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2.4 Intersection theory

The previous corollary allows us to make the following definition:

Definition 17. Let f : X −→ Y and g : Z −→ Y be smooth maps with X compact, g closed, and
dimX + dimZ = dimY . Then we define the (mod 2) intersection number of f and g to be

I2(f, g) = ](Xf ′ ×g Z) (mod 2),

where f ′ : X −→ Y is any smooth map smoothly homotopic to f but transverse to g, and where we assume
the fiber product to consist of a finite number of points (this is always guaranteed, e.g. if g is proper, or if
g is a closed embedding).

Example 2.30. If C1, C2 are two distinct great circles on S2 then they have two transverse intersection
points, so I2(C1, C2) = 0 in Z2. Of course we can shrink one of the circles to get a homotopic one which
does not intersect the other at all. This corresponds to the standard cobordism from two points to the empty
set.

Example 2.31. If (e1, e2, e3) is a basis for R3 we can consider the following two embeddings of S1 = R/2πZ
into RP 2: ι1 : θ 7→ 〈cos(θ/2)e1 + sin(θ/2)e2〉 and ι2 : θ 7→ 〈cos(θ/2)e2 + sin(θ/2)e3〉. These two embedded
submanifolds intersect transversally in a single point 〈e2〉, and hence I2(ι1, ι2) = 1 in Z2. As a result, there
is no way to deform ιi so that they intersect transversally in zero points.

Example 2.32. Given a smooth map f : X −→ Y for X compact and dimY = 2 dimX, we may consider
the self-intersection I2(f, f). In the previous examples we may check I2(C1, C1) = 0 and I2(ι1, ι1) = 1.
Any embedded S1 in an oriented surface has no self-intersection. If the surface is nonorientable, the self-
intersection may be nonzero.

Example 2.33. Let p ∈ S1. Then the identity map Id : S1 −→ S1 is transverse to the inclusion ι : p −→ S1

with one point of intersection. Hence the identity map is not (smoothly) homotopic to a constant map, which
would be transverse to ι with zero intersection. Using smooth approximation, get that Id is not continuously
homotopic to a constant map, and also that S1 is not contractible.

Example 2.34. By the previous argument, any compact manifold is not contractible.

Example 2.35. Consider SO(3) ∼= RP 3 and let ` ⊂ RP 3 be a line, diffeomorphic to S1. This line corre-
sponds to a path of rotations about an axis by θ ∈ [0, π] radians. Let P ⊂ RP 3 be a plane intersecting ` in
one point. Since this is a transverse intersection in a single point, ` cannot be deformed to a point (which
would have zero intersection with P. This shows that the path of rotations is not homotopic to a constant
path.

If ι : θ 7→ ι(θ) is the embedding of S1, then traversing the path twice via ι′ : θ 7→ ι(2θ), we obtain a map
ι′ which is transverse to P but with two intersection points. Hence it is possible that ι′ may be deformed so
as not to intersect P. Can it be done?

Example 2.36. Consider RP 4 and two transverse hyperplanes P1, P2 each an embedded copy of RP 3. These
then intersect in P1∩P2 = RP 2, and since RP 2 is not null-homotopic, we cannot deform the planes to remove
all intersection.

Intersection theory also allows us to define the degree of a map modulo 2. The degree measures how
many generic preimages there are of a local diffeomorphism.

Definition 18. Let f : M −→ N be a smooth map of manifolds of the same dimension, and suppose M is
compact and N connected. Let p ∈ N be any point. Then we define deg2(f) = I2(f, p).

Example 2.37. Let f : S1 −→ S1 be given by z 7→ zk. Then deg2(f) = k (mod 2).
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Example 2.38. If p : C∪ {∞} −→ C∪ {∞} is a polynomial of degree k, then as a map S2 −→ S2 we have
deg2(p) = k (mod 2), and hence any odd polynomial has at least one root. To get the fundamental theorem
of algebra, we must consider oriented cobordism

Even if submanifolds C,C ′ do not intersect, it may be that there are more sophisticated geometrical
invariants which cause them to be “intertwined” in some way. One example of this is linking number.

Definition 19. Suppose that M,N ⊂ Rk+1 are compact embedded submanifolds with dimM + dimN = k,
and let us assume they are transverse, meaning they do not intersect at all.

Then define λ : M ×N −→ Sk via
(x, y) 7→ x− y

|x− y|
.

Then we define the (mod 2) linking number of M,N to be deg2(λ).

Example 2.39. Consider the standard Hopf link in R3. Then it is easy to calculate that deg2(λ) = 1. On
the other hand, the standard embedding of disjoint circles (differing by a translation, say) has deg2(λ) = 0.
Hence it is impossible to deform the circles through embeddings of S1 tS1 −→ R3, so that they are unlinked.
Why must we stay within the space of embeddings, and not allow the circles to intersect?

3 The tangent bundle and vector bundles

The tangent bundle of an n-manifold M is a 2n-manifold, called TM , naturally constructed in terms of M ,
which is made up of the disjoint union of all tangent spaces to all points in M . If M is embedded in RN , then
TM is a regular submanifold of RN ×RN , but we define it intrinsically, without reference to an embedding.

As a set, it is fairly easy to describe, as simply the disjoint union of all tangent spaces. However we must
explain precisely what we mean by the tangent space TpM to p ∈M .

