Having defined the integral, we wish to explain the duality between d and ∂ : A n - 1-form α on a n-manifold may be pulled back to the boundary ∂M and integrated. On the other hand, it can be differentiated and integrated over M. The fact that these are equal is Stokes' theorem, and is a generalization of the fundamental theorem of calculus.

First we must some simple observations concerning the behaviour of forms in a neighbourhood of the boundary.

Recall the operation of contraction with a vector field X, which maps $\rho \in \Omega^k(M)$ to $i_X \rho \in \Omega^{k-1}(M)$, defined by the condition of being a graded derivation $i_X(\alpha \wedge \beta) = i_X \alpha \wedge \beta + (-1)^{|\alpha|} \alpha \wedge i_X \beta$ such that $i_X f = 0$ and $i_X df = X(f)$ for all $f \in C^{\infty}(M, \mathbb{R})$.

Proposition 4.13. Let M be a manifold with boundary. If M is orientable, then so is ∂M . Furthermore, an orientation on M induces one on ∂M .

Proof. Given a locally finite atlas (U_i) of ∂M , in each U_i we can pick a nonvanishing outward-pointing vector field X_i in $\Gamma^{\infty}(U_i, j^*TM)$, for $j : \partial M \longrightarrow M$ the inclusion. Let (θ_i) be a subordinate partition of unity, and form $X = \sum_i \theta_i X_i$. This is a vector field on ∂M , tangent to M and pointing outward everywhere along the boundary.

Given an orientation [v] of M, we can form $[i_X v]$, which is then an orientation of ∂M . This depends only on [v] and X being a nonvanishing outward vector field.

We now verify a local computation leading to Stokes' theorem. If

$$\alpha = \sum_{i} a_{i} dx^{1} \wedge \dots \wedge dx^{i-1} \wedge dx^{i+1} \wedge \dots \wedge dx^{m}$$

is a degree m-1 form with compact support in $U \subset H^m$, and if U does not intersect the boundary ∂H^m , then by the fundamental theorem of calculus,

$$\int_{U} d\alpha = \sum_{i} (-1)^{i-1} \int_{U} \frac{\partial a_{i}}{\partial x^{i}} dx^{1} \cdots dx^{m} = 0.$$

Now suppose that $V = U \cap \partial H^m \neq \emptyset$. Then

$$\int_{U} d\alpha = \sum_{i} (-1)^{i-1} \int_{U} \frac{\partial a_{i}}{\partial x^{i}} dx^{1} \cdots dx^{m}$$
$$= -(-1)^{m-1} \int_{V} a_{m}(x_{1}, \dots, x_{m-1}, 0) dx^{1} \cdots dx^{m-1}$$
$$= \int_{V} a_{m}(x_{1}, \dots, x_{m-1}, 0) i_{-\frac{\partial}{\partial x^{m}}} (dx^{1} \wedge \cdots dx^{m})$$
$$= \int_{V} j^{*} \alpha,$$

where the last integral is with respect to the orientation induced by the outward vector field.

Theorem 4.14 (Stokes' theorem). Let M be an oriented manifold with boundary, and let the boundary be oriented with respect to an outward pointing vector field. Then for $\alpha \in \Omega_c^{m-1}(M)$ and $j : \partial M \longrightarrow M$ the inclusion of the boundary, we have

$$\int_M d\alpha = \int_{\partial M} j^* \alpha.$$

Proof. For a locally finite atlas (U_i, φ_i) , we have

$$\int_{M} d\alpha = \int_{M} d(\sum_{i} \theta_{i} \alpha) = \sum_{i} \int_{\varphi_{i}(U_{i})} (\varphi_{i}^{-1})^{*} d(\theta_{i} \alpha)$$

By the local calculation above, if $\varphi_i(U_i) \cap \partial H^m = \emptyset$, the summand on the right hand side vanishes. On the other hand, if $\varphi_i(U_i) \cap \partial H^m \neq \emptyset$, we obtain (letting $\psi_i = \varphi_i|_{U_i \cap \partial M}$ and $j' : \partial H^m \longrightarrow \mathbb{R}^n$), using the local result,

$$\int_{\varphi_i(U_i)} (\varphi_i^{-1})^* d(\theta_i \alpha) = \int_{\varphi_i(U_i) \cap \partial H^m} j'^* (\varphi_i^{-1})^* (\theta_i \alpha)$$
$$= \int_{\varphi_i(U_i) \cap \partial H^m} (\psi_i^{-1})^* (j^*(\theta_i \alpha)).$$

This then shows that $\int_M d\alpha = \int_{\partial M} j^* \alpha$, as desired.

