In fact, the inverse function theorem leads to a normal form theorem for a more general class of maps:

Theorem 1.19 (Constant rank theorem). Let V, W be m, n-dimensional vector spaces and $U \subset V$ an open set. If $f: U \longrightarrow W$ is a smooth map such that Df has constant rank k in U, then for each point $p \in U$ there are charts (U, φ) and (V, ψ) containing p, f(p) such that

$$\psi \circ f \circ \varphi^{-1} : (x_1, \dots, x_m) \mapsto (x_1, \dots, x_k, 0, \dots, 0).$$

Proof. since rk (f) = k at p, there is a $k \times k$ minor of Df(p) with nonzero determinant. Reorder the coordinates on \mathbb{R}^m and \mathbb{R}^n so that this minor is top left, and translate coordinates so that f(0) = 0. label the coordinates $(x_1, \ldots, x_k, y_1, \ldots, y_{m-k})$ on V and $(u_1, \ldots, u_k, v_1, \ldots, v_{n-k})$ on W.

Then we may write f(x, y) = (Q(x, y), R(x, y)), where Q is the projection to $u = (u_1, \ldots, u_k)$ and R is the projection to v. with $\frac{\partial Q}{\partial x}$ nonsingular. First we wish to put Q into normal form. Consider the map $\phi(x, y) = (Q(x, y), y)$, which has derivative

$$D\phi = \begin{pmatrix} \frac{\partial Q}{\partial x} & \frac{\partial Q}{\partial y} \\ 0 & 1 \end{pmatrix}$$

As a result we see $D\phi(0)$ is nonsingular and hence there exists a local inverse $\phi^{-1}(x, y) = (A(x, y), B(x, y))$. Since it's an inverse this means $(x, y) = \phi(\phi^{-1}(x, y)) = (Q(A, B), B)$, which implies that B(x, y) = y.

Then $f \circ \phi^{-1} : (x, y) \mapsto (x, \tilde{R} = R(A, y))$, and must still be of rank k. Since its derivative is

$$D(f \circ \phi^{-1}) = \begin{pmatrix} I_{k \times k} & 0\\ \frac{\partial \tilde{R}}{\partial x} & \frac{\partial \tilde{R}}{\partial y} \end{pmatrix}$$

we conclude that $\frac{\partial \tilde{R}}{\partial y} = 0$, meaning that

$$f \circ \phi^{-1} : (x, y) \mapsto (x, S(x)).$$

We now postcompose by the diffeomorphism $\sigma: (u, v) \mapsto (u, v - s(u))$, to obtain

$$\sigma \circ f \circ \phi^{-1} : (x, y) \mapsto (x, 0),$$

as required.

As we shall see, these theorems have many uses. One of the most straightforward uses is for defining *submanifolds*.

Definition 8. A regular submanifold of dimension k in an n-manifold M is a subspace $S \subset M$ such that $\forall s \in S$, there exists a chart (U, φ) for M, containing s, and with

$$S \cap U = \varphi^{-1}(x_{k+1} = \dots = x_n = 0).$$

In other words, the inclusion $S \subset M$ is locally isomorphic to the vector space inclusion $\mathbb{R}^k \subset \mathbb{R}^n$.

Of course, the remaining coordinates $\{x_1, \ldots, x_k\}$ define a smooth manifold structure on S itself, justifying the terminology.

Proposition 1.20. If $f: M \longrightarrow N$ is a smooth map of manifolds, and if Df(p) has constant rank on M, then for any $q \in f(M)$, the inverse image $f^{-1}(q) \subset M$ is a regular submanifold.

Proof. Let $x \in f^{-1}(q)$. Then there exist charts ψ, φ such that $\psi \circ f \circ \varphi^{-1} : (x_1, \ldots, x_m) \mapsto (x_1, \ldots, x_k, 0, \ldots, 0)$ and $f^{-1}(q) \cap U = \{x_1 = \cdots = x_k = 0\}$. Hence we obtain that $f^{-1}(q)$ is a codimension k regular submanifold.

Example 1.21. Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be given by $(x_1, \ldots, x_n) \mapsto \sum x_i^2$. Then $Df(x) = (2x_1, \ldots, 2x_n)$, which has rank 1 at all points in $\mathbb{R}^n \setminus \{0\}$. Hence since $f^{-1}(q)$ contains $\{0\}$ iff q = 0, we see that $f^{-1}(q)$ is a regular submanifold for all $q \neq 0$. Exercise: show that this manifold structure is compatible with that obtained in Example 1.9.

The previous example leads to an observation of the following special case of the previous corollary.

Proposition 1.22. If $f: M \longrightarrow N$ is a smooth map of manifolds and Df(p) has rank equal to dim N along $f^{-1}(q)$, then this subset $f^{-1}(q)$ is an embedded submanifold of M.

Proof. Since the rank is maximal along $f^{-1}(q)$, it must be maximal in an open neighbourhood $U \subset M$ containing $f^{-1}(q)$, and hence $f: U \longrightarrow N$ is of constant rank.

Definition 9. If $f: M \longrightarrow N$ is a smooth map such that Df(p) is surjective, then p is called a *regular* point. Otherwise p is called a *critical point*. If all points in the level set $f^{-1}(q)$ are regular points, then q is called a *regular value*, otherwise q is called a critical value. In particular, if $f^{-1}(q) = \emptyset$, then q is regular.

