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The Yang-Mills functional over a Riemann surface is studied from the point of view of
Morse theory. The main result is that thisis a ‘ perfect’ functional provided due account
is taken of its gauge symmetry. This enables topological conclusions to be drawn about
the critical sets and leads eventually to information about the moduli space of algebraic
bundles over the Riemann surface. This in turn depends on the interplay between the
holomorphic and unitary structures, which is analysed in detail.
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INTRODUCTION

This paper is a greatly expanded account of the preliminary material that appeared in Atiyah
& Bott (1980). Part of the reason for the long delay between that paper and this present version
was that new view-points emerged that added further interest to the topic and enabled
us to provide proofs for what had earlier been conjectures. The length of this paper is due to our
desire to present the several different aspects of the problem. We feel that this is justified because
the main interest lies not so much in the actual applications as in the methods employed and
the interaction between different approaches.

Because of its long gestation period and its consequent size, we feel that we owe the reader a
substantial and leisurely introduction that puts the paper into historical perspective. In fact, on
a personal level, one of the attractions of this subject to us is that it brings together algebraic
vector bundles and Morse theory, topics to which we separately made contributions a quarter
of a century ago (Atiyah 1955, 1957; Bott 1958, Bott &Samelson 1958). Even better, the catalyst
that produced this interaction came from a quite unexpected quarter, namely that of theoretical
physics in the form of the Yang—Mills equations.

At this stage we should perhaps explain that our main idea is to apply Morse theory methods to
the Yang—Mills functional over a compact Riemann surface M (or algebraic curve) and deduce
results about the cohomology of the moduli spaces of stable algebraic vector bundles over M.
To explain the background we shall now digress to give brief historical accounts of both Morse
theory and algebraic bundle theory.

Morse theory is concerned with the relation between the homology of a manifold M and the
critical points of a real-valued function fon M. When M is finite-dimensional these ideas go back
at least to Poincaré but they have been applied in more refined form in recent times to derive
deep results concerning the geometry of manifolds. Morse’s great contribution was to deal with
the infinite-dimensional case arising from variational problems for functions of one variable. The
most noteworthy geometrical application was to the ‘Energy’ function on the loop space, which
yielded significant results concerning closed godesics. In Bott (1958), Bott & Samelson (1958),
Morse theory was applied to nice spaces arising from Lie groups, such as (some) homogeneous
spaces G/H and the loop space 2G, where explicit knowledge of natural functions could be
exploited to derive information about the cohomology of the spaces concerned.

As a very simple example consider, on the complex projective n-space F,(C), the function f
defined by

Feo sz = lzal?/ Sl

where we use standard homogeneous coordinates. Clearly fhas a unique maximum at the point
(1,0,0,...,0) and a minimum along the hyperplane z, = 0. Morse theory then allows one to
conclude that the cohomology of P,(C) differs from that of £,_;(C) by a single free generator in
dimension 2z. This is an easy consequence of the fact that the complement of z, = 0 is a copy of
C». Of course in this example, and in many other explicit cases, one does not need the function f
to produce the decomposition into such pieces (or strata). In fact for complex homogeneous
spaces one can always produce such a stratification from orbits of suitable groups. The same
applies to 2G. Thus in these cases derived from groups, Morse theory, which uses real functions,
can be replaced by complex analytic methods. A much more sophisticated, though computa-
tionally simple method of computing Betti numbers is to use the Weil conjectures as established
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by Deligne, which involves counting the number of points over finite fields. This works for
algebraic manifolds and for P,(F,) one finds

N(ng) = (q"*=1)/(g=1) =1+q+g*+... +¢"
Note that the equality

N(n,q) = N(n—1,q) +¢"

corresponds to the stratification of P, discussed above, which indicates the common role this plays
in all three methods of computing Betti numbers. This number-theory approach is frequently
very effective but it does not give as much information as the more direct geometrical methods.
In particular the fundamental group and torsion cannot be computed by number theory. In
fact the Morse theory proofin Bott & Samelson (1958) that 2G was torsion-free was a significant
triumph of the method, particularly since G itself can have torsion.

We turn next to the topic of algebraic vector bundles over an algebraic curve. Over the
complex numbers these are equivalent to holomorphic vector bundles over the associated compact
Riemann surface. For vector bundles with fibre of dimension one, i.e. line-bundles, the classical
divisor theory of Abel-Jacobi expresses the fact that the isomorphism classes of line-bundles form
an abelian group isomorphic to Z x J, where J is the Jacobian of the curve and the integers Z
correspond to the Chern class of the line-bundle (or the degree of the divisor). Weil (1938) began
the generalization of divisor theory to that of matrix divisors, which correspond to the modern
notion of vector bundle. The classification problem for bundles of rank » > 1is much harder than
for line-bundles partly because there is no group structure. Grothendieck (1957)showed that for
genus 0 the classification is trivial, in the sense that every bundle is a sum of line-bundles. Atiyah
(1957) extended the classification to genus 1 and (Atiyah 1955) treated the case of rank 2 bundles
for genus 2. In general in order to get a good moduli space one has to restrict to the class of stable
bundles as introduced by Mumford; otherwise one gets non-Hausdorff phenomena. A major
breakthrough came with the discovery by Narasimhan & Seshadri (1965) that bundles are stable
if and only if they arise from irreducible (projective) unitary representations of the fundamental
group. This connection between holomorphic and unitary structures was already apparent in
Weil’s paper, and in the classical case of line-bundles it is essentially equivalent to the identifi-
cation between holomorphic and harmonic 1-forms, which in turn was the starting point for
Hodge’s general theory of harmonic forms.

The unitary view-point enabled Newstead to examine the topological properties of the moduli
space for rank 2, obtaining in particular formulae for the Betti numbers. A direct generalization
of this method to higher rank appeared intractible. A quite different approach, initiated by
Harder (1970) for rank 2 and successfully generalized by Harder & Narasimhan (1975) for
higher rank, was number-theoretical based on the Weil conjectures and counting points over
finite fields. This method, pursued further by Desale & Ramanan (1975) led to an explicit
inductive formula for the Betti numbers of the moduli space for arbitrary rank z. At this point we
should comment that when the Chern class £ is prime to n the moduli space N(n, k) is compact
and non-singular, and this is the case for which Betti numbers are computed. If (n,k) # 1 then
the moduli space needs to be compactified and the geometry is more complicated.

The success of the Harder method depends on the fact that the moduli space N(n, k) for a curve
over a finite field F, has another description, showing that it is the function field analogue of the
classical moduli space for elliptic curves (i.e. the upper half plane divided by the modular group).
In modern terminology N(n, k) is a double coset space of an adele group and counting points in
N(n, k) can be reduced to computing adélic measures.

42-2
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We come now to the third and most recent ingredient in the story, namely the Yang-Mills
equations. These have become prominent in elementary particle physics and they have been
studied both in Minkowski space, where they are of hyperbolic type, and in Euclidean 4-space
where they are of elliptic type. In this latter case they have deep connections with three-
dimensional algebraic geometry for which the interested reader may consult Atiyah (1979). The
Yang-Mills equations can be formulated on any Riemannian manifold M and they depend on
a fixed compact Lie group G. In dimension 2, i.e. when M is a surface, the equations are practi-
cally trivial and all solutions can easily be described. Despite this apparent triviality our first
surprising observation was that, for a 2-sphere, the Yang-Mills equations for G essentially
reproduced the Morse theory picture of 2G. The Yang-Mills functional plays the role of the
Energy and the explicit solutions correspond to the explicit geodesic structure of G. The space 2G
is replaced by the space of G-connections modulo (based) equivalence. Unlike the four-dimen-
sional case studied in Atiyah (1979) where the Yang—Mills functional for SU(2) appears only to
have minima, in two dimensions there are critical points of arbitrarily high Morse index.

With this encouraging start it seemed natural to take the next step and investigate the Yang—
Mills equations over a Riemann surface of arbitrary genus. The Narasimhan-Seshadri unitary
approach fits naturally into this picture since the bundles arising from representations of 7, ()
are easily seen to give the critical points, and the irreducible representations give the Yang—Mills
minimum.

Tt seemed reasonable to hope that, as for the genus 0 case, we would have a perfect Morse
function, i.e. that the critical point structure would correspond precisely to the homology.
Comparison with the results of Newstead showed that this was not true in the naive sense, but it
eventually became apparent that if we used the full symmetry of the situation we should again
have a perfect Morse theory. Technically this meant that we needed to use all bundle auto-
morphisms not just based automorphisms. The lesson learnt from this example is of wider validity
and in §1 we begin with a general discussion of equivariant Morse theory, illustrated with some
very simple examples. For an interesting application of these ideas see Kirwan (1982).

In the application of Morse theory to 2G by Bott & Samelson (1958) the conclusions drawn
related to the cohomology of the whole space, since the cohomology of the various critical
manifolds was all known. In the Yang—Mills case the situation is different, in that the critical
manifolds are complicated and we would like to reverse the procedure, using information about
the whole space to deduce results on the critical manifolds. This procedure works for two reasons.
In the first place the cohomology of the whole space can be easily computed by relating it in fact
to QU(n) (or equivalently to the Yang-Mills situation for genus 0). Secondly the critical
manifolds other than the minimum can all be expressed in terms of the minima for U(m) with m < n,
so that we can apply an inductive argument.

At this stage we reach the position that, provided the basic analysis works as expected, we have
a perfect Morse theory and can inductively deduce information about the space of Yang-Mills
minima, which by the Narasimhan—Seshadri theorem can be identified with the moduli space
of stable bundles (in the coprime case (n,£) = 1). What has to be shown analytically is that the
Yang-Mills paths of steepest descent always converge in a suitably strong sense to a critical
point. We understand that Uhlenbeck (1982) has preliminary results in this direction that may
do what is required. However, we have found an alternative presentation that is more direct
and by-passes this question.

This alternative is a purely complex-analytic approach developed in § 7 and it begins with the
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observation that the space &7 of unitary connections on a given C* vector bundle E over a Riemann
surface can also be viewed as the space % of all holomorphic structures on E. One can then define a
stratification of % in which the one open stratum corresponds to semi-stable bundles and the
other strata are described in terms of the canonical flags or filtrations introduced by Harder &
Narasimhan (1975). Looked at equivariantly, relative to the group Aut (E) of automorphisms of
E, this turns out to be a ‘perfect’ stratification and enables us to deduce information about the
equivariant cohomology of the semi-stable stratum, and hence in the coprime case about the
cohomology of the moduli space of stable bundles.

This complex approach is-analogous to the use of complex cell decompositions to compute
the cohomology of P,(C) and other homogeneous spaces. However, the stratification of % is not
given by orbits of a group, except in the case of genus 0. Although technically independent of the
Morse theory approach based on the Yang—Mills functional our complex approach was motivated
by Morse theory and, as explained in §8, itis essentially equivalent toit. By this we mean that, if
the basic analyticfactsofthe Morse theory about convergence of trajectories are assumed, then our
complex strata must coincide with the Morse strata, i.e. the stable manifolds of the critical sets.

The fact that stability in Mumford’s sense and stability in Morse theory coincide in this
situation is not accidental. As has been pointed out to us very recently by D. Mumford and
S. Sternberg, this phenomenon occurs quite generally in the context studied in Mumford
(1965) of reductive groups acting on Kahler manifolds. The novelty in our situation is that we
have an infinite-dimensional example of this type, although the resulting moduli spaces are
finite-dimensional. The key observation in all cases is that one should introduce the ‘moment
map’ familiar in symplectic geometry. This point of view will be explained at the end of §9.

The detailed results that our methods yield on the cohomology of the moduli space N(n, k),
in the coprime case, are described in § 9. First of all we obtain inductive formulae to calculate the
Poincaré polynomials F,(N(z, k)). These formulae are essentially the same as those obtained by
the Harder-Narasimhan method and we shall comment on the comparison shortly. In addition,
however, we prove that N(n, k) has no torsion in its cohomology. We also prove the same thing for
the moduli space Ny(n, k) for stable bundles with fixed determinant, and we show that Ny(n, k) is
simply connected. Finally our methods give a natural and explicit set of multiplicative generators
for the cohomology ring (theorem 9.11).

Although the number-theory approach of Harder-Narasimhan appears totally different from
our geometric method there are close analogies, which are very intriguing. We discuss these
analogies in detail in §11.

We now review rapidly the contents of the sections not explicitly mentioned above. In §2 we
study the topology of the gauge group which from the Morse theory view-point determines the
homotopy of the space on which the Yang—Mills function is naturally defined. Sections 3 and 4
develop basic general facts about the Yang—Mills equations while §5 deals with the special case
of Riemann surfaces. In §6 we pursue the Yang—Mills solutions globally and show how they
correspond essentially to (projective) unitary representations of the fundamental group. Up to
this point we treat the general case of a compact Lie group G butin §§7 and 8 we concentrate on
the unitary group U(z) in order to make the connection with the theory of holomorphic vector
bundles. However, we return to the general case in § 10, showing rather briefly how the whole
theory extends to any G. The only notable difference is that we do not now get results about
torsion: in fact the presence of torsion in G almost certainly implies torsion in the corresponding
moduli spaces.
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Sections 12 and 13 are both in the nature of technical appendixes. Thusin § 12 we review some
elementary, though not widely known, facts about convexity and Lie groups. These play an
important role in the partial ordering of the strata in our stratification of €. An important notion
that emerges in our analysis is that of a convex invariant function ¢ on the Lie algebra of a
compact group. As we show in §8 we get essentially the same theory if, in the definition of the
Yang-Mills functional, we replace the norm-square || |2 by ¢. Finally §13 summarizes facts
‘about equivariant cohomology and in particular we formulate a result (proposition 13.4) that
is used in § 1 to give a criterion (proposition 1.9) for a stratification to be ‘equivariantly perfect’.
This criterion is closely related to an argument due to Frankel (1959), which asserts that Morse
functions arising from circle actions on Kahler manifolds are perfect.

It remains for us to make some comments about infinite-dimensional manifolds. The function-
space manifolds that we shall meet such as the space of unitary connections or the space of maps
of M into U(n) can be given various topologies, depending on the class of functions we take. As
long as our functions are at least continuous the homotopy type of the function spaces will be
essentially the same. Technically it is usually convenient to work with Banach manifolds (so as
to have the implicit function theorem) and one introduces Sobolev norms for this purpose. We
explain in § 14 how this is done, much of it being fairly standard. In the main body of the paper
we have ignored these technicalities and worked rather heuristically with smooth functions in
order to concentrate on the geometrical ideas. Section 14 redresses the balance and provides the
justification. Essentially this is a matter of establishing local regularity properties. For the global
properties we need an additional argument and for this we fall back on algebro-geometric
methods to which we devote §15.

From this summary of the various sections it will be clear that not all sections are strictly
necessary for the proof of our main results on the cohomology of moduli spaces of vector bundles.
The proofs are essentially contained in §§1, 2, 7, 9, 13, 14 and 15.

We should perhaps point out that the theory of stable bundles over Riemann surfaces is only
of real interest for genus g > 2. However, most of our discussion goes through for all values of
the genus and is interesting even for g = 0, 1, from the Morse theory point of view. There are
a few minor differences in the rational and elliptic case and we comment on these in the appro-
priate places.

Finally we should warn the reader that the level of exposition and sophistication is not uniform
throughout the paper. Thus the first few sections are written at a more leisurely pace and make
fewer demands on the reader. The technical requirements increase substantially in the later
sections.

1. EQUIVARIANT MORSE THEORY

We start with a brief review of the Morse theory of a non-degenerate smooth function fon a
compact C* manifold M.

Recall, first of all, that a critical point of fis a point p at which df vanishes, and that at such
a point the Hessian, H, f, is a well defined quadratic form on 7}, M, the tangent space to M at p.
In local coordinates {x'} centred at p, the matrix of H), frelative to the base 3/0x° at p is then given
by

H,f = | f/0x 0"

and p is called a non-degenerate critical point of f, if det H,, f # 0.
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At such a point the number of negative eigenvalues in a diagonalization of H,f is called the
index of p (as a critical point of f) and is denoted by A,,(f).
Now with any function f all of whose critical points are non-degenerate we associate the

Morse counting-series
M(f) = X0, df, =0,
»

where the sum ranges over the necessarily finite number of critical points of f.
The Morse theory in its most elementary manifestation sets topological bounds for M;(f).

Precisely, suppose that
P(M; K) = $ttdim HY(M; K)

is the Poincaré series for M relative to a coefficient field K. Then if f is any non-degenerate
function on M, its Morse series satisfies the following Morse inequalities: there exists a polynomial
R(2) with non-negative coefficients, such that

My(f) - B(M, K) = (1+2) R(2).

Thus in particular, the coefficients of M,(f) dominate those of F,(M). On the other hand
setting £ = — 1 we see that M_,(f) always yields the Euler number P_,(M) of M.
We shall call a function f, a K-perfect Morse-function on M if

My(f) = F(M; K),

and call f perfect if this equality holds for all fields K.

Hence a perfect Morse function can exist only on a torsion-free manifold. In general it is of
course difficult to decide whether a given fis perfect. However, there are two criteria for estab-
lishing ‘perfection’.

First of all, if the set {A,,(f)} of all indices of, f contains no consecutive integers, then f is perfect. This is
the lacunary principle of Morse. For instance, if it can be shown that fhas only even indices at
its critical points, then this principle immediately yields the perfection of f; and this is the method
that can be used to show that the Energy function on the space of loops of a Lie group is perfect
(Bott & Samelson 1958).

Failing such a fortuitous disposition of the indices {1, (f)}, one has the ‘completion principle’
also used by Morse and already foreshadowed by Birkhoff’s minimax principle.

Suppose then that p is a non-degenerate critical point p of f at level ¢, and of index A,,. The
‘Morselemma’ then asserts thatin a suitable coordinate system x,, ..., ¥, centred at p, the function
S has near p the form

f=c—xt—ax—.. —ad+ad +... .+,
where £ = A,,(f). The set

vp ={x|di+...+al<e, Ky =..=2x,=0}
is then a disc near p, whose boundary Ovp is a (k—1)-sphere in the space
e = {me M| f(m) < c—e).

We now call p ‘ completable’ if this sphere Ov; bounds a singular chain in M,_, for small enough
e > 0. With this understood one has the following:

Completion principle. If f is non-degenerate and all its critical points are completable, then f is a
perfect Morse function.
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Both these principles are easy consequences of the main structure theorem of the non-degener-
ate Morse theory. This theorem asserts that the sets M, = {pe M|f(p) < a} change their homo-
topy type only at critical values of fand then only by the attaching of a cell of dimension A, ( f).
Thus we have:

M, ~ M, if there are no critical values between a and b, while My, ~ M,V ¢, if there is a single critical
point p of index A in My, — M,.

From the standard exact sequences relating the cohomology of M, and M, under these circum-
stances one may then easily deduce the Morse inequalities as well as the completion principle,
which we have just described.

So much then for a quick review of the Morse theory in its most elementary form. For our
purposes we must now extend the concept of non-degeneracy of fin the following manner.

If N < M is a connected submanifold of M, it will be called a non-degenerate critical manifold
for fif and only if

(1.1) df=0 along N
(1.2) H,, f is non-degenerate on the normal bundle v(N) of N.

Note that because of (1.1) the Hessian Hy f of fis a well defined quadratic form on v(N), so
that (1.2) is the natural extension of the non-degeneracy hypothesis for critical points.

In the following a function on M will be called non-degenerate if its critical set is a union of
non-degenerate critical manifolds. A prime example, which in a sense explains the virtue of this
extension of the non-degeneracy concept, is the following.

Suppose E > Misa fibring and f a non-degenerate function on M in our new sense. Then it
is easy to see that 77* fon E is again non-degenerate in our new sense. On the other hand 7* f will
never have isolated critical sets unless £ is a covering.

We next formulate the proper way to ‘count’ a non-degenerate critical manifold N of f. The
recipe is as follows. We first endow »(N) with a Riemannian metric. Then of course our Hessian
H, f defines a canonical self-adjoint endomorphism

Ay: v(N)—->v(N)

(ANx)?/) = HNf(x,y)) x’?/GV(N)’

The non-degeneracy of Hy f now implies that the eigenvalues of Ay are all non-zero, and hence
that 4y decomposes v(N) into an orthogonal direct sum

v(N) = vt(N) @ v—(N)

by the formula

spanned by the positive and negative eigenvalues of 4y respectively. We call the fibre dimension
of v=(N) the index of N - as a critical manifold of f— and say that we are in the orientable case if
this ‘negative’ bundle v—(N) is orientable. With this understood, and having chosen a
coeflicient field, K, we ‘count’ a non-degenerate critical manifold N of f with the polynomial

M,(f; N) = S tidim H{r~(N)}

where now H¢ denotes the compactly supported cohomology. In particular, by the Thom

isomorphism, this polynomial reduces to
AYE(N)
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in the orientable case, whereas in the non-orientable case P,(N) has to be computed relative to
a twisted system of coefficients. This procedure turns out to be the proper one for ‘counting’ in
the sense that if fis non-degenerate and M,(f) is defined by

M(f) = SM(S, N)

the summation extending over the critical manifolds of f, then the Morse inequalities persist, pro-
vided of course that the same coefficients are used on both sides of the equation. One may
therefore speak of K-perfect Morse functions also in this extended sense. They are non-degenerate

functions f, with M,(f) = P(M).

We have already remarked that the main advantage of this extended notion of non-degeneracy
is its functorial nature under pull-back. Precisely, this amounts to the following.

ProposiTioN 1.3. Let E——> M be a smooth Sfibring. Then f is non-degenerate on M if and only if m* f
is non-degenerate on E. Further the index of N as a non-degenerate critical manifold of M equals the index
of 1N as a critical manifold of E.

The proof is self-evident, as 771N is clearly a manifold if N is one, and its normal bundle in E
is m~1p(N).

It remains to formulate the completion process in this extended context. The pertinent
diagram is the following one:

Hy {v7 (N)} —> Hy (v7 (N), 95 (N)) —> H(ov; (N))
(1.4) 71

where we have used the following notation.

We assume that f(N) = ¢, and write v; (N) for the set in the exponential image of v—(N) in M,
where f > ¢—e. This will be an Ay-disc-bundle over ¥, if ¢ > 0 is small enough. We write 7 for
the projection of this disc-bundle, so that 7~ corresponds to the Thom isomorphism and H for
homology with coefficients in K. The H denotes reduced homology. With this understood we
say that N is K-completable if the dashed arrow in (1.4) is zero.

It is easy to check that this condition reduces to the previous one for a non-degenerate critical
point of f, and again a standard argument implies the following:

Completion principle. If all the critical manifolds of f are K-completable then f is a K-perfect
Morse function on M.

Remarks. Note that, as opposed to a critical point, a critical manifold can essentially be ‘self-
completing’ in the following sense. By commutativity and the exactness of the horizontal
sequence in (1.4), it is clear that a class ae Hy_,, (N) certainly goes to zero under the dashed
arrow if 771a is in the image of Hy(v7(N)). Hence we call these classes N-completed. This
phenomenon, of course, occurs only if the bundle v—(N) is non-trivial over N, and in a compact
finite-dimensional setting it will not occur for all « e H, (N). However, in the infinite-dimensional
or equivariant case, which we shall encounter in a moment, this will happen, and then one is in
the fortuitous circumstance that we refer to as ‘self-completing’.

We are now finally ready to discuss the question that is central for our considerations.

Suppose that f is a smooth function on M that is invariant under the smooth action of a Lie group G on
M. When is such a_function to be considered a perfect G-invariant function?
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If G acts freely on A, it is clear enough that such an fshould be considered perfect — as a
G-invariant function - if the induced function on M/G is perfect. On the other hand if the action
of G is not free, this procedure is certainly not correct, and one has to bring the different
stability groups of the critical sets into play in some fashion or another. The manner of doing this
that we advocate is the following one.

Consider any smooth principal G-bundle E over a base-manifold B, and the corresponding
mixing diagram )

E<——&——E><M—-/9-——->M

E/G(—;—EXGM—?M/G

of the G-actions on M and E. Here of course the middle action is diagonal, so that under 7,
(e-g,m) is identified with (¢, g-m).

Now because the action on E is free this diagonal action is also free. On the other hand a
G-invariant f on M clearly lifts to a G-invariant f on Ex M, and hence descends to a smooth
function fz on E x ; M. Now the space E x ¢ M is itself a fibre space over the base B = E/G of E,
and is of course the bundle associated to E with fibre M. In short then every G-invariant function f
naturally defines a function fg, on any smooth fibre bundle with M as fibre and structure group G.
Furthermore we have the following.

ProrosiTiON 1.5. If f is a non-degenerate function on M, then for every smooth principal G-bundle E, fy;
is non-degenerate on E x o M. Furthermore, if N is a non-degenerate critical manifold of f on M, then fzwill
have as corresponding critical manifold the space E x & N. Finally, the indices of N rel f and E x ¢ N rel fy
are equal.

The proofis again self-evident in view of the functoriality of our concept. Indeed it is clear that

7 YE x gN) = N,
and now proposition 1.3 implies the rest.

Now there are very many different G-bundles but they are all induced from a universal G-bundle
that is unique up to homotopy. Such a universal G-bundle is characterized by having its total
space E contractible. It is then reasonable to say that our function fis perfect in the domain of
G-invariant functions, or G-equivariantly perfect if the induced function f3; is perfect for the universal
G-bundle E. In this universal case we shall simply write M, for the space E x ¢ M, BG for E/G
and f;, for f.

To summarize then, this construction converts f into fg, which is a function on the space Mg
constructed functorially out of the group G and its action on M. In homotopy theory this is of course
a well known procedure and in fact M, is called the homotopy quotient of M by G. It has the
following properties.

ProrosiTioN 1.6. If G acts freely on M (i.e. defines a fibration) then the natural map
My—ts MG
is a homotopy equivalence. On the other hand My is always a fibring over BG with M as fibre, and its homotopy
type depends only on the homotopy type of G and its action on M.

There is just one difficulty with this construction, and that is that in general EG and BG will
not be realizable as finite-dimensional manifolds. Hence My is not usually a finite-dimensional
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manifold. However, this is not a serious problem and can be overcome in several ways. When G
is a compact Lie group, which is the only case of essential interest, BG can be realized as an
infinite-dimensional manifold or as a suitable limit of finite-dimensional ones. In the former
situation all sub-manifolds occurring will have finite codimension and cause no problems.
Alternatively, and this is the point of view that we shall adopt, we can stick to our original
manifold A and function f but introduce equivariant cohomology as the appropriate functor. By
definition for every G-space X its equivariant cohomology Hy(X) is defined by
Hg(X) = H(Xg)-

In the category of G-spaces it has the usual properties of cohomology. In § 13 for the convenience
of the reader we recall some of the basic facts about H, and prove some particular results that we
shall be needing.

