ϕ is a smooth map ϕ : M −→ N . Define a category where these maps are the objects. How
does the boundary operator act on this category?

Example 1.15. We show that the complex projective line CP 1 is diffeomorphic to the 2-sphere S2. Consider
the maps f+(x0, x1, x2) = [1 + x0 : x1 + ix2] and f−(x0, x1, x2) = [x1 − ix2 : 1− x0]. Since f± is continuous
on x0 6= ±1, and since f− = f+ on |x0| < 1, the pair (f−, f+) defines a continuous map f : S2 −→ CP 1. To
check smoothness, we compute the compositions

ϕ0 ◦ f+ ◦ ϕ−1
N : (y1, y2) 7→ y1 + iy2, (13)

ϕ1 ◦ f− ◦ ϕ−1
S : (y1, y2) 7→ y1 − iy2, (14)

both of which are obviously smooth maps.

Remark 2 (Exotic smooth structures). The topological Poincaré conjecture, now proven, states that any
topological manifold homotopic to the n-sphere is in fact homeomorphic to it. We have now seen how to
put a differentiable structure on this n-sphere. Remarkably, there are other differentiable structures on the
n-sphere which are not diffeomorphic to the standard one we gave; these are called exotic spheres.

Since the connected sum of spheres is homeomorphic to a sphere, and since the connected sum operation is
well-defined as a smooth manifold, it follows that the connected sum defines a monoid structure on the set of
smooth n-spheres. In fact, Kervaire and Milnor showed that for n 6= 4, the set of (oriented) diffeomorphism
classes of smooth n-spheres forms a finite abelian group under the connected sum operation. This is not
known to be the case in four dimensions. Kervaire and Milnor also compute the order of this group, and the
first dimension where there is more than one smooth sphere is n = 7, in which case they show there are 28
smooth spheres, which we will encounter later on.

The situation for spheres may be contrasted with that for the Euclidean spaces: any differentiable manifold
homeomorphic to Rn for n 6= 4 must be diffeomorphic to it. On the other hand, by results of Donaldson,
Freedman, Taubes, and Kirby, we know that there are uncountably many non-diffeomorphic smooth structures
on the topological manifold R4; these are called fake R4s.

Example 1.16 (Lie groups). A group is a set G with an associative multiplication G×G m // G , an
identity element e ∈ G, and an inversion map ι : G −→ G, usually written ι(g) = g−1.

If we endow G with a topology for which G is a topological manifold and m, ι are continuous maps, then
the resulting structure is called a topological group. If G is a given a smooth structure and m, ι are smooth
maps, the result is a Lie group.

The real line (where m is given by addition), the circle (where m is given by complex multiplication), and
their cartesian products give simple but important examples of Lie groups. We have also seen the general
linear group GL(n,R), which is a Lie group since matrix multiplication and inversion are smooth maps.

Since m : G × G −→ G is a smooth map, we may fix g ∈ G and define smooth maps Lg : G −→ G and
Rg : G −→ G via Lg(h) = gh and Rg(h) = hg. These are called left multiplication and right multiplication.
Note that the group axioms imply that RgLh = LhRg.
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1.6 Local structure of smooth maps

In some ways, smooth manifolds are easier to produce or find than general topological manifolds, because
of the fact that smooth maps have linear approximations. Therefore smooth maps often behave like linear
maps of vector spaces, and we may gain inspiration from vector space constructions (e.g. subspace, kernel,
image, cokernel) to produce new examples of manifolds.

In charts (U,ϕ), (V, ψ) for the smooth manifolds M,N , a smooth map f : M −→ N is represented by a
smooth map ψ ◦ f ◦ϕ−1 ∈ C∞(ϕ(U),Rn). We shall give a general local classification of such maps, based on
the behaviour of the derivative. The fundamental result which provides information about the map based
on its derivative is the inverse function theorem.

Theorem 1.17 (Inverse function theorem). Let U ⊂ Rm an open set and f : U −→ Rm a smooth map such
that Df(p) is an invertible linear operator. Then there is a neighbourhood V ⊂ U of p such that f(V ) is
open and f : V −→ f(V ) is a diffeomorphism. furthermore, D(f−1)(f(p)) = (Df(p))−1.

Proof. Without loss of generality, assume that U contains the origin, that f(0) = 0 and that Df(p) = Id
(for this, replace f by (Df(0))−1 ◦ f . We are trying to invert f , so solve the equation y = f(x) uniquely for
x. Define g so that f(x) = x+ g(x). Hence g(x) is the nonlinear part of f .

The claim is that if y is in a sufficiently small neighbourhood of the origin, then the map hy : x 7→ y−g(x)
is a contraction mapping on some closed ball; it then has a unique fixed point φ(y), and so y−g(φ(y)) = φ(y),
i.e. φ is an inverse for f .

Why is hy a contraction mapping? Note that Dhy(0) = 0 and hence there is a ball B(0, r) where
||Dhy|| ≤ 1

2 . This then implies (mean value theorem) that for x, x′ ∈ B(0, r),

||hy(x)− hy(x′)|| ≤ 1
2 ||x− x

′||.

Therefore hy does look like a contraction, we just have to make sure it’s operating on a complete metric
space. Let’s estimate the size of hy(x):

||hy(x)|| ≤ ||hy(x)− hy(0)||+ ||hy(0)|| ≤ 1
2 ||x||+ ||y||.

Therefore by taking y ∈ B(0, r2 ), the map hy is a contraction mapping on B(0, r). Let φ(y) be the unique
fixed point of hy guaranteed by the contraction mapping theorem.

To see that φ is continuous (and hence f is a homeomorphism), we compute

||φ(y)− φ(y′)|| = ||hy(φ(y))− hy′(φ(y′))||
≤ ||g(φ(y))− g(φ(y′))||+ ||y − y′||
≤ 1

2 ||φ(y)− φ(y′)||+ ||y − y′||,

so that we have ||φ(y)− φ(y′)|| ≤ 2||y − y′′||, as required.
To see that φ is differentiable, we guess the derivative (Df)−1 and compute. Let x = φ(y) and x′ = φ(y′).

For this to make sense we must have chosen r small enough so that Df is nonsingular on B(0, r), which is
not a problem.

||φ(y)− φ(y′)− (Df(x))−1(y − y′)|| = ||x− x′ − (Df(x))−1(f(x)− f(x′))||
≤ ||(Df(x))−1||||(Df(x))(x− x′)− (f(x)− f(x′))||
≤ o(||x− x′||), using differentiability of f
≤ o(||y − y′||), using continuity of φ.

Now that we have shown φ is differentiable with derivative (Df)−1, we use the fact that Df is C∞ and
inversion is C∞, implying that Dφ is C∞ and hence φ also.

This theorem immediately provides us with a local normal form for a smooth map with Df(p) invertible:
we may choose coordinates on sufficiently small neighbourhoods of p, f(p) so that f is represented by the
identity map Rn −→ Rn.
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