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We now proceed with the first step towards showing that transversality is generic.

Theorem 1.43. Let F : X × S −→ Y and g : Z −→ Y be smooth maps of manifolds where only X has
boundary. Suppose that F and ∂F are transverse to g. Then for almost every s ∈ S, fs = F (·, s) and ∂fs
are transverse to g.

Proof. The fiber product W = (X × S) ×Y Z is a regular submanifold (with boundary) of X × S × Z and
projects to S via the usual projection map π. We show that any s ∈ S which is a regular value for both the
projection map π : W −→ S and its boundary map ∂π gives rise to a fs which is transverse to g. Then by
Sard’s theorem the s which fail to be regular in this way form a set of measure zero.

Suppose that s ∈ S is a regular value for π. Suppose that fs(x) = g(z) = y and we now show that fs is
transverse to g there. Since F (x, s) = g(z) and F is transverse to g, we know that

ImDF(x,s) + ImDgz = TyY.

Therefore, for any a ∈ TyY , there exists b = (w, e) ∈ T (X × S) with DF(x,s)b− a in the image of Dgz. But
since Dπ is surjective, there exists (w′, e, c′) ∈ T(x,y,z)W . Hence we observe that

(Dfs)(w − w′)− a = DF(x,s)[(w, e)− (w′, e)]− a = (DF(x,s)b− a)−DF(x,s)(w′, e),

where both terms on the right hand side lie in ImDgz.
Precisely the same argument (with X replaced with ∂X and F replaced with ∂F ) shows that if s is

regular for ∂π then ∂fs is transverse to g. This gives the result.

The previous result immediately shows that transversal maps to Rn are generic, since for any smooth
map f : M −→ Rn we may produce a family of maps

F : M × Rn −→ Rn

via F (x, s) = f(x) + s. This new map F is clearly a submersion and hence is transverse to any smooth map
g : Z −→ Rn. For arbitrary target manifolds, we will imitate this argument, but we will require a (weak)
version of Whitney’s embedding theorem for manifolds into Rn.

1.10 Partitions of unity and Whitney embedding

In this section we develop the tool of partition of unity, which will allow us to go from local to global, i.e. to
glue together objects which are defined locally, creating objects with global meaning. As a particular case of
this, to define a global map to RN which is an embedding, thereby proving Whitney’s embedding theorem.

Definition 13. A collection of subsets {Uα} of the topological space M is called locally finite when each
point x ∈M has a neighbourhood V intersecting only finitely many of the Uα.

Definition 14. A covering {Vα} is a refinement of the covering {Uβ} when each Vα is contained in some
Uβ .

Lemma 1.44. Any open covering {Aα} of a topological manifold has a countable, locally finite refinement
{(Ui, ϕi)} by coordinate charts such that ϕi(Ui) = B(0, 3) and {Vi = ϕ−1

i (B(0, 1))} is still a covering of M .
We will call such a cover a regular covering. In particular, any topological manifold is paracompact (i.e.
every open cover has a locally finite refinement)

Proof. If M is compact, the proof is easy: choosing coordinates around any point x ∈ M , we can translate
and rescale to find a covering of M by a refinement of the type desired, and choose a finite subcover, which
is obviously locally finite.

For a general manifold, we note that by second countability of M , there is a countable basis of coordinate
neighbourhoods and each of these charts is a countable union of open sets Pi with Pi compact. Hence M
has a countable basis {Pi} such that Pi is compact.
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Using these, we may define an increasing sequence of compact sets which exhausts M : let K1 = P 1, and

Ki+1 = P1 ∪ · · · ∪ Pr,

where r > 1 is the first integer with Ki ⊂ P1 ∪ · · · ∪ Pr.
Now note that M is the union of ring-shaped sets Ki\K◦i−1, each of which is compact. If p ∈ Aα, then

p ∈ Ki+2\K◦i−1 for some i. Now choose a coordinate neighbourhood (Up,α, ϕp,α) with Up,α ⊂ Ki+2\K◦i−1

and ϕp,α(Up,α) = B(0, 3) and define Vp,α = ϕ−1(B(0, 1)).
Letting p, α vary, these neighbourhoods cover the compact set Ki+1\K◦i without leaving the band

Ki+2\K◦i−1. Choose a finite subcover Vi,k for each i. Then (Ui,k, ϕi,k) is the desired locally finite re-
finement.

Definition 15. A smooth partition of unity is a collection of smooth non-negative functions {fα : M −→ R}
such that

i) {suppfα = f−1
α (R\{0})} is locally finite,

ii)
∑
α fα(x) = 1 ∀x ∈M , hence the name.

A partition of unity is subordinate to an open cover {Ui} when ∀α, suppfα ⊂ Ui for some i.

Theorem 1.45. Given a regular covering {(Ui, ϕi)} of a manifold, there exists a partition of unity {fi}
subordinate to it with fi > 0 on Vi and suppfi ⊂ ϕ−1

i (B(0, 2)).

Proof. A bump function is a smooth non-negative real-valued function g̃ on Rn with g̃(x) = 1 for ||x|| ≤ 1
and g̃(x) = 0 for ||x|| ≥ 2. For instance, take

g̃(x) =
h(2− ||x||)

h(2− ||x||) + h(||x||+ 1)
,

for h(t) given by e−1/t for t > 0 and 0 for t < 0.
Having this bump function, we can produce non-negative bump functions on the manifold gi = g̃ ◦ ϕi

which have support suppgi ⊂ ϕ−1
i (B(0, 2)) and take the value +1 on Vi. Finally we define our partition of

unity via
fi =

gi∑
j gj

, i = 1, 2, . . . .

We now investigate the embedding of arbitrary smooth manifolds as regular submanifolds of Rk. We shall
first show by a straightforward argument that any smooth manifold may be embedded in some RN for some
sufficiently large N . We will then explain how to cut down on N and approach the optimal N = 2 dimM
which Whitney showed (we shall reach 2 dimM+1 and possibly at the end of the course, show N = 2 dimM .)

Theorem 1.46 (Compact Whitney embedding in RN ). Any compact manifold may be embedded in RN for
sufficiently large N .

Proof. Let {(Ui ⊃ Vi, ϕi)}ki=1 be a finite regular covering, which exists by compactness. Choose a partition
of unity {f1, . . . , fk} as in Theorem 1.45 and define the following “zoom-in” maps M −→ RdimM :

ϕ̃i(x) =

{
fi(x)ϕi(x) x ∈ Ui,
0 x /∈ Ui.

Then define a map Φ : M −→ Rk(dimM+1) which zooms simultaneously into all neighbourhoods, with extra
information to guarantee injectivity:

Φ(x) = (ϕ̃1(x), . . . , ϕ̃k(x), f1(x), . . . , fk(x)).
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Note that Φ(x) = Φ(x′) implies that for some i, fi(x) = fi(x′) 6= 0 and hence x, x′ ∈ Ui. This then implies
that ϕi(x) = ϕi(x′), implying x = x′. Hence Φ is injective.

We now check that DΦ is injective, which will show that it is an injective immersion. At any point x the
differential sends v ∈ TxM to the following vector in RdimM × · · · × RdimM × R× · · · × R.

(Df1(v)ϕ1(x) + f1(x)Dϕ1(v), . . . , Dfk(v)ϕk(x) + fk(x)Dϕ1(v), Df1(v), . . . , Dfk(v)

But this vector cannot be zero. Hence we see that Φ is an immersion.
But an injective immersion from a compact space must be an embedding: view Φ as a bijection onto

its image. We must show that Φ−1 is continuous, i.e. that Φ takes closed sets to closed sets. If K ⊂ M is
closed, it is also compact and hence Φ(K) must be compact, hence closed (since the target is Hausdorff).

Theorem 1.47 (Compact Whitney embedding in R2n+1). Any compact n-manifold may be embedded in
R2n+1.

Proof. Begin with an embedding Φ : M −→ RN and assume N > 2n+ 1. We then show that by projecting
onto a hyperplane it is possible to obtain an embedding to RN−1.

A vector v ∈ SN−1 ⊂ RN defines a hyperplane (the orthogonal complement) and let Pv : RN −→ RN−1

be the orthogonal projection to this hyperplane. We show that the set of v for which Φv = Pv ◦Φ fails to be
an embedding is a set of measure zero, hence that it is possible to choose v for which Φv is an embedding.

Φv fails to be an embedding exactly when Φv is not injective or DΦv is not injective at some point. Let
us consider the two failures separately:

If v is in the image of the map β1 : (M ×M)\∆M −→ SN−1 given by

β1(p1, p2) =
Φ(p2)− Φ(p1)
||Φ(p2)− Φ(p1)||

,

then Φv will fail to be injective. Note however that β1 maps a 2n-dimensional manifold to a N −1-manifold,
and if N > 2n+ 1 then baby Sard’s theorem implies the image has measure zero.

The immersion condition is a local one, which we may analyze in a chart (U,ϕ). Φv will fail to be an
immersion in U precisely when v coincides with a vector in the normalized image of D(Φ ◦ ϕ−1) where

Φ ◦ ϕ−1 : ϕ(U) ⊂ Rn −→ RN .

Hence we have a map (letting N(w) = ||w||)

D(Φ ◦ ϕ−1)
N ◦D(Φ ◦ ϕ−1)

: U × Sn−1 −→ SN−1.

The image has measure zero as long as 2n − 1 < N − 1, which is certainly true since 2n < N − 1. Taking
union over countably many charts, we see that immersion fails on a set of measure zero in SN−1.

Hence we see that Φv fails to be an embedding for a set of v ∈ SN−1 of measure zero. Hence we may
reduce N all the way to N = 2n+ 1.

Corollary 1.48. We see from the proof that if we do not require injectivity but only that the manifold be
immersed in RN , then we can take N = 2n instead of 2n+ 1.
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