To illustrate these ideas let us consider an example in which M is the 2-sphere
§ = {(n g2t +gr 2 = 1)

in R3 and let f(x,y,z) = z, be the height function on S2. Also let G = S be the group of rotations
about the z-axis in R%. Then fis clearly G-invariant, and also intuitively looks about as perfect as
one could hope for. To construct an approximation to' BS?, let C*+1 be complex (I + 1)-space and
consider the action of §* on C*1! given by

(Zgs s 21) = (€2, ..., €192).
Restricted to the unit sphere $2+! this action is free and gives rise to the Hopf fibring
S2l+1
s
R(C),
with base space the complex projective l-space. Now
m,(S%1) =0 for k< 2[+1.

Hence this sequence of finite-dimensional fibrings approximates the universal one, which for
$! may be taken to be the fibring of the unit sphere S(H) in a Hilbert space H over the space
P(H) of rays in H.
Let us now consider the spaces
M, = S+ x o S2.
They are the finite-dimensional approximations to Mg, and are naturally 2-sphere bundles
over F(C). We have schematically indicated this below:

M,

/’
P Sp
R(c)

Ficure 1.
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Note that for the fixed point p (or ¢)
px 8% = B(C).

‘Thus the critical manifolds corresponding to p and q, are the sections S, and S, in M, indicated above. Hence,
since
P(B(C)) =1+2+...+%
and the index of fon $%is 0 at p and 2 at ¢, we obtain the formula
M(f) = 1+82)(1+2+...+%)

for the Morse series of the function f;induced by fon S%+1.
When [ o0, this polynomial therefore becomes the formal power series

M(fs) = (1+8)/(1-17).
Now cohomologically, the fibring M, over F(C) is trivial (2-sphere bundles always are). Hence
by the Kiinneth formula
P(M) =(1+8) (1+82+...+%)

and so we see by inspection that our f; was indeed perfect, in fact not only on Mg but also in each
approximation M,.

- Let us next modify f'so that it has a maximum at p and at ¢, and a minimum along the equator,
but still keeping it G = S'-invariant. Then, p and ¢ both contribute

21424 ... 4%
to M;(f;). On the other hand the critical set in M corresponding to the equator on S2, is given by

S1x 2 ~ G2,
Hence it contributes 1 4+ 2+, Thus

M(f) = (262) (1 +82+... +2) 4+ (1 4 247),

These functions are therefore not perfect for any particular /. On the other hand, letting [ oo,

we obtain
M(fe) = 1428242144 ...

= (1+8)/(1-8),
so that this new f'is again perfect according to our definition, i.e. on Mg,.

This example illustrates two phenomena. First of all that a perfect f on Mg need not come
from a perfect f on M. It also shows that in some sense the larger the orbit of a critical set of f
on M, the ‘smaller’ its contribution is in M. The precise formulation of this principle is as follows.

First of all recall the identity

E/H ~ E x 4G/H,
when £ is a principal G-bundle and H a closed subgroup of G. From this it follows immediately
that if N = M is the G-orbit G/H, then
ExgN~ExuG/H~E/H.
But a universal G-bundle E is obviously also a universal H-bundle. Hence in the universal case
E/H has the homotopy type of BH, the classifying space of H.

Hence by proposition 1.5 we have the following
Counting principle. The non-degenerate critical orbit N = G/H, of index A(N) for fon M, contributes

(1.7) ™ P,(BH)
to My(f4), the ¢ counting series® of f on M.
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Note also that if H is connected then the P,(BH) in (1.7) can be taken literally, whereas if A
is not then a local coefficient system might still be needed.

More precisely, the correspondence (1.7) can still be refined in one very important respect.
Namely if N is the orbit of G through ¢, then H the stability group of ¢ acts on the normal space
to N at ¢ and, using an H-invariant metric, also on the negative normal space vy (N). It follows that
v=(N) is associated with the principal bundle G/H = N, via this representation, and corres-
pondingly that v—(BH) is associated with the universal A-bundle £H over BH, by that same
representation.

Thus we arrive at the following refinement of (1.7).

Equivariant correspondence principle. Under the correspondence Ny— BH of (1.7), the
negative bundle of fy; along BH becomes the bundle associated with the universal H-bundle via the ‘ negative
representation’:

(1.8) Ay: H—> Autvg (N).

Remark. We have here used the same notation Ay for the index of N, and the negative repre-
sentation for obvious reasons; and in the future the context will make it clear which is meant.

The importance of (1.8) is that standard methods allow one to compute the characteristic
classes in H*(BH) for bundles associated with representations, and one may therefore use (1.8)
to compute to what extent the critical set BH for f is ‘self-completing’. For instance, in the
2-sphere example, for the critical point ¢, which is the maximum of f, we find that H = %, and
that A, is the standard representation of S on R2. The Euler class ¢(Ay) of v=(BH) is therefore
a generator of H?(BS') and hence generates H* (BSY) multiplicatively. It follows that multiplication
by e(Ay) induces an injection of H*(BSY) into H*(BSY) for any coefficient system. Dually, this implies
precisely that Hy (v; (BH)) maps onto Hy(v;,0v;) in the diagram (1.4), i.e. itimplies that BH is
self-completing, as a critical set of fz. Now as the minimum is always self-completing (the condition
of (1.4) becomes vacuous), it follows that we have in this instance established the ‘perfection’
of fg by purely local considerations as opposed to our earlier global proof of the same fact. This state
of affairs turns out to be the one we shall encounter for the Yang—Mills functional. For future
reference we therefore formalize this principle in the following.

CoroLLARY. Ifin (1.8) the Euler class of Ay induces an injection of H* (BH ) into itself for a coefficient
system K then, as a critical set of f, BH is self-completing relative to K.

There now remains only one more appropriate extension of these concepts. In the domain of
G-invariant functions, the formula (1.7) corresponds to a non-degenerate critical point. For a
non-degenerate critical manifold N the contribution to the equivariant Morse series M;( f5) is

N F(Ne)

and again local coefficients are to be understood in the non-orientable case. The equivariant
Poincaré series is of course defined as

P,(Ng) = Zt*dim H(Ng)
— Siidim HL(N)

and we shall also denote it sometimes by GP,(N). The normal bundle to N has an equivariant
Euler class and as before we have, for the orientable case and any field X,

ProrosiTiON 1.9. If the equivariant Euler class of the normal bundle to N is not a zero-divisor in
HE(N, K), then N is equivariantly self-completing for K.
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If all critical manifolds satisfy the hypothesis of (1.9) then f will be equivariantly perfect over
K, so that the equivariant Morse and Poincaré series coincide.

In §13 we establish a useful sufficient criterion for (1.9) to hold. This criterion (see pro-
position 13.4) involves simply the isotropy group structure of the action of G and is easy to verify.
It provides the key to the perfect nature of the Yang-Mills functional, which we shall be ex-
plaining in subsequent sections.

So far we have concentrated exclusively on the homological aspects of Morse theory. There is
however more detailed geometrical information about the structure of our manifold A that is
provided by a function f. If we introduce a Riemannian metric on M we can define the vector
field grad £, dual to the differential df. The ‘gradient flow’ of fis then given by the paths of
steepest descent, i.e. the trajectories of —gradf. If f has only non-degenerate critical points p
then every trajectory converges to some p, and the set of all points on trajectories converging to
a given p form a cell M*(p). This cell is called the stable manifold of p since f, restricted to p, has
an absolute minimum at p. Similarly, replacing f by —f we get another cell M—(p) called the
unstable manifold of p. The dimension of M~(p) (or the codimension of M+(p)) is equal to the
Morse index of p. Thus f defines a cell decomposition

(1.10) M = U M*(p)

and the Morse inequalities follow at once by using these cells to compute the homology of M.
More generally if there are non-degenerate critical manifolds N we have stable manifolds
M+(N) that are cell-bundles over N and we get a stratification

(1.11) M = U M+(N),
N

which we shall call the Morse stratification.
One easy consequence of this stratification, which goes beyond homology, is the following:

ProposiTION 1.12. Let N, be the manifold giving the absolute minimum of f and assume that, for all
other critical manifolds, the Morse index is > 3. Then, if M is connected, N, is also connected and we have an
isomorphism of fundamental groups

my(No) = m(M).

For the equivariant case if fis G-invariant, where G is a compact Lie group, we can always pick
a G-invariant metric. Then the gradient flow is G-invariant so that the stratification (1.11) is
G-invariant. The equivariant analogue of (1.12) holds but is in fact equivalent to it because the
fibration M — Mg - BG gives an exact sequence

>y (M) —>m(Mg) > (BG)—~
and there is a similar one with N, replacing M.
The critical manifolds N of our function f have a natural partial ordering. We first define a

pre-ordering < by
N, < N,<>the boundary of M*(N;) intersects M*(N,).

By following the trajectories of grad fit is then easy to show that

N, < N, =there is a trajectory of grad f starting on N,
and passing within e of N,.

Here ¢ is any positive constant. In particular taking e to be less than f(N,) —f (&) it follows that
M <Ny =f (M) <f(Np).
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Hence the transitive relation < generated by < is a partial ordering and has the property that

(1.13) closure of M*(N) = U M*(N').
N'>N

Sometimes one may be given an explicit finite stratification of M

(1.14) M= liJM)U

where each M, is a locally closed submanifold of M, and the index set of A is partially ordered so
that
(1.15) M, Cﬂl}JAM/‘
holds for all A (we assume the partial ordering is strict, i.e. A < g and # < A implies A = )
One can then use the stratification to get Morse-type information about the homology of M.
We start with the open strata, given by minimal A, and inductively add other strata. At each
stage we can write down the exact cohomology sequence for a pair (U, U~ V) where V is a
closed submanifold of U. More formally this can be described as follows. Define a subset I of
indices to be

open ifAeland p

closed if Ael and p

A =>pel

VvV A

A =upel

Itis easy to check that Iis closed if and only if its complement I’ is open. Moreover the subspace
of M defined by
My = U M,
Ael

is open or (or closed) if I is open (or closed): this follows from (1.15). If I is open and Ael’is
minimal then J = I'U A is open, and our inductive step is from M to M. From (1.15) it follows
that M, = M;— M, is a closed submanifold of M. Assuming for simplicity that the normal
bundles to all strata in M are orientable we have the exact sequence

(1.16) > Ho*(My) > Ho(My) -> Hi(My) >,
where we have used the Thom isomorphism
He M (M) = H(My, My)

with k£ = &, = codim M,.
If, for a given field K of coefficients, (1.16) breaks up into short exact sequences for all ¢ and
all A it follows that
P (M) = S0 P(M,).

In such a case we shall say that the stratification is perfect over K. If this holds for K = Z,,, for all
primes p, we shall simply call it perfect. Thus a perfect Morse function defines a perfect stratifi-
cation.

If the stratification is G-invariant and the corresponding equivariant cohomology sequences
break up we shall call the stratification equivariantly or G-perfect. Proposition 1.9 has an obvious
analogue in this context with the normal bundle in question being the normal to a stratum.

Examples of manifolds with naturally arising stratifications are the flag manifolds G/ T, where
T < G is a maximal torus. Using the complexification G° of G one also has a complex description,
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namely as G°/ B where B is a Borel subgroup. The left action of B on G¢/B then has finitely
many orbits. These are the Bruhat cells and they give a (complex) stratification of the flag
manifold. The loop space QG has also such a stratification (Pressley 1980) and we shall meet
other examples in dealing with the space of G-connections on a Riemann surface. The last two
examples are both infinite-dimensional, but the strata will have finite codimension. The indexing
sets will be countably infinite but will have the following finiteness property.

For every finite subset I there are a finite number of minimal elements of the complement I’ (1.17)

so that our inductive procedure still applies. Although the induction never terminates, only
finitely many steps will be needed to compute H¢(M) for any given ¢ provided the stratification
satisfies the following further finiteness condition.

For each integer q there are only finitely many indices A € I for which codim M, < q. (1.18)

Thus when (1.17) and (1.18) are satisfied we may proceed to compute the cohomology of M
as in the finite-dimensional case.

Sometimes we may be given a stratification of M and a function f and we might like to know
if the stratification is the Morse stratification (by stable manifolds) arising from f (for some
metric on M). Thus for the flag manifold one has natural functions arising from considering
G/ T as an orbit in the Lie algebra of G and restricting a linear function. It is not hard to axio-
matize the Morse stratification, and one can then test any given stratification to see whether the
axioms are satisfied. We shall prove the following.

ProrosiTiON 1.19. Let f: M > R have only non-degenerate critical manifolds Ny and let M = U, M,
be a stratification by disjoint locally closed submanifolds M, , such that, for some partial ordering on the set of
A, the following properties hold:

(1) A<u=f) <f),
(@) M= UM,

(8) gradfat any x € M is tangential to the M, containing x.
(4) MNy<=M,.
(8) index N, = codim M,.

Then M, is the stable manifold S of N, so that we have the Morse stratification.

Proof. We have only to show that the trajectory x(¢) of —gradf through any point x of M,
converges to N, as t->00. Now (8) guarantees that x(f) remains in M, for all finite ¢ and (2)
implies that x(c0) € N, for some p > A. Now if # is sufficiently close to N, the trajectory x(¢), as
{-> 00, either converges to N, or ‘falls below N,’ (this basic fact is needed to establish the existence
and properties of the S, and is formally a consequence of (1.13)). Since x(c0) € N, for some g > A
property (1) shows that x(c0) cannot be below N, and so x(c0) € N,. Thus locally near N, we have
M, < S,. By (5) we see that dim M, = dim S and so (near N,) M, is an open set of S,. By (4) we
see that M, and $; must coincide near N,. Now return to a general point x € M, with x(c0) € N,.
Then for large ¢, x(t) is close to N, and in §,. Hence by what we have just proved (with x for A)
x(t) lies in M, for large ¢. On the other hand x(¢) € M, for all finite . Since different M, are disjoint
this implies # = A and completes the proof.

This proposition can be applied for example to the flag manifolds to show that the Bruhat
cells coincide with the Morse cells of an appropriate function. For a detailed discussion of this
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and related questions refer to Atiyah (1982). Proposition 1.19 also applies on the infinite-
dimensional manifold 2G to show that the Birkhoff cells (see Pressley 1980) are the Morse cells
of the Energy function (see Bott & Samelson (1958) for a discussion of this case).

In the Yang-Mills situation, which we shall be treating in this paper, we shall exhibit a
stratification satisfying properties (1)—(5) of (1.19). If the Morse strata exist, i.e. if one can
prove good properties about the trajectories x(¢) as oo, then (1.19) will identify the Morse
strata with our strata. However, there are analytical difficulties involved here because the
manifold M is infinite-dimensional and the critical sets N have singularities. We shall therefore
by-pass these difficulties by simply using our stratification directly to compute cohomology.
The connection with Morse theory is then left at a slightly conjectural level, but this is of no
consequence for the topological applications.

2. THE TOPOLOGY OF THE GAUGE GROUP

Throughout this section all maps, bundles, sections and other objects will be taken as smooth,
i.e. of class C*. From the point of view of homotopy theory this gives essentially the same result
as the continuous maps and we shall on occasion blur the distinction when we are dealing with
homotopy computations.

If Pis a principal G-bundle over X, Ad P shall denote the bundle associated to P with fibre G,
the action of G on itself however being the adjoint one. Thus

AdP =Px 4G
is not a principal bundle any more, but rather a bundle of groups over X, whose sections can be
identified with maps f: P> G satisfying
(2.1) Sg) =g f(p) &
The space of such sections I"Ad P forms a group under pointwise multiplication and this is by
definition, the ‘gauge group’ %(P) of P:
(2.2) @(P) = I'AdP.

This group acts naturally as a group of G-equivariant maps of P, which cover the identity
map of X. It can in fact be identified with the group of such automorphisms:

(2.3) 4(P) ~ Aut (P).
To see this let f: P— G represent a section of Ad P. Then define
Jx:P—>P
by S« (p) = p-1(p)-

The relation (2.1) then shows that f is equivariant and covers the identity. Conversely given a
map f;: P— P covering the identity, f, defines a unique map f: P— G such that

Sx() = p-S(8),

and now G-equivariance forces the relation (2.1) on f. This establishes (2.3).
The purpose of this section is to describe the topology of the classifying space BZ(P) of the
gauge group when M, the base space of P, is a compact Riemann surface, and G is the unitary

group.

43 Vol. 308. A
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ProPOSITION 2.4. Let BG be the classifying space for G. Then in homotopy theory
BY(P) = Mapp (M, BG).
Here the subscript P denotes the component of a map of M into BG which induces P.

Proof. Let
G- EG- BG

by a universal bundle for G, and consider the space Mapg(P, E) of G-equivariant maps of
Pto E.

The group ¢(P) now acts naturally on this space by composition, to yield the principal
fibring

%(P) —> Mapg(P, E) ——> Mapp(M, BG).
If BG is paracompact and locally contractible, which is easily arranged, 7 will be a locally trivial

principal fibring, as follows easily from the homotopy properties of fibrings. The total space
Mapg(P, E) is contractible so that this is a universal bundle for %(P), and

B%(P) = Mapp(M, BG)
as was asserted.
Using (2.4) we now compute BZ(P) for the cases we have in mind.

Case 1. The unitary group U(1)
The group U(1) is the circle $* of complex numbers of norm 1. These act naturally on the unit
sphere S(H) of a Hilbert space H over C, and the quotient space

P(H) = S(H) /S

is the projective space of rays in H. When dim H = oo, §(H) becomes contractible, and hence

(2.5) S1—> S(H)—> P(H)
is a universal S*-bundle. From the corresponding exact homotopy sequence it now follows that
m{P(H)} =0 for k#2,
while mo{P(H)} = Z.
Thus P(H), which is the BG in this case, is an Eilenberg—Maclane space K(Z;2). Now it is a
theorem of René Thom that, if ¥ is such a space, and X any finite complex, then Map (X; Y)
is again a product of such spaces. Precisely,
THEOREM (Thom). Let m(Y) = 0 for g # n and let m,(Y) = m. Then
(2.6) Map (X,Y) = 1;[ K{HY X, m);n—q}.

For a Riemann surface M of genus g this yields the corollary:
Map (M; BS') = Zx S*x ... xS*x P(H)
P

2
corresponding to the fact that

H(M;Z)~Z®...»Z (2g factors),
HY(M;Z) ~ H(X;Z) ~ Z.
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In particular then, we see that in this case B =B%(P) has no torsion and its Poincaré series
P(BY%) = ¥ dimH'BY%;Q)t
i>0

is given by
(2.7) P(BY) = (1+t)%/(1—13).

When P is a U(1)-bundle over §% on the other hand, the above recipe only yields
(2.8) B% = P(H).

Remark. The gauge group ¢ (P) as we have defined it here really corresponds to the ‘local gauge
group’ as this term is used in physics. The global gauge group corresponds to the ‘constant
sections’ of Ad P, which are given by the centre Z of G. Indeed every z€ Z is invariant under the
adjoint action of G on itself and hence induces a canonical section f, of Ad P, given by f,(p) = z.

We next consider the more general
Case11.G = U(n), n > 1.

Now it is no longer true that BG is an Eilenberg—Maclane space. However, over the rationals
@, BG is simply a product of Eilenberg—Maclane spaces:

BU(n) g K(Z;2) x K(Z;4) x ... x K(Z; 2n).
Indeed each Chern class ¢;€ H* (BU(n), Z) induces a map.
off
BU(n)— K(Z; 2i)

and, since A*(BU(n)) is the polynomial ring in ¢, ...,¢,, the product of these maps induces a
Q-equivalence of these spaces. Hence over @ we may apply Thom’s theorem as before, at least to
compute the Poincaré series of a component of Map (M, BG). Further as these behave multi-
plicatively under products, it is enough to take each K(Z;2k) at a time. Now

RK(Z; 20} = 1/(1-1%),
while

P(K(Z;2k—1)) = 1 +¢2%-1,
Hence

P,Map (M, K(Z; 2k)) = (1 +2-1)20/(1 —26-2) (1 —42%) for k > 2.

Together with (2.7) for the case k& = 1 this yields

(2.9) P (Mapy (M; BUG)} = T (1< [{'IT (1= )2} (1)
for any component, i.e. any P over M. = =
Actually more is true.
ProrosITION 2.10. The space Map p(M, BU (n)) under consideration, is _free of torsion.
Proof. To see this we have to come to grips with the fibrings that lie behind Thom’s theorem.

First recall that a compact Riemann surface M, can be obtained from a wedge of 2¢ circles by
attaching a 2-cell. This implies that there is a cofibration

(2.11) VSt—> M- 82
29
which, by the exactness of the mapping functor, gives rise to the fibring
(2.12) Map*(Sz,BU(n))——>Map*jM;BU(n))
Map*(VS*, BU(n)).

43-2
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Here the * denotes base-point-preserving maps, which, by the same principle, are linked to the
unrestricted maps via the fibring

(2.13) Map*(M; BU(n)) — Map(M, BU(n))

BU(n).

We wish to show that both these fibrations are homologically trivial, and that all spaces involved
are torsion-free.

Now recall that BU(n) and its loopspace 2BU(n) = U(n) and its second loopspace QU (n)
are all torsion-free. Hence after (2.12) is rewritten with the standard identifications, one obtains

U (n) —> Map*(M, BU(n))
(2.14)
Um)x...xU(n) (2gfactors)

with both fibre and base torsion-free. Hence any non-trivial homology-twisting, i.e. a non-zero
differential in the spectral sequence, or a non-trivial coefficient system, would be detectable
over @ and produce a Poincaré polynomial for the middle term that would be smaller than the
product of the Poincaré polynomials of the factors. On the other hand by Thom’s theorem,
applied to pointed maps, it must be the product. This completes the proof.

The same argument now applies to (2.13) and we are done.

To recapitulate, we have established

THEOREM 2.15. Let P be a U (n)-bundle over the compact Riemann surface. M Thenif G = G (P) is the
gauge group of P, BY is torsion-free and has Poincaré series

P(89) = 1 (1900 [{'T (1 -2} (1),

In the course of our proof we have also shown that, in the fibration (2.14), the fundamental
group of the base, namely
I'=m(U(n)%) = 2% = H(M, Z),

acts trivially on the cohomology of the fibre QU (n). This implies that the cohomologyisunaltered
on lifting to a finite covering corresponding to a subgroup I" of finite index in I". Moreover from
(2.13) and (2.14) we see that

m(BY) = m(U(n)») = I.

But m,(BY) ~ m,(¥) is the group of components of ¥. Hence a subgroup I'" of I" of finite index
corresponds to a subgroup %’ of ¢ of finite index and so we have

PRrOPOSITION 2.16. In the situation of theorem (2.15), for any subgroup of %' of ¥ of finite index,
B%’ is torsion-free and has the same Poincaré series as BY .

We shall now describe a way of producing explicit generators for the integral cohomology of
B%. This will eventually enable us to describe corresponding generators for the cohomology of
the moduli space of stable bundles. It also provides an independent proof of the cohomological
triviality of the fibrations (2.12) and (2.13) without appealing to Thom’s theorem.

We begin by considering the natural evaluation map

¢:Map (M, BU(n)) x M- BU(n).
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Pulling back the universal vector bundle over BU(n) we then get a vector bundle V over B x M.
Since M has no torsion the Kiinneth formula gives, for integer cohomology,

(2.17)  H*(BY x M) ~ H*(BY) ® H¥*-(BY) ® H(M) ® H*-*(BY) ® H2(M).

Taking the Chern class ¢,(V) and decomposing it, we get from this Kiinneth decomposition,

elements
a,e H"(BY),

bleH*Y(BY), j=1,..,2,
f,e H*%(BY),
relative to a basis a; of H'(M). These will give rational generators, but to get integral generators

we need to replace the f, by elements d, constructed as follows. We introduce K-theory instead of
cohomology and analogous to (2.17) we have a Kunneth formula

(2.18) K%(B% x M) ~ K'(B%) ® K\(M) ® K*(BY) ® K*(M).

Now we have M) ~ZaZ

with two canonical generators, the first given by the trivial line-bundle and the second by the
reduced line-bundle of Chern class 1 (i.e. H—1, where H is the line-bundle and 1 the trivial
line-bundle). Starting with the class of ¥ in K°(B¥ x M) and projecting onto the second com-
ponent then gives an element W e K°(B%). An alternative description of W is to say that

W =f(7)
where f: B% x M - B% is the projection, f, is the direct image map in K-theoryandV = V-1 ® ¥,
with I = V| B% x point. Since fi(1) = 1 —g it follows that
(2.19) - W=/0) =AD) + (g~ )T
Finally, taking the Chern classes of W we get an infinite sequence of elements

¢, € H*(BY), r=1,2,....
We shall now prove

PROPOSITION 2.20. The elements a,, bl, e, constructed above are multiplicative generators of the integral
cohomology ring of BY. The elements a,, bl f, are multiplicative generators of the rational cohomology ring.

Remark. The a, are the Chern classes of ¥ so that by (2.19) we get another set of generators by
replacing the ¢, by the Chern classes d, of f,(V). These will occur more naturally in algebraic
geometry.

The three types of element will in fact provide generators for the three factors in the fibration
decomposition (2.13) and (2.14). Clearly the a, give the Chern classes of BU(n) and so generate
its cohomology. The classes 47 (for fixed j) are easily seen to give the generators for the cohomo-
logy of the jth factor U(n) in U(n)%. It remains to show that the elements ¢, give generators for
the cohomology of QU (n). Now we have a natural stabilization map

1:2U(n) - QU,
where U = lim,,_,,, U(n) is the stable unitary group. The periodicity theorem gives a homotopy
equivalence QU ~ Zx BU
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so that H(QU) is a polynomial ring on all the universal Chern classes ¢;,¢,, ... . Pulling these
back by i we get classes in H(2U(n)). These coincide with the classes ¢, introduced above in view
of the relation between K-theory and the periodicity theorem. To prove (2.20) it remains
therefore to show that i* is surjective in cohomology, or in steps that the inclusions

J:2U(n)>Q2U(n+1)

have this property for all #. This can easily be deduced from the explicit description of H* (QU (n))

given by Bott (1958). This completes the proof for the integral cohomology. Over the rationals
the proof is similar but easier.

As mentioned earlier our proof of (2.20) produced cohomology classes in the total spaces of

the fibrations (2.13) and (2.14), which generated the cohomology of the fibres in each case. This
gives an independent proof of their triviality.

Over the rationals we can use the Chern character to compare (2.17) and (2.18). This enables
us to express the infinite sequence of ¢, in terms of z elements f,. The fact that the ¢, are integral
then leads to an infinite sequence of integrality relations involving polynomials (with rational
coefficients) in the f,.

Finally we shall derive a result that concerns the role of the constant U(1)-subgroup of ¥
representing the central automorphisms of P. This will play an important role in §9 when we
study the cohomology of the moduli spaces. We shall prove the following.

ProrosrTioN 2.21. Assume that the Chern class k of P and the rank n are coprime. Then the inclusion of
the constant central U (1) in G induces a surjection

HX(BY, Z) > H*(BU(1), Z).

