Theorem 1.49 (noncompact Whitney embedding in \mathbb{R}^{2n+1}). Any smooth n-manifold may be embedded in \mathbb{R}^{2n+1} (or immersed in \mathbb{R}^{2n}).

Proof. We saw that any manifold may be written as a countable union of increasing compact sets $M = \bigcup K_i$, and that a regular covering $\{(U_{i,k} \supset V_{i,k}, \varphi_{i,k})\}$ of M can be chosen so that for fixed $i, \{V_{i,k}\}_k$ is a finite cover of $K_{i+1} \setminus K_i^{\circ}$ and each $U_{i,k}$ is contained in $K_{i+2} \setminus K_{i-1}^{\circ}$.

This means that we can express M as the union of 3 open sets W_0, W_1, W_2 , where

$$W_j = \bigcup_{i \equiv j \pmod{3}} (\cup_k U_{i,k}).$$

Each of the sets $R_i = \bigcup_k U_{i,k}$ may be injectively immersed in \mathbb{R}^{2n+1} by the argument for compact manifolds, since they have a finite regular cover. Call these injective immersions $\Phi_i : R_i \longrightarrow \mathbb{R}^{2n+1}$. The image $\Phi_i(R_i)$ is bounded since all the charts are, by some radius r_i . The open sets R_i , $i \equiv j \pmod{3}$ for fixed j are disjoint, and by translating each Φ_i , $i \equiv j \pmod{3}$ by an appropriate constant, we can ensure that their images in \mathbb{R}^{2n+1} are disjoint as well.

Let $\Phi'_i = \Phi_i + (2(r_{i-1} + r_{i-2} + \cdots) + r_i)\overrightarrow{e}_1$. Then $\Psi_j = \bigcup_{i \equiv j \pmod{3}} \Phi'_i : W_j \longrightarrow \mathbb{R}^{2n+1}$ is an embedding. Now that we have injective immersions Ψ_0, Ψ_1, Ψ_2 of W_0, W_1, W_2 in \mathbb{R}^{2n+1} , we may use the original argument for compact manifolds: Take the partition of unity subordinate to $U_{i,k}$ and resum it, obtaining a 3-element partition of unity $\{f_1, f_2, f_3\}$, with $f_j = \sum_{i \equiv j \pmod{3}} \sum_k f_{i,k}$. Then the map

$$\Psi = (f_1\Psi_1, f_2\Psi_2, f_3\Psi_3, f_1, f_2, f_3)$$

is an injective immersion of M into \mathbb{R}^{6n+3} . To see that it is in fact an embedding, note that any closed set $C \subset M$ may be written as a union of closed sets $C = C_1 \cup C_2 \cup C_3$, where $C_j = \bigcup_{i \equiv j \pmod{3}} (C \cap K_{i+1} \setminus K_i^\circ)$ is a disjoint union of compact sets. Ψ is injective, hence C_j is mapped to a disjoint union of compact sets, hence a closed set. Then $\Psi(C)$ is a union of 3 closed sets, hence closed, as required.

Using projection to hyperplanes we may again reduce to \mathbb{R}^{2n+1} , but if we exclude all hyperplanes perpendicular to Span($(e_1, 0, 0, 0, 0, 0), (0, e_1, 0, 0, 0), (0, 0, e_1, 0, 0, 0)$), we obtain an injective immersion Ψ' which is proper, meaning that inverse images of compact sets are compact. This space of forbidden planes has measure zero as long as N-1>3, so that we may reduce to 2n+1 for n>1. We leave as an exercise the n = 1 case (or see Bredon for a slightly different proof).

The fact that the resulting injective immersion Ψ' is proper implies that it is an embedding, by the closed map lemma, as follows.

Lemma 1.50 (Closed map lemma for proper maps). Let $f: X \longrightarrow Y$ be a proper continuous map of topological manifolds. Then f is a closed map.

Proof. Let $K \subset X$ be closed; we show that f(K) contains all its limit points and hence is closed. Let $y \in Y$ be a limit point for f(K). Choose a precompact neighbourhood U of y, so that y is also a limit point of $f(K) \cap \overline{U}$. Since f is proper, $f^{-1}(\overline{U})$ is compact, and hence $K \cap f^{-1}(\overline{U})$ is compact as well. But then by continuity, $f(K \cap f^{-1}(\overline{U})) = f(K) \cap \overline{U}$ is compact, implying it is closed. Hence $y \in f(K) \cap \overline{U} \subset f(K)$, as required.

