We now proceed with the first step towards showing that transversality is generic.

Theorem 1.43. Let $F : X \times S \longrightarrow Y$ and $g : Z \longrightarrow Y$ be smooth maps of manifolds where only X has boundary. Suppose that F and ∂F are transverse to g. Then for almost every $s \in S$, $f_s = F(\cdot, s)$ and ∂f_s are transverse to g.

Proof. The fiber product $W = (X \times S) \times_Y Z$ is a regular submanifold (with boundary) of $X \times S \times Z$ and projects to S via the usual projection map π . We show that any $s \in S$ which is a regular value for both the projection map $\pi : W \longrightarrow S$ and its boundary map $\partial \pi$ gives rise to a f_s which is transverse to g. Then by Sard's theorem the s which fail to be regular in this way form a set of measure zero.

Suppose that $s \in S$ is a regular value for π . Suppose that $f_s(x) = g(z) = y$ and we now show that f_s is transverse to g there. Since F(x, s) = g(z) and F is transverse to g, we know that

$$\mathrm{Im}DF_{(x,s)} + \mathrm{Im}Dg_z = T_yY.$$

Therefore, for any $a \in T_yY$, there exists $b = (w, e) \in T(X \times S)$ with $DF_{(x,s)}b - a$ in the image of Dg_z . But since $D\pi$ is surjective, there exists $(w', e, c') \in T_{(x,y,z)}W$. Hence we observe that

$$(Df_s)(w - w') - a = DF_{(x,s)}[(w, e) - (w', e)] - a = (DF_{(x,s)}b - a) - DF_{(x,s)}(w', e),$$

where both terms on the right hand side lie in $\text{Im}Dg_z$.

Precisely the same argument (with X replaced with ∂X and F replaced with ∂F) shows that if s is regular for $\partial \pi$ then ∂f_s is transverse to g. This gives the result.

The previous result immediately shows that transversal maps to \mathbb{R}^n are generic, since for any smooth map $f: M \longrightarrow \mathbb{R}^n$ we may produce a family of maps

$$F: M \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$$

via F(x,s) = f(x) + s. This new map F is clearly a submersion and hence is transverse to any smooth map $g: Z \longrightarrow \mathbb{R}^n$. For arbitrary target manifolds, we will imitate this argument, but we will require a (weak) version of Whitney's embedding theorem for manifolds into \mathbb{R}^n .

1.10 Partitions of unity and Whitney embedding

In this section we develop the tool of partition of unity, which will allow us to go from local to global, i.e. to glue together objects which are defined locally, creating objects with global meaning. As a particular case of this, to define a global map to \mathbb{R}^N which is an embedding, thereby proving Whitney's embedding theorem.

Definition 13. A collection of subsets $\{U_{\alpha}\}$ of the topological space M is called *locally finite* when each point $x \in M$ has a neighbourhood V intersecting only finitely many of the U_{α} .

Definition 14. A covering $\{V_{\alpha}\}$ is a *refinement* of the covering $\{U_{\beta}\}$ when each V_{α} is contained in some U_{β} .

Lemma 1.44. Any open covering $\{A_{\alpha}\}$ of a topological manifold has a countable, locally finite refinement $\{(U_i, \varphi_i)\}$ by coordinate charts such that $\varphi_i(U_i) = B(0,3)$ and $\{V_i = \varphi_i^{-1}(B(0,1))\}$ is still a covering of M. We will call such a cover a regular covering. In particular, any topological manifold is paracompact (i.e. every open cover has a locally finite refinement)

Proof. If M is compact, the proof is easy: choosing coordinates around any point $x \in M$, we can translate and rescale to find a covering of M by a refinement of the type desired, and choose a finite subcover, which is obviously locally finite.

For a general manifold, we note that by second countability of M, there is a countable basis of coordinate neighbourhoods and each of these charts is a countable union of open sets P_i with $\overline{P_i}$ compact. Hence Mhas a countable basis $\{P_i\}$ such that $\overline{P_i}$ is compact. Using these, we may define an increasing sequence of compact sets which exhausts M: let $K_1 = \overline{P}_1$, and

$$K_{i+1} = \overline{P_1 \cup \dots \cup P_r},$$

where r > 1 is the first integer with $K_i \subset P_1 \cup \cdots \cup P_r$.