Using the cohomological triviality of the fibrations (2.12) and (2.13) it will be enough to
check the surjectivity when A is the 2-sphere $2. In this case ¢ is connected and

H*(B9,Z2) ~ H(9,2)
so we are reduced to checking surjectivity of
(2.22) HY 9,Z)—~>H?*(BU(1),2)
or equivalently that
(2.23) m(U(1)) >m(9)
gives a direct summand of 7,(¥). Now m,(¥9) ~ my(B¥) and, since M = §2, this can be calcu-
lated from the fibration (2.13), which gives the short exact sequence
(2.24) 0—> ﬂs(U(n))—>7rl(?)———e—>ﬂ1(U(n))——>O,

Thus 7,(¥) is free abelian on two generators. Note that the projection ¢ is given by evaluation
at a base point of M = §2.

A more convenient description of (2.24) is given in terms of K-theory. Let E be the vector
bundle defined by P and write 4 (E) for %(P). Then to every map

81> %(E)
we form the bundle E; over M x $2 by using f as clutching data and consider the element

[E;] —[E,] € K(M x §2, M x point).
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The assignment (f) - [E;] —[E,] gives an isomorphism
m(9) - K(M x 8%, M x point).

and (2.24) corresponds to the exact sequence obtained by restricting to a point in M. All calcu-
lations can then be made in K(M x $%), which is generated by the Hopf bundles A and L of the
two factors. Using this description of 77,(¥) we shall now prove the following lemma, true for all
pairs (n,k) with 0 < £ < n.

LEmMA 2.25. Let E be the direct sum of k copies of H and n — k trivial factors and let U (k) x U(n—k) be
the corresponding constant automorphisms of E. Then the induced map

is an isomorphism. my(U(k) x U(n—k)) >m (9 (E))

Proof. Let f,g:5'—> % (E) come from the standard generators of 7, (U(k)) and m,(U(n—k))
respectively. Then in K(M x $%) we have

[E]-[£] =H® (L-1),

[B]-[E] =1®(L-1),
and these generate the kernel of
K(M x §?) - K(M x point).

Since by tensoring with line-bundles we can always reduce £ modulo » we deduce immediately
what we want, namely

CoRroLLARY 2.26. If (n,k) = 1 the homomorphism

| m(U(1))>m(9(E)),
coming from the constant central automorphisms, is a direct summand.

This completes the proof of proposition 2.21. Our use of K-theory in this proof becomes very
natural if we consider briefly the situation for manifolds A of arbitrary dimension. Let ¥(E)
denote the automorphism group for a vector bundle E over M and let %(E) denote its identity
component. Then we have a homomorphism U(1) - % (E) given by the constant scalars and
hence a homomorphism
(2.27) m(U(1)) > m(%o(E)).

Now if we are in the stable range n > 4 dim M then we can show, using the construction in our

proof of (2.21), that m(%(E)) =~ K(M).

Moreover, the image of the generator of 7, (U(1)) ~ Z under (2.27) is just the class [E] in K(M).
Hence (2.27) defines a direct summand if and only if [E] is a primitive element of the abelian
group K(M). When dim M = 2, K(M) ~ Z ® Z and [E] is represented by the pair of integers
(n, k). Thus the coprime condition (n,k) = 1 generalizes naturally to the primitivity of [E] in
K(M).

3. THE YANG-MILLS FUNCTIONAL
In this section G denotes a fixed compact connected Lie group, and P a fixed principal G-
bundle over the compact manifold M.
The identity element ¢ of G then defines a canonical section s, of Ad P over M, and we use this
section to pull back to A the tangent bundle along the fibres (T Ad P), of Ad P.
The resulting bundle on M, is denoted by ad (P), this being an abbreviation for

ad (P) = 7Ty Ad P).
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Alternatively, ad (P) may be thought of as the bundle associated with P via the adjoint action
of G on its tangent space 7,G at e. This space is in turn identified with the Lie algebra g of left
invariant vector fields on G. Thus we also have

ad (P) = Px g4,
and both these descriptions make it clear that the space of sections
' I'ad (P)

has a natural Lie algebra structure induced by the structure on each fibre. Hence this space
plays the role of the Lie algebra of the gauge group. Correspondingly we sometimes write

g(P) for I'ad(P).
Actually it is useful to extend this Lie algebra to the following graded Lie algebra:
0*(M;ad (P))
consisting of the forms on A with values in ad (P). Precisely then,
w?eQ*(M;ad (P))

is a smooth section of A¢7*M ® ad (P) and the bracket operation in g together with the usual
exterior multiplication, combines to define a pairing

Qv @ Q1 Qo+,
which we write [w?, w?]. This operation clearly satisfies the formula
[0?, 0] = (—1)P24 w9, w?]
and the corresponding Jacobi identity
[0?, [0, 07]] = [[0?, 0], 0] £[0f [0?, o']].

Now a compact group G always admits a positive definite inner product ¢, ) on its Lie algebra g,
which is invariant under the adjoint action. Hence a choice of such an inner product {,) on g
induces a Riemannian metric on ad (P), and then naturally extends to induce a pairing

Ov(M;ad (P)) @ 29M;ad (P)) - Qv+ M),
which we simply write w? A w?. The invariance of {, ) on g implies that

<[x’y]sz> = <x> [y: Z])

and, as in this identity all terms retain their natural order, it persists for any three elements
u, v, w in our complex 2*(M;ad (P)):

[u,v] Aw = u A v, w].

Suppose finally that a fixed Riemannian metric and a fixed orientation is chosen on A, and
that = is the corresponding duality operator, in 2* (M ). Thus * is characterized by

O A %0 = (0,0, vol (M) for Oef,

where {, »;; denotes the natural Riemannian structure on £2¢(M), and vol (M) is the unique
form of length 1 in the orientation of M. Then the inner product on g, and the Riemannian
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metric of M combine to give 2*(M;ad (P)) a natural inner product structure, which we write

()

Precisely then
(6, 9) =f O A xo.
M

With these conventions out of the way we only need two more concepts to write down the
Yang-Mills equations. These are the notions of a connection A, for P, and of its curvature

F(A)e?(M;ad (P)).
By definition, a connection 4 for P is a G-invariant splitting of the natural exact sequence
(3.1) 0>TxP—>TP->n1TM->0

of vector bundles over P. Here T denotes the tangent bundle along the fibres in P, and T'M the
tangent bundle of M. The group G acts on all terms of this sequence and so a G-invariant splitting
of (3.1) is a well defined concept. There are two complementary ways of describing a splitting,
and we correspondingly introduce the following notation: w4 is the projection on the ‘vertical
bundle’ Ty P, defined by 4, and T, P is the complement to T P, defined by 4; T, P is also called
the ‘horizontal bundle of 4°, and is the kernel of w ,.

The splitting 4 is therefore also equivalent to a G-invariant direct sum decomposition

TP ~ TyP ® T, P.

Connections clearly exist. For instance T, P can be taken to be the orthocomplement to T P
relative to a G-invariant metric on P. Furthermore, the space of connections &/(P) naturally
has an affine structure, with associated vector space Q'(M;ad (P)).

To see this most clearly it is best to use the description of (3.1) as a pull-back under 7 of an
exact sequence of vector bundles on M. For this purpose let E = E(P) be the vector bundle over
M whose fibre at g€ M is equal to the G-invariant sections of TP, along the fibre 7-1(g) € P:

E(P)y = I{TP|n~*(g)}".

Then E(P) is easily seen to define a vector bundle over M, with a natural projection to 7M.
There results an exact sequence or M.

€ dan

E(P)—2> TM— o,

(8.2) 0—> ad (P)
whose kernel is the earlier bundle ad (P), which under the pull-back to P goes over into (3.1).
Finally because G-invariance is clearly built into this sequence, a connection 4 can also be
defined simply as a splitting of (3.2). Thus in this picture, w4 is an arrow

ad (P) <2-E(P)
with @ 4+7 = 1; and the difference v, — w4 therefore factors to an arrow

ad (P) < T(M),
i.e. gives rise to a 1-form 5 € Q21 (M;ad (P)):
(3.3) Wy — Qg = 1.
This shows that &7 (P) is an affine space as asserted.
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We next recall how the curvature F(4) of a connection 4 arises. This curvature has many
interpretations, but from the point of view of (3.2) it precisely measures to what extent w 4 fails
to preserve the Lie structures in (3.2).

Indeed, it is clear from the definition of £(P) that

T'E(P) ~ G-invariant vector fields on P,
while I'ad (P) ~ G-invariant vertical vector fields on P.
Hence both of these spaces have natural Lie algebra structures, and so interpreted
(3.4) 0—>I'ad (P)>TEP)->I(TM)—>0

defines an extension of the Lie algebra I'(TM) by the Lie algebra of the gauge group. Here I'E(P)
is the Lie algebra of automorphisms of P, which do not necessarily cover the identity on M.

Now a connection A assigns to every XeI'(TM) a unique horizontal vector field Xe I'E(P)
projecting onto X. Hence the element

Fy(X,Y) = 0,[X, 7]

is a natural measure of the extent to which 4 fails to split I'E(P) as a Lie algebra. Itis now easy
to verify that F, is linear over the C* functions on A/ and hence defines a unique 2-form

F(4) e 2*(M;ad (P)).
With all this understood one now has the following

DerintTiON. The Yang—Mills functional L on the space of connections sZ (P) is the function
L(4) = |F(4)]*
where F(A) ts the curvature of A, and || || denotes the L? norm in 2% (M;ad (P)).

Remarks and examples. To get a feeling for this function we start by considering the case of a
circle bundle P over M. In this case the choice of an invariant form on g reduces to choosing a
generator v of the invariant 1-forms on §?, and in the sequel we shall assume that this v is normal-
ized to have

f v=1
St

We next write Z for the dual generator of g = R, so thatv(Z) = 1. We also write Z for the unique
vertical G-invariant vector field on P, which is the infinitesimal generator corresponding to Z
under the action of §* on P.

With these conventions, a connection 4 for P is completely described by a 1-form 64 on P,
which has the properties

(3.5) 0,(Z) =1, thatis i(Z)6, =1,
(3.6) L(Z)0, =0,

where #(Z) denotes the Lie derivative in the direction Z.
Note further that in this instance ad (P) is a trivial one-dimensional bundle and hence
F(4) e 2*(M) is an ordinary 2-form on M. It is characterized by the equation

(3.7) d6, = —m*F(4).
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Indeed, let X, ¥ be A-horizontal lifts of X, ¥ on M. Then
(3.8) do X, ¥] = -0,[X, 7]
as the other terms such as X6 ,(¥) disappear. On the other hand dé,, vanishes in the direction Z:
i(Z)do, =0, Z(Z)do,=0
as follows from (3.5) and (8.6) via the basic identity

L(Z) =i(Z2)d+di(2).
Hence (8.7) follows from (3.8).

Equation (8.7) implies that

dF(4) = 0.
Furthermore, the formula (3.3) now yields
(3.9) F(A)-F(A') =dy, n9eQY(M).

Thus the map 4 - F(A4) sends < (P) precisely onto a certain cohomology class k(P) e H*(M):

F
& (P)—> k(P)— 0.

We next turn to the fibre of this map F. Again from (3.9) it follows that if F(4) = F(4’), then
7 = A— A’ is closed, and conversely. Thus the fibre of F consists precisely of the space of closed
1-forms Z(M) e 21(M). Hence we have the ‘exact sequence’

0—>ZY (M) > (P)—>k(P)—>0,

which is unorthodox in that &/ (P) is only an affine space, and k(P) denotes the whole coset in Z2(M)
representing a class usually denoted by — 2nic,(P) in H*(M).

We next describe the action of %(P) on this sequence. In the present instance Ad P is clearly
trivial, and hence
(3.10) % (P) ~ Map (M, $Y).

We now have

LemMma 3.11. If f: M~ 81 is a smooth map, then its effect, via (3.10), on 0 4 is given by

fﬁﬁA = 0A+7T*f*v

where v is the form on S discussed earlier.

As a first consequence we see immediately that, because v is closed, F(f*4) = d0, = F(4).
Thus F is invariant under the gauge group.

Next we see that (P) acts on Z1(M) by translations

E>E+/*.

Consider now the action of the identity component %,(P) on Z'(M). Clearly such a map lifts
to a map fin the diagram

M ——f——> R
\ lexp
Sl

and if x is the linear function on R with
exp*v = dx

fro=df.

then
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We have the converse also, so that under %,(P), £ € Z(M) is moved in its entire cohomology

class: thus
ZMM)[%(P) ~ H(M;R).

Finally we turn to the components of ¢(P). Because $! is an Eilenberg—Méclane space, these
components are isomorphic to H(M; Z), the correspondence being

S—>class of f*v.
Putting all this together we obtain the formula
Z\(M)/9(M) ~ H\(M;R)/H\(M; Z).

Thus in this case &/ (P) /% (P) is a torus T'(M) of dimension equal to the dimension of H'(M; R),
as it should be, because the action of 4(P) on &7(P) only has the global gauge group S in its

kernel, whence
B%(P) ~ T(M) x BS.

4. THE YANG-MILLS EQUATIONS

We turn next to the equations of variation of L(4) = ||F(4)|?, and because &/ (P) is naturally
an affine space, it suffices to vary 4 along lines

Ay =A+ty, neQ(M;ad(P)).

The first problem is therefore to compute #(4;) for such a variation.
To do this recall that a connection 4 on P induces a natural covariant derivative V4 on all
associated vector bundles of P. Thus if
V(P)=PxgaV
is associated with a representation
p:G—>Aut?V,
then 4 induces a way of differentiating sections s, of V(P):
(4.1) s—>Vis,

inany given direction Xon M. This ‘ covariant derivative’ then dually corresponds to a differential

operator
d: QUM; V(P)) > Q4 (M; V(P)),

which finally extends uniquely to a differential operator
d: Q*(M; V(P)) > Q*+(M; V(P)),
compatible with the natural pairing
0*(M; R) ® Q*(M; V(P)) > 2% (M; V(P))
given by multiplication. Compatibility simply means
dy(0Anw) =d0Aw+bAd, .
Recall here that (4.1) is defined by the following construction. We have
I(V(P)) = Mapg(P; 7).
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Hence se I'(V(P)) corresponds to a G-equivariant map
§: P>V, $(pg) = p(g)3(p)-
Now given X, a vector field on M, its A-lift X to Pis a well defined G-invariant vector field. Hence
X5: P>V

is again G-equivariant, and corresponds to the section V4se I'(V(P)).

In our situation, the bundle ad (P) is associated to P via the adjoint representation, so that
Q% (M; ad (P)) inherits a natural differential operator from the connection 4. Explicitly, we have
for seI'(ad (P)), XeI'(T) and XeI'(E) the A-lift of X to E(P) in (3.2)

Vs = dus(X) = [£s],
and, for instance, if 0 € 21(M;ad (P)) then
(4.2) d0(X,Y) =Vx0(Y)-Vy0(X)-0[X,Y].

The associated connections to 4, on the various associated bundles are all of course compatible,
in the sense that, if
VW

is a G-equivariant map, then d , commutes with the induced maps
Q*(M; V(P))—Q*(M; W(P)).

Furthermore, these covariant derivatives behave like derivatives relative to tensor-products.

It follows in particular that d, acting on Q2*(M;ad (P)) behaves as a derivation under both the
bracket [ ] and the A operation:

(4.3) Al A1 = [dae ] £ [, d 8],
(4.4) dlaAp) =djanptandyp.
With all these functorial remarks out of the way, we have the following:
LEmMA 4.5. Let A, be the line of connections
A, =A+ty, ne(M;ad(P)).
Then the curvature of A, is given by
F(4y) = F(4) +id 47+ 329, 7].
Proof. By definition, the horizontal lifts X, of a vector field X on M relative to 4, are related by:
' £, = X, +t(X)
and, correspondingly, the vertical projections relative to 4, are related by

. Wy =@—fnom.
Expanding ,[X,, ¥,] now yields

F(X,Y) = o{[X, T]+[X,n(Y)] + [1(X), ] +2[n(X, 7(Y)]}
= wo[ X, T] —tn[X, Y] +4[ X, 9(Y)] ~ [T, n(X)] + (1 (X), n(Y)],
which is the desired formula by (4.2), since [«, ] for 1-forms «, £ is defined as the two form

[, A1 (X, ¥) = [«(X), B(Y)] - [a(Y), B(X)].
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With the help of our lemma, it is now an easy matter to compute the first and second variations
of L.

ProPOSITION (4.6). The connection A is stationary for L(A) = |F(A)|2, if and only if
d, *F(4) = 0.
Proof. Expanding F; = F(4,) according to (4.5) gives
(4.7) 1502 = |1 F1|* +2¢(d 4, F) + 2{|dg7l|* + (F, [7,7])} + higher terms.
Hence at an extremum (d 4%, F) = 0, or equivalently
(n,d3F) =0,
for all e Q1(M; ad (P)). Hence at an extremum
(4.8) diF(4) = 0.

Here dZ is the adjoint of d 4 relative to our norm on 2*(AM;ad (P)) and, just as in the usual
Hodge theory, it is given by + *d 4 *. Precisely, if m = dim M, then
(4.9) dj = (—1)mtmP+lsxd, « on Q.
Hence (4.9) implies (4.6).

For completeness we quickly review the proof of (4.9). Suppose then that ¢ e 271, yreQn,
one of them having compact support. Then by (4.4)

dfpn*yt=dsensy+(—1)PTprd, +Y.
Hence integration yields
0=(dgp, ) +(-1)7 (p, x7d g+ ¥).

%1 = (_ 1)(10—1)(m—p+1) %

But

on (p — 1)-forms, yielding (4.9).

Remark. The Bianchi identities assert that for every 4, we have d F(4) = 0. Hence at a
stationary point we have both

d F(4) =0 and d%F(4)=o0.

Forms satisfying these two equations are clearly (nonlinear!) analogues of harmonic forms in the
usual Hodge theory. In short the condition for 4 to be extremal is precisely that its curvature
F(A) be harmonic in 2%(M; ad (P)).

The expansion (4.7) of course also yields the Hessian of L at an extremal connection 4. This
Hessian is a quadratic form on the tangent space to 27 (P) at 4, which in our identification is
precisely 21(M;ad (P)). With this understood we have the formula for the second variation.

ProPOSITION (4.10). The quadratic form Q(n,7) defined by the Hessian of L at an extremal connection

A is given by
Qn,m) = (didyn+ *[+F,7, 7).
Progf. From (4.7) we have
1d

Q1) = 35l BlE| _ = Idanl+ (B[, 1).

To bring this expression into the required form observe that |d9]|? = (d%d 47, %), while

@1t) (B0 = [ s «F= [ nalnsF1= (=i ynssisRa).

1=

Using the formula for ! this reduces to (3, *[* F,y]).
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We write for the endomorphism
F.q— %[ F,q]
of Q1(M;ad (P)). This is clearly a degree-zero operator, which by the argument of (4.11) is
also characterized by .
(F"?, g) = (F3 [ﬂ,g])

and is therefore self-adjoint.

Remarks. The operator
L,=d%d, +=*[*F, ],

which appearsin (4.10), can also be interpreted as the Jacobi operator associated with an extremal
of L(4). That is, if A, = A+iy+t2y’ ... describes a curve of connections for which L(4) is
extremal, then

L A"’ = O.
To see this we differentiate the equations

d%,F(4y) =0
with respect to ¢ and set ¢ = 0. If a dot denotes such a differentiation then we clearly have
dy=7n, F(d)=d,m,
xd, *F(4) =0

whence the derivative of

is given by
*[7, *F(A)] +xd,xd =0,

which, once the signs are taken care of] is equivalent to
(4.12) L,y=0, nel'(M;ad(P)).

The solutions of (4.12) are therefore the ‘Jacobi-fields’ of L, and describe the fangent space to
the space of solutions of the nonlinear extremal equations for L.

On the other hand our functional L is clearly invariant under the action of the group of gauge trans-
Sformations. Hence the proper measure of the tangent space to the space of solutions is given by
the quotient of the solutions of (4.12) by the directions along the orbits of the action of %(P).
Now this space is, as we shall show in a moment, precisely the image of 20(M;ad (P)) in
Q'(M;ad (P)) under d 4. Thus the corrected tangent space to the space of solutions is the quotient
N, of the space of Jacobi fields J, by the image of d ; and therefore fits into the exact sequence

(4.13) Q(M;ad (P))—2> J,—> N,—> 0.

We shall call N, the null space of @, and its dimension the nullity of 4. This nullity is always
finite because of the following argument.
In our norm on 2'(Mj;ad (P)) the orthocomplement of the image of the d, in (4.13) is

precisely the kernel of d%. Thus N, may be identified with the space of 70! satisfying the
equations

Lyp=0, diy=0
or equivalently

(4.14) did, +d A%+ «[+F, 1=0, df=0.

The first operator on the left is the Laplacian A 4, of d , and hence elliptic. Hence the solutions of
(4.14) are finite-dimensional, and therefore the nullity is also.
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This argument immediately extends to the Morse index of 4, which is defined as the dimension
of a maximal negative subspace of @, or, equivalently, as the dimension of a maximal subspace
in the kernel of d% on which the form
N Q) = (Aun+ [+ Fl0), F=F4),
is negative definite.

Thus, to sum up, we have the following finiteness result.

ProrosITION 4.15. The index and nullity of an extremal A are finite and equal to the index and nullitj

of the quadratic form . 3 N
Qn) = (Aan+Fy,n), F=«[+Fn),
on the kernel of d¥ in 21(M;ad P).

Finally, if XeI'(AdP) is a left invariant vertical vector field it acts on 7T'(P) via the Lie
bracket. Hence, if ¥ is an A-horizontal vector field, —[X, ¥] measures the first-order effect on
the A-horizontal spaces. It follows from (4.5) that in our identification

T, = QY M;ad (P))
the tangent space to the orbit of ¢(P) at 4 is given by the image of

d,: 2°(M;ad (P)) > 2Y(M;ad (P)),
as was asserted earlier.

5. YANG-MILLS OVER A RIEMANN SURFACE

When the base-manifold of P is two-dimensional the Yang—Mills equations naturally relate to
holomorphic structures and can therefore be understood best in a holomorphic context.

To see this recall first that when dim M = 2, the = operator of a Riemannian structure on M
maps Q! to 2%, with 2 = — 1. Hence we have a natural decomposition

Qb(M) = 240 (M) ® 2%Y(M),
with 2, denoting 2 ® C, and

*=—1 on Qv x=i on 001
of the complexified de Rham complex. This decomposition splits d: £2°— 01, into d': Q0> Q10

and d”: 2°-> 201 and so induces a holomorphic structure on M, whose holomorphic functions f
correspond locally to solutions of d"f =0

Suppose now that P is a principal G-bundle over M (M and G both compact), and that Aisa
connection for P. Then the above argument can be applied to the complex 2*(M; ad (P)), and
d, giving a decomposition

QL(M;ad (P)) = Q1°(M;ad (P)) @ 2%1(M;ad (P))
according to the eigenspaces of *:
*x=—1 on O x=1 on 01,

There is a corresponding decomposition of d 4, so that we have the diagram:

y
Q19(M; ad (P)) — Q%(M;ad (P))
ad aa R

(M ad (P))~r @02(M50d (P))
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which is of course compatible with the corresponding decomposition of 2,(M), and now the
operator d 4 defines a holomorphic structure on the vector bundle ad (P) over M. This can be proved as
in Atiyah et al. (1978, theorem 5.1) by applying the Newlander—Nirenberg integrability theorem
for complex structures. Alternatively we can give a more elementary proof as follows.

Clearly all that has to be done is to construct local frames s, for ad (P), with d s = 0. Now if
sy is any frame over U < M, we have

djsy = Osp,

where 6 is some matrix of 1-forms of type (0, 1) on M. Further if we change s;; to fs; where fis
an appropriate matrix-valued function then

dafsy = (dF+S0) s

Hence we need to solve the equation
(5.1) Sdf+6 =o.

First consider (5.1) globally over the 2-sphere $2 (for the trivial bundle). Working with Sobolev
spaces H* and using their basic properties, explained in § 14, we see that the map

P:H*>H!

given by P(f) = f~1d"fis smooth. Moreover its derivative at f = 1 (the identity matrix) is the
linear elliptic operator d”, which on §? is surjective and has the constant matrices as kernel.
The implicit function theorem for Banach spaces then ensures that the equation P(f) = —6 has
(near f = 1) a unique solution fe H? orthogonal to the constants, provided @ is close to zero in H.
If 6 is in C* then so is f.

To deduce the local solvability of (5.1) around z = 0 we introduce a cut-off function p(|z|)
with graph of the form

2]

o
[N .
o

)
Ficure 2.
This function is in H* and we have a universal bound (independent of ¢) for its H'-norm:
lelly < 2n.
Putting ¢ = pf we can then estimate the H'-norm of ¢:
1113 = 1p01%+1p"0 +p0'|1* < 2{p01* +[p"6]1* +[p6"||*} < 8 sup |6]*+ 2] 0]3.

Here | || stands for the usual L?-norm, p’ stands for dp and we restrict throughout to the disc
|z| < 8, which is the support of p. Now we can always assume that our frame was so chosen that
6(0) = 0 and so, for ¢ sufficiently small, both sup |0|2 and | 0||} can be made as small as we please.
Thus, for small ¢, || ¢||2 is small and applying the global solvability of (5.1) to ¢ we find an f

44 Vol. 308. A
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satisfying f~1d"f+¢ = 0. Restricting to |z| < 40 we have ¢ = 6 and so f is the required local
solution.

Using the holomorphic structure defined by d s we shall continue our analysis of Yang—Mills
in the two-dimensional case and discuss the implication of having a connection 4 that is extremal
for L(A) and therefore satisfies the equation

(5.2) d, *F(4) = 0.

Now F(A4)eQ?*M,ad (P)) and hence %F(4)e0 (M; ad(P)), and is therefore a section of
ad (P), on which both d4 and d s = 0. Thus (5.2) implies that x (4) is a holomorphic section of
ad (P), which is covariant constant, and we claim that we can therefore decompose ad (P)
completely according to the eigenvalues of the endomorphism
A =1iad xF(4),
that is
Ao =i[*F(4),a], acfQ*(M;ad(P)).

More precisely, we claim that the eigenvalues of A on ad (P) are locally constant, and, as A is
self-adjoint, there is therefore a natural decomposition

ad (P) ® C=@Pad, (P), A€eR,
p

of ad (P) ® C into orthogonal sub-bundles where A reduces to the scalar A.

Furthermore, (5.2) now implies that the induced decomposition

Q&(M;ad (P)) = D QR*(M;ad, (P))
P
is stable under d,. The local constancy of the eigenvalues of A follows by considering the
trace functions tr A", n = 1,2, .... We have
dtrA® = trd A" = 0.
Actually our main concern will be with the decomposition
ad (P) ® C ~ ad~(P) @ ad* (P) @ ad+ (P)

corresponding to negative, zero, and positive eigenvalues of /. Note also that the Reimannian
metric on ad (P) induces on complexification holomorphic dualities

(5.3) ad*® (P) @ ad* (P)*, ad—(P)* x ad*(P).
With these matters understood we now have the following formulae for the index and nullity.
PrOPOSITION 5.4. Let A be an extremal connection for P. Then
nullity (4) = 2dimy, H(M;ad* (P)),
index (4) = 2dimy HY(M; ad~ (P)),
where H' denotes the cohomology of the sheaf of holomorphic sections of the bundle indicated.

