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Theorem 1.49 (noncompact Whitney embedding in R2n+1). Any smooth n-manifold may be embedded in
R2n+1 (or immersed in R2n).

Proof. We saw that any manifold may be written as a countable union of increasing compact sets M = ∪Ki,
and that a regular covering {(Ui,k ⊃ Vi,k, ϕi,k)} of M can be chosen so that for fixed i, {Vi,k}k is a finite
cover of Ki+1\K◦i and each Ui,k is contained in Ki+2\K◦i−1.

This means that we can express M as the union of 3 open sets W0,W1,W2, where

Wj =
⋃

i≡j(mod3)

(∪kUi,k).

Each of the sets Ri = ∪kUi,k may be injectively immersed in R2n+1 by the argument for compact manifolds,
since they have a finite regular cover. Call these injective immersions Φi : Ri −→ R2n+1. The image Φi(Ri)
is bounded since all the charts are, by some radius ri. The open sets Ri, i ≡ j(mod3) for fixed j are disjoint,
and by translating each Φi, i ≡ j(mod3) by an appropriate constant, we can ensure that their images in
R2n+1 are disjoint as well.

Let Φ′i = Φi + (2(ri−1 + ri−2 + · · · ) + ri)−→e 1. Then Ψj = ∪i≡j(mod3)Φ′i : Wj −→ R2n+1 is an embedding.
Now that we have injective immersions Ψ0,Ψ1,Ψ2 of W0,W1,W2 in R2n+1, we may use the original

argument for compact manifolds: Take the partition of unity subordinate to Ui,k and resum it, obtaining a
3-element partition of unity {f1, f2, f3}, with fj =

∑
i≡j(mod3)

∑
k fi,k. Then the map

Ψ = (f1Ψ1, f2Ψ2, f3Ψ3, f1, f2, f3)

is an injective immersion of M into R6n+3. To see that it is in fact an embedding, note that any closed set
C ⊂ M may be written as a union of closed sets C = C1 ∪ C2 ∪ C3, where Cj = ∪i≡j(mod3)(C ∩Ki+1\K◦i )
is a disjoint union of compact sets. Ψ is injective, hence Cj is mapped to a disjoint union of compact sets,
hence a closed set. Then Ψ(C) is a union of 3 closed sets, hence closed, as required.

Using projection to hyperplanes we may again reduce to R2n+1, but if we exclude all hyperplanes perpen-
dicular to Span((e1, 0, 0, 0, 0, 0), (0, e1, 0, 0, 0, 0), (0, 0, e1, 0, 0, 0)), we obtain an injective immersion Ψ′ which
is proper, meaning that inverse images of compact sets are compact. This space of forbidden planes has
measure zero as long as N − 1 > 3, so that we may reduce to 2n+ 1 for n > 1. We leave as an exercise the
n = 1 case (or see Bredon for a slightly different proof).

The fact that the resulting injective immersion Ψ′ is proper implies that it is an embedding, by the closed
map lemma, as follows.

Lemma 1.50 (Closed map lemma for proper maps). Let f : X −→ Y be a proper continuous map of
topological manifolds. Then f is a closed map.

Proof. Let K ⊂ X be closed; we show that f(K) contains all its limit points and hence is closed. Let y ∈ Y
be a limit point for f(K). Choose a precompact neighbourhood U of y, so that y is also a limit point of
f(K) ∩ U . Since f is proper, f−1(U) is compact, and hence K ∩ f−1(U) is compact as well. But then by
continuity, f(K ∩ f−1(U)) = f(K) ∩ U is compact, implying it is closed. Hence y ∈ f(K) ∩ U ⊂ f(K), as
required.

We now use Whitney embedding to extend our understanding of the genericity of transversality. First we
need an understanding of the immediate neighbourhood of an embedded submanifold in RN . For this, we
introduce a new manifold associated to an embedded submanifold: its normal bundle (for now we assume
the manifold is embedded in RN ).

If Y ⊂ RN is an embedded submanifold, the normal space at y ∈ Y is defined by NyY = {v ∈ RN :
v⊥TyY }. The collection of all normal spaces of all points in Y is called the normal bundle:

NY = {(y, v) ∈ Y × RN : v ∈ NyY }.