Now note that M is the union of ring-shaped sets $K_i \setminus K_{i-1}^\circ$, each of which is compact. If $p \in A_\alpha$, then $p \in K_{i+2} \setminus K_{i-1}^\circ$ for some i. Now choose a coordinate neighbourhood $(U_{p,\alpha}, \varphi_{p,\alpha})$ with $U_{p,\alpha} \subset K_{i+2} \setminus K_{i-1}^\circ$ and $\varphi_{p,\alpha}(U_{p,\alpha}) = B(0,3)$ and define $V_{p,\alpha} = \varphi^{-1}(B(0,1))$.

Letting p, α vary, these neighbourhoods cover the compact set $K_{i+1} \setminus K_i^{\circ}$ without leaving the band $K_{i+2} \setminus K_{i-1}^{\circ}$. Choose a finite subcover $V_{i,k}$ for each i. Then $(U_{i,k}, \varphi_{i,k})$ is the desired locally finite refinement.

Definition 15. A smooth partition of unity is a collection of smooth non-negative functions $\{f_{\alpha} : M \longrightarrow \mathbb{R}\}$ such that

- i) {supp $f_{\alpha} = \overline{f_{\alpha}^{-1}(\mathbb{R} \setminus \{0\})}$ } is locally finite,
- ii) $\sum_{\alpha} f_{\alpha}(x) = 1 \quad \forall x \in M$, hence the name.

A partition of unity is subordinate to an open cover $\{U_i\}$ when $\forall \alpha$, supp $f_{\alpha} \subset U_i$ for some *i*.

Theorem 1.45. Given a regular covering $\{(U_i, \varphi_i)\}$ of a manifold, there exists a partition of unity $\{f_i\}$ subordinate to it with $f_i > 0$ on V_i and $supp f_i \subset \varphi_i^{-1}(\overline{B(0,2)})$.

Proof. A bump function is a smooth non-negative real-valued function \tilde{g} on \mathbb{R}^n with $\tilde{g}(x) = 1$ for $||x|| \leq 1$ and $\tilde{g}(x) = 0$ for $||x|| \geq 2$. For instance, take

$$\tilde{g}(x) = \frac{h(2 - ||x||)}{h(2 - ||x||) + h(||x|| + 1)},$$

for h(t) given by $e^{-1/t}$ for t > 0 and 0 for t < 0.

Having this bump function, we can produce non-negative bump functions on the manifold $g_i = \tilde{g} \circ \varphi_i$ which have support $\operatorname{supp} g_i \subset \varphi_i^{-1}(\overline{B(0,2)})$ and take the value +1 on $\overline{V_i}$. Finally we define our partition of unity via

$$f_i = \frac{g_i}{\sum_j g_j}, \quad i = 1, 2, \dots$$

We now investigate the embedding of arbitrary smooth manifolds as regular submanifolds of \mathbb{R}^k . We shall first show by a straightforward argument that any smooth manifold may be embedded in some \mathbb{R}^N for some sufficiently large N. We will then explain how to cut down on N and approach the optimal $N = 2 \dim M$ which Whitney showed (we shall reach $2 \dim M + 1$ and possibly at the end of the course, show $N = 2 \dim M$.)

Theorem 1.46 (Compact Whitney embedding in \mathbb{R}^N). Any compact manifold may be embedded in \mathbb{R}^N for sufficiently large N.

Proof. Let $\{(U_i \supset V_i, \varphi_i)\}_{i=1}^k$ be a *finite* regular covering, which exists by compactness. Choose a partition of unity $\{f_1, \ldots, f_k\}$ as in Theorem 1.45 and define the following "zoom-in" maps $M \longrightarrow \mathbb{R}^{\dim M}$:

$$\tilde{\varphi}_i(x) = \begin{cases} f_i(x)\varphi_i(x) & x \in U_i, \\ 0 & x \notin U_i. \end{cases}$$

Then define a map $\Phi: M \longrightarrow \mathbb{R}^{k(\dim M+1)}$ which zooms simultaneously into all neighbourhoods, with extra information to guarantee injectivity:

$$\Phi(x) = (\tilde{\varphi}_1(x), \dots, \tilde{\varphi}_k(x), f_1(x), \dots, f_k(x)).$$

Note that $\Phi(x) = \Phi(x')$ implies that for some $i, f_i(x) = f_i(x') \neq 0$ and hence $x, x' \in U_i$. This then implies that $\varphi_i(x) = \varphi_i(x')$, implying x = x'. Hence Φ is injective.