Proof. From the discussion in §4 we have to compute the nullity and index of the quadratic

form " u
Q(n) = (Agn+ Fn,7), neKerdj,

in Q1(M;ad (P)), where as before we have written F'for the transformation

ﬁ‘:?}-—> w[x F(A),7n].
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We can furthermore clearly decompose this equation according to the eigenvalues of 4, and
so are naturally reduced to three cases with /1 = 0, or a positive or negative scalar. Consider first
A = 0, that is the case corresponding to ad*® (P). In this situation Q(?]) = (A47,7) is semi-
definite. Hence the index is zero, and the nullity equals the dimension of the harmonic forms

(5.5) AA’I] =0

in ker d¥%. But (5.5) implies that d ,# = 0 and d%# = 0. Hence nullity 0 = dim harmonic forms
in QY(M;ad* (P)).

We next turn to the case when A is a positive scalar, that is corresponding to ad, (P) with
A > 0 in the spectrum of 4. In this situation we shall need the following estimate on the first
positive eigenvalue of the Laplacian.

LEmMA 5.6. Consider A 4 acting on Q% for the bundle ad, (P) with A > 0. Then A 4 preserves the spaces
019 and 2%, and the first positive eigenvalue of A 4|10 is > 2A.
From this lemma and the self-evident formula

Blovo = —x, F|Qor =),
it follows immediately that our operator .
A+ F
is positive on 2%1, and has on Q%9 the single negative eigenvalue —A with multiplicity the
dimension of the harmonic forms in 2%°. Hence (5.6) leads to

CoroLrLARY (5.7). The quadratic form é of (4.15) has nullity zero and, index é]Ker di =
Index Q = dim harmonic forms in Qb°,

In short then, this corollary computes the contribution of ad,(P) to the index of 4, in terms of
the dimension of the harmonic forms in Q%9 and it is then quite standard Hodge theory to
translate this answer into the statement in proposition 5.4. We shall review these matters in a
moment, but turn first to a proof of lemma 5.6.

For this purpose recall our decomposition of 2§:

”

da
QLo O11
(5.8) dﬁT TdA' R

00,0y 00,1
iy

and the corresponding decomposition of d , into d 4 +d 4. Now in this diagram each arrow has
a natural adjoint and we can therefore associate a Laplacian with each arrow. Each such Laplacian

gives a self-adjoint operator on the spaces at both ends of the arrow. Thus we have a lower and
an upper [ 4, defined by ’ ,
O = dj () * + (d5)*dj

as well as left and right [] 4 defined by
O = da(da)* +(da)* da
Now the basic relations between these operators are given by the following.

Lemma 5.9. The Laplacians [ 4 and [1)4 induce the same operator on Q40 and Q2%'. Further A,
preserves these spaces and

(i) A =204 =200 on O and QO
44-2
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while
(ii) Ay=[4+04 on Q% and 0V
and, finally, on Q%0 these two Laplacians differ by A:
(idi) Oa—0s=A on 000
Proof. Both (i) and (ii) are formal consequences of the equation d* = — «d = and the fact
that *x = —ion 2%%and * =1ion 201,

For instance, for a € 2%° we obtain
Aga= —#dyxdye
= +*d(idgae—idga)
=ix(dgdg—dsds)
=4+
The last relation (iii) now follows from
id?a = (dgdg+dsdg)e = x[4,0] for ac0O.

Now this lemma serves to estimate the spectrum of A, by means of the standard theory of
elliptic complexes. Indeed each arrow of diagram (5.8) is an elliptic operator. Hence by the
Hodge theory the positive spectra of the two associated Laplacians are isomorphic. Thus the positive
spectra of []4on 2%9 and Qb1 are equal. On the other hand by (iii) this spectrum is bounded
below by A, because [ is semi-definite. But on 219 we have A, = 2[]4. This completes the
proof of lemma 5.6.

It remains to translate the harmonic forms into sheaf cohomology terms in the standard way.
This translation is based on the fact that each of the operators in our diagram can be interpreted
as a resolution for the kernel sheaf of the operator.

Thus the lower dj, together with Hodge theory, yields

HY(M;ad, (P)) = Ker {15209,
while the upper d 4 gives
Hi(M;ad, (P) ® 9) = Ker (C4]2%9).

Finally Serre duality gives:
Hi(M;ad, (P) @ 2Y) @ H“(M;ad, (P) *).
Thus our index formula (5.7) for A > 0, becomes
index @ = dim H'(M;ad_, (P))
once we recall the duality (5.3).
Finally if we take A < 0 a completely analogous argument yields
index @ = dim H*(M;ad, (P)).
Summing over A then completes the proof of proposition 5.4.

Remarks. Although the formulae for the index and nullity seem similar, there is an essential
difference between them. The nullity is essentially unstable (under changes of 4) while the index
is not. This stability of the index follows from the Kodaira vanishing theorem and the
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Riemann-Roch formula. Indeed on ad, (P), with u < 0, H*(M;ad, (P)) = 0, as also follows
from the formula
D’ = D”—M, H > 0,
on 2% and the diagram (5.8).
Hence the index is also minus the Euler characteristic of ad, (P). Now, by Riemann-Roch,

dim HY(M; E) —dim HY(M; E) = ¢,(E) + (g— 1) dim E.
Applied in our situation, this then leads to the following rigid and computable formula for the index:
(5.10) index 4 = 2{¢,(ad* (P)) + (¢ — 1) dim (ad* P)}.
Here ¢, denotes the first Chern class and we have switched to ad+ (P) via the formula

o (E*) = —oy(E).

6. REPRESENTATIONS OF THE FUNDAMENTAL GROUP

In the previous section we saw that, over a compact connected Riemann surface M, a con-
nection 4 is extremal for the Yang-Mills functional if and only if % F(4) is covariant constant
(relative to 4), that is

(6.1) d, = F(4) = 0.

In particular, if our G-bundle is topologically trivial, a flat connection, that is with F = 0,
necessarily satisfies (6.1) and corresponds to the absolute minimum of the Yang—Mills functional.
Now a flat G-connection is locally trivial and globally corresponds to a homomorphism

(6.2) m(M)>G

describing the holonomy. Solutions of (6.1) that are non-zero can be described in a similar
manner by using a suitable central extension of 7, (M).

We recall that 7,(M) is a group with 2g generators 4,, By, ..., 4, B, satisfying the single
relation

(6‘3) 'tl:‘:[l [Az" B‘L] =1,

where [4, B] is the commutator 4BA~! B-1. It follows that, for g > 1, 7,(M) has a universal
central extension

1>Z—>T'—»m(M)—>1,

where I'is generated by 4,, By, ..., 4,, B, and a central element J satisfying the single relation
g
(64) 11 (4, B = 7.
=

Let I'p, denote the group obtained from I" by extending the centre to R, so that we have a central
extension:

(6.5) 1->R->Tp—>m(M)->1.
On dividing by Z the group I'y clearly becomes a direct product
(6.6) 1>Z—->T'p—>U(1) xm(M)—>1.
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Now let @ - M be a U(1)-bundle with Chern class 1 endowed with a fixed harmonic or Yang—
Mills connection. If we normalize the metric on M so that it has total volume 1 the curvature of
this harmonic connection on @ is — 2niw, where @ is the volume form on M. The universal
covering M - M is of course a flat 77;(M)-bundle, so that the fibre product @ x , M is a U(1) x

m(M)-bundle with connection still having curvature — 2miw. Lifting to I'p we then get a I'p-
bundle over M with connection and curvature —2riw. In particular this connection 4 is a
Yang—Mills connection, a notion which makes sense even though Iy is not compact.

Given any homomorphism
p:I'r—>G

we then get an induced G-connection 4, also satisfying the Yang-Mills equations, since (6.1)

is clearly functorial for homomorphisms. Our observation is that all Yang-Mills connections are
obtained in this way, namely we have

THEOREM 6.7. The mapping p— A, induces a bijective correspondence between conjugacy classes oj
homomorphisms p : I'p, — G and equivalence classes of Yang—Mills connections over M.

To prove this theorem we have to understand the significance of the Yang—Mills equation
(6.1). First we shall show that, as a consequence of (6.1), the conjugacy class of * F = % F(4) is
constant. To see this recall that * F can be considered as a g-valued function on P,

* F:P—>g,
*F(pg) = Adg™t « F(p).

Hence the values of * F certainly lie in a fixed conjugacy class of g (i.e. orbit of Ad G) on each
fibre of P. On the other hand the condition

which is equivariant under G, i.e.

asserts that for any vector field X on M, its horizontal lift X (relative to 4) annihilates * F. It
follows that * F is constant along horizontally lifted curves.
To proceed further let us now choose a point X in the orbit of * F(4), and set Px equal to the

inverse image of X under % F:
Py = « F-1{X}.

Because * F maps onfo the orbit of X, this set will be a submanifold of P, and in fact it defines a
reduction of the structure group of G to G, the centralizer of X in G, that is Py is stable under the
action of Gx and

(6.8) Py/Gx = M.

Furthermore the horizontal subspaces of 4 are tangent to Py (again because X xF = 0) so
that A restricts to a connection of Py over M, with curvature F(4), where now # F'(A) is the constant
map

(6.9) Py X
It follows that we may think of F(A) as the Lie algebra valued 2-form,
(6.10) F(4) = X® we*(M;gx),

with o the volume form on M.
The Yang-Mills connection 4, defined by a homomorphism p: I'z - G has curvature X, @ @
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where X, is the element of the Lie algebra g of G defined by dp: R— g. Since R is central in I'g,
it follows that p(I'g) centralizes X, and so p is actually a homomorphism

p:FRéGX With X=Xp.

Thus in proving theorem 6.7 we can restrict ourselves to the case when X is central, i.e. when
Gx =G.

Next let us consider the case when G is a torus, so that we are dealing with a direct sum of
line-bundles. Now line-bundles with harmonic connection form an abelian group under ® and
so can be uniquely expressed as @* ® L, where £ is the Chern class, @ is our fixed line-bundle of
degree 1 and L, is flat. Taking direct sums then shows that theorem 6.7 is true in this abelian
case. As we have already remarked it is also true in the flat case, I' now factoring through 7, (M).

The general case is essentially a combination of these extreme cases but to proceed further we
need to recall the basic facts about the structure of compact connected Lie groups G. First of all
the commutator subgroup § = [G,G] is the maximal connected semi-simple subgroup of G. The
connected component H of the centre of G is a torus, which together with § generates G. The
intersection D = §'n H is a finite subgroup of the centre of §, and so

HxS—>G

is a finite covering with group D (acting diagonally). Thus we may write G = H x ;S, and
factoring out further by D we can put
G=G/D, H=H/D, §=S/D
so that we have
(6.11) G=HxS.

Any G-bundle P with connection induces a G-bundle P with connection. Conversely if P
lifts to P then P is unique and inherits a connection from that of P. Similarly a homomorphism
p:I'r— G induces p: 'y~ G. Moreover if p(R) is central in G then p(Z) < D, since Z < [T}, I'],
and so p factors through

I'r/Z = U(1) xm(M).
In view of (6.11) we see that 5 is determined by a pair of homomorphisms

(6.12) {ac: U(1) x7r1(_1\4)—>17

By (M) —S.
A central Yang-Mills connection for G is equivalent to a Yang-Mills connection for Hand a flat
connection for 8. We have already seen that (6.7) holds in these two separate cases so that we
end up precisely with the pair of homomorphisms « and f£.

This completes the proof of theorem 6.7. We should note, however, that in this theorem we
have simultaneously considered all topological types. It remains therefore to describe the
topology of the bundle associated with a given representation p:I's—G. Now G-bundles over
M are trivial over the 1-skeleton of M (since G is connected) and are classified by a class in

HY M, m,(G)) = m(G).
For the group G of (6.11) we have B ~
. m(G) = m(H) @ my(S).
The homomorphisms «, £ of (6.12) determine classes

[elem(H), [Blem(S).
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The definition of [«] is clear, we simply regard the restriction to U(1) as a loop. For [ #] we note
that £ extends canonically to a homomorphism

p: IS,

where §'is the (finite) universal covering of S: this is because I'is the universal central extension
of m,(M). The class [#] is then just given by

[8] = BWJ),
where as before J generates the kernel of I'— 7, (M).

To any homomorphism p:I'z—G with p(R) central we then pass to p:['p—G, which is
described by the pair a, #. The class [¢] @ [#]en,(G) then determines the topology of the
associated G-bundle, and so that of the G-bundle. Since G->G is a finite covering with group D
it follows that we have an exact sequence

0->m,(G)—>m(G)—>D->0
and the pair [o] @ [#] in 7,(G) belongs to the subgroup 7,(G) if and only if [¢] and [A] have
opposite images in D, using the exact sequences

0—>m(H)—>m(H)—>D-0,
0->7,(8) > m (S)>D~0.

Since for the semi-simple group § we have [S, 5] = S it follows that, for g > 1, the equations
(6.13) 11 [4, B =7
i=1

have solutions with 4;, B;€ S for any given 7€ S. In particular on replacing S by its universal
covering and taking 7 to be any element of the centre it follows that f—[£] defines a surjection

(6.14) Hom (m,(M),S) —m(5).
More trivially & —[a] gives a surjection since restriction to U(1) defines an isomorphism
(6.18) Hom (U(1), H) ~ m,(H).

Thus we have proved

ProrosiTION 6.16. Every topological G-bundle P over M possesses a central Yang—Mills connection.
The space of (equivalence classes of ) such connections is given by all (conjugacy classes of ) solutions of (6.13)
with given m, multiplied by the torus Hom (my (M), H).

As explained above the element # in (6.16) is determined by the topological type of P. The
curvature also is determined by the topology of P. More precisely it depends on the characteristic
classes via (6.15). Hence the value of the Yang—Mills functional is also determined by the top-
ology of P. It is not hard to check and will be proved in § 12 that this value is the absolute minimum
for P.

The general Yang-Mills G-connection for P then arises from a Yang-Mills minimum for the
group Gx. If Sk is the maximal connected semi-simple subgroup of Gy then Gx/Sx = Hy is

a torus and Ly = m(Gy/Sx)

is a lattice. This contains 7,(Hy) as a lattice of finite index, so that we may view Ly as sitting
inside the Lie algebra of Hy, which in turn is in the Lie algebra of G. In this way

(6.17) XeLy <g.
Note that X can now be identified with the class [«] of the homomorphism a: U(1) - Gx/Sx.
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It remains to examine the topological relation between the bundles Py and P. The inclusion
Gx < G sends Sx into § (since § is maximal semi-simple) and hence Gx/Sx — G/S. Also for the
universal coverings Sy is a factor of § and so the centre of Sy is a subgroup of the centre of §.
Elements of 77,(G) can be viewed as pairs (a, b) with

aem(G/S), becentres.
Similarly elements of 77,(Gx) are given by pairs ax, bx and the homomorphism
my(Gx) > (G)

then assigns (ax,bx) to (a,b) in the obvious way. In particular b determines by uniquely. The
element ay is then constrained by two relations

ax—>a
(6.18) {
ax = byxymod Dx.

Here the congruence is to be understood in the sense that we use the two natural homomorphisms

centre Sy — centre Sy
Ly —> Dy < centre Sx.

For the Gx-bundle defined by a pair of homomorphisms (ax, fx) as in (6.12), we have
ax = [ax] and bx = [fx], and [ax] can also be identified with the point X in the lattice Lx.

To sum up we see therefore that, for a given C* G-bundle P the Yang-Mills connections fall
into a countable number of families or #ypes determined by conjugacy classes of elements X in g.
These X are constrained by the condition (6.17) and (6.18) rewritten in the form

(6.19) {XM

X = bmod Dy,

where (g, b) are the pair determining the topology of P with aem,(G/S), becentre S.

In theorem 6.7 we formulated the results for full equivalence classes. If instead we pick a
base point x, € M and work with the subgroup ¢, of gauge transformations that are the identity
at xy, then (6.7) becomes the statement that we have a bijection

Hom (I'y, G) 4|9,

where # is the space of all Yang—Mills connections. The group G = /%, acts on both sides
and induces the bijection on quotients expressed in (6.7).

We shall now spell this out in more detail for the case of G = U(n). The Lie algebra is then the
space’of skew-hermitian matrices. We write such a matrix as — 2miA so that 4 is hermitian. Its
conjugacy class is determined by the eigenvalues Ay, Ay, ..., A, of A, which we may arrange in
descending order:

(6.20) 22222

The maximal semi-simple subgroup is SU(n) while the diagonal U(1) is the centre. The group
D=SUn)nU(1) = Z,

is the group of nth roots of unity. The homomorphism U(n) - U(n) /SU(n) ~ U(1) is of course
given by the determinant. The lattice

L =m(U(n)/SU(n)),
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therefore corresponds to diagonal hermitian matrices with integral trace, i.e. the diagonal
entries A are such that zA is integral.

If X = —2niA with 4 having the eigenvalues in (6.20), the centralizer Gx depends on how
many coincidences there are amongst the A;. Thus if the first z, are equal, the next #, are equal
and so on, we have

(6.21) Gx =U(n) x...xUln,).
The lattice Ly then has dimension 7 and the condition (6.17) becomes

(6.22) n; A,

; Isintegral for all ;.

Thus when the A; are all distinct they must all be integers, while at the opposite extreme, when
they are all equal, they are rational with denominator 7.

Since m,(U(n)) =~ Z is free abelian, a U(n)-bundle over M is determined topologically by a
single integer, its Chern class. Thus the general description we have used for 7,(G) contains
redundant information in this case. More precisely we considered the finite Z,-covering

U(n) > U(1) x PU(n),

where PU(n) is the projective unitary group, and identified 7, (U(r)) with the appropriate
subgroup of

m(U(1)) @ m(PU(n) = Z® Z,.
Itis easy to see that our subgroup is generated by the element 1 @ 1. Thus for a pair (2,0) e Z @ Z,
to represent an element of 77,(U(n)) we must have @ = b mod n, and our element is then given by
the integer 4. Condition (6.19) now reduces to the obvious requirement

(6.23) traceX = a

where ¢ is the Chern class of P.

In terms of vector bundles, a reduction from U(n) to a Gk of the form (6.21) corresponds to a
direct sum decomposition E-E®.. ®E.

The condition (6.22) merely asserts that the Chern classes of the E; must be integers while (6.23)
asserts that the sum of these Chern classes must coincide with the Chern class of E.

For U(n), a homomorphism I'p — U () isjust a unitary representation of I'g. If a representation
is irreducible then X is necessarily central so that all its eigenvalues A; are equal and given by k/n
where £ is the Chern class. The converse is true when (n, k) = 1, since a reducible representation
can only produce eigenvalues with smaller denominators in view of (6.22). Narasimhan &
Seshadri (1965) have shown that, provided g > 2, irreducible representations exist for all (n, k).
The proofis a simple matter of exhibiting irreducible sets of matrices satisfying (6.4) with J any
given nth root of unity. Naturally for g = 1, (M) is abelian and so has no irreducible unitary
representations for n > 1. Thus for £ = 0 and » > 1 irreducible representations do not exist,
while for (n,k) = 1 they do exist. This is consistent with the results of Atiyah (1957) on the
classification of holomorphic bundles over elliptic curves.

Yang—Mills U(n)-connections for which X is diagonal (with entries — 2rik/n) give rise as we
have mentioned to the absolute minimum 4n2k2/n for the Yang—Mills functional. We have
shown therefore that the most general Yang—Mills connection for a vector bundle £ is simply a
direct sum of Yang—Mills minima for sub-vector bundles.


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org on January 4, 2010

YANG-MILLS EQUATIONS OVER RIEMANN SURFACES 565

7. HOLOMORPHIC BUNDLES

In this section we shall consider holomorphic vector bundles over our compact Riemann
surface M and discuss the general nature of the classification problem. In particular we shall
explain how to compute the cohomology of the moduli space of stable bundles. In principle the
approach we shall give is entirely ‘non-unitary’ and does not involve Morse theory. However, in
§8 we shall explain the relation between this holomorphic approach and the unitary approach
based on the Yang—Mills functional and Morse theory ideas.

To demonstrate clearly the structure of the argument we shall not enter here into any techni-
calities. The relevant analytical details are treated in §§ 14 and 15.

We consider therefore a fixed C* complex vector bundle E over M of rank n and Chern class &
and we denote by €(E) or €(n, k), or simply %, the space of all holomorphic structures on E. In
concrete terms a holomorphic structure may be defined by its d”-operator, so that the local
holomorphic sections are the solutions of d"s = 0. Relative to a C® local basis of E we can write

d’"=dy+ B

where dj is the usual Cauchy-Riemann operator and B is a matrix-valued (0, 1)-form on M.
Since dim M = 1 there are no integrability constraints on B, so that B can be chosen arbitrarily
(see §5). From a global point of view it follows that % is a complex affine space whose vector space
of translations is £2%! (End E), where End E denotes the C* vector bundle of complex endo-
morphisms of E.

Let Aut (E) denote the group of automorphisms of £ so that an element of this group is locally
a C* map of M into GL(n,C). Then Aut (E) acts on €(E) and the orbits are, by definition, the
isomorphism classes of complex analytic bundles on M with rank n and Chern class £. Our aim
is to describe this orbit structure as fully as possible and in particular to discuss the ‘moduli
space’.

As usual with classification problems in algebraic geometry, in order to get a good ‘ moduli
space’, we have to consider a restricted class of holomorphic structures, those that are stable in
the sense of Mumford (1965). The set of stable points in € (E) forms an open set ,(E) and the
corresponding orbits are then closed in %;(E) so that the quotient space %,(E)/Aut (E) is a
HausdorfF space. In fact it turns out to be a complex manifold and is compact if (n, k) = 1. This
is the moduli space we are primarily interested in studying and whose cohomology we want to
compute.

We recall now the precise definition of stability. It will be convenient first to introduce the
normalized Chern class or ‘slope’ (in the terminology of Shatz (1977)) # = Chern class/rank. Then
a holomorphic bundle E is stable if, for every proper holomorphic sub-bundle D of E, we have
u(D) < u(E). Semi-stable is defined similarly but we allow now the weak inequality #(D) < u(E).
Elementary arguments as in Harder & Narasimhan (1975) then show that every holomorphic
bundle E has a canonical filtration.

(7.1) O0=EcEcEc...<cE=E
with D; = E,/E;_, semi-stable and
w(Dy) > u(Dy) > ... > u(D,).

Of course if E is semi-stable then 7 = 1.
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If D, has rank n;, and Chern class £; so that n = ¥n;, k = 3k; we shall call the sequence of pairs
(ny ks) 1 =1, ..., 7 the type of E. It is sometimes convenient to describe the type equivalently by
the single n-vector 4 whose components are the ratios k; /n; each represented 7, times and arranged
in decreasing order. Thus

b= (s o5 fhy)

with g, > py > ... > p,, where the first n; are equal to £,/n,, the next n, are equal to £,/n, and
so on.

All the holomorphic bundles of a given type u define a subspace %, of €. In particular if all
components of u are equal (hence are all £/n) then €, = % is the semi-stable part of %.

Since the filtration (7.1) is canonical the subspaces %, are preserved by the action of the
automorphism group, so that each %, is a union of orbits.

It is well known that the infinitesimal variations of a holomorphic bundle E are classified by
the elements of the sheaf cohomology group H'(M, End E). In our picture this gets interpreted
as follows. The orbit in % corresponding to a given holomorphic bundle £ is, locally, a manifold
of finite codimension in % and its normal can be identified with H*(M, End E). This is because
an infinitesimal gauge transformation, namely a global C* endomorphism ¢ of E, alters d” by
the addition of d”¢ and the cokernel of

Q9(End E) —> 00.1(End E)
is just H'(M, End E).
In the same way we can identify the conormal to €,. Since %), is a union of orbits its conormal
should be a quotient of H'(M, End E). Now let End’ E denote the bundle of holomorphic endo-
morphisms of £ that preserve its canonical filtration and define End” E by the exact sequence

(7.2) 0—->End’'E—~End E—~End" E—0.

From the exact cohomology sequence of (7.2) we see that H*(M, End” E) is indeed a quotient of
H'(M, End E) and this is clearly the right candidate for the conormal to %), since H*(M, End’ E)
describes variation inside €. The important point to notice at this stage is

(7.3) dim H'(M, End" E) (;'epends only on p.

This follows from Riemann—Roch together with the key fact that

(7.4) H(M,End"E) = 0.

This in turn is an easy corollary, by induction, of

(7.5)  If E, D are both semi-stable and p(E) > u(D) then every homomorphism E— D is zero.

The proof of (7.5) is a simple consequence of the definitions and can be deduced from
Narasimhan & Seshadri (1965, proposition 4.4): it is in any case an essential step in the proof of
the uniqueness of the canonical filtration.

From (7.3) we can deduce that %), is locally a submanifold of finite codimension in %. Thus the
picture that is emerging of € is that it has a stratification by submanifolds %,, giving a sort of
generalized cell-structure. To understand the mutual positions of the %, we need to know some-
thing about the closure of €. In algebraic terms we want to know what happens to the canonical
filtration (7.1) under ‘specialization’. This problem has been studied, in the framework of
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algebraic geometry, by Shatz (1977) who describes how the fype changes under specialization. To
explain this result we have to introduce a partial ordering on the vectors # that parametrize our
types. This partial ordering can be described in several equivalent ways. First we follow Shatz
and associate with the type s the convex polygon P, withvertices (0,0), (ny, k1), (7, + 19, k1 + k), .2

kA
(\n1+n2,kl+k2)...

~
~

"% (n,k)

(nl,kl)

Ficure 3.

Note that the convexity of P, is equivalent to monotonicity of the quotients £;/n;. Shatz now
defines the partial ordering by:

(7.6) Azp if Py isabove P,
If we consider F, as the graph of a concave function p,, then p, is defined at the integers by

2i) = S 1

and interpolates linearly between integers. Here the u; are the components of our n-vector .
Hence, for our vector notation, (7.6) translates into the following partial ordering:
(7'7) /\>/’L if EAj> Z:“j’ j=1’~--sn_1'

isi i<t
Note that 3A; = Y u; = kis fixed. This partial ordering on vectors in R” is well known in various
contexts (see Marshall & Olkin 1979) and we shall discuss its Lie group significance in §12. For
the present we return to the result of Shatz, which now takes the form
(7.8) ¢, < U %

Az p

In the next section we shall give a differential-geometric proof of (7.8) that is more in the spirit
of this paper.