It is often useful to highlight two classes of smooth maps; those for which Df is everywhere *injective*, or, on the other hand *surjective*.

Definition 10. A smooth map $f: M \longrightarrow N$ is called a *submersion* when Df(p) is surjective at all points $p \in M$, and is called an *immersion* when Df(p) is injective at all points $p \in M$. If f is an injective immersion which is a homeomorphism onto its image (when the image is equipped with subspace topology), then we call f an *embedding*

Proposition 1.23. If $f: M \longrightarrow N$ is an embedding, then f(M) is a regular submanifold.

Proof. Let $f: M \longrightarrow N$ be an embedding. Then for all $m \in M$, we have charts (U, φ) , (V, ψ) where $\psi \circ f \circ \varphi^{-1}: (x_1, \ldots, x_m) \mapsto (x_1, \ldots, x_m, 0, \ldots, 0)$. If $f(U) = f(M) \cap V$, we're done. To make sure that some other piece of M doesn't get sent into the neighbourhood, use the fact that F(U) is open in the subspace topology. This means we can find a smaller open set $V' \subset V$ such that $V' \cap f(M) = f(U)$. Then we can restrict the charts $(V', \psi|_{V'}), (U' = f^{-1}(V'), \varphi_{U'})$ so that we see the embedding. \Box

Having the constant rank theorem in hand, we may also apply it to study manifolds *with boundary*. The following two results illustrate how this may easily be done.

Proposition 1.24. Let M be a smooth n-manifold and $f: M \longrightarrow \mathbb{R}$ a smooth real-valued function, and let a, b, with a < b, be regular values of <math>f. Then $f^{-1}([a, b])$ is a cobordism between the n - 1-manifolds $f^{-1}(a)$ and $f^{-1}(b)$.

Proof. The pre-image $f^{-1}((a, b))$ is an open subset of M and hence a submanifold of M. Since p is regular for all $p \in f^{-1}(a)$, we may (by the constant rank theorem) find charts such that f is given near p by the linear map

$$(x_1,\ldots,x_m)\mapsto x_m$$

Possibly replacing x_m by $-x_m$, we therefore obtain a chart near p for $f^{-1}([a, b])$ into H^m , as required. Proceed similarly for $p \in f^{-1}(b)$.

Example 1.25. Using $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ given by $(x_1, \ldots, x_n) \mapsto \sum x_i^2$, this gives a simple proof for the fact that the closed unit ball $\overline{B(0,1)} = f^{-1}([-1,1])$ is a manifold with boundary.

Example 1.26. Consider the C^{∞} function $f : \mathbb{R}^3 \longrightarrow \mathbb{R}$ given by $(x, y, z) \mapsto x^2 + y^2 - z^2$. Both +1 and -1 are regular values for this map, with pre-images given by 1- and 2-sheeted hyperboloids, respectively. Hence $f^{-1}([-1,1])$ is a cobordism between hyperboloids of 1 and 2 sheets. In other words, it defines a cobordism between the disjoint union of two closed disks and the closed cylinder (each of which has boundary $S^1 \sqcup S^1$). Does this cobordism tell us something about the cobordism class of a connected sum?

Proposition 1.27. Let $f : M \longrightarrow N$ be a smooth map from a manifold with boundary to the manifold N. Suppose that $q \in N$ is a regular value of f and also of $f|_{\partial M}$. Then the pre-image $f^{-1}(q)$ is a regular submanifold with boundary (i.e. locally modeled on $\mathbb{R}^k \subset \mathbb{R}^n$ or the inclusion $H^k \subset H^n$ given by $(x_1, \ldots, x_k) \mapsto (0, \ldots, 0, x_1, \ldots, x_k)$.) Furthermore, the boundary of $f^{-1}(q)$ is simply its intersection with ∂M .

Proof. If $p \in f^{-1}(q)$ is not in ∂M , then as before $f^{-1}(q)$ is a regular submanifold in a neighbourhood of p. Therefore suppose $p \in \partial M \cap f^{-1}(q)$. Pick charts φ, ψ so that $\varphi(p) = 0$ and $\psi(q) = 0$, and $\psi f \varphi^{-1}$ is a map $U \subset H^m \longrightarrow \mathbb{R}^n$. Extend this to a smooth function \tilde{f} defined in an open set $\tilde{U} \subset \mathbb{R}^m$ containing U. Shrinking \tilde{U} if necessary, we may assume \tilde{f} is regular on \tilde{U} . Hence $\tilde{f}^{-1}(0)$ is a regular submanifold of \mathbb{R}^m of dimension m - n.

Now consider the real-valued function $\pi : \tilde{f}^{-1}(0) \longrightarrow \mathbb{R}$ given by the restriction of $(x_1, \ldots, x_m) \mapsto x_m$. $0 \in \mathbb{R}$ must be a regular value of π , since if not, then the tangent space to $\tilde{f}^{-1}(0)$ at 0 would lie completely in $x_m = 0$, which contradicts the fact that q is a regular point for $f|_{\partial M}$.

Hence, by Proposition 1.24, we have expressed $f^{-1}(q)$, in a neighbourhood of p, as a regular submanifold with boundary given by $\{\varphi^{-1}(x) : x \in \tilde{f}^{-1}(0) \text{ and } \pi(x) \ge 0\}$, as required.