Proposition 1.51. NY ⊂ RN × RN is an embedded submanifold of dimension N .
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Proof. Given y ∈ Y , choose coordinates (u1, . . . uN ) in a neighbourhood U ⊂ RN of y so that Y ∩ U =
{un+1 = · · · = uN = 0}. Define Φ : U × RN −→ RN−n × Rn via

Φ(x, v) = (un+1(x), . . . , uN (x), 〈v, ∂
∂u1 |x〉, . . . , 〈v, ∂

∂un |x〉),

so that Φ−1(0) is precisely NY ∩ (U ×RN ). We then show that 0 is a regular value: observe that, writing v
in terms of its components vj ∂

∂xj in the standard basis for RN ,

〈v, ∂
∂ui |x〉 = 〈vj ∂

∂xj ,
∂xk

∂ui (u(x)) ∂
∂xk
|x〉 =

N∑
j=1

vj ∂x
j

∂ui (u(x))

Therefore the Jacobian of Φ is the ((N − n) + n)× (N +N) matrix

DΦ(x) =

(
∂uj

∂xi (x) 0
∗ ∂xj

∂ui (u(x))

)

The N rows of this matrix are linearly independent, proving Φ is a submersion.

The normal bundle NY contains Y ∼= Y × {0} as a regular submanifold, and is equipped with a smooth
map π : NY −→ Y sending (y, v) 7→ y. The map π is a surjective submersion and is known as the bundle
projection. The vector spaces π−1(y) for y ∈ Y are called the fibers of the bundle and we shall see later that
NY is an example of a vector bundle.

We may take advantage of the embedding in RN to define a smooth map E : NY −→ RN via

E(x, v) = x+ v.

Definition 16. A tubular neighbourhood of the embedded submanifold Y ⊂ RN is a neighbourhood U of
Y in RN that is the diffeomorphic image under E of an open subset V ⊂ NY of the form

V = {(y, v) ∈ NY : |v| < δ(y)},

for some positive continuous function δ : M −→ R.

If U ⊂ RN is such a tubular neighbourhood of Y , then there does exist a positive continuous function
ε : Y −→ R such that Uε = {x ∈ RN : ∃y ∈ Y with |x− y| < ε(y)} is contained in U . This is simply

ε(y) = sup{r : B(y, r) ⊂ U},

which is continuous since ∀ε > 0,∃x ∈ U for which ε(y) ≤ |x − y| + ε. For any other y′ ∈ Y , this is
≤ |y − y′|+ |x− y′|+ ε. Since |x− y′| ≤ ε(y′), we have |ε(y)− ε(y′)| ≤ |y − y′|+ ε.

Theorem 1.52 (Tubular neighbourhood theorem). Every regular submanifold of RN has a tubular neigh-
bourhood.

Proof. Postpone briefly.

Corollary 1.53. Let X be a manifold with boundary and f : X −→ Y be a smooth map to a manifold Y .
Then there is an open ball S = B(0, 1) ⊂ RN and a smooth map F : X × S −→ Y such that F (x, 0) = f(x)
and for fixed x, the map fx : s 7→ F (x, s) is a submersion S −→ Y . In particular, F and ∂F are submersions.

Proof. Embed Y in RN , and let S = B(0, 1) ⊂ RN . Then use the tubular neighbourhood to define

F (y, s) = (π ◦ E−1)(f(y) + ε(y)s),

24



1.10 Partitions of unity and Whitney embedding 1300Y Geometry and Topology

The transversality theorem then guarantees that given any smooth g : Z −→ Y , for almost all s ∈ S the
maps fs, ∂fs are transverse to g. We improve this slightly to show that fs may be chosen to be homotopic
to f .

Corollary 1.54 (Transversality homotopy theorem). Given any smooth maps f : X −→ Y , g : Z −→ Y ,
where only X has boundary, there exists a smooth map f ′ : X −→ Y homotopic to f with f ′, ∂f ′ both
transverse to g.

Proof. Let S, F be as in the previous corollary. Away from a set of measure zero in S, the functions fs, ∂fs
are transverse to g, by the transversality theorem. But these fs are all homotopic to f via the homotopy
X × [0, 1] −→ Y given by

(x, t) 7→ F (x, ts).

Proof, tubular neighbourhoood theorem. First we show that E is a local diffeomorphism near y ∈ Y ⊂ NY .
if ι is the embedding of Y in RN , and ι′ : Y −→ NY is the embedding in the normal bundle, then E ◦ ι′ = ι,
hence we have DE ◦Dι′ = Dι, showing that the image of DE(y) contains TyY . Now if ι is the embedding
of NyY in RN , and ι′ : NyY −→ NY is the embedding in the normal bundle, then E ◦ ι′ = ι. Hence we see
that the image of DE(y) contains NyY , and hence the image is all of TyRN . Hence E is a diffeomorphism
on some neighbourhood

Vδ(y) = {(y′, v′) ∈ NY : |y′ − y| < δ, |v′| < δ}, δ > 0.