Itis clear that this partial ordering on types satisfies condition (1.17). We shall check condition
(1.18) later (see (7.16)). We can thus use the stratification of % by the €, to describe the equi-
variant cohomology of % in terms of that of the %,. It remains to show that this stratification is
‘perfect’ in the sense of § 1.

Let #, denote the space of all C filtrations of E of type 4. Thus points f, € %, are sections of
the fibre bundle over M with fibre the manifold F, = GL(r,C)/B, where B,, is the parabolic
subgroup preserving a fixed (partial) flag of subspaces of C* of dimensions n,,n, +n,, .... The
sequence of Chern classes £; corresponds to picking a definite component of the space of all

sections. Since the filtration (7.1) is canonical we have a map (the continuity of which will be
established in §§ 14 and 15)

(7.9) (gﬂ_,gz;v
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If we fix a base-point of #, corresponding to a definite C filtration E, of E, the fibre of (7.9)
over this pointis the subspace %, < %, of complex structures compatible with the given filtration.
If Aut (Z,) is the group of € automorphisms of £ preserving the filtration then Aut(£,) acts
on,, #,is the homogeneous space Aut (£) /Aut (£,) and %, can be identified with the associated
bundle. Hence for the purposes of equivariant cohomology the pairs

(Aut(E),€,) and (Aut(E,),4%,)

are equivalent as explained in §13.
Next let us choose splittings of the filtration F, so that we get a direct sum decomposition £ of E

(7.10) E=D,®D,®...®D,
With Eile@"’@Di’

and let Aut £3, %9 be the automorphisms and complex structures (in %,) compatible with this
decomposition. Then we have

(7.11) Aut (E) ~ TI Aut (D)),
=1

2= 11 4,(0),
On the other hand the natural homomorphism
Aut (E,) - Aut (£))
is a homotopy equivalence, and the fibration
B,~ B,

has a vector space as fibre and is compatible with the group actions. It follows that, for purposes
of equivariant cohomology, the pairs

(Aut(E,),4,) and (Aut(E}),%))
are equivalent. Together with (7.11) this finally yields for rational cohomology

ProrosiTiON 7.12. The equivariant cohomology of the stratum €, (E) is isomorphic to the tensor
product of the equivariant cohomology of the semi-stable strata for the quotients D;.

Here of course the equivariant cohomology is always taken with respect to the automorphism
group of the appropriate bundle.

We also need to look at the equivariant cohomology of the conormal bundle N, to %, in €.
By this we mean of course the appropriate relative cohomology or the cohomology of the Thom
space of NV,. Exactly the same reduction as above shows that we can replace the triple (Aut (E),
%,, N,) by the triple (Aut (E}), %), N}) where N} is the restriction of N, to %j. Now from (7.11)
we see that Aut (E7) contains the r-dimensional torus 77, which acts trivially on %Y. To show that
our stratification is perfect it remains to show, using (1.9) and (13.4), that the representation
of T on the fibre of N, is primitive. Now at a point of %}, our bundle £ is a holomorphic direct
sum of the D, and so the bundle End’ E of endomorphisms preserving the filtration is the direct
sum of Hom (D,, D;) for i > j. Hence
(7.13) End"E ~ @ Hom (D;, D;).

i<j
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Now on Hom (D,, D,) the element (¢, ..., ¢,) € T" acts by #71#; and so it acts by the same character
on HY (M, Hom (D,, D;)). Since the fibre of Nis H'(M, End” E) it follows from (7.13) that the
representation of 77 on N is indeed primitive. Thus we have proved

THEOREM 7.14. The stratification of € by the €, is equivariantly perfect so that for the equivariant
Poincaré series we have
B(%) = ZE(%,)
where d, is the complex codimension of €, g
The dimension 4, can be calculated by Riemann-Roch, since H°(M, End” E) = 0, and we
find (asin (5.10))

(7.15) d,= % {p—p+(Eg-1}
> By
Alternatively, in terms of the sequence (ny, k), ..., (n,, k,),
(7.16) dﬂ = _§.{(nik]’_njki) +ninj(g—1)}'
r>7

In particular this shows that our stratification does indeed satisfy the finiteness condition (1.18).

The first term in the series of (7.14) arises from the semi-stable bundles. All the remainder can
be calculated inductively by (7.12). Hence knowledge about P,(%) (from §1) leads to inductive
formulae for P,(%).

Since the stratification of € is perfect over the integers we can also deduce results about torsion.
First we should note that the equivariant cohomology of €, namely the cohomology of B Aut (£),
has no torsion. This follows from the identification with B%, to be explained in §8, together with
the results of §2. It follows therefore that all strata %, have no torsion (equivariantly). In
particular therefore

(7.17) the semi-stable stratum %5 has no torsion in its equivariant cohomology.

In the coprime case (n,k) = 1 we have €, = €, and Aut (£) acts on %, with the constant
scalars as the only isotropy group (Narasimhan & Seshadri 1965). From this we can derive
results for the ordinary cohomology of the moduli space N(n, k) = €,/Aut(E). Thus we get
a formula for its Poincaré polynomial and we shall also see that it has no torsion. This will be
treated in detail in §9.

8. RErLAaTioN wiTH YANG-MILLS

In the previous section we have given a purely complex analytic approach to the moduli space
of stable bundles. We want now to look at the same problem from the unitary or differential-
geometric point of view. The connecting link is the key result of Narasimhan & Seshadri (1965)
identifying stable bundles as those that arise from irreducible unitary representations. Trans-
lated into the notation we have introduced in §6 their result can be formulated as follows.

(8.1) A holomorphic vector bundle of rank n is stable if and only if it arises from an irreducible representation
p:I'r— U(n). Moreover isomorphic bundles correspond to equivalent representations.

Remarks. 1. Actually the description given by Narasimhan & Seshadri (1965) is slightly dif-
ferent from (8.1) though equivalent to it. They puncture A at one point p and consider coverings
of M with ramification of order 7 at p. This leads to a purely holomorphic description whereas
our version, with connections, is a differential-geometric version.
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2. Donaldson (1983) has recently given a new proof of (8.1) in the spirit of this paper.

To understand the geometric significance of (8.1) we recall first, as explained in §5, that a
unitary connection 4 for a vector bundle £ over our Riemann surface M defines a holomorphic
structure simply by taking the (0, 1)-component d 4 of the covariant derivative d ;. This gives a
map &/ —%, which is in fact an affine-linear isomorphism. Locally this corresponds to the

isomorphism
Q' (u(n)) = %*(gl (n, C))

for the Lie algebra valued 1-forms. Note that % is defined independently of any metric on the
bundle, whereas 27 and hence the isomorphism & — % depend on such a choice. The connection
4 associated in this way to the holomorphic structure will be called the metric connection. Since
any two metrics differ by a complex gauge transformation, i.e. an element of Aut (E), it will be
immaterial which metric we pick. The group Aut (E) may now be viewed as the complexifi-
cation % of the group of unitary gauge transformations ¢ of E.

Now let A" = o/ denote the set of connections giving the minimum for the Yang—Mills functional.
As we have shown in §6 these are precisely ¥-equivalent to those given by representations
p: I'p— U(n) with p(R) central. Let /5 < .4 be those given by irreducible representations. Then
(8.1) can be reformulated as follows:

(8.2)  Under the identification of sZ with €, we have N5 < €5 and the induced map of quotient spaces
N5/ G —>Cs]Ge
is a homeomorphism.

The proof of Narasimhan & Seshadri (1965) is essentially of (8.2). It is easy to prove the
inclusion A5 < %; and infinitesimal arguments show that the map of quotients (which are
manifolds) is a local diffeomorphism. The hardest part of the proof is the surjectivity and this
requires compactifying both sides and a consequent induction on 7. The real explanation for
(8.2) is probably to be found in the moment map ideas indicated at the end of §10 (see also
remark 2 above).

Note that the quotient space ¥¢/¥ may be identified with the space of hermitian metrics on E.
Since this is a convex set in a linear space it is contractible and so ¢ and ¢ have the same
homotopy type. Hence equivariant cohomology is the same for the two groups.

Since direct sums of stable bundles with the same ‘slope’ are semi-stable it follows that A" < @:
note also that 4" = .45 in the coprime case. More generally now let us transport the stratifi-
cation of € by the €, defined in §7, to give a stratification of o/ by strata &7,. Let ./, denote the
Yang-Mills connections whose curvature is of type #. Such connections are direct sums of
connections of the form A5 for smaller ranks. This shows that ./Vﬂ < Jﬂﬂ

Our first aim in this section is to show how to characterize the &, strata by properties of the
curvature. In particular we shall eventually show that the 7, are the ‘Morse strata’ of the
Yang-Mills functional. In fact we shall prove that this holds for a much wider class of functionals
than Yang—Mills. These functionals are obtained as follows. Let ¢ be any smooth function on the
Lie algebra g of G that is invariant under the adjoint action and is convex. For example when
G = U(n), so that xe g is a skew-hermitian matrix with eigenvalues iA,,...,iA,, we can take for
¢ any of the following

(i) S,
k=1,2,...
(i) exp (/Mj),}
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These can be written directly in terms of x, without resort to the eigenvalues, and are clearly
smooth invariant functions. Why they are convex will be explained in § 12 when we discuss this

notion more systematically. Given such a ¢ we now define a function @ on the space of G-
connections over M in the obvious way:

(8.3) o4) = [ s(sF(4).

This reduces to the Yang—Mills functional when ¢(x) = trace x*x (corresponding to £ = 1 in
(i) above). Since ¢ isinvariant under the adjoint action, @ is gauge-invariant. Taking 4, = 4 + ¢y
and computing as in §4 we see that

(8.4) B(4,) = B(A) +1 f (¢ (xF(A)), #dn> mods?
where ¢': g — g is the derivative of ¢, i.e.

Blx+1y) = B(x) +£<¢'(x), ) mod &,
From (8.4) we see that the gradient of @, relative to the metric on the space of connections, is
(8.5) grad® = — xd @' (% F(4)).

This reduces to the formulae of §4 for the Yang—Mills functional when ¢(x) = tracex*x so that
3¢’ is the identity map g —+g. In general ¢’ is an equivariant map (relative to the adjoint action

of G) and so for any section s of ad (P) the covariant derivative of ¢’(s) can be obtained from that
of s by the composition rule

(8.6) d o'(s) = ¢"(s)ods.

This is most easily understood by viewing s as an equivariant function P—g and noting that
d s is just the horizontal part (relative to the connection 4) of the ordinary differential ds.
From (8.5) and (8.6) we deduce at once

* (8.7) a critical connection for the Yang—Mills functional L is also critical for @, and the converse holds if
@ is strictly convex.

By a strictly convex function we mean as usual a function for which the second derivative ¢”
is everywhere positive definite, so that the linear transformation ¢”(s) in (8.6) is invertible. The
quadratic function trace x*x used for the Yang—Mills function is clearly strictly convex and any
(weakly) convex ¢ becomes strongly convex if we add a positive multiple of trace x*x. We see
therefore that there are many functionals @ that have precisely the same set of critical points as
the Yang-Mills functional L.

So far we have not really used the convexity of ¢, only the non-degeneracy of the second
derivative ¢”. Thus —¢ would have had the same properties. The significance of convexity is
that the Hessian of @ always has a finite Morse index. To see this we compute as in §4 and find that
the Hessian H corresponds to the self-adjoint differential operator

(8.8) D, = ¢"(xF(4))d%d, +lower order.

Since @ is gauge invariant we can, as in §4, restrict ourselves to ad (P)-valued 1-forms 3 with
d%# = 0, so thatin (8.8) d¥d, can be replaced by the covariant Laplacian

AA. = djdA'l’dAdi.

45 Vol. 308. A
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Then @, becomes a second-order elliptic differential operator and the (strong) convexity of ¢
asserts that the leading-order terms are positive definite. This is enough to make the spectrum
discrete and bounded below so that there are only finitely many negative eigenvalues, showing
that A, has finite Morse index.

Equations (8.5) and (8.6), together with the strong convexity of ¢, imply that

(8.9) (grad @, grad L) > 0

with equality only if 4 is a critical connection. This means that @ is strictly decreasing along the
paths of steepest descent for L, i.e. the trajectories of —grad L. In finite dimensions this would
imply that at the common critical points the Morse indices of L and @ coincide. In our situation
this can be seen directly as follows. Expanding (8.9) at a critical connection 4, and discarding
higher-order terms, we deduce

(8.10) (Hom, Hyy) 2 0

with equality only if  is in the null-space of H;, (which coincides with that of /). By restricting
7 to the negative space V of H; we reduce (8.10) to a finite-dimensional inequality, which easily
implies that H,, is negative definite on V (e.g. diagonalize H;, on V). Thus the Morse index of @
is at least equal to that of L. Reversing the roles of L and @ we get therefore

(8.11)  the Morse indices of @ and L all coincide.

To sum up we see that any one of our functionals @, defined by a strongly convex invariant
function ¢ on g, has exactly the same critical point structure as the Yang—Mills functional L. Our
next aim is to show that all such functionals lead in fact to the same Morse strata and that these
strata coincide with the complex strata introduced in §7.

We now return to the identification of the space & of unitary connections with the space ¢
of complex structures, explained at the beginning of this section, together with the actions of the
groups ¢ and %¢ of unitary and complex automorphisms. The tangent space to the %-orbit
through A consists of vectors d 4o with @€ Q9(M, ad (P)) while for the %c-orbit it consists of
djp with feQ°(M,ad (P)). Since we are identifying 21(M, ad (P)) with Q%(M,ad (P¢)) on
which % = i we can say that the tangent space to the %°-orbit at 4 consists of vectors

dya;+*d o, with a,,a,eQ%M,ad(P)).
In particular then formula (8.5) for grad @ shows that
(8.12)  grad @ is tangential to the Gc-orbits.

In other words the ‘gradient flow’ of @ preserves the ¥c-orbits and hence also the strata %, of
§7 since these are unions of orbits. Since the stratum &/, contains a unique component .4, of
the critical set of @ it is then reasonable to expect &, to be just the Morse stratum or stable
manifold of @ associated with .#,. For this to be true it is of course necessary that @ on 7, should
take its minimum on .#,. Now for any 4 €.#, the conjugacy class of F(4) is constant and is
represented by the skew-hermitian diagonal matrix 4, with entries —2mip; (j = 1,..., n). Since
the volume of M is normalized to be unity it follows that @(4) takes the constant value ¢(4,)
and we shall write this simply as ¢ (). For example, for the Yang—Mills functional, we have

¢(w) = ||ul* = Zpd-
Thus we might expect the following to hold.
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ProrosiTioN 8.13. For any A€, and for any convex invariant function ¢ on u(n), we have
D(4) = ¢(p).-

We shall begin by proving (8.13) in the simple case when

Py = Po = oo = fp > g = ... = Uy
so that the canonical filtration of the bundle E has just two steps. This means that, for the holo-
morphic structure defined by 4 € &7, we have an exact sequence of vector bundles

0—+>D,—>E->D,—0,

where D; has rank m;, Chern class k; (j = 1,2) so that g, = k,/m; and u,, = ky/m,. For con-

venience we shall use the notation 4 = k;/m; (j = 1, 2). The curvature F(4) can then be written
in the form

_[Fi—nAn* dy ]
(8.14) Fl) = | I

where Fj is the curvature of the metric connection of D;, n€Q%(M,Hom (D,, D,)), n* is its

transposed conjugate and d7 is the covariant differential. Now let f;, ; be scalar m; x m; matrices
such that

(8.15) trace f; = trace * I},
tracea; = trace * (4 A9*) = —trace * (9* Ay) = —tracea,.

Then some elementary inequalities concerning convex invariant functions ¢ (which will be
treated in §12) show that

per) > gy O .

0 Jo—a,
The convexity of ¢, together with the fact that M has normalized volume, then implies that
- 0
8.16 ®(4) = F(4)) » f [fl “ ]
(5.16) @) = [ seranzaf om0

But the Chern class £; of D; is given by
i
k;j = o fM trace f;.

Since f; is a scalar matrix this means that f ,Ji is a scalar matrix whose diagonal entries are
— 2nik;/m; = —2migd. Also from (8.15) (since 7 € 2%1) it follows that —i trace a, is non-negative

and so
f oy = 2miay,
M

where g, is a non-negative scalar m, x m; matrix. Then

f oy = 2miay,
M

where g, is the non-positive scalar m, x m, matrix such that trace a, = — trace a,. Hence we have

(8.17) fM[fl—(;“l fzi)“z:l = —2ni[p+ad],

45-2
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where[ ] denotes the diagonal matrix defined by a vector, so that[a] denotes the matrix [31 ;)] .
2.

From (8.16) and the convention we have adopted for defining ¢ on n-vectors (absorbing the
factor — 2ni) we then obtain

(8.18) D(4) > p(u+a).

But since a, > 0, a, < 0 with trace a; = — trace a, it follows easily that x +a > p with respect to
the partial ordering defined in (7.7). As will be explained in §12 this implies, and in fact is
equivalent to,

$(p+a) > B(u)

for all convex invariant ¢. This completes the proof of proposition 8.13 for the two-step case.
As can be seen the essence of the proof is the basic principle that ‘curvature decreases in holo-
morphic sub-bundles and increases in quotients’ (Griffiths & Harris 1978, p. 79). The general
case of (8.13) proceeds in the same manner and we simply have to keep track of the notation.
The details are as follows.

We start with a holomorphic bundle £ with its canonical filtration of type u:
O0=FEcEc..cE =E,
where the quotients D; = E;/E;_, have normalized Chern classes 4/ with
> put > >

The curvature F(4) can then be expressed in a block form generalizing (8.14). For every j < £

we have an element
N € 2%1(M, Hom (Dy, D;))

so that d#j, appears in the (j, £)-block. The 7;;, are the components of the element

7 € 2% (M, Hom (Dy, Ey,_4))
related to the exact sequence
0—>E, ,—>FE,—D;—~0.

Now define scalar non-negative m; x m; matrices ay, for j < k by

1
trace ay, = %fM trace (7, A ”;kk) =0,
and define g, by

tracea L tracenF A, < 0
Kk = 5 Me NN S Y,

so that 3, trace a;;, = 0. Then the convexity of ¢ leads to the inequality

O(4) > $lu+a,

where a stands for the vector (or diagonal matrix) whose jth block af is the scalar (matrix)

a = 3 a.
k=j

Equivalently the vector a can be written as a sum

a=2bk
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where 4, is the vector corresponding to the diagonal matrix whose jth block is a;;, for j < £ (and
zero for j > k). The fact that

traceay > 0 for j<k and 3 traceay =0
i<k
implies that 4, > 0 relative to the partial ordering (7.7). Hence a = X4, > 0 and so u+a > p.

As before this then implies that ¢(x+4a) > ¢(#) and so completes the general proof of pro-
position 8.13.

It will be noted that we have nowhere used the maximal nature of the canonical filtration,
i.e. the fact that the quotients D, are semi-stable. Once we use this we shall be able to strengthen
(8.13). For this we shall need to use the Narasimhan—Seshadri result (8.1).

If, for any holomorphic vector bundle £ over M, and any convex invariant ¢ we define

®(E) = infd(4),

where 4 runs over all metric connections on E, then (8.1), together with proposition 8.13, implies
that for stable bundles E we have @(E) = ¢(u). We shall now extend this to all bundles. First
suppose we have a holomorphic exact sequence

0>D;,—>E->Dy,—>0.

Then a metric on E gives rise to a connection whose curvature is given by (8.14). The element
7€ %1 (M, Hom (D, D;)) defines a cohomology class [9]eH'(M,Hom (D,, D,)), which
classifies the extension. Replacing # by #7 with ¢ a non-zero constant alters the extension class but
does not alter the isomorphism class of E, since the new extension is isomorphic to the original
by a diagram of the form

0—>D,—> E—> D,—> 0

bl

Hence replacing 7 by ¢7 and then letting >0 shows that

D(E) < DP(D,® D,).
Similarly if £ has a filtration of arbitrary length with quotients D; we have
(8.19) D(E) < P(@DDy).
Now an elementary argument (see Seshadri 1967) shows that any semi-stable bundle has a
filtration with stable quotients all of which have the same normalized Chern class. From this,
together with (8.13) and the result for stable bundles, it follows that we have the equality
@ (E) = ¢(u) for all semi-stable bundles. Finally using the canonical filtration of any E, (8.19)
and (8.13) yield the equality in general. Thus we have now established

ProProsITION (8.20). If a holomorphic bundle E is of type u then for any convex invariant ¢ we have
D(E) = d(p), where
D(E) = inff @ ((xF(4))
and A runs over all metric connections on E. 4o

Now in § 12 we shall see that if u, v are any two n-vectors (with g, > ... > g, and v, > ... > v,)
then

(8.21) _ d(n) = ¢(v) for all convex invariant ¢ = p = v.


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org on January 4, 2010

576 M.F. ATIYAH AND R.BOTT

In view of this we see that (8.20) amounts to a differential-geometric characterization of the
type, i.e. we have

(8.22) E is of type p if and only if D(E) = ¢(u) for all convex invariant ¢.
Since @(E) is defined by an infimum it follows that
%, in the closure of €, = D(%,) < 9(%))

=>$(A) < ¢(u) Dy (8.20).
As will be shown in §12

(8.23) P(A) < p(u) forallg <A<y,

where A < p refers to the partial ordering (7.7). Hence we have established by differential-
geometric means the result (7.8) of Shatz.

In §5 we computed the index of the Yang—Mills functional at any critical point, and we
obtained in proposition 5.4 the formula

index 4 = 2dimy H'(M, ad~ (P)).

If the critical point 4 is of type u, so that the curvature is — 2xi times the diagonal matrix given
by u, then the holomorphic bundle £ determined by the connection is a direct sum
E= @ D 7

where the D; are semi-stable and have as normalized Chern classes the distinct components of
1. We see therefore that the bundle ad— (P) of §5 coincides with the bundle End” E of § 7, both
being isomorphic (see (7.13)) to @;., Hom (D;, D;). Hence the index of 4 is equal to the co-
dimension of the stratum &/, containing 4. In fact the normal to &/, at 4 actually coincides with
the negative eigenspace of the Hessian of L at A4, both being given by the appropriate space of
harmonic forms. In view of (8.11) it follows that the codimension of 7, is equal to the Morse
index of any of our functionals .

To sum up we see that the 7, play the role of the Morse strata not only for the Yang—Mills
functional L but more generally for any functional @ defined by a strongly convex invariant
function ¢ on the Lie algebra of U(r). This statement is to be understood in the sense that our
strata .7, satisfy all the properties of (1.19) relative to @, which in good cases, as explained in
§1, characterize the Morse strata. This suggests that each critical set ./}, should be an equi-
variant deformation retract of the corresponding stratum .7,, the retraction being given by
following the trajectories of —grad @. To prove this it would be enough to check it for the
minimal stratum (for all U(n)). In the coprime case (n, k) = 1 this is a consequence of (8.2), but
in general the singularities of .#,, give rise to difficulties and we shall not pursue this question
further. Thus although we have shown that the stratification of &/ by the 27, is equivariantly
perfect we have not actually proved that the Yang—Mills functional is an equivariantly perfect
Morse function, although this seems very likely and would follow from sufficiently good pro-
perties about the Yang-Mills flow.

9. COHOMOLOGY OF THE MODULI SPACES
We have now shown how to compute inductively the equivariant cohomology of the space €s
of semi-stable bundles. In this section we shall show how to derive the integral cohomology of
the moduli space N(n, k) in the coprime case (n,k) = 1, and also that of the moduli space
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Ny(n, k) for bundles with fixed determinant. First, however, we shall need to extend theorem 7.14
by replacing the group ¢ with a subgroup of finite index. As explained in §2, the group I" of
components of ¢ is H'(M, Z) ~ Z%, and so a subgroup ¥’ of ¢ of finite index is specified by
giving a sublattice of maximal rank I < I". As shown in §2 the classifying space B¥’, which is
a finite covering of B%, has no torsion, it has the same Poincaré series as BY and I'/I" acts
trivially on its cohomology. We now consider our stratification of & relative to ¢’. We proceed
exactly as with &. The only point to comment on is that the space #, occurring in §7 (namely
the space of all C* filtrations of E of type u) is connected. In more concrete terms this means that
any two filtrations of £ of type x are homotopic. To see this we note first that, over the 1-skeleton
of M, all bundles are trivial and all filtrations homotopic (since the partial flag manifolds of U ()
are all simply connected). We can therefore collapse the 1-skeleton to a point and reduce to the
case M = §2%, but now ¢ becomes connected and so two filtrations of the same type, being iso-
morphic, are necessarily homotopic. Hence &%, is equally a homogeneous space of ¢’ and if
F,=G|H = G'[H' then #' < H is of finite index and corresponds to the same sublattice
I of I.

Thus our stratification of % is also perfect relative to ¢’. In particular the %’-equivariant
cohomology of %ss has no torsion and it is acted on trivially by I'/I", so that the ¥’ and ¢
Poincaré series of s coincide.

We move on now to consider the coprime case (n, k) = 1. Then stable and semi-stable coincide,
so that s = €ss and Aut £ acts on %5(E) with only the constant central scalars as isotropy group
(Narasimhan & Seshadri 1965). The moduli space N(n,k) is then the quotient of €s(E) by this
action. It is a compact complex manifold: it even inherits a natural Kéhler structure as we shall
see later. We want now to deduce what we can about the cohomology of N(n, k) from our general
results about equivariant cohomology.

Let us denote by ¢ the quotient of ¢ by its constant central U(1)-subgroup, and similarly
@c will be the quotient of ¢ = Aut (E) by C*. Thus @ acts freely on ;s with N(z, k) as quotient.
Hence (for any coefficients)

(9.1) H*(N(n, k)) = H5(%)

where on the right we have replaced %¢ by ¢ since they give the same cohomology. It remains to
investigate the relation between %-cohomology and %-cohomology. This depends on the
fibration

(9.2) BU(1) > B% > BY,

which is always trivial in rational cohomology. This is because restriction to a point of M
followed by taking determinants defines a homomorphism ¢ - U(1) and the composition
U(1) >%— U(1) is of degree n. This implies that

H*(BY,Q)>H*(BU(1),Q)
is surjective, which gives the triviality of the fibration over Q. Hence for any %-space X the

%-Poincaré series of X is the product of the @-Poincaré series of X and (1 — #2)-1, Together with
(9.1) this then gives the formula for the Poincaré series of N(n, k):

(9.3) B(N(n k) = (1-2?) 9F(%;)
where ¥P,(%;) is given inductively by theorem 7.14. As noted in the Introduction, and will be

elaborated in § 11, this formula coincides with that of Desale & Ramanan (1975), which rests on
the Harder—Narasimhan approach.
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Taking determinants gives a natural map
(9.4) det: N(n, k) > J,

where J}, is the Jacobian of M, parametrizing line-bundles of degree £. Clearly J, acts on N(n, k)
by tensor product and the determinant becomes a Jy-equivariant map if we make J; act on J;,
via the nth power map

Opt Jo—=> -
This shows that after lifting to a finite covering, with group Kero,, @ HY(M, Z,) ~ I, = I'/nl,
(9.4) becomes a product. Thus if we denote by Ny(n, k) the fibre of (9.4) then

(9.5) N(n k) = (No(r, k) X Ji) [T

The manifold Ny(n, k) is the moduli space of stable bundles with fixed determinant. If we now take
%' < & corresponding to the lattice nI" = I, so that ¥/%' = I'/nI" = I',, then the analogue of
(9.1) becomes

(9.6) H*(No(n, ) x J) = HY(%,).