Definition 20. Let (U,ϕ), (V, ψ) be coordinate charts around p ∈M . Let u ∈ Tϕ(p)ϕ(U) and v ∈ Tψ(p)ψ(V ).
Then the triples (U,ϕ, u), (V, ψ, v) are called equivalent when D(ψ ◦ ϕ−1)(ϕ(p)) : u 7→ v. The chain rule for
derivatives Rn −→ Rn guarantees that this is indeed an equivalence relation.

The set of equivalence classes of such triples is called the tangent space to p of M , denoted TpM , and
forms a real vector space of dimension dimM .

As a set, the tangent bundle is defined by

TM =
⊔
p∈M

TpM,

and it is equipped with a natural surjective map π : TM −→M , which is simply π(X) = x for X ∈ TxM .
We now give it a manifold structure in a natural way.

Proposition 3.1. For an n-manifold M , the set TM has a natural topology and smooth structure which
make it a 2n-manifold, and make π : TM −→M a smooth map.

Proof. Any chart (U,ϕ) for M defines a bijection

Tϕ(U) ∼= U × Rn −→ π−1(U)

via (p, v) 7→ (U,ϕ, v). Using this, we induce a smooth manifold structure on π−1(U), and view the inverse
of this map as a chart (π−1(U),Φ) to ϕ(U)× Rn.

given another chart (V, ψ), we obtain another chart (π−1(V ),Ψ) and we may compare them via

Ψ ◦ Φ−1 : ϕ(U ∩ V )× Rn −→ ψ(U ∩ V )× Rn,

which is given by (p, u) 7→ ((ψ ◦ ϕ−1)(p), D(ψ ◦ ϕ−1)pu), which is smooth. Therefore we obtain a topology
and smooth structure on all of TM (by defining W to be open when W ∩ π−1(U) is open for every U in an
atlas for M ; all that remains is to verify the Hausdorff property, which holds since points x, y are either in
the same chart (in which case it is obvious) or they can be separated by the given type of charts.
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A more constructive way of looking at the tangent bundle: We choose a countable, locally finite atlas
{(Ui, ϕi)} for M and glue together Ui × Rn to Uj × Rn via an equivalence

(x, u) ∼ (y, v) ⇔ y = ϕj ◦ ϕ−1
i (x) and v = D(ϕj ◦ ϕ−1

i )xu,

and verify the conditions of the general gluing construction 1.7. Then show that a different atlas gives a
canonically diffeomorphic manifold, i.e. that the result is independent of atlas.

A description of the tangent bundle is not complete without defining the derivative of a general smooth
map of manifolds f : M −→ N . Such a map may be defined locally in charts (Ui, ϕi) for M and (Vα, ψα)
for N as a collection of vector-valued functions ψα ◦ f ◦ ϕ−1

i = fiα : ϕi(Ui) −→ ψα(Vα) which satisfy

(ψβ ◦ ψ−1
α ) ◦ fiα = fjβ ◦ (ϕj ◦ ϕ−1

i ).

Differentiating, we obtain
D(ψβ ◦ ψ−1

α ) ◦Dfiα = Dfjβ ◦D(ϕj ◦ ϕ−1
i ),

and hence we obtain a map TM −→ TN . This map is called the derivative of f and is denoted Df :
TM −→ TN . Sometimes it is called the “push-forward” of vectors and is denoted f∗. The map fits into the
commutative diagram

TM
Df //

π

��

TN

π

��
M

f
// N

Just as π−1(x) = TxM ⊂ TM is a vector space for all x, making TM into a “bundle of vector spaces”, the
map Df : TxM −→ Tf(x)N is a linear map and hence Df is a “bundle of linear maps”.

The usual chain rule for derivatives then implies that if f◦g = h as maps of manifolds, then Df◦Dg = Dh.
As a result, we obtain the following category-theoretic statement.

Proposition 3.2. The map T which takes a manifold M to its tangent bundle TM , and which takes maps
f : M −→ N to the derivative Df : TM −→ TN , is a functor from the category of manifolds and smooth
maps to itself.

For this reason, the derivative map Df is sometimes called the “tangent mapping” Tf .

Example 3.3. If ι : M −→ N is an embedding of M into N , then Dι : TM −→ TN is also an embedding,
and hence Dkι : T kM −→ T kN are all embeddings.

The tangent bundle allows us to make sense of the notion of vector field in a global way. Locally, in a
chart (Ui, ϕi), we would say that a vector field Xi is simply a vector-valued function on Ui, i.e. a function
Xi : ϕ(Ui) −→ Rn. Of course if we had another vector field Xj on (Uj , ϕj), then the two would agree as vector
fields on the overlap Ui ∩Uj when D(ϕj ◦ϕ−1

i ) : Xi 7→ Xj . So, if we specify a collection {Xi ∈ C∞(Ui,Rn)}
which glue on overlaps, this would define a global vector field. This leads precisely to the following definition.

Definition 21. A smooth vector field on the manifold M is a smooth map X : M −→ TM such that
π ◦X : M −→ M is the identity. Essentially it is a smooth assignment of a unique tangent vector to each
point in M .

Such maps X are also called cross-sections or simply sections of the tangent bundle TM , and the set
of all such sections is denoted C∞(M,TM) or sometimes Γ∞(M,TM), to distinguish them from simply
smooth maps M −→ TM .
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