We now use Whitney embedding to extend our understanding of the genericity of transversality. First we need an understanding of the immediate neighbourhood of an embedded submanifold in \mathbb{R}^N . For this, we introduce a new manifold associated to an embedded submanifold: its normal bundle (for now we assume the manifold is embedded in \mathbb{R}^N).

If $Y \subset \mathbb{R}^N$ is an embedded submanifold, the normal space at $y \in Y$ is defined by $N_y Y = \{v \in \mathbb{R}^N :$ $v \perp T_u Y$. The collection of all normal spaces of all points in Y is called the normal bundle:

$$NY = \{ (y, v) \in Y \times \mathbb{R}^N : v \in N_y Y \}.$$

Proposition 1.51. $NY \subset \mathbb{R}^N \times \mathbb{R}^N$ is an embedded submanifold of dimension N.

Proof. Given $y \in Y$, choose coordinates $(u^1, \ldots u^N)$ in a neighbourhood $U \subset \mathbb{R}^N$ of y so that $Y \cap U = \{u^{n+1} = \cdots = u^N = 0\}$. Define $\Phi: U \times \mathbb{R}^N \longrightarrow \mathbb{R}^{N-n} \times \mathbb{R}^n$ via

$$\Phi(x,v) = (u^{n+1}(x), \dots, u^N(x), \langle v, \frac{\partial}{\partial u^1} |_x \rangle, \dots, \langle v, \frac{\partial}{\partial u^n} |_x \rangle),$$

so that $\Phi^{-1}(0)$ is precisely $NY \cap (U \times \mathbb{R}^N)$. We then show that 0 is a regular value: observe that, writing v in terms of its components $v^j \frac{\partial}{\partial x^j}$ in the standard basis for \mathbb{R}^N ,

$$\langle v, \frac{\partial}{\partial u^i} |_x \rangle = \langle v^j \frac{\partial}{\partial x^j}, \frac{\partial x^k}{\partial u^i} (u(x)) \frac{\partial}{\partial x^k} |_x \rangle = \sum_{j=1}^N v^j \frac{\partial x^j}{\partial u^i} (u(x))$$

Therefore the Jacobian of Φ is the $((N-n)+n) \times (N+N)$ matrix

$$D\Phi(x) = \begin{pmatrix} \frac{\partial u^j}{\partial x^i}(x) & 0\\ * & \frac{\partial x^j}{\partial u^i}(u(x)) \end{pmatrix}$$

The N rows of this matrix are linearly independent, proving Φ is a submersion.

The normal bundle NY contains $Y \cong Y \times \{0\}$ as a regular submanifold, and is equipped with a smooth map $\pi : NY \longrightarrow Y$ sending $(y, v) \mapsto y$. The map π is a surjective submersion and is known as the bundle projection. The vector spaces $\pi^{-1}(y)$ for $y \in Y$ are called the fibers of the bundle and we shall see later that NY is an example of a vector bundle.

We may take advantage of the embedding in \mathbb{R}^N to define a smooth map $E: NY \longrightarrow \mathbb{R}^N$ via

$$E(x,v) = x + v.$$

Definition 16. A tubular neighbourhood of the embedded submanifold $Y \subset \mathbb{R}^N$ is a neighbourhood U of Y in \mathbb{R}^N that is the diffeomorphic image under E of an open subset $V \subset NY$ of the form

$$V = \{(y,v) \in NY \ : \ |v| < \delta(y)\},$$

for some positive continuous function $\delta: M \longrightarrow \mathbb{R}$.

If $U \subset \mathbb{R}^N$ is such a tubular neighbourhood of Y, then there does exist a positive continuous function $\epsilon: Y \longrightarrow \mathbb{R}$ such that $U_{\epsilon} = \{x \in \mathbb{R}^N : \exists y \in Y \text{ with } |x - y| < \epsilon(y)\}$ is contained in U. This is simply

$$\epsilon(y) = \sup\{r : B(y,r) \subset U\},\$$

which is continuous since $\forall \epsilon > 0, \exists x \in U$ for which $\epsilon(y) \leq |x - y| + \epsilon$. For any other $y' \in Y$, this is $\leq |y - y'| + |x - y'| + \epsilon$. Since $|x - y'| \leq \epsilon(y')$, we have $|\epsilon(y) - \epsilon(y')| \leq |y - y'| + \epsilon$.

Theorem 1.52 (Tubular neighbourhood theorem). Every regular submanifold of \mathbb{R}^N has a tubular neighbourhood.

Proof. Postpone briefly.

Corollary 1.53. Let X be a manifold with boundary and $f: X \longrightarrow Y$ be a smooth map to a manifold Y. Then there is an open ball $S = B(0,1) \subset \mathbb{R}^N$ and a smooth map $F: X \times S \longrightarrow Y$ such that F(x,0) = f(x)and for fixed x, the map $f_x: s \mapsto F(x,s)$ is a submersion $S \longrightarrow Y$. In particular, F and ∂F are submersions.

Proof. Embed Y in \mathbb{R}^N , and let $S = B(0,1) \subset \mathbb{R}^N$. Then use the tubular neighbourhood to define

$$F(y,s) = (\pi \circ E^{-1})(f(y) + \epsilon(y)s),$$

The transversality theorem then guarantees that given any smooth $g: Z \longrightarrow Y$, for almost all $s \in S$ the maps $f_s, \partial f_s$ are transverse to g. We improve this slightly to show that f_s may be chosen to be *homotopic* to f.

Corollary 1.54 (Transversality homotopy theorem). Given any smooth maps $f : X \longrightarrow Y$, $g : Z \longrightarrow Y$, where only X has boundary, there exists a smooth map $f' : X \longrightarrow Y$ homotopic to f with $f', \partial f'$ both transverse to g.

Proof. Let S, F be as in the previous corollary. Away from a set of measure zero in S, the functions $f_s, \partial f_s$ are transverse to g, by the transversality theorem. But these f_s are all homotopic to f via the homotopy $X \times [0, 1] \longrightarrow Y$ given by

$$(x,t)\mapsto F(x,ts).$$

Proof, tubular neighbourhood theorem. First we show that E is a local diffeomorphism near $y \in Y \subset NY$. if ι is the embedding of Y in \mathbb{R}^N , and $\iota' : Y \longrightarrow NY$ is the embedding in the normal bundle, then $E \circ \iota' = \iota$, hence we have $DE \circ D\iota' = D\iota$, showing that the image of DE(y) contains T_yY . Now if ι is the embedding of N_yY in \mathbb{R}^N , and $\iota' : N_yY \longrightarrow NY$ is the embedding in the normal bundle, then $E \circ \iota' = \iota$. Hence we see that the image of DE(y) contains N_yY , and hence the image is all of $T_y\mathbb{R}^N$. Hence E is a diffeomorphism on some neighbourhood

$$V_{\delta}(y) = \{ (y', v') \in NY : |y' - y| < \delta, |v'| < \delta \}, \ \delta > 0.$$

Now for $y \in Y$ let $r(y) = \sup\{\delta : E|_{V_{\delta}(y)}$ is a diffeomorphism} if this is ≤ 1 and let r(y) = 1 otherwise. The function r(y) is continuous, since if |y - y'| < r(y), then $V_{\delta}(y') \subset V_{r(y)}(y)$ for $\delta = r(y) - |y - y'|$. This means that $r(y') \geq \delta$, i.e. $r(y) - r(y') \leq |y - y'|$. Switching y and y', this remains true, hence $|r(y) - r(y')| \leq |y - y'|$, yielding continuity.

Finally, let $V = \{(y, v) \in NY : |v| < \frac{1}{2}r(y)\}$. We show that E is injective on V. Suppose $(y, v), (y', v') \in V$ are such that E(y, v) = E(y', v'), and suppose wlog $r(y') \leq r(y)$. Then since y + v = y' + v', we have

$$|y - y'| = |v - v'| \le |v| + |v'| \le \frac{1}{2}r(y) + \frac{1}{2}r(y') \le r(y).$$

Hence y, y' are in $V_{r(y)}(y)$, on which E is a diffeomorphism. The required tubular neighbourhood is then U = E(V).