S_ince % and ¥’ give the same equivariant cohomology of € (over @) the same holds for & and
%', and so comparing (9.1) and (9.6) we get

PRrOPOSITION 9.7. For rational cohomology we have
H*(N(n, k)) = H*(No(n, k)) ® H*(J)
or in terms of Poincaré polynomials
P(N(n, k) = B(No(n, k) (1 +2)%.

This proposition, which is equivalent to saying that I', acts trivially on the rational cohomology
of Ny(n, k), was the main result of Harder & Narasimhan (1975) where it was proved by number-
theoretic methods comparing GL(n) with SL(n). For us the triviality of the action of I', is a
consequence of its triviality on the cohomology of BZ".

We turn next to the integral cohomology of the moduli space N(n, k). We want to prove that
it has no torsion. We already know by (7.17) that Hy(%;) has no torsion and, in view of (9.1),
we want to deduce the same result for Hz(%;). It will be sufficient to prove that the fibration (9.2)
is in fact a product so that

Hy(%,) = Hy(%,) ® H(BU(1)).
Now BU(1) is an Eilenberg-Maclane space K(Z,2) and so (9.2) has a characteristic class in
H3(B%,Z) whose vanishing will imply the triviality of the fibration. Equivalently we need to
show that

(9.8) H?*(BY,Z)—~>H?*BU(1),Z)
is surjective, but this was the content of proposition 2.21. Thus we have now proved

THEOREM 9.9. If (n, k) = 1 the moduli space N(n, k) of stable bundles has no torsion.
For the space Ny(n, k) we use the commutative diagram of fibrations
BU(1) —> () g—> Nyx J

|

BU(1)— (65)g —> N
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where Ny x J— N is the finite I',-covering. Since the bottom row has now been shown to be a
product the same is true for the top row. Since we showed earlier that %; has no torsion for its
@'-cohomology it follows that N x J has no torsion, and hence also N, has no torsion. Thus we
have

THEOREM 9.10. If (n,k) = 1 the moduli space Ny(n, k) of stable bundles with fixed determinant has no
torsion.

The triviality of the fibration (9.2) when (n, k) = 1 is essentially equivalent to the existence of
a (topological) universal or Poincaré bundle over M x N as we shall now explain. By definition
a universal bundle is 2 holomorphic vector bundle V over M x Nso that for all n € N the restriction
V, of V to M x {n} is in the isomorphism class represented by the point #. The projective bundle
P(V) exists naturally. To see this we recall that we have an obvious holomorphic bundle W over
M x 655 and ¢ acts holomorphically on W with the constant scalars C* acting trivially on the
base and as scalars in the fibre of W. Thus 9¢ = ¥¢/C* acts freely on P(W) and the quotient
gives P(V) over M x N. A universal vector bundle is therefore a ‘lift’ back from this natural
projective bundle over M x N. If V is holomorphic on each M, but only continuous in n we refer to
it as a topological universal bundle.

Quite generally there is an obstruction to the extension of such a lift called the ‘Brauer class’.
It arises from the sequence

1->C* > GL(n) > PGL(n) >1

and lies in H2(M x N, 0*) where 0% is the sheaf of multiplicative holomorphic functions. Taking

the coboundary of the exponential sequence
e2ni
0— Z— 00— 0*—0

leads to the topological Brauer class, which is an n-torsion class in H3(M x N, Z). Explicitly in
terms of transition matrices p;; for a PGL(n)-bundle we lift these locally to g;;in GL(n) and define
the scalar A;;;, by the formula

&ii&ie = MijiBine

This is a 2-cocycle for O0* and taking determinants shows that A% is a coboundary.

In our case since M and N (by (9.9)) are torsion-free it follows that the topological Brauer
class must be zero and from this one can deduce that a topological universal vector bundle ¥V does
indeed exist. In fact our proof of (9.9) depended essentially on the triviality of (9.2) and this in
slightly disguised form is equivalent to the vanishing of the topological Brauer class, as one
might suspect from the fact that the characteristic class of (9.2) is an element of H3(B%, Z). To
explain this we note that the bundle W on M x € gives rise naturally to a bundle Wy on
M x (%ss)g: this bundle is holomorphic only in the M-directions, since (%zs) is only a topological
space. Passing to the projective bundles we see that P(W)glifts to P(Wg) under the natural map

i M x (Cos)g—> M x (6ss) 6.

Thus the Brauer class of P(W)z lifts under #* to the Brauer class of P(Wy), which is zero since
this bundle comes from the vector bundle Wy. On the other hand the fibration 7 is trivial, since
(9.2) is trivial, and so the Brauer class of P(W)g must itself vanish. More explicitly any section
of 7 induced by a section of (9.2) defines a vector bundle o* W that has P(W)z as projective
bundle. Finally we have only to observe that, homotopically,

(Ces)g ~ N
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and that P(W)g corresponds (topologically) to the projective bundle P(W), while o*W
corresponds to a topological universal bundle V. This shows the tie-up between the different
points of view.

In fact in this coprime case a more refined argument shows that the analytic Brauer class in
H?(M x N, 0*) is zero, so that a holomorphic universal bundle exists. Let us recall briefly the
essential point of the proof, which is to construct a holomorphic line-bundle L over M x % on
which @e¢ acts such that C* < ¢ acts via scalar multiplication in the fibres of L. Then C* acts
trivially on W ® L~ and so this is acted on by the quotient group ¢ = ¥¢/C*. We can now
descend the bundle W ® L~ to the quotient space

(ngss>/g70=MxN

to obtain the universal bundle. The bundle L is constructed on s (and then lifted to M x %),
by using the vector bundles given by the various H°. More precisely if £ is sufficiently large (the
precise values will be given later) then for any semi-stable bundle of rank n and Chern class &
we have
HY(M,E) =0
dim HY(M,E) = k—n(g—1).

This gives a holomorphic bundle of dimension £ —n(g—1) over €. Taking determinants (i.e.
the highest exterior power) gives a line bundle 4, on %;s. The group C* of scalar automorphisms
of E'acts on this with weightm = £ —n(g—1),i.e. Ae C* acts by multiplication with A™. Tensoring
E with a fixed line-bundle of Chern class 1 replaces & by £ +# so giving a line bundle 4, over
%ss on which C* acts with weight m + n. Since (k,n) = 1 we have (m,m +n) = 1 and we can find

integers a, b such that
am+b(m+n) = 1.

Hence L = A% ® A}.,» is acted on with weight 1 and leads to the universal bundle.

We note finally that the universal bundle is not unique and can be altered by tensoring with
any holomorphic line-bundle L on M x N. On M the universal property implies that L must
have degree zero (and must moreover satisfy L® = 1) but the Chern class on N is arbitrary, as is
the component in (M) ® H*(N).

We recall that in §2 we proved that the integral cohomology ring H*(B%) was generated
multiplicatively by certain explicit classes constructed from the canonical bundle on M x B%.
This canonical bundle restricts to W when we embed (%ss)» in €y = B, and since our stratifi-
cation of € is equivariantly perfect (theorem 7.14) it follows that our generators for H*(B%)
restrict to give generators for H*((%ss)» ) and hence generators for H*(N) (after pulling back by
a section o of the fibration 7). Since o* W ~ V (topologically), where Vis the universal bundle on
M x N we see finally that the integral cohomology ring H*(N) is multiplicatively generated by
explicit elements constructed (as in §1) from the universal bundle V' on M x N. These classes
are of three types.

(i) The Chern classes a, of V restricted to N.

(ii) The odd-dimensional classes 4} (j = 1, ...,2g), which occur in the (1,2r—1) Kiinneth
component of the rth Chern class of V" on M x N.

(iii) The Chern classes d, of f,(V) e K(N).

Note that in (i) and (ii) r runs from 1 to z while in (iii) it is unrestricted. Now since V is holo-
morphic its K-theory direct image f; may be computed directly. If H*(M,V,) = 0 for all ye N
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then fi(V) is simply the vector bundle A on N whose fibre at y is H(M, V,). Now by Serre duality
H'(M,V,) = 0 provided every homomorphism ¥, - K (where K is the canonical line-bundle) is
zero. By (7.5) this will hold provided £/z > 2¢—2 in which case Riemann-Roch gives the
dimension of H°(M,V,) as k—n(g—1). Now by tensoring with line-bundles we can always
arrange that £ is of the form

k= (2g—-2)n+k" with 0<k <n

(recall that (k,n) = 1), so that we then have
dimH =n(g—1) +k'.
Finally then we have proved the following theorem (cf. Newstead 1972 for n = 2).

THEOREM 9.11. Let k = (2g—2)n+k with 0 < k' < n and (k,n) = 1, and let V be a universal
bundle over M x N (n, k). Define integral cohomology classes a,, b, d, on N by

a,=¢(V|N), 1<r<n,
29 ]
2o, ®@br=c¢,(V), 1<r<n and oy abasisfor H(M),
j=1
’ d, = c(H(V)), 1<r<n(g—1)+F,

where H(V') is the bundle over N whose fibre at y is H*(M,V,). Then the integral cohomology ring of N is
generated by these classes.

The moduli spaces N and N, are torsion-free when (n,£) = 1, and theorem 9.11 provides us
with a system of integral generators {a,, b}, .} while our Poincaré series formulae determine the
dimensions of their span. Hence these rings are in principle determined once a complete set of
relations for their generators is written down over the rationals. Ideally one should be able to
derive these from the Thom classes of the various strata of .27, but we have been unable to make
much headway in that direction, except for the computation of the fundamental group.

Note that the complex codimension d, of any stratum %, other than the semi-stable stratum
€'ss, as given by (7.16), satisfies

L . d,>1+(g-1)>2 if g>2.
This implies as in (1.12) that ,
m(%ss) @ m(BY) ~ Hi(M, Z).

On the other hand the triviality of (9.2) shows that

m((ss)9) = m((Ges)g) = my(N).
Hence
m(N) = Hy(M, 2),
and this isomorphism is naturally induced by the determinant map to the Jacobian

det
N—sJ.

Thus the fibre N, of this map is simply connected. We recall that N, is the moduli space for stable
bundles with fixed determinant. Thus we have proved

THEOREM 9.12. The moduli space of stable bundles of fixed determinant, and with (n, k) = 1, is simply
connected.

Remark. This result can also be deduced from the fact that A, is at least uni-rational. Its
rationality is conjectured but not yet proved.
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Returning to the general problem of computing the relations in the cohomology ring, a careful
analysis of the implications of the Riemann—Roch theorem applied to f; has a good chance of
succeeding, as was already noted independently by D. Mumford long before our involvement.
The hope is to derive all the necessary relations from the vanishing of the Chern classes of £iV},
beyond their dimension.

To provide evidence for this conjecture we shall discuss the rank two case in some detail
below and roughly compare our relations with those obtained by Ramanan (1973) for genus
three. Mumford is investigating this question more generally with the aid of a computer and has
verified it up to genus five. But first it is expedient to make some general remarks on the normal-
ization of the V, and their relation to the tangent bundle 7" of N. This material can also be found
in Ramanan’s paper but is considerably simpler in our context because theorem 9.11 furnishes us
with integral generators that are a priori Chern classes of holomorphic line bundles. For sim-
plicity we shall only treat the case £ = 2n(g—1) + 1, and write g for g— 1.

Recall now that ¥} is not unique, though its projective class is. It follows that we may twist any
¥, by the pullback f~1L of any holomorphic line bundle on N relative to the projection

!
Mx N—>N.

Under such a twist our generators a, = ¢,(V) and d, =¢,(f; V) change by n¢,(L) and (ng+ 1) ¢;(L)
respectively. Hence ga, — d; changes by ¢,(L). But ga, — d, is the Chern class of the holomorphic
line-bundle L = 4{Di* where 4, = det (V,|N) and D, = detf;(V). It follows that the bundle

V=V®f1L?

is now determined up to isomorphism and is called the ‘normalized universal bundle over N’.
In what follows all our generators will be associated to this normalized V, so that in particular

g‘al = dlo

We next relate 7 to V in the K-theory of N. For each y€ N, the tangent space to N at y is
canonically given by H'(M; EndV,). Furthermore, as stable bundles admit only trivial auto-
morphisms, H°(M; EndV,) = C. Thus in the K-theory of N

1— T = f(End V).

Next observe that if, as before, 2! denotes the line bundle of holomorphic 1-forms along the fibre
of f, then by Serre duality
HY(M;EndV,)* ~ H(M;EndV, ® 1),

whence

T*—1=f(End V ® ')
so that subtracting these two expressions yields the relation

T+T*-2=f{EndVQ® (21-1)}.

As a first corollary of these relations we prove the following proposition.

Prorosrrion 9.13 (Ramanan). The cohomology group H?(Ny; Z) is infinite cyclic and is generated
by half the first Chern class of N,.

Proof. Recall that the Riemann-Roch theorem in our present simple context is given by the

formula
ch (W) =fi{ch (W)}H{1-gw},
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where w e H2(M) is the orientation class on M, W is any holomorphic bundle on M x N, and f
denotes integration over the fibre M.
Applied to End V this leads to the relationr

—chy(T) = chy(/{End V) = fychy(End V),
while with W = Vit yields the formula:
dy = chy(fiV) = —&f{chy(V) 0} +f4(ch V).

Here of course ch; denotes the part of the character of dimension 2¢; so that in terms of the Chern-
classes
ch; =¢; chy =} —c,.

Now recall our definitions of the a, and 4, as Kiinneth components relative to a fixed base
o;€ HY(M). They imply the formulae

¢ = a,+ Ta;bi+f0,
]

where ¢, = ¢,(V) and a,,f,, b} are classes on N identified with their pullback to M x N. We also
write

b = ar'l'gr +.f;'(‘)
gr = Zajb;.

As a consequence note that the £, are nilpotent of order three: £,£,£, = 0, and that £, = 0,
while £,£, is a multiple of w. We therefore set

&g=24,0

for these relations, so that

and £t =A,0, 1#5.

In terms of the skew form s, given by the intersection pairing in H (M), that is

Ay = foi; @y
we have

Arr = _%Z /"ub:’b?]') Ars = - Zﬂzjb:‘bg
so that these are integral non-degenerate forms in the 4,. They are pertinent for our purposes
because of the following easily proved result.

The push-forward f y ¢, of any monomial in the c,, is given by a universal polynomial P,(a, A, f) in terms
of the variables a;, f; and Ay, i <j=1,...,n.
For example
St =Fu(al+2aE+2f 0 + 24, 0)

= 2(a; +4yy),
so that by our formula for d;

dy = —gay+a, fi + Ay —fo
Now f; = 2ng + 1, as we are dealing with V, whence
dl = {(2”'_' 1)g+ 1}01 +A11 _ﬁ.

Together with the normalization d, = ga, this yields the formula

Je={(2n—-1)g+1}a,+4,,,
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and at this stage we are ready to compute ¢,( 7). Recall first that for any n-dimensional bundle V
co(End V) = (n—1) (V) —2ncy(V).
Hence ¢ (fiEnd V) = chy,(ffEnd V)
—fl(n—1) ¢t — 2ncy}

—{2(n—1) ay f; + Ayy) — 2nf3}
—2(ay+4y),

so that
e(T) = 2(a; +4yy).

The first part of our proposition now follows by restriction to N,. The second part also follows
because @, must generate H%(N, Z) by theorem 9.11. Note also that dim A%(N,) = 1 from the
Poincaré series for N,.

Before proceeding to a more detailed account of the case n = 2, observe that if we define the
total Pontryagin class p(7") of T as the product of the total Chern classes of 7" and T'*,

H(T) = e(T)e(T),
then our relation for 7'+ 7* in K(N) implies the formula
H(T) = e(End|N)%.

This follows from the Riemann-Roch theorem, or also from the fact that the support of Q! —1

is at a point of M and ¢, (2! — 1) = 25. The formula is especially simple in the rank 2 case where

(cf. Newstead 1972)
¢(End V|N) = 1+ (a2 —4a,).

Thus the ring Pont (7") generated by all the Pontryagin classes of 7' is actually generated by the
single element (a2 +4a,) = —p,.

Newstead made two conjectures about the Pontryagin and Chern classes of 77 first of all that
¢;,(T) = 0 for i > 27, and secondly that Pont (7") = 0 in dim > 4z. The first of these conjectures
has been recently proved by Gieseker (1982). The second conjecture remains open but, in view
of our formula for p(T), is equivalent to the assertion that p{ = 0.

We turn now finally to a more detailed examination of the relations we are after in the rank 2
case. Here we have to deal with only two Chern classes for 7 and they are given by

Go=a,+& +hw, k=2n7+1,
¢ = ay+E,+{(28+1) a;+ 44},

where we have substituted for f, the expression already found earlier. Applying the Riemann~
Roch procedure one therefore obtains universal polynomials Q,(a; A) in (ay,ay, 4,4, 4,5, Ayy)

such that
) ¢ (/hV) = Qyla; A).
Hence the relations take the form

Qq(a; A) =0 for ¢2>2g

so that the ‘first’ of these asserts that
@Qyy(a; 4) = 0.
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To analyse the implications of this relation further, recall the diagram

Ny—> N,
7 n
N/
which gave rise to the decomposition over @,
H*(N) ~ H*(No) @ H*(J),
of proposition 9.7. Note in particular that #* is an isomorphism over Q. It follows that if we
introduce the new rational classes
bi = m* (n*)-1i*pl, j=1,...,2g,
a, =n*(p*)"li*q, k=12,

then these will generate 7*H*(N/J,) so that as a A*(b])-module, H*(N) is freely generated by
their span.

In terms of these variables, and the corresponding 4, our polynomial Q,(a, 4) is now trans-
formed into a polynomial R,(a; A) and if this expression is expanded in terms of the basis
bl = bir . bk, i< iy < ... <,
for A*(8]), then R,(a,A) = 0 implies that each coefficient in this expansion must vanish. Equi-
valently one can multiply R, by 4] and integrate over the fibre of 77, to obtain
e biR,(a; A) = 0,
yielding a large number of relations in a;, a, and b3.

To carry out this process one first of all has to determine the old generators in terms of the
new bold-faced ones, and this is done quite easily by observing that End ¥ descends to N/J,
so that the characteristic classes of End V certainly are in the image of 7*. Thus a, +4,, is in
the image of 7* and restricts to ¢* a; on N, whence

a,=a,+4, or a =a,—A4,,.
Similarly p,(T) is in this image. Hence
m* (9*)~1i* (0 — 4ay) = a} —4a,.
On the other hand as 7*, 9* and 7* are ring-homomorphisms the expression on the left is also
equal to a% — 4a,. Eliminating one obtains:
ay = @y — A0, + ;4%

Finally to determine bj consider ¢y(End V) = ¢} — 4¢,, whose Kiinneth components must again

all be in the image of 7*. Applied to the first mixed component this yields the result that
(20’ b i —4b %)
bj = bi+3(a,—A,,) bi.

Let us now expand our first relation R,(a,4) in terms of 4;; and 4,,, when g = 3. Also, in
part to avoid subscripts and in part to come closer to Ramanan’s notation, let us set

is in the image of 7*, whence

h=a1, V=a2, 0=A22
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and
w=Ay, A4=U4,.

Then for dimensional reasons the possible monomials in @ and 4 occurring in Ry are given by
the following table:

6 - - - »? - - A*w?
5 - - - - Aw? - -
4 - - »? - - A% -
3 - - - dw - - 43
2 - w - - 42 - -
1 - - 4 - - - -
0 - - - - - -

0 2 4 6 8 10 12

Here the dimension of a term relative to the #] is indicated on the left and the total dimension
below. The total dimension of Ry is 12 so that the coefficient of one of these monomials (which is
a polynomial in %, v and #) must make up for the deficiency in the dimension. Note further that
every element in the top row must be a multiple of 5} A ... A 8§ = }w®. Hence 4202 is also such a
multiple and, as is easily checked, is in fact given by

A%w? = const. x 0%w3.
In short then, the expression R, takes the form
R, = Agw® + ByAw? + Cyw? + DyA?w + E A% + FyAdw + ...
The first two relations now follow immediately. We must have
Ag=0 and B,bi=0, i=1,...,n

At the next level more care has to be taken as the two terms interfere. One procedure is to
‘write down the implications 74 wR, = 0, and (m4,u)R, = 0 with ueA2(#}, ..., b7), subject to
uw? = 0. The first of these leads to a relation of the form

Cg+const. x 0,D, = 0
while the second one implies that

Dyx=0 forall xeA2(d},...,b,) oftheform m4ud?, with uw? = 0.

In short then, in these and subsequent relations the decomposition of A* (i) into primitive
classes relative to w makes its appearance, and as is really not too surprising this decomposition
corresponds under 74 to the corresponding decomposition under 6 in A* (83, ..., 7). Thus the last
relation is equivalent to

Dyx =0 for x0%=0.

Similarly the E,43 term produces the relation
’ Eyx =0 for xeA3(b}) with x0 =0.
We have traced the nature of these five relations so carefully because they correspond precisely

to the complete set of relations actually found by Ramanan in this case using a quite different
method. Here are his relations:

(1) 3% —10hv—46 = 0,
(2) (h2—2v)V =0 (V =spanofbj),
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(8) (B2—3v)v =0,

(4) hx =0, for xeA?V, with x0%=0,

(8) y=0, for yed3V, with yf=0.

This concludes our remarks on the relations among the generators of theorem 9.11. Clearly
the computations involved in carrying out the programme laid out here are quite astronomical
and therefore appropriately best left to a computer. Note that in the present case of genus 3 the
single equation ¢y, (f; V) = 0 implied all the necessary relations. On the other hand it is dis-
appointing, and shows how deep Newstead’s conjectures lie, that even with all the relations
before one, the formulae p,(7)? = 0 and ¢,(T") = 0 for ¢ > 2§ are by no means obvious.

Finally we revert to the geometry of the moduli space N(n, k) and show thatitinherits a natural
Kaibhler structure. The essential observation is that the space &/ of unitary connections has a
natural symplectic structure: if o, # are two ad (P)-valued 1-forms on M they have a skew product
f @A B (we recall that this uses the inner product in the Lie algebra). This symplectic structure
is preserved by the action of ¥. Moreover the curvature

F: of ->82%(M;ad (P))

can be identified with the corresponding moment map. To see this we first note that Q2(M, ad (P))
is canonically dual to 2°(M, ad (P)), whichis the Lie algebra of . Henceforany ¢ e 2°(M, ad (P))
we have a real-valued function Fj on o/, defined by Fy(4) = (F,, ¢). To say that Fis the moment
map for the #-action on &/ means that the Hamiltonian vector field on 7 defined by F; coincides
with the vector field given by the Lie algebra action of ¢. Equivalently we have to show that,
for any Y e Q1(M, ad (P)),

(9.14) (@F ) = [ (dad) A

But, as we saw in §3, the left-hand side is equal to f (d4¥) A @. Since d 4 is a derivation and
fd(tﬁ A ¢) = 0 we have the usual formula for integration by parts

[@anng= - [wnim
which verifies (9.14).

The constant central U(1) subgroup of ¢ acts trivially on &7 corresponding to the fact that the
function f trace F is constant and equal to — 2rnik (where £ is the Chern class).

The moment map is ¥-equivariant and so to every orbit C < 22(M, ad (P)) the inverse image
F-1(C) < & is %-invariant. The quotient F~-1(C) /¥ is sometimes called the Marsden—-Weinstein
quotient. Under appropriate non-degeneracy conditions, it is a manifold and it inherits a natural
symplectic structure from that of &/. In particular taking C to be the orbit given by the Yang-
Mills minimum (i.e. the constant conjugacy class with all eigenvalues — 27nik/n) we obtain the
moduli space N(n, k). Thus N(n, k) inherits a natural symplectic structure.

The symplectic structure on &/ together with its natural metric defines the complex structure
of #. Similarly the induced symplectic structure and metric on N define its complex structure.
Thus N is a Kédhler manifold.

Note that the tangent space to N at £ is H'(M,End E) and it is easy to define the metric,
complex structure and symplectic structure on this tangent space. What is not immediately clear
is the global integrability condition of the complex and symplectic structures so defined on N.
The complex structure becomes clear by expressing N as the quotient %;/Aut (E) while the
symplectic structure is similarly transparent as the ‘ Marsden~Weinstein quotient’.

46 Vol. g08. A
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10. THE STRATIFICATION FOR GENERAL G

In this section we shall indicate briefly how to extend the results of the previous sections from
U(n) to general compact Lie groups G. We shall content ourselves now with the basic results about
rational cohomology, since the presence of torsion in G makes it difficult to say much in general
about integral cohomology.

On the algebro-geometric side the work of Narasimhan—Seshadri has been extended to general
reductive groups by Ramanathan (1975). We shall, however, adopt a slightly different, although
equivalent, approach to stability and the canonical filtration, reducing everything to the vector
bundle case by a systematic use of the adjoint representation.

The general set-up is much the same as before and we shall use the same notation. Thus we
start with a given C® principal G-bundle P over M and we denote by & the space of connections
and ¢ the group of automorphisms. It is again true that a connection on P defines a holomorphic
structure on Pe¢, the associated bundle with group G the complexification of G. Conversely a
holomorphic Ge-bundle together with a reduction of structure group to G determines a canonical
G-connection (Singer 1959) so that we may identify & with the space of holomorphic structures
on Pe,

To proceed further we need to introduce the appropriate stratification of € by strata €,
analogous to the Harder—Narasimhan stratification for the case of GL(n). We shall in fact define
such a stratification by using the canonical filtration of the vector bundle ad (P¢) in an appropriate
way. First of all, however, we need a few lemmas concerning vector bundles.

We have already noted in §8 that a semi-stable vector bundle of slope (or normalized Chern
class) g has a filtration with stable quotients of slope #. The converse is also true in view of lemma
7.5. This enables us to extend results for stable bundles to semi-stable bundles by induction. In
this way we shall prove

LemMmA 10.1. If E, F are semi-stable of slopes p, v then E @ F is semi-stable of slope p +v.

Proof. Consider the first case when E,F are both stable. According to the Narasimhan-
Seshadri theorem 8.1 they then arise from unitary representations of the extended fundamental
group I', (asin § 6) with slopes , v. The tensor product £ ® F then arises from the tensor product
of the two unitary representations. This tensor product is not necessarily irreducible but, being
unitary, it is a direct sum of irreducible pieces. Moreover the slope of a representation is given by
the character of the centre of I';, and this therefore takes the same value g + v on all the irreducible
pieces. Hence E ® F is a direct sum of stable bundles of slope # + v and so is semi-stable and of
the same slope. Now we move on to the general case and use filtrations of £ and F with stable
quotients D;, G, respectively. The tensor product then inherits a filtration with quotients
D; ® G,, which as we have just proved are stable and of slope # +v. Hence £ ® F is semi-stable
and of slope ¢ +v.