Now for y ∈ Y let r(y) = sup{δ : E|Vδ(y) is a diffeomorphism} if this is ≤ 1 and let r(y) = 1 otherwise. The
function r(y) is continuous, since if |y− y′| < r(y), then Vδ(y′) ⊂ Vr(y)(y) for δ = r(y)− |y− y′|. This means
that r(y′) ≥ δ, i.e. r(y)−r(y′) ≤ |y−y′|. Switching y and y′, this remains true, hence |r(y)−r(y′)| ≤ |y−y′|,
yielding continuity.

Finally, let V = {(y, v) ∈ NY : |v| < 1
2r(y)}. We show that E is injective on V . Suppose (y, v), (y′, v′) ∈

V are such that E(y, v) = E(y′, v′), and suppose wlog r(y′) ≤ r(y). Then since y + v = y′ + v′, we have

|y − y′| = |v − v′| ≤ |v|+ |v′| ≤ 1
2r(y) + 1

2r(y
′) ≤ r(y).

Hence y, y′ are in Vr(y)(y), on which E is a diffeomorphism. The required tubular neighbourhood is then
U = E(V ).

The last theorem we shall prove concerning transversality is a very useful extension result which is
essential for intersection theory:

Theorem 1.55 (Homotopic transverse extension of boundary map). Let X be a manifold with boundary and
f : X −→ Y a smooth map to a manifold Y . Suppose that ∂f is transverse to the closed map g : Z −→ Y .
Then there exists a map f ′ : X −→ Y , homotopic to f and with ∂f ′ = ∂f , such that f ′ is transverse to g.

Proof. First observe that since ∂f is transverse to g on ∂X, f is also transverse to g there, and furthermore
since g is closed, f is transverse to g in a neighbourhood U of ∂X. (for example, if x ∈ ∂X but x not in
f−1(g(Z)) then since the latter set is closed, we obtain a neighbourhood of x for which f is transverse to g.)

Now choose a smooth function γ : X −→ [0, 1] which is 1 outside U but 0 on a neighbourhood of ∂X.
(why does γ exist? exercise.) Then set τ = γ2, so that dτ(x) = 0 wherever τ(x) = 0. Recall the map
F : X × S −→ Y we used in proving the transversality homotopy theorem 1.54 and modify it via

F ′(x, s) = F (x, τ(x)s).

Then F ′ and ∂F ′ are transverse to g, and we can pick s so that f ′ : x 7→ F ′(x, s) and ∂f ′ are transverse to
g. Finally, if x is in the neighbourhood of ∂X for which τ = 0, then f ′(x) = F (x, 0) = f(x).

Corollary 1.56. if f : X −→ Y and f ′ : X −→ Y are homotopic smooth maps of manifolds, each transverse
to the closed map g : Z −→ Y , then the fiber products W = Xf×gZ and W ′ = Xf ′×gZ are cobordant.
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Proof. if F : X × [0, 1] −→ Y is the homotopy between {f, f ′}, then by the previous theorem, we may
find a (homotopic) homotopy F ′ : X × [0, 1] −→ Y which is transverse to g. Hence the fiber product
U = (X × [0, 1])F ′×gZ is the cobordism with boundary W tW ′.

The previous corollary allows us to make the following definition:

Definition 17. Let f : X −→ Y and g : Z −→ Y be smooth maps with X compact, g closed, and
dimX + dimZ = dimY . Then we define the (mod 2) intersection number of f and g to be

I2(f, g) = ](Xf ′ ×g Z) (mod 2),

where f ′ : X −→ Y is any smooth map smoothly homotopic to f but transverse to g, and where we assume
the fiber product to consist of a finite number of points (this is always guaranteed, e.g. if g is proper, or if
g is a closed embedding).

This allows us to define the notion of intersection (mod 2) of embedded submanifolds: for example,

Example 1.57. If C1, C2 are two distinct great circles on S2 then they have two transverse intersection
points, so I2(C1, C2) = 0 in Z2. Of course we can shrink one of the circles to get a homotopic one which
does not intersect the other at all. This corresponds to the standard cobordism from two points to the empty
set.

Example 1.58. If (e1, e2, e3) is a basis for R3 we can consider the following two embeddings of S1 = R/2πZ
into RP 2: ι1 : θ 7→ 〈cos(θ/2)e1 + sin(θ/2)e2〉 and ι2 : θ 7→ 〈cos(θ/2)e2 + sin(θ/2)e3〉. These two embedded
submanifolds intersect transversally in a single point 〈e2〉, and hence I2(ι1, ι2) = 1 in Z2. As a result, there
is no way to deform ιi so that they intersect transversally in zero points.

Example 1.59. Given a smooth map f : X −→ Y for X compact and dimY = 2 dimX, we may consider
the self-intersection I2(f, f). In the previous examples we may check I2(C1, C1) = 0 and I2(ι1, ι1) = 1.
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