The last theorem we shall prove concerning transversality is a very useful extension result which is essential for intersection theory:

Theorem 1.55 (Homotopic transverse extension of boundary map). Let X be a manifold with boundary and $f: X \longrightarrow Y$ a smooth map to a manifold Y. Suppose that ∂f is transverse to the closed map $g: Z \longrightarrow Y$. Then there exists a map $f': X \longrightarrow Y$, homotopic to f and with $\partial f' = \partial f$, such that f' is transverse to g.

Proof. First observe that since ∂f is transverse to g on ∂X , f is also transverse to g there, and furthermore since g is closed, f is transverse to g in a neighbourhood U of ∂X . (for example, if $x \in \partial X$ but x not in $f^{-1}(g(Z))$ then since the latter set is closed, we obtain a neighbourhood of x for which f is transverse to g.)

Now choose a smooth function $\gamma: X \longrightarrow [0,1]$ which is 1 outside U but 0 on a neighbourhood of ∂X . (why does γ exist? exercise.) Then set $\tau = \gamma^2$, so that $d\tau(x) = 0$ wherever $\tau(x) = 0$. Recall the map $F: X \times S \longrightarrow Y$ we used in proving the transversality homotopy theorem 1.54 and modify it via

$$F'(x,s) = F(x,\tau(x)s).$$

Then F' and $\partial F'$ are transverse to g, and we can pick s so that $f': x \mapsto F'(x, s)$ and $\partial f'$ are transverse to g. Finally, if x is in the neighbourhood of ∂X for which $\tau = 0$, then f'(x) = F(x, 0) = f(x).

Corollary 1.56. if $f: X \longrightarrow Y$ and $f': X \longrightarrow Y$ are homotopic smooth maps of manifolds, each transverse to the closed map $g: Z \longrightarrow Y$, then the fiber products $W = X_f \times_g Z$ and $W' = X_{f'} \times_g Z$ are cobordant.

Proof. if $F : X \times [0,1] \longrightarrow Y$ is the homotopy between $\{f, f'\}$, then by the previous theorem, we may find a (homotopic) homotopy $F' : X \times [0,1] \longrightarrow Y$ which is transverse to g. Hence the fiber product $U = (X \times [0,1])_{F'} \times_{g} Z$ is the cobordism with boundary $W \sqcup W'$.

The previous corollary allows us to make the following definition:

Definition 17. Let $f : X \longrightarrow Y$ and $g : Z \longrightarrow Y$ be smooth maps with X compact, g closed, and $\dim X + \dim Z = \dim Y$. Then we define the (mod 2) intersection number of f and g to be

$$I_2(f,g) = \sharp(X_{f'} \times_q Z) \pmod{2},$$

where $f': X \longrightarrow Y$ is any smooth map smoothly homotopic to f but transverse to g, and where we assume the fiber product to consist of a finite number of points (this is always guaranteed, e.g. if g is proper, or if g is a closed embedding).

This allows us to define the notion of intersection (mod 2) of embedded submanifolds: for example,

Example 1.57. If C_1, C_2 are two distinct great circles on S^2 then they have two transverse intersection points, so $I_2(C_1, C_2) = 0$ in \mathbb{Z}_2 . Of course we can shrink one of the circles to get a homotopic one which does not intersect the other at all. This corresponds to the standard cobordism from two points to the empty set.

Example 1.58. If (e_1, e_2, e_3) is a basis for \mathbb{R}^3 we can consider the following two embeddings of $S^1 = \mathbb{R}/2\pi\mathbb{Z}$ into $\mathbb{R}P^2$: $\iota_1 : \theta \mapsto \langle \cos(\theta/2)e_1 + \sin(\theta/2)e_2 \rangle$ and $\iota_2 : \theta \mapsto \langle \cos(\theta/2)e_2 + \sin(\theta/2)e_3 \rangle$. These two embedded submanifolds intersect transversally in a single point $\langle e_2 \rangle$, and hence $I_2(\iota_1, \iota_2) = 1$ in \mathbb{Z}_2 . As a result, there is no way to deform ι_i so that they intersect transversally in zero points.

Example 1.59. Given a smooth map $f : X \longrightarrow Y$ for X compact and dim $Y = 2 \dim X$, we may consider the self-intersection $I_2(f, f)$. In the previous examples we may check $I_2(C_1, C_1) = 0$ and $I_2(\iota_1, \iota_1) = 1$.