For our next lemmas, which concern general vector bundles E, it will be convenient to intro-
duce some additional notation. Let

O0=E cEcEc..ckE
be the canonical filtration of E with semi-stable quotients

D; = E;/E; 5, slope(Dy) = pj, oy > fta > oo > oy
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We shall write
infE =p, supkE =pu,.

Thus E is semi-stable if and only if infE = sup E.
The next lemma is then a straightforward consequence of lemma 7.5, with double induction
on the steps of the canonical filtrations.

LeEmMmA 10.2. infE > p if and only if, for every F with sup F < p, every homomorphism F — E is zero.
Using (10.1) and (10.2) and again using double induction one obtains

LeEmMA 10.3. inf (E ® F) = infE +infF.

With these vector bundle lemmas out of the way we return to consider a holomorphic Ge-
bundle £ over M. Let E = ad (£) be the vector bundle associated with the adjoint representation,
so that E is actually a holomorphic bundle of Lie algebras. Since the Lie algebra of G¢ has a non-
degenerate invariant quadratic form so does the bundle E. In particular E is self-dual so that its
canonical filtration must be of the form

OcE, cE ,,c..cE cEcEc..<cE_,cEk

where E_; is the polar space (relative to the quadratic form) of E;_;. We have indexed things in
such a way that D, = E;/E_, hasslope zero. Since E_, is the polar space of £, we have an induced
non-degenerate quadratic form on D,,.
Consider now the Lie bracket
¢:E,® E,~E/E,.

Since inf (E, ® E,) = 0, by (10.3), and sup E/E, < 0, lemma 10.2 implies that ¢ = 0. Hence
E, is a Lie sub-algebra bundle of E. For similar reasons

[E_,E ]<E;,; for j>0

so that E_, is a nilpotent ideal: it is the nilpotent radical and D, the reductive quotient of E.
It now follows (see lemma below) that E, is a parabolic sub-algebra bundle, i.e. it contains (over
every point of M) a maximal solvable (Borel) sub-algebra. Now a parabolic sub-algebra generates
a parabolic subgroup and this is its own normalizer. Hence the sub-algebra bundle £, = ad (£)
determines a reduction of the structure group of £ to this parabolic subgroup @. We denote this
new principal bundle by £, and call it the canonical parabolic reduction of £.

For G° = GL(n,C) the parabolic subgroups are the stabilizers of partial flags and a parabolic
reduction of the principal bundle is equivalent to giving a filtration of the associated vector
bundle. We shall now show that the canonical parabolic reduction defined above does indeed
coincide with the canonical filtration of Harder—Narasimhan. So let V' be a holomorphic vector

bundle and let
O=I/0CIIICV2C.“CI/;::V

be its canonical filtration so that the associated quotients
W, =V,/Via

are semi-stable and have slopes ; strictly decreasing with j. The adjoint bundle £ is now End V.
The filtration of V induces a filtration

O=E"c ., .cElcE'cEc, <kl
) 46-2


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org on January 4, 2010

590 M.F.ATIYAH AND R.BOTT

where ¢ is in E7 provided ¢(V;) = V;,; for all i. Thus E° consists precisely of endomorphisms
preserving the filtration of ¥ so that
E'/E7* ~ (DEndV.

More generall
sy BB = @Hom (V, V).

In view of (10.1) it follows that £°/E-1 is semi-stable of slope 0 while
infE-1> 0 supE/E° < 0.

Comparing the filtration E7 of E with the canonical filtration and using (10.2) it easily follows
that E° coincides with Ej and £~ with £_;. Thus the two parabolic reductions do in fact agree.

Remark. Note that the filtration E7 does not totally coincide with the canonical filtration E;:
it has to be further refined depending on the particular sequence of slopes before it does so.
Next we shall prove

ProrosiTION 10.4. The canonical parabolic reduction is functorial with respect to group homomorphisms.
Thus let ¢ : G¢— He be a homomorphism, £ a principal G¢-bundle, and % = ¢(§) the associated
He-bundle. Then we have a homomorphism of Lie-algebra bundles

¢:ad (§) >ad(n).

Since Ge is reductive the homomorphism of Lie algebras induced by ¢ has Ge-invariant comple-
ments to the kernel and image. Hence putting £ = ad (£), F = ad () we can decompose
¢ : E— F into split exact sequences

0>K—-E—>I->0, 0>I->F->J—>0.

Now for any direct sum 4 @ B of vector bundles it is easy to see, using 10.3, that the parts of the
canonical filtration with slope > 0 are additive: (4 @ B), = 4, ® B,. Applying this to our
situation we see that

E,xKy@l,, Fo=I,®J
so that ¢ sends E, into F;. This proves that the canonical parabolic reduction of # is induced
by that of &.

For a vector bundle we defined its fype p in terms of the Chern classes of the semi-stable
quotients of its canonical filtration. We shall introduce the corresponding notion for a general
group. Thus let £ be a principal Ge-bundle, £, its canonical parabolic reduction. To every
character y of @ (i.e. a homomorphism y: @ - C*) we have a line-bundle x(£,) over M and so
an integer Chern class ¢; ¥(£o). In this way we obtain a homomorphism

(10.5) 02,

where Q is the abelian group of characters of Q. This will essentially be our #ype. To see more
clearly what it involves let us pass to the reductive quotient S of @, i.e. the quotient by its uni-
potent radical R (maximal connected normal unipotent subgroup). For GL(n) we have

S =GL(ny) x...xGL(n,)

where the n; are the dimensions of the quotients in the canonical filtration. Clearly Q = S so that
for GL(n) the homomorphism @ Z consists precisely of assigning the Chern classes £, ..., £, to
appropriate semi-stable factors. The general case is similar in that § is a lattice of rank equal to


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org on January 4, 2010

YANG-MILLS EQUATIONS OVER RIEMANN SURFACES 591

the dimension of the centre of § and the type will then be a vector in the dual lattice. Now for
GL(n) we found it convenient to replace the sequence of (n;, k;) by a single n-vector  and we shall
reinterpret our type in a similar way for the general case.

The group @ is the semi-direct product RS. In fact S can be identified with the complexifi-
cation K¢ of the maximal compact subgroup of K. If T is the connected component of the centre
then a character of § defines a (unitary) character of T, and the map §—> 7} is injective with finite
cokernel. Now we may assume K = G and that the maximal torus 7; of K is contained in the
maximal torus 7" of G. Passing to characters gives surjective maps

Tyt
while taking Hom ( , Z) gives an inclusion of the corresponding dual lattices
LycL <L

Each lattice here can be identified with the integral points in the Lie algebra of the corresponding
torus (i.e. the kernel of exp 2ni). The lattice Hom (S, Z) then contains L, as a sublattice of finite
index. In particular we may view Hom (S, Z) as a subgroup of the Lie algebra of 7. In this way
the #ype of our Ge-bundle £ becomes an element x of the Lie algebra of 7.

For GL(n,C) our vector u satisfied the inequalities

Py 2 e 2 oo Z o,

which describe a fundamental chamber for the action of the Weyl group W. The choice of this
chamber derived from the parabolic subgroup determined by the complex structure. From the
unitary point of view g, or rather its WW-orbit, corresponds naturally to a conjugacy class in the
Lie algebra of U(n) and this (up to 2ni) is the curvature of the Yang—Mills connection associated
with . In this way we saw that each stratum %), contains a unique component of the Yang-Mills
connection. For general groups the situation is now exactly the same: y determines a conjugacy
-class in the Lie algebra of G and hence a component of the Yang—Mills connection. The group K
is the local holonomy group and this determines the integrality conditions on .

The stratum €, consisting of all £ of given type u, has a conormal bundle whose fibre at § is
H'(M,ad (§) /E,) where E, is as above the canonical parabolic subalgebra of ad (£).

If p: G— H is a homomorphism and £ is a Ge-bundle of type 4 then proposition 10.4 implies
that p(§) is an H¢-bundle of type p(u#). Here # and p(x) are best considered as conjugacy classes
of the appropriate Lie algebras. Even if p is an embedding p(#) does not necessarily determine s,

but the Peter—-Weyl theorem implies that if p(u) = p(v) for all unitary representations p of G
then g = v. Thus we have

ProPosITION 10.6. A Ge-bundle & is of type p if and only if p(€) is of type p(u) for all unitary repre-
sentations p of G.

This proposition, together with (7.8), which describes the closure properties of the strata for
U(n), enables us to derive similar results for every G. Thus let €, be a stratum for G lying in the
closure of €. Then (10.6) implies that p(%,) = %, lies in the closure of €, for all p. Hence by
(7.8) we have p(A) > p(u) for the partial ordering on conjugacy classes of u(n). But by (12.18)
this is equivalent to A > u where this is the partial ordering on conjugacy classes of g defined in
§12 (and corresponds to inclusion of convex hulls). Thus (7.8) holds for all G.

As with the unitary case the conormal to the stratum €, at £ can be identified with

H'(M, ad () /Ey)
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where E, gives the canonical parabolic reduction of &. Since inf(ad (£)/E,) < 0 it follows that
H'(M, ad (£)/E,) = 0 and by Riemann-Roch we can compute the complex codimension d, of
%, One finds the following generalization of (7.15):
(10.7) d,= X fa(p)+g-1}

a(p)>0
where o runs over the positive roots of G, and u is the representative in the positive Weyl chamber
(so that a(u) > 0). In particular we see that

(10.8) d, = 0<>p is in the centre.

In this case # is uniquely determined by the topology of & (there will be one Chern class for each
circle factor in the centre). We define this stratum to be the semi-stable stratum: it is necessarily
open and non-empty. Moreover  is central if and only if ad (#) = 0 so that we have in this case
the following strengthening of (10.6).

ProposiTiON 10.9. 4 Ge-bundle £ is semi-stable if and only if ad (&) is a semi-stable vector bundle.

As with the unitary case a general stratum %), is equivariantly equivalent to a semi-stable
stratum for the group K. Moreover the connected centre 7j of K acts on H*(M, ad (§) /E,) with
no trivial character: in fact the connected centralizer of Tj in Ge¢ is just K¢.

We now have all the ingredients to deduce as in (7.14)

THEOREM 10.10. For any G the stratification of € by the 6, is equivariantly perfect over the rationals so

that for Poincaré series we have
Fy(€) = Z*uF(%,),

where d,, is given by (10.8). g

In principle this enables us to calculate the equivariant cohomology of the semi-stable stratum
by induction on the dimension of G. The point is that, for any other stratum %, the equivariant
cohomology is equal to that of a semi-stable stratum for a proper subgroup K of G, namely the
maximal compact subgroup of the parabolic subgroup of G¢ determined by u. When G = U(n)
the group K is always of the form U(n,) x ... x U(n,) and so our induction in the unitary case did
not use other groups. However, for general G the groups K that occur are centralizers of tori and
can be of many types.

To relate this to the Morse theory for the Yang—Mills functional L we note first that, after
suitable normalization L is functorial for homomorphisms of Lie groups. Hence (10.6) together
with (8.13) enables us to deduce, for any G,

(10.11) 4 of type p= L(4) > L(u) = |p|%

On the other hand our description of Yang-Mills connections shows that every stratum 7, does
in fact contain a critical set 4, so that, on 7, L(4) achieves its minimum. To go further and
establish the generalization of (8.20) we need the following lemma, in which I'p denotes the
central extension of 77,(M) by R defined in §6.

Lemma 10.12. A holomorphic Ge-bundle & arises from a homomorphism p : I'p— G if and only if ad (§)
arises from a unitary representation of I'g.

Proof. In one direction this is trivial. For the converse let ad (£) arise from a unitary repre-
sentation of I'y, and consider the Lie bracket homomorphism of vector bundles:

ad (¢) ® ad (§) —»ad (&).
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Both sides are vector bundles arising from unitary representations of I'p and, as proved by
Narasimhan & Seshadri (1965), this implies the homomorphism is covariant constant. This means
that ad (£) as an ad (G)-bundle comes from a homomorphism 7,(M)—ad (G). It is then easy,
using the theory of line-bundles, to lift this to a homomorphism p : I'— G, which will, on extension
to G°, define &.

Arguing along the lines of §8 and using (10.12) one can then prove

ProrosiTiON 10.13. If a holomorphic Ge-bundle & is of type p then
infL(4) = L(x),
4

where A runs over all compact connections on &.

Quite likely (10.11) and (10.13) hold for all convex invariant functions on the Lie algebra of
G: they certainly do for any ¢ induced from a representation.

To sum up therefore we see that the picture for general G is in practically all respects similar
to the unitary case, with the notable difference that we have had to switch from integral to
rational cohomology.

11. CoMmPARISON WITH HARDER-NARASIMHAN APPROACH

As mentioned in the Introduction the Poincaré polynomials of the moduli spaces of stable
bundles have been computed by number-theory methods in Harder & Narasimhan (1975) and
Desale & Ramanan (1975). In this section we shall compare those methods with ours.

We begin with an example by spelling out in detail our results for the simplest interesting case,
namely for n = 2 and £ = 1. Our basic theorem 7.14 becomes

(11.1) GR(6)+ 3. PO IR(6) = TR(E),

where %F, stands for %-equivariant Poincaré series and %, is the stratum corresponding to
unstable bundles of type (r+ 1, —r) (i.e. of the form (11.10)). Asshown in §9 (see (9.3) and (9.7)),
for the stable bundles we have

B(N(2,1)) _ (1+5)2 B (Ny(2, 1))

GR(E) = 15 ey

For the unstable stratum %, we apply (7.12) to see that
(1+1¢)20)2
o) - ({28}
Finally for the whole space we apply theorem 2.15, which, for n = 2, gives

{(1+2) (1485}
(1-22)2(1—-1%) °

Substituting these into (11.1) and cancelling a common factor (1 +¢)2/(1—2), we get

(1+t) (1+3)%
(=8 =)

Summing the geometric series we see that this gives the formula

(113 Rz, 1)) = LB PO

YL (%) = B(BY) =

(11'2) Pt(N 2 1))+ E 122r+9) —
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It is true, though not entirely transparent, that this rational function is in fact a polynomial in ¢
with non-negative integer coefficients (giving the Betti numbers). Moreover

dim N,(2,1) = 6g—6
and so Poincaré duality requires that
(11.4) PA(Ny) = 8570 Py ().

We turn now to summarize the methods of Harder & Narasimhan.
We begin by taking a curve M of genus g defined over a finite field F,. The {-function of M
then has the form

(11.5) 6u) = [ (1= 09} (1= (1=0.479),

where the w; are algebraic integers (depending on M) with |w;| = ¢2. We now consider vector
bundles £ over M that are defined over F, and have given rank » and fixed determinant of degree k.
This means that we fix the isomorphism class of the line-bundle L = det E. Then the Siegel

formula is the following:
1 1
= (n®-1) (g—1)
(11'6) %lAut(E)I q—-lq 7 §M(2)€M(”),

where the sum is over all isomorphism classes (with det E fixed), and |Aut (E)| is the number of
automorphisms of E.

Thus (11.6) counts the number of isomorphism classes of E, each being weighted inversely by
its number of automorphisms. In particular stable bundles that admit only scalar automorphisms
occur with weight (¢— 1)~ and so contribute

(11.7) |NL(n, B)|/(g—1)
to the sum in (11.6), where the numerator denotes the number of classes of stable bundles of
rank » and determinant L (of degree k) defined over F,. Now when (n, k) = 1 the moduli space
Ny (n, k) of stable bundles of rank z and determinant L is a projective non-singular variety and we
can suppose that it is also defined over F; (if not replace F, by a finite extension). Then, as the
notation suggests, the numerator in (11.7) is just the number of points of the moduli space that
are defined over F,. By the Weil conjectures, as established by Grothendieck and Deligne, the
numbers of rational points over F, for all n, determine the Betti numbers of the ‘corresponding
variety’ over C. In our case this means the moduli space for stable bundles of fixed determinant
over a Riemann surface of genus g: the variety denoted in §9 by N,(n, k).

In this way (11.6) will lead to a formula for the Poincaré polynomial F,(Ny(n, £)) provided we
can deal with all the terms arising from unstable bundles. This can be done inductively, but for
this purpose we need to consider also the non-coprime case and so we introduce

1 .
(11.8) B k) =3 [Aut(B)] summed over semi-stable E.

Using the canonical filtration of Harder—-Narasimhan explained in §7 we can collect together
in (11.6) all terms of the same #ype. These can then be summed explicitly in terms of f(n;, k;)
and the number of rational points J, on the Jacobian of M. Now in terms of the w; occurring in
(11.5) this is given by

29
(11.9) Jq=1.1;[1 (1~-w,).
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Finally therefore (11.6) gives an explicit inductive formula for #(z, k) in terms of #(n;, £;) with
n; < n. The formula is given rationally in ¢ and the w; and is independent of the line-bundle L
(Desale & Ramanan 1975; proposition 1.7). To get the Poincaré polynomial F,(Ny(n,k)) one

now makes the substitution
w;—~>—1t, g—>12.

For the purposes of comparison with our method let us now examine in detail the case n = 2

and k£ = 1. In (11.6) we then have stable bundles, which contribute (11.7), and unstable bundles,
which have a canonical filtration

(11.10) 0>L,>E—~>L,~>0

where degL, =7+1, degL, = —r for r=0,1,... and L, ® L, ¥ L. To compute |Aut(E)|
consider separately the trivial and non-trivial extensions. For £ = L; @ L, the automorphisms
consist of Fy x F§ together with the unipotents of the form 1+ ¢ with

- ¢ eHom (L,, L,) = H'(M, L} ® L,).
ence
' |Aut (E)| = (g—1)*ho,

where ky = |H*(M, Ly ® L,)|. On the other hand for non-trivial extensions we have only one

copy of Fjf and so
|Aut (E)| = (¢—1) k.

The non-trivial extensions correspond to non-zero elements of H*(M, L ® L,) and proportional
vectors give isomorphic bundles. Hence the number of isomorphism classes of bundles £ for
which (11.10) is non-trivial is

(h—1)/(¢—1),

where hy = |HY(M, LY ® Ly)|.

Hence the contribution to the sum in (11.6) arising from a given L, (L, being then determined
as L ® L) is
1 hy—1 hy

+ = :
(¢=1)%hy  (g—1)%hy  (¢—1)%h
Now by Riemann-Roch we have

dim HO(M, L} ® L) —dim H\(M, L ® L,) = 2r+2—g,

and so

o/l = g4,
Thus (11.6) becomes
|NL(2, 1)] J & 1 1

2 = 393
¢g—1 (¢- 1)2r§oq2’+2-ﬂ =17 €(2)-

(11.11)
Substituting for £3,(2) from (11.5) and for J, from (11.9) we get

29 2
g2 I (1-0) ¢ I1 (1-0i?)
11.12 N (2,1)] + —2=2 = i=1 '
(11 el O G =% ~ =g ¢
If we now make the substitution w; > — ¢, g 2 then the expression for | N.(2, 1)| given by (11.12)
converts into the formula for the Poincaré polynomial given in (11.3).
Comparing these two derivations of the formula for P,(Ny(2, 1)), we see that they are formally
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very similar with (11.11) playing the role of (11.2). We note, however, that (11.11) involves a
convergent power series in ¢! while (11.2) involves a formal power series in ¢. This makes it
surprising that we should have made the substitution ¢—#2. In fact it is better to make the
substitution

(11.13) g—>t% w;—~> —tL
In view of the Poincaré duality formula (11.4) we must now get
(11.14) |NL(2, 1)] > 590 (Ny(2, 1)),

Making the substitution (11.13) in (11.11) we see that, after removing the factor (g— 1)~ and
multiplying by ¢%-8, we get precisely (11.2), with a correspondence term by term.

If we were to compute for » = 2 and £ = 0, we could still compare (11.6) with (7.14) but we
would not be dealing with the moduli space. Thus the leading term in (11.6) is the quantity
£(2,0) defined in (11.8), while in (7.14) it would be the equivariant Poincaré series of the semi-
stable stratum. Instead of (11.11) and (11.1) we then get

q © 1 q3g—3
(11.15) B(2, 0)+( ~TE, § i = q_1§M(2),
(11.16) GP(Gu) + 3, POV GP(G) = GR(F),

r=1
where the stratum %, corresponds now to extensions (11.10) with degZ, =7, degL, = —r.
Comparing these two formulae we see that the substitution (11.13) now leads to
6—6g

(11.17) :3(2 0) (1 t)gg ng:( ss)’

the denominator (1 +¢)% arising only because on the right we did not fix the determinant.

We see therefore that, by making f(n, k) in general correspond to the equivariant Poincaré
series of the semi-stable stratum, (11.6) and (7.14) lead to identical inductive procedures. It
remains now to explain the origin of (11.6) and its relation to (7.14).

Just as the Jacobian arises classically as the group of divisor classes so moduli spaces of vector
bundles can be viewed in terms of ‘matrix divisor classes’ as originally described by Weil (1938).
In modern terminology this is best formulated in the language of adeles. Thus let K be the
function field of M over F, and for any affine algebraic group G let G 4 be the adéle group of X,
i.e. therestricted product of G K, Where p runs over all valuations of K, and K, is the corresponding
local field. Then G, is a locally compact topological group and Gy is a discrete subgroup. For
G = GL,, the isomorphism classes of vector bundles of rank n over M (defined over F,) are in
bijective correspondence with the double coset space

R\G4/Gx;
where { is a maximal compact subgroup of G . To understand this correspondence one should
think of G, as a (multiplicative) matrix divisor and dividing by Gy as rational equivalence.
In terms of bundles it corresponds to describing a bundle by a basis of meromorphic sections.
If we take G = SL, there are different maximal compact subgroups & for different choices of the
line bundle L = det E, and the corresponding double cosets are in bijective correspondence with
classes of L-oriented bundles, i.e. bundles E together with a chosen isomorphism det £ ~ L. Now
on G, one introduces a special choice of Haar measure, the Tamagawa measure 7. The total
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measure of G,/Gx is finite and is called the Tamagawa number. For SL, it turns out to be 1.
Decomposing G ,/Gx into ®-orbits then leads to the formula

%T(@/@a) = T(GA/GK) =1,

where a runs over the orbits and &, is the (finite) isotropy group of the orbit. Dividing by 7(&)
then gives

1 1
(1 1. 18) § l @ 'Rﬁ-)— .

If we denote by |E| the number of inequivalent orientations on E, then for each orientation «
on E one has

[Aut (B)| _ |Fg| _g—1
1K, | |E] £

Hence if we rewrite (11.18) as a sum over isomorphism classes of vector bundles £ with fixed
determinant, by ignoring the orientation, we get

1 1
=) S Ew@®)] ~®

This is the same as (11.6) in view of the formula
(11.19) T(R)E = gW DD, (2) ... Ly (n).

The factor ¢ — 1 = |F§| has arisen because of the passage from GL,, to SL,,.

In comparing the derivation of (11.6) and (7.14) we see that in both cases we start from an
infinite-dimensional space that describes all bundles, but in a redundant fashion. In one case this
space is G 4/Gg while in the other it is the space €. As already noted the first description of
algebraic bundles relies on the fact that every bundle is trivial over K i.e. that it has a basis of
rational or meromorphic sections. In the Riemann surface case we used instead the fact that all
holomorphic bundles with the same degree (or Chern class) are differentiably equivalent.

In both cases we now stratify this infinite-dimensional space according to the #ype of the bundle,
so that we have a unique open stratum given by semi-stable bundles. Moreover we have a group
acting, preserving the strata, so that the equivalence classes represent isomorphism classes of
bundles. In one case the group is &, the maximal compact subgroup of G 4, while in the other it
is the group of C* complex automorphisms. These equivariant stratifications can now be used
to compute appropriate invariants. In the number-theory situation we compute Tamagawa
measures to get (11.6) while in the geometric situation we compute equivariant cohomology to
get (7.14). The parallel between these two procedures should be viewed as similar to that
involved in the elementary computation with P,(C) in the Introduction. There are two notable
differences here. In the first place the spaces concerned are infinite-dimensional and in the
second place we work with equivariant notions relative to the appropriate group.

In these parallel treatments we see that in both cases the infinite-dimensional space itself is,
in the appropriate sense, trivial. Thus the space ¥ is contractible so that its ordinary Poincaré series
is identically 1, while the Tamagawa number of G /Gy is also equal to 1 (notably it is inde-
pendent of ¢). The next step is to ‘divide’ in the appropriate sense by the group action and to
compute the result globally and locally and equate. On the global level we see therefore that the
equivariant Poincaré series of %, which is the same as the ordinary Poincaré series of BZ and was
computed in (2.15), corresponds to the measure 7(®)~! given by (11.19). Using the explicit
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formula (11.5) for {(s) and applying the substitution w;—~ —¢71, ¢—>¢"2 we see that except
for trivial factors corresponding to the difference between SL, and GL, and a power of ¢ (related
to the dimension of the moduli space)

(11.20) 7(R)-1-> P,(BY).

Thus the ‘global’ terms in (11.6) and (7.14) correspond. On the other hand each stratum or
type u produces a ‘local’ term in both cases and when due account is taken of the isotropy groups
the resulting formulae in the two cases again correspond. Thus the ‘weighted counting’ process
corresponds to the use of equivariant cohomology.

When we compare these two basic methods of computing Betti numbers, i.e. the number-theory
method and the Morse-theory method, we see that in each case we need to be fortunate to get an
explicit answer. Thus when counting up points with a stratification the answer is clearly additive
but in general we may not know how to compute the number of points in each stratum. In the
Morse theory method each stratum retracts onto its critical set but we have no guarantee that the
exact sequences split, i.e. that we have a perfect Morse stratification. In our present case the
reason why we can count points effectively is that each stratum is made up of affine spaces
corresponding to extensions as illustrated above. On the topological side the perfect nature of the
stratification arises from the isotropy group behaviour. This is presumably linked in some way
with the affine space decomposition of the strata.

Another reason that sometimes simplifies the process of counting points is if all homology is
represented by algebraic cycles. In that case Frobenius acts on H? by ¢” and so there are no
mysterious eigenvalues. In our case this is nearly true in the sense that all rational cohomology
of the moduli space N or N is generated, as shown in §9, by the Kiinneth components of the
Chern classes of the universal bundle on M x N. Thus the only eigenvalues other than powers of
q arise from H'(M) and these are the w; that appeared above. This explains why the simple
substitution w;— —¢-1, ¢—¢~2? is all that is required to convert the number-theory formulae
into Poicaré series formulae.

Now that we have described the detailed correspondence between our method and that of
Harder-Narasimhan many questions arise. In the first place why is the Tamagawa number of
SL, equal to 1? This is not very well understood but analogy with our method suggests that it
might have some cohomological significance. Why moreover do we have the remarkable
correspondence (11.20) and the analogy exhibited in (11.6) and (2.9), between the separate
factors of both sides, namely &,,(k) and F,(Map (M, K(Z, 2k))? This and other aspects of the
comparison suggest that the basic relation between numbers of points and Betti numbers for
algebraic varieties may have some extension to infinite dimensions in which counting of points
is replaced by a suitable measure.

Speculating in another direction we recall that the Yang—-Mills equations arise in physics and
that to quantize them involves, at least heuristically, some process of integration over function
spaces. Comparison with the number theory suggests that there might be a natural measure,
depending perhaps on some real parameter £, so that what we have been computing as Poincaré
series actually turn out to be measures.
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12. CoNVEXITY AND LIE GROUPS

This section is essentially an appendix concerned with the partial ordering that we have
encountered in our stratification of the space . We shall take this opportunity of giving a brief
but essentially self-contained account, which emphasizes the role of convexity in Lie groups.
The results are not essentially new, and can mainly be found in Horn (1954) for the unitary case
and in Kostant (1973) for the general groups, but our presentation brings out those aspects that
are of particular relevance to the theory of bundles and connections. In particular we stress the
role of convex invariant functions on the Lie algebra. For an extensive account of some aspects
see also Marshall & Olkin (1979).

For simplicity we shall begin with the partial ordering (7.7) for sequences (A,, ..., A,) of real
numbers. Thus one defines ¢ < A if, after arranging each sequence in decreasing order, we have

i
u;i< XA for i=1,..,n-1,
1 i=1

o4 -

j

(12.1) n
=3 A
j=1 f=1

s |

This partial ordering occurs in Horn (1954) where it is shown to be equivalent to either of the
following properties:

(12.2) 2 flu;) < Zf(A;) Sor every convex function f: R R;
J i

(12.3) u = PX where A, p € R™ and P is a doubly stochastic matrix.

We recall that a real square matrix P = (p;;) is stochastic if p;; > 0 and X;p;; = 1 for all 4. If in

addition the transposed matrix is also stochastic then P is called doubly stochastic. A theorem of

G. D. Birkhoff identifies doubly stochastic matrices in terms of permutation matrices, namely
The doubly stochastic n x n matrices are the convex hull of the permutation matrices.

In view of this (12.3) can be replaced by

AN N

(12.4) Z s X,
where X, x denotes the orbit of any x€ R” under the permutation group 2, and C denotes the
convex hull of the set C < R™.

Geometric notions of convexity can be dualized into statements about convex functions by
virtue of the fact that, for C < R~,

xeCw ¢(x) <sup¢ forall convex ¢:R*—>R.
c

Thus taking ¢ to be a convex symmetric function on R” (i.e. invariant under 2,) we can see that
(12.4) implies

(12.5) d(p) < @(A) for all convex symmetric functions on R™.

Since (12.2) is the special case of (12.5) for functions ¢(xy, ..., x,,) of the form X7, f(x;), it follows
that (12.5) implies (12.2) and so is equivalent to all the other properties.
Schur showed that if ; (j = 1, ...,7) are the diagonal elements of a hermitian matrix whose

eigenvalues are A;, then # < A in the sense of (12.1). Horn (1954) proved the converse so that
another equivalent of (12.1) is

(12.6) the A; are the eigenvalues of a hermitian matrix with diagonal elements p;.
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A hermitian matrix 4 is determined, up to conjugacy by U(n), by the unordered set of its
eigenvalues, or equivalently by the orbit 2, Ae R If X, u corresponds to the conjugacy class
C(B) of a hermitian matrix B then (12.4) clearly implies that C(B) lies in the convex hull of C(4).
Conversely if a diagonal matrix B, with eigenvalues u;, lies in the convex hull of C(4) it must lie
in the convex hull of the diagonal parts of the matrices in C(4). But by Schur’s result this means
that u € R™ is in the convex hull of X A, where the A; are the eigenvalues of 4. Hence (12.1) is
also equivalent to

N AN

(12.7) ) = C,

where C(A) denotes the conjugacy class of hermitian matrices with the given eigenvalues A;.
As before (12.7) implies

(12.8)  ¥(B) < ¥ (4) for all convex invariant functions r on the space of hermitian matrices,

where BeC(u) and AeC(A). Clearly such a convex invariant ¥ defines a convex symmetric
function ¢ on R* by putting ¥(4) = ¢(A). Thus (12.8) is also directly implied by (12.5). The
converse is not quite so clear because it is by no means obvious that convexity of ¢ on R™ implies
convexity of ¢ on the space of hermitian matrices. We shall, however, prove that this is in fact
true, so that (12.8) is equivalent to all the earlier properties. This proofis just as easily given in the
more general context of a general compact Lie group, so we move on now to consider how one
generalizes all the preceding ideas.

For a general compact Lie group G, the role of the hermitian (or rather skew-hermitian)
matrices is played now by the Lie algebra g of G. The diagonal matrices are replaced by the Lie
algebra t of a maximal torus 7" of G and X, becomes the Weyl group W. Writing a set of A; in
decreasing order corresponds to picking a (closed) positive Weyl chamber C in t: this is a funda-
mental domain for the action of W. If we fix once and for all a bi-invariant inner product on g
we get a W-invariant inner product on t and we define C* to be the dual cone of C, namely

(12.9) xeC*<« {x,y)> > 0 forallyeC.

In the semi-simple case C and C* are both of maximal dimension but if g has a non-trivial centre
then C* lies in the subspace orthogonal to the centre, i.e. in the semi-simple part. The following
lemma relating W, C and C* is then standard (Bourbaki 1968, ch. VI, prop. 18).

LemMA 12.10. xeC<> (1 —w)xeC* forall we W.

The cone C* defines a natural partial ordering on t by
(12.11) x> ysx—yeC*.
With this notation (12.10) can be rewritten as
(12.12) xeCsx > wx forallweW.

For U(n) the cone C as already mentioned is given by the conditions x; > x, > ... > x,, the
standard inner product {x,y) = x4, can be rewritten as

(12.13) {xy) = (% — %)Yy + (x5 — %3) (Y1 +Y2) + ...

) o + (A= %) 1t FYna) 21+ )
showing that the cone C* is given by

i
Yy;20 for 1<ig<n—-1
j=1
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and

n
2y;=0.
1
Thus the partial ordering (12.11) reduces in this case to that given by (12.1).

The following lemma, which is an easy corollary of (12.10), generalizes the equivalence of
(12.1) and (12.5).

Lemma 12.14. If x,y € C then

A\
yeWx<y < x.

Proof. Let us first illustrate the geometric meaning of this for SU(3), in which case the diagram
is as below.

Ficure 4.

The shaded region is the intersection C with the ‘backward’ C*-cone centred at x. It therefore
describes the set y such that
yeC and y < x.

. . . A . .
The lemma asserts that this set is also the intersection of C and the hexagon Wx. In one direction

A\
this is easy because for y € Wx we have

y= % a,0x, a,>0, Xa,=1
weW
so that

x=(Za)x > Sa,0x =y

by (12.12). For the converse it will be enough by continuity to assume that x is an interior point of
C and that x — y is an interior point of C*. The directed line xy then meets the boundary of C'in a

-~ A
point z and we must show that the whole finite interval of xz lies in Wx. Since the relation ye Wx

is transitive, it will be enough to show that there is a constant ¢(x, z) so that, if y = tz+ (1 —1¢)«,
with 0 < ¢ < 1, is any point in the interval zx, then

(i) e(y,2) = ¢(x,2),
() yeWr if t<o(x2).
A finite number N of repetitions, where N~ < ¢(x, z), will then prove that the whole interval

AN
zxeWx.
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Now leta; be the simple roots normalized to have length one, so that the «; are the unit normals
to the faces of C and form the basis for C*. Since « is assumed interior to C we have
{x,o0,y >0 forall .

Since x — z is assumed interior to C* we have
1
x—z= X a;0;, a;>0.
i=1

Now let w;e W be the reflexion in the face {x, ;) = 0 so that

w;x = x—2{x, ;)0
and define for 0 < ¢ < 1 constants

by = ta;/2x, 0>, b =1-3b,.

Then
bx+Xb,w;x = x+ Dby (w;x—x) = x—2b{x, ),
=x—tyaa; =tz+(1-t)x =y.

Hence ye I//V\x provided 4; > 0 and & > 0, and this will hold if

0<t< 2na;y/la; forall .
It remains to examine the quantity

¢;(%, Z) = X, ai)/lafta

when we vary x on the interval zx. Replacing x by the variable point y = fz+ (1—1) %, a; gets
replaced by (1—t)a; and

(%“i) = t<z9ai>+(1—t) <x90‘15>
> (1-8){x,a;y since zeC and ¢>0.

Hence ¢;(y,z) > ¢;(x, z) and the proof is completed by taking ¢(, z) = min,¢;(x, z).

Remark. The partial ordering y < x for xeC is the usual ordering for dominant weights of
representations, when we consider not the Lie algebra of T but its dual. The reinterpretation in
terms of convex hulls of W-orbits is given in Adams (1969). In our case we are interested not in
representations but in conjugacy classes but the partial ordering is essentially the same.

Kostant (1973) proved the following generalization of the Schur-Horn theorem:

s A\
(12.15) n(Gy) = Wy
where yet, m:g->t is orthogonal projection and Gy denotes the G-orbit of y under the adjoint
action. See also Atiyah (1982) for a different proof in a more general context. Using (12.15), or

rather the easier half that gives theinclusion 7(Gy) = Wy, we shall now prove the promised result
about convex invariant functions:

PRrOPOSITION 12.16. Let ¢ be a W-invariant convex function on t and r the corresponding G-invariant
Sfunction on §. Then i is also convex.

Proof. For any function on R* it will be convenient to define I'(f) to be the region ‘above its
graph’, i.e. all points (x,y) with x€R", y€R such that y > f(x). Convexity of the function f is
then equivalent to convexity of I'(f). Recall also that I" is convex if every boundary point &
has a supporting hyperplane H, (i.e. I'is contained in one of the two half-spaces complementary
to H,). Now consider the functions ¢, ¢ and the corresponding regions

I'(g)<t®R, I'(y) =g@R.
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Because ¢ is G-invariant so is I'(y) and it is therefore sufficient to prove the existence of a
supporting hyperplane to I'() at boundary points (A,y) of I'(¢). By hypothesis I'(¢$) is convex
so we have a supporting hyperplane H < t ® R. Let H' = n~1(H) < g ® R where 7 is orthogonal
projection. We shall show that A’ is the required supporting hyperplane for I'({). Any point
(%, y) e I'(Y) satisfies y > ¥ (x). From (12.15) and the convexity of ¢ we see that

¥ (%) = ¢(mx).
Hence y > ¢(mx) so that (mx,y) € I'(¢) and hence is on one side of A. This means precisely that

(%, ) is on the corresponding side of H’, which completes the proof.

As with U(n) we can give several further equivalent definitions of the partial ordering and we
summarize this in

ProvrosiTiON 12.17. The following conditions x,y €t are all equivalent:
N\ AN

(1) Wy< Wz

(2) @(y) < P(x) for all W-invariant convex functions ¢ on t;

(3) Gy < Gx;

(4) ¥(y) < ¥(x) for all G-invariant convex functions ¥ on g.

Proof. (1) = (2), (2) = (4), (1) = (3) and (3) = (4) are all trivial. (3) = (1) follows from (12.15)
and (4) = (2) follows from (12.16). It remains to see that (2) = (1). For this we take

$(x) = X explwtx,e;) (8> 0),
weW
where the ¢; are a basis of C (the ‘edges’ of the cone) and let x,yeC. In view of (12.11) and

(12.12) we have
{(x,6) >{wx,e;y for w#1 andall i,
<y’ ei> = <wy’ ei>‘
It will be sufficient by continuity to suppose that both x and y are interior to C; then the above
inequalities are strict so that for large ¢ the first term (for w = 1) in the sum defining ¢ is dominant.
Hence
$(y) < px) = (¥ e) > (y,¢;) forall i
=>x—yeC*
>y<x by (12.11).

Remark. Proposition 12.17 remains true when ‘convex’ is interpreted as ‘smooth convex’
(or even analytic). This is clear from the proof because, for the essential implication (2) = (1),
we use only exponential functions.

If we take any irreducible representation p:G—U(n) it has weights A,, ..., A,, which we
may view as elements of , so that any xet gives rise to the hermitian matrix with eigenvalues
x; = {x, A;). If A, is the maximal weight then A;€C and for all j # 1, A; > A, i.e. A, —A;€C*.
This means that, if xeC, then x, > #; for j # 1, so that x, is the largest eigenvalue. Hence if
x,y€C and we assume p(y) < p(x) then in particular y; < x,, i.e. {y,A;) < {x,A;). If we let p
run over all irreducible representations then A, runs over all integral dominant weights and these

span C: in fact there are / basic integral weights ¢; that lie in the edges of C and generate it. This
proves (cf. Kostant 1973)

ProrosiTiON 12.18. For x,y €g we have y < x<>p(y) < p(x) for all unitary representations p.

47 Vol. 308. A
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This completes our survey of convexity and essentially contains all the results we have used
earlier. Thus in §8 we used the inequality

A B a 0
olc ol>¢[s 3]

. . . 4 B

for every convex invariant function ¢ on u(n), where c D
block form and «, § are the central components of 4, D. This follows in fact from Horn’s theorem

is a skew-hermitian matrix in

and the observation that [((7)‘ g] is in the convex hull of the X, -orbit of the diagonal part of

[101 g] . The same proof holds for the more general block decomposition also used in §8.

The result (8.21) (and its generalization to any G) is an easy consequence of (12.17). In fact if
é(y) = ¢(x) for all W-invariant convex functions ¢ then ﬁ/\y = W and so the extreme points

3 . . /\ .
of these two convex polyhedra must coincide. But the extreme points of Wx are certainly among
the finite set Wx. Hence Wx and Wy intersect and so coincide.

13. EQUIVARIANT COHOMOLOGY

In this section we shall review some of the general facts about equivariant cohomology and
establish some of the more particular results that we have had to use.

We recall first that for any topological group G the classifying space BG is defined as the base
of a principal G-bundle whose total space is contractible. It is unique up to homotopy so that in
particular H*(BG) depends only on G. More generally if G acts on a space X we define Xg as
the associated bundle over BG with fibre X and define the equivariant cohomology by

Hy(X) = H(Xq),

so that H(BG) is now the equivariant cohomology of a point. If G acts freely on X so that X~ X/G
is a principal G-bundle then the map X;—>X/G has contractible fibres and so is a homotopy
equivalence. Thus in this case
Hy(X) ~ HX/G).
Suppose now that K is a closed normal subgroup of G, and that X is a G-space on which K acts
freely (with X — X/K a principal K-bundle). Then the quotientgroup § = G/Kactson ¥ = X/K,
and we have

(13.1) | Hy(X) = Hy(Y).

To see this let E,, E, be the total spaces of universal bundles of G, § respectively. Note that G acts
on E, via § so that E; x E, is also a free contractible G-space; we can thus take
XG = Xx G(El X E2)'
Projecting onto X x oF, with fibre E, is a homotopy equivalence and
XXGE2 = YXSE2 = YS

so that Xz ~ Y proving (13.1).

So far we have been rather imprecise about the class of topological groups to be considered
and the reader might feel uneasy about the use of these ideas for the large infinite-dimensional
groups ¥ of gauge transformations. In view of (13.1) we can effectively reduce all our application
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of equivariant cohomology to the case when G is a compact Lie group. In fact if ¢ is the group of
gauge transformations of a principal G-bundle over a manifold M, it has a normal subgroup %,
consisting of transformations that are the identity at some fixed base point of M and the quotient
group is isomorphic to G. Moreover ¥, acts freely on the space of connections so that by (13.1)

Hy(sf) = Ho(st |9,)

with a similar result for any #-stable subspace of &/. We could therefore always work in &7 /%,
and use G-equivariant cohomology if we wished.

If K = G and Y is a K-space we define its ‘extension’ to a G-space X by putting X = G x ¢ Y.
Note that X is just the bundle with fibre ¥ and base G/K associated with the principal K-bundle
G—>G/K. If E is a free contractible G-space then

XG=EXGX=EXGGXKY=EXKY= YK
so that Hy(X) = Hg(Y).

We come now to some more specific results, which concern compact connected Lie groups G
without torsion in their cohomology. The examples we need are just U(r) and more generally

products of the form U(n,) x ... x U(n,). If T is a maximal torus of G then it is well known that
the fibration
G/T—> By Bg

behaves like a product for integral cohomology and all the spaces involved have no torsion. It
follows that, for any G-space X, the induced fibration

G/T—Xp—~>Xq
is multiplicative for integral cohomology

H(Xp) ~ H(Xy) @ H(G/T),
so that

(13.2) Hg(X) s a direct summand of Hyp(X).

or equivalently for all primes p
(13.3) Hy(X,Z,) > Hyp(X,Z,) isinjective.

Next let 7" = T, x T; be the product of two subtori with 7 acting trivially on the connected
T-space X. Then
.X = BT;) X XTl

so that for Z, coefficients (and any prime p)
Hy(X) = H(BT,) ® Hp,(X).
Now H(BT,) is a polynomial ring and so any «,e H(By,) with &y 0 is not a zero-divisor in
Hy(X). More generally if a € Hj(X) restricts to such an o, i.e. if
o = oy ® 1+ terms of positive degree in Ay, (X),

the same holds. This follows on filtering by the degree in Hj, (X) and noticing that & acts via ¢,
on the associated graded module.

In-our application the element «, above will occur as the Chern class of a vector bundle Np,
over BT arising from a representation N of 7;,. For dim N = 1 the assignment

N-—> ol(NTo)

472
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gives rise to an isomorphism
T, = H¥(BT,, 2),

(where 7\}, is the character group of 7;) which we shall consider as an identification. The whole
cohomology ring H* (BT, Z) can then be viewed as the symmetric algebra of the lattice ﬁ.
For an n-dimensional representation N therefore we decompose

n
into one-dimensional representations, and

tn(Ng,) = jl;Il L;.

If each L; is primitive, i.e. is not divisible in f; by any prime p, we shall say that N is primitive. In
this case ¢, (Np,) is clearly non-zero when reduced mod p for any p.
We shall now put all these remarks together into the following.

- ProvrosiTioN 13.4. Let X be a connected G-space on which some subtorus Ty acts trivially and let N be
a G-vector bundle on X. Assume that the representation of Ty on the fibre of N is primitive and that H(G) has
no torsion. Then multiplication by the top Chern class & = ¢, (Ng) on Hy(X, Z,,) is injective for all primes p.

The proof follows from 13.3, which allows us to restrict from G to a maximal torus 7' = T, so
that we are in the situation just discussed.

14. SOBOLEV SPACES

In this section we shall show, by introducing appropriate Sobolev spaces of functions, how to
justify our heuristic use of infinite-dimensional manifolds. Much of this is standard and can be
found in Narasimhan & Ramadas (1979), Uhlenbeck (1981) or Mitter & Viallet (1981) but some
of the more detailed results related to the complex structure depend of course on the dimension-
ality of the base manifold being 2. For this reason we shall give a self-contained account tailored
to our purposes.

For the convenience of the reader we shall now recall some of the basic facts about Sobolev
spaces. For fuller details we refer to Palais (1965, ch. 9). On a compact smooth z-dimensional
manifold M the space LY, (for 1 < p < 00) denotes those functions f all of whose derivatives up to
and including order £ are in the Lebesgue space L?. The definition can be extended to non-
integral £ and to sections f of any smooth complex vector bundle over M. Each L} is a Banach
space and for p = 2 is a Hilbert space also denoted by H*. The Sobolev embedding theorems
assert that

(14.1) LE < L¥ifk > land k—n/p > [ —n/q and the inclusion is compact
if we have strict inequalities,
(14.2) L = C' if k—n/p >, and theinclusion is compact.
Here C! (for integral / > 0) denotes as usual sections whose partial derivatives of order < [ are
continuous. In particular
0
(14.3) N Hx = C~.

k=1

172l < 1A1lp llgles

Recall now the Hélder inequality
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where || ||, denotes the LP-norm and r—! = p~1 +¢~1. This implies the continuity of the multi-
plication map

(14.4) LY x L3~ L.

Applying this together with (14.1) one deduces

(14.5) L% is a Banach algebra for k > n/p and L7 is a topological Lf-module for 0 <j < £.

In the good range k& > n/p one can also define nonlinear generalizations of the spaces L.
Thus one can define the space Ly (M, N) of maps f: M — N where N is another C® manifold.
More generally one can define the L-sections of a ¢ fibre bundle over M with N as fibre. These
spaces are dense in the space of continuous sections. In particular on taking N to be a Lie group
and using (14.5) the Lf automorphisms of a vector bundle (or a unitary bundle) form Lie groups.

We come now to the special case that interests us, namely # = dim M = 2. For a complex C®
vector bundle £ over M with hermitian metric we then have for £ > 2 the real Lie group of
unitary automorphisms of class H* = L}, which we shall denote by #*. Its ‘complexification’
(%°)* is the (complex) Lie group of all automorphisms of £ of class H*. Since automorphisms act
on connections by affine transformations it follows from (14.5) that we can define the space of
unitary connections &%~ of class H*~1 and that ¢* acts smoothly on 2/*-1. For the same reasons,
when we view & as the space % of (almost) complex structures (or d”-operators) we see that the
complex Lie group (%¢)¥ also acts smoothly on &7¥-1,

For k£ > 2 the space /%1 consists of continuous connections. However, the most natural space
for our purposes is in fact 271, so the reader should remember that this includes discontinuous
connections. A little more care will be necessary in various places but there is no fundamental
difficulty. As an indication of this we shall establish the following regularity results.

LeMMA 14.6. For k > 2 and any Ae /%1 let F: (9e)k—> /%=1 be the map given by the action on A
i.e. F(g) = g(A). Then the differential AF at the identity is a Fredholm operator.

Proof. The differential dF at the identity is just the operator dj acting from H*-sections of

End E to H*1-sections of 2%1(End E). If we fix a standard C* connection Ajon Ethen 4 = A,+ B
and

di¢ = dog+[B, 4].

Since Be H*1and ¢ € H* the mapping ¢ —[ B, ¢] can by (14.5) be factored through the compact
inclusion H*-> H*-} and so is compact. Since, for the smooth connection 4, the operator dg
is elliptic of order 1 and so Fredholm, it follows that d 5 is also a Fredholm operator.

Applying the smooth group action it follows that dF is a Fredholm operator at all points of
the orbit of 4. The implicit function theorem for Banach manifolds then implies (for £ > 2)

(14.7) for neighbourhoods U of the identity in (9°)* and V of A in /%=1, the image U (A) is a closed Banach
submanifold of V of finite codimension.
From this we shall deduce

LemMmA 14.8. For k > 2, every (9¢)*-orbit in 2%~ contains a C®-connection.

Proof. Let N be a finite-dimensional subspace of /%~ transversal to the orbit at 4,i.e. Nis a
complement to the image of dF. Then (14.7) implies that for a suitably small neighbourhood V
of A e o7%-1 we have a continuous map 7: V- N with 7-1(4) = U(4). Now for any r + 1 points
B,,...,B, eV (wherer = dim N) let

fB o>V
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be the affine linear map sending the vertices of ¢” to the B;. Composing with 7 we then get a
continuous map

nfg:0"—> N,

which depends continuously on the B;. Start now with any set of B;e N that span a maximal-

dimensional simplex having 4 as barycentre. For this choice of B, mf; restricts to give a map
dom—>N—A,

which generates H,_,(N—A4) ~ Z. By continuity it follows that this will be true for 7f, with

|C;— B;| < e. Hence nf; must take the value 4 on some point of o7, i.e. fo(o7) intersects U(4).

Finally since o/ = &/®is dense in /%1 we can find such C; € for any ¢. Then every point of the

linear span of Cy, ..., C,,, is in &7 and so the intersection f(o") n U(4) is in &7, proving that the
orbit of 4 contains a C*-connection.

Conversely we shall prove
LEmMA 14.9. For k > 2 let A, Be o/ and ge (9°)* with B = g(A). Then g€ 9¢, i.c. g is C*.

Proof. The two connections B, 4 differ by a C* 1-form B — A. The condition B = g(4) is more
explicitly written
gtdag = (B-4)",

where " is the (0, 1)-part of the 1-form . Hence
dig =g(B-4)".

Since (B—A)"eC® and ge H* the product lies also in A* (by (14.5)). The standard regularity
theorem for the smooth elliptic operator d 4 then implies that g e H*+1. By iteration this proves
that'g is C®.

We have now established all the local regularity properties that we need concerning the action
of the group %°¢ on the space &7. In particular the orbit through any point 4 has, as local trans-
versal, the harmonic space H®!(End E), which is isomorphic to the sheaf cohomology group
H'(M,End E). The structure of nearby orbits is then entirely determined by their intersection
with this (or any other) transversal slice N. More precisely the union of all nearby orbits in .o7%
is (%¢)*-equivariantly homeomorphic to the fibre bundle over the orbit of 4 with fibre N and
group the stabilizer of 4 (which is finite-dimensional and consists of the automorphisms of the
holomorphic bundle E(4) defined by 4).

In the next section we shall use standard algebro-geometric methods to establish the global
properties of our stratification. For the present we note simply that the stratification of =/, which
has been defined so far only for smooth connections, extends naturally to &% for any £ > 1 by
our regularity results. The discussion in §7 can then all be made rigorous in terms of Sobolev
spaces and Banach Lie groups. Thus the groups Aut (E), Aut (£,) will be replaced by the Banach
Lie groups Aut*(E), Aut*(£,) and the space &#, by & k, which can be identified with the

homogeneous space
Autk (E) /Autk (E,).

Similarly replacing %,,%, by #%~*, %%~ we have a continuous map
Autk (E) x BE1 gk,
This map is constant on the orbits of Aut* (E,) and so induces a map

k—1 k—1
Ht>C,
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where 5! denotes the total space of the homogeneous fibre bundle over F with fibre BE1,
Our regularity results tell us that this map is continuous and bijective. To establish that it is
actually 2 homeomorphism we need finally to prove that the map

(14.10) i€ =7,

refining (7.9) is continuous. In other words we have to show that the canonical filtration varies
continuously along %, with a ‘gain of one derivative’.

Since the group Aut* (E) acts continuously on both €%~! and #%, and commutes with Nl
it will be sufficient by (14.8) to prove continuity of f¥ at C* points 4 of %,. Moreover by our
regularity theoremsit will then be sufficient to prove continuity in the harmonic space H%!(End E)
at 4 (or any other smooth transversal N). On such a finite-dimensional space all the Sobolev
norms are now equivalent and the problem can be reduced to one of algebraic geometry, which
will be dealt with in the next section. '

Once the continuity of f is proved it follows that our strata are locally closed submanifolds of
finite codimension. Moreover the homotopