Now we investigate the measure of the critical values of a map $f: M \longrightarrow N$ where dim $M = \dim N$. Of course the set of critical points need not have measure zero, but we shall see that because the values of f on the critical set do not vary much, the set of critical values will have measure zero.

Theorem 1.38 (Equidimensional Sard). Let $f: M \longrightarrow N$ be a C^1 map of n-manifolds, and let $C \subset M$ be the set of critical points. Then f(C) has measure zero.

Proof. It suffices to show result for the unit cube. Let $f: I^n \longrightarrow \mathbb{R}^n$ a C^1 map and let $C \subset I^n$ be the set of critical points.

Let a be the Lipschitz constant for f, I^n , obtained from the mean value equation

$$f(y) - f(x) = Df(z)(y - x),$$
 (17)

and let T_x be the affine map approximating f at x, i.e.

$$T_x(y) = f(x) + Df(x)(y - x).$$
 (18)

Then subtracting equations (17),(18), we obtain

$$f(y) - T_x(y) = (Df(z) - Df(x))(y - x).$$
(19)

Since Df is continuous, there is a positive function $b(\epsilon)$ with $b \to 0$ as $\epsilon \to 0$ such that

$$||f(y) - T_x(y)|| \le b(|y - x|)||y - x||.$$

If x is a critical point, then T_x has vanishing determinant, meaning that it maps \mathbb{R}^n into a hyperplane $P_x \subset \mathbb{R}^n$ (i.e. of dimension n-1). If $||y-x|| < \epsilon$, then $||f(y) - f(x)|| < a\epsilon$, and by (19), the distance of f(y) from P_x is less than $\epsilon b(\epsilon)$.

Therefore f(y) lies in the cube centered at f(x) of edge $a\epsilon$, but only $\epsilon b\epsilon$ in distance from the plane P_x . Choose the cube to have a face parallel to P_x , and we conclude f(y) is in a region of volume $(a\epsilon)^{n-1}2\epsilon b(\epsilon)$.

Now partition I^n into h^n cubes each of edge h^{-1} . Any such cube containing a critical point x is certainly contained in a ball around x of radius $r = h^{-1}\sqrt{n}$. The image of this ball then has volume $\leq (ar)^{n-1}2rb(r) = Ar^nb(r)$ for $A = 2a^{n-1}$. The total volume of all the images is then less than

$$h^n A r^n b(r) = A n^{n/2} b(r).$$

Note that A and n are fixed, while $r = h^{-1}\sqrt{n}$ is determined by the number h of cubes. By increasing the number of cubes, we may decrease their radius arbitrarily, and hence the above total volume, as required. \Box

The argument above will not work for dim $N < \dim M$; we need more control on the function f. In particular, one can find a C^1 function from $I^2 \longrightarrow \mathbb{R}$ which fails to have critical values of measure zero (hint: C + C = [0, 2] where C is the Cantor set). As a result, Sard's theorem in general requires more differentiability of f.

Theorem 1.39 (Big Sard's theorem). Let $f : M \longrightarrow N$ be a C^k map of manifolds of dimension m, n, respectively. Let C be the set of critical points, i.e. points $x \in U$ with

rank
$$Df(x) < n$$
.

Then f(C) has measure zero if $k > \frac{m}{n} - 1$.

Proof. As before, it suffices to show for $f: I^m \longrightarrow \mathbb{R}^n$.

Define $C_1 \subset C$ to be the set of points x for which Df(x) = 0. Define $C_i \subset C_{i-1}$ to be the set of points x for which $D^j f(x) = 0$ for all $j \leq i$. So we have a descending sequence of closed sets:

$$C \supset C_1 \supset C_2 \supset \cdots \supset C_k.$$

We will show that f(C) has measure zero by showing

- 1. $f(C_k)$ has measure zero,
- 2. each successive difference $f(C_i \setminus C_{i+1})$ has measure zero for $i \ge 1$,
- 3. $f(C \setminus C_1)$ has measure zero.

map

Step 1: For $x \in C_k$, Taylor's theorem gives the estimate

$$f(x+t) = f(x) + R(x,t), \text{ with } ||R(x,t)|| \le c||t||^{k+1},$$

where c depends only on I^m and f, and t sufficiently small.

If we now subdivide I^m into h^m cubes with edge h^{-1} , suppose that x sits in a specific cube I_1 . Then any point in I_1 may be written as x + t with $||t|| \leq h^{-1}\sqrt{m}$. As a result, $f(I_1)$ lies in a cube of edge $ah^{-(k+1)}$, where $a = 2cm^{(k+1)/2}$ is independent of the cube size. There are at most h^m such cubes, with total volume less than

$$h^m (ah^{-(k+1)})^n = a^n h^{m-(k+1)n}.$$

Assuming that $k > \frac{m}{n} - 1$, this tends to 0 as we increase the number of cubes. **Step 2:** For each $x \in C_i \setminus C_{i+1}$, $i \ge 1$, there is a $i + 1^{th}$ partial $\partial^{i+1} f_j / \partial x_{s_1} \cdots \partial x_{s_{i+1}}$ which is nonzero at x. Therefore the function

$$w(x) = \partial^k f_j / \partial x_{s_2} \cdots \partial x_{s_{i+1}}$$

vanishes at x but its partial derivative $\partial w / \partial x_{s_1}$ does not. WLOG suppose $s_1 = 1$, the first coordinate. Then the map

$$h(x) = (w(x), x_2, \dots, x_m)$$

is a local diffeomorphism by the inverse function theorem (of class C^k) which sends a neighbourhood V of x to an open set V'. Note that $h(C_i \cap V) \subset \{0\} \times \mathbb{R}^{m-1}$. Now if we restrict $f \circ h^{-1}$ to $\{0\} \times \mathbb{R}^{m-1} \cap V'$, we obtain a map g whose critical points include $h(C_i \cap V)$. Hence we may prove by induction on m that $g(h(C_i \cap V)) = f(C_i \cap V)$ has measure zero. Cover by countably many such neighbourhoods V. Step 3: Let $x \in C \setminus C_1$. Then there is some partial derivative, wlog $\partial f_1/\partial x_1$, which is nonzero at x. the

$$h(x) = (f_1(x), x_2, \dots, x_m)$$

is a local diffeomorphism from a neighbourhood V of x to an open set V' (of class C^k). Then $g = f \circ h^{-1}$ has critical points $h(V \cap C)$, and has critical values $f(V \cap C)$. The map g sends hyperplanes $\{t\} \times \mathbb{R}^{m-1}$ to hyperplanes $\{t\} \times \mathbb{R}^{n-1}$, call the restriction map g_t . A point in $\{t\} \times \mathbb{R}^{m-1}$ is critical for g_t if and only if it is critical for g, since the Jacobian of g is

$$\begin{pmatrix} 1 & 0 \\ * & \frac{\partial g_t^i}{\partial x_j} \end{pmatrix}$$

By induction on m, the set of critical values for g_t has measure zero in $\{t\} \times \mathbb{R}^{n-1}$. By Fubini, the whole set g(C') (which is measurable, since it is the countable union of compact subsets (critical values not necessarily closed, but critical points are closed and hence a countable union of compact subsets, which implies the same of the critical values.) is then measure zero. To show this consequence of Fubini directly, use the following argument:

First note that for any covering of [a, b] by intervals, we may extract a finite subcovering of intervals whose total length is $\leq 2|b-a|$. Why? First choose a minimal subcovering $\{I_1, \ldots, I_p\}$, numbered according to their left endpoints. Then the total overlap is at most the length of [a, b]. Therefore the total length is at most 2|b-a|.

Now let $B \subset \mathbb{R}^n$ be compact, so that we may assume $B \subset \mathbb{R}^{n-1} \times [a, b]$. We prove that if $B \cap P_c$ has measure zero in the hyperplane $P_c = \{x^n = c\}$, for any constant $c \in [a, b]$, then it has measure zero in \mathbb{R}^n .

If $B \cap P_c$ has measure zero, we can find a covering by open sets $R_c^i \subset P_c$ with total volume $< \epsilon$. For sufficiently small α_c , the sets $R_c^i \times [c - \alpha_c, c + \alpha_c]$ cover $B \cap \bigcup_{z \in [c - \alpha_c, c + \alpha_c]} P_z$ (since B is compact). As we

vary c, the sets $[c - \alpha_c, c + \alpha_c]$ form a covering of [a, b], and we extract a finite subcover $\{I_j\}$ of total length $\leq 2|b-a|$.

Let R_j^i be the set R_c^i for $I_j = [c - \alpha_c, c + \alpha_c]$. Then the sets $R_j^i \times I_j$ form a cover of B with total volume $\leq 2\epsilon |b-a|$. We can make this arbitrarily small, so that B has measure zero.

Corollary 1.40. Let M be a compact manifold with boundary. There is no smooth map $f : M \longrightarrow \partial M$ leaving ∂M pointwise fixed. Such a map is called a smooth retraction of M onto its boundary.

Proof. Such a map f must have a regular value by Sard's theorem, let this value be $y \in \partial M$. Then y is obviously a regular value for $f|_{\partial M} = \text{Id}$ as well, so that $f^{-1}(y)$ must be a compact 1-manifold with boundary given by $f^{-1}(y) \cap \partial M$, which is simply the point y itself. Since there is no compact 1-manifold with a single boundary point, we have a contradiction.

For example, this shows that the identity map $S^n \longrightarrow S^n$ may not be extended to a smooth map $f: \overline{B(0,1)} \longrightarrow S^n$.

Lemma 1.41. Every smooth map of the closed n-ball to itself has a fixed point.

Proof. Let $D^n = \overline{B(0,1)}$. If $g: D^n \longrightarrow D^n$ had no fixed points, then define the function $f: D^n \longrightarrow S^{n-1}$ as follows: let f(x) be the point nearer to x on the line joining x and g(x).

This map is smooth, since f(x) = x + tu, where

$$u = ||x - g(x)||^{-1}(x - g(x)),$$

and t is the positive solution to the quadratic equation $(x+tu) \cdot (x+tu) = 1$, which has positive discriminant $b^2 - 4ac = 4(1 - |x|^2 + (x \cdot u)^2)$. Such a smooth map is therefore impossible by the previous corollary.

Theorem 1.42 (Brouwer fixed point theorem). Any continuous self-map of D^n has a fixed point.

Proof. The Weierstrass approximation theorem says that any continuous function on [0, 1] can be uniformly approximated by a polynomial function in the supremum norm $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$. In other words, the polynomials are dense in the continuous functions with respect to the supremum norm. The Stone-Weierstrass is a generalization, stating that for any compact Hausdorff space X, if A is a subalgebra of $C^0(X, \mathbb{R})$ such that A separates points $(\forall x, y, \exists f \in A : f(x) \neq f(y))$ and contains a nonzero constant function, then A is dense in C^0 .

Given this result, approximate a given continuous self-map g of D^n by a polynomial function p' so that $||p'-g||_{\infty} < \epsilon$ on D^n . To ensure p' sends D^n into itself, rescale it via

$$p = (1+\epsilon)^{-1}p'.$$

Then clearly p is a D^n self-map while $||p - g||_{\infty} < 2\epsilon$. If g had no fixed point, then |g(x) - x| must have a minimum value μ on D^n , and by choosing $2\epsilon = \mu$ we guarantee that for each x,

$$|p(x) - x| \ge |g(x) - x| - |g(x) - p(x)| > \mu - \mu = 0.$$

Hence p has no fixed point. Such a smooth function can't exist and hence we obtain the result.