We now check that $D\Phi$ is injective, which will show that it is an injective immersion. At any point x the differential sends $v \in T_x M$ to the following vector in $\mathbb{R}^{\dim M} \times \cdots \times \mathbb{R}^{\dim M} \times \mathbb{R} \times \cdots \times \mathbb{R}$.

$$(Df_1(v)\varphi_1(x) + f_1(x)D\varphi_1(v), \dots, Df_k(v)\varphi_k(x) + f_k(x)D\varphi_1(v), Df_1(v), \dots, Df_k(v))$$

But this vector cannot be zero. Hence we see that Φ is an immersion.

But an injective immersion from a compact space must be an embedding: view Φ as a bijection onto its image. We must show that Φ^{-1} is continuous, i.e. that Φ takes closed sets to closed sets. If $K \subset M$ is closed, it is also compact and hence $\Phi(K)$ must be compact, hence closed (since the target is Hausdorff). \Box

Theorem 1.47 (Compact Whitney embedding in \mathbb{R}^{2n+1}). Any compact *n*-manifold may be embedded in \mathbb{R}^{2n+1} .

Proof. Begin with an embedding $\Phi: M \longrightarrow \mathbb{R}^N$ and assume N > 2n + 1. We then show that by projecting onto a hyperplane it is possible to obtain an embedding to \mathbb{R}^{N-1} .

A vector $v \in S^{N-1} \subset \mathbb{R}^N$ defines a hyperplane (the orthogonal complement) and let $P_v : \mathbb{R}^N \longrightarrow \mathbb{R}^{N-1}$ be the orthogonal projection to this hyperplane. We show that the set of v for which $\Phi_v = P_v \circ \Phi$ fails to be an embedding is a set of measure zero, hence that it is possible to choose v for which Φ_v is an embedding.

 Φ_v fails to be an embedding exactly when Φ_v is not injective or $D\Phi_v$ is not injective at some point. Let us consider the two failures separately:

If v is in the image of the map $\beta_1 : (M \times M) \setminus \Delta_M \longrightarrow S^{N-1}$ given by

$$\beta_1(p_1, p_2) = \frac{\Phi(p_2) - \Phi(p_1)}{||\Phi(p_2) - \Phi(p_1)||},$$

then Φ_v will fail to be injective. Note however that β_1 maps a 2n-dimensional manifold to a N-1-manifold, and if N > 2n + 1 then baby Sard's theorem implies the image has measure zero.

The immersion condition is a local one, which we may analyze in a chart (U, φ) . Φ_v will fail to be an immersion in U precisely when v coincides with a vector in the normalized image of $D(\Phi \circ \varphi^{-1})$ where

$$\Phi \circ \varphi^{-1} : \varphi(U) \subset \mathbb{R}^n \longrightarrow \mathbb{R}^N$$

Hence we have a map (letting N(w) = ||w||)

$$\frac{D(\Phi \circ \varphi^{-1})}{N \circ D(\Phi \circ \varphi^{-1})} : U \times S^{n-1} \longrightarrow S^{N-1}.$$

The image has measure zero as long as 2n - 1 < N - 1, which is certainly true since 2n < N - 1. Taking union over countably many charts, we see that immersion fails on a set of measure zero in S^{N-1} .

Hence we see that Φ_v fails to be an embedding for a set of $v \in S^{N-1}$ of measure zero. Hence we may reduce N all the way to N = 2n + 1.

Corollary 1.48. We see from the proof that if we do not require injectivity but only that the manifold be immersed in \mathbb{R}^N , then we can take N = 2n instead of 2n + 1.