Corollary 4.15. If $\partial M = \emptyset$, then for all $\alpha \in \Omega_c^{n-1}(M)$, we have $\int_M d\alpha = 0$.

Corollary 4.16. Let M be orientable and compact, and let $v \in \Omega^n(M)$ be nonvanishing. Then $\int_M v > 0$, when M is oriented by [v]. Hence, v cannot be exact, by the previous corollary. This tells us that the class $[v] \in H^n_{dR}(M)$ cannot be zero. In this way, integration of a closed form may often be used to show that it is nontrivial in de Rham cohomology.

4.3 The Mayer-Vietoris sequence

Decompose a manifold M into a union of open sets $M = U \cup V$. We wish to relate the de Rham cohomology of M to that of U and V separately, and also that of $U \cap V$. These 4 manifolds are related by obvious inclusion maps as follows:

$$U \cup V \longleftarrow U \sqcup V \stackrel{\partial_U}{\operatornamewithlimits{\overbrace{\frown}}_V} U \cap V$$

Applying the functor Ω^{\bullet} , we obtain morphisms of complexes in the other direction, given by simple restriction (pullback under inclusion):

$$\Omega^{\bullet}(U \cup V) \longrightarrow \Omega^{\bullet}(U) \oplus \Omega^{\bullet}(V) \xrightarrow{\partial_{V}^{*}} \Omega^{\bullet}(U \cap V)$$

Now we notice the following: if forms $\omega \in \Omega^{\bullet}(U)$ and $\tau \in \Omega^{\bullet}(V)$ come from a single global form on $U \cup V$, then they are killed by $\partial_V^* - \partial_U^*$. Hence we obtain a complex of (morphisms of cochain complexes):

$$0 \longrightarrow \Omega^{\bullet}(U \cup V) \longrightarrow \Omega^{\bullet}(U) \oplus \Omega^{\bullet}(V) \xrightarrow{\partial_V^* - \partial_U^*} \Omega^{\bullet}(U \cap V) \longrightarrow 0$$
(28)

It is clear that this complex is exact at the first position, since a form must vanish if it vanishes on U and V. Similarly, if forms on U, V agree on $U \cap V$, they must glue to a form on $U \cup V$. Hence the complex is exact at the middle position. We now show that the complex is exact at the last position.

Theorem 4.17. The above complex (of de Rham complexes) is exact. It may be called a "short exact sequence" of cochain complexes.

Proof. Let $\alpha \in \Omega^q(U \cap V)$. We wish to write α as a difference $\tau - \omega$ with $\tau \in \Omega^q(U)$ and $\omega \in \Omega^q(V)$. Let (ρ_U, ρ_V) be a partition of unity subordinate to (U, V). Then we have $\alpha = \rho_U \alpha - (-\rho_V \alpha)$ in $U \cap V$. Now observe that $\rho_U \alpha$ may be extended by zero in V (call the result τ), while $-\rho_V \alpha$ may be extended by zero in U (call the result ω). Then we have $\alpha = (\partial_V^* - \partial_U^*)(\tau, \omega)$, as required.

It is not surprising that given an exact sequence of morphisms of complexes

$$0 \longrightarrow A^{\bullet} \xrightarrow{f} B^{\bullet} \xrightarrow{g} C^{\bullet} \longrightarrow 0$$

, we obtain maps between the cohomology groups of the complexes

$$H^k(A^{\bullet}) \xrightarrow{f_*} H^k(B^{\bullet}) \xrightarrow{g_*} H^k(C^{\bullet}).$$

And it is not difficult to see that this sequence is exact at the middle term: Let $[\rho] \in H^k(B^{\bullet})$, for $\rho \in B^k$ such that $d_B\rho = 0$. Suppose that $g(\rho) = 0$ in C^k , so that there exists $\tau \in A^k$ with $f(\tau) = \rho$. Then since f is a morphism of complexes, it follows that $f(d_A\tau) = d_Bf(\tau) = d_B\rho = 0$. Since $f: A^{k+1} \longrightarrow B^{k+1}$ is injective, this implies that $d_A\tau = 0$, so we have $f_*[\tau] = [\rho]$, as required.

The interesting thing is that the maps g_* are not necessarily surjective, nor are f_* necessarily injective. In fact, there is a natural map $\delta : H^k(C^{\bullet}) \longrightarrow H^{k+1}(A^{\bullet})$ (called the connecting homomorphism) which extends the 3-term sequence to a full complex involving all cohomology groups of arbitrary degree:

If $[\alpha] \in H^k(C^{\bullet})$, where $d_C \alpha = 0$, then there must exist $\xi \in B^k$ with $g(\xi) = \alpha$, and $g(d_B\xi) = d_C(g(\xi)) = d_C \alpha = 0$, so that there must exist $\beta \in A^{k+1}$ with $f(\beta) = d_B\xi$, and $f(d_A\beta) = d_B(f(\beta) = 0$. Hence this determines a class $[\beta] \in H^{k+1}(A^{\bullet})$, and one can check that this does not depend on the choices made. We then define $\delta([\alpha]) = [\beta]$.

Exercise: with this definition of δ , we obtain a "long exact sequence" of vector spaces as follows:

Therefore, from the complex of complexes (28), we immediately obtain a long exact sequence of vector spaces, called the Mayer-Vietoris sequence:

$$\cdots \longrightarrow H^k(U \cup V) \longrightarrow H^k(U) \oplus H^k(V) \longrightarrow H^k(U \cap V) \xrightarrow{\delta} H^{k+1}(U \cup V) \longrightarrow \cdots$$

where the first map is simply a restriction map, the second map is the difference of the restrictions $\delta_V^* - \delta_U^*$, and the third map is the connecting homomorphism δ , which can be written explicitly as follows:

$$\delta[\alpha] = [\beta], \quad \beta = -d(\rho_V \alpha) = d(\rho_U \alpha).$$

(notice that β has support contained in $U \cap V$.)

4.4 Examples of cohomology computations

Example 4.18 (Circle). Here we present another computation of $H^{\bullet}_{dR}(S^1)$, by the Mayer-Vietoris sequence. Express $S_1 = U_0 \cup U_1$ as before, with $U_i \cong \mathbb{R}$, so that $H^0(U_i) = \mathbb{R}$, $H^1_{dR}(U_i) = 0$ by the Poincaré lemma. Since $U_0 \cap U_1 \cong \mathbb{R} \sqcup \mathbb{R}$, we have $H^0(U_0 \cap U_1) = \mathbb{R} \oplus \mathbb{R}$ and $H^1(U_0 \cap U_1) = 0$. Since we know that $H^2_{dR}(S^1) = 0$, the Mayer-Vietoris sequence only has 4 a priori nonzero terms:

$$0 \longrightarrow H^0(S^1) \longrightarrow \mathbb{R} \oplus \mathbb{R} \xrightarrow{\delta_1^* - \delta_0^*} \mathbb{R} \oplus \mathbb{R} \xrightarrow{\delta} H^1(S^1) \longrightarrow 0.$$

The middle map takes $(c_1, c_0) \mapsto c_1 - c_0$ and hence has 1-dimensional kernel. Hence $H^0(S^1) = \mathbb{R}$. Furthermore the kernel of δ must only be 1-dimensional, hence $H^1(S^1) = \mathbb{R}$ as well. Exercise: Using a partition of unity, determine an explicit representative for the class in $H^1_{dR}(S^1)$, starting with the function on $U_0 \cap U_1$ which takes values 0,1 on each respective connected component.

Example 4.19 (Spheres). To determine the cohomology of S^2 , decompose into the usual coordinate charts U_0, U_1 , so that $U_i \cong \mathbb{R}^2$, while $U_0 \cap U_1 \sim S^1$. The first line of the Mayer-Vietoris sequence is

$$0 \longrightarrow H^0(S^2) \longrightarrow \mathbb{R} \oplus \mathbb{R} \longrightarrow \mathbb{R}.$$

The third map is nontrivial, since it is just the subtraction. Hence this first line must be exact, and $H^0(S^2) = \mathbb{R}$ (not surprising since S^2 is connected). The second line then reads (we can start it with zero since the first line was exact)

$$0 \longrightarrow H^1(S^2) \longrightarrow 0 \longrightarrow H^1(S^1) = \mathbb{R},$$

where the second zero comes from the fact that $H^1(\mathbb{R}^2) = 0$. This then shows us that $H^1(S^2) = 0$. The last term, together with the third line now give

$$0 \longrightarrow H^1(S^1) = \mathbb{R} \longrightarrow H^2(S^2) \longrightarrow 0,$$

showing that $H^2(S^2) = \mathbb{R}$.

Continuing this process, we obtain the de Rham cohomology of all spheres:

$$H_{dR}^{k}(S^{n}) = \begin{cases} \mathbb{R}, & \text{for } k = 0 \text{ or } n, \\ 0 \text{ otherwise.} \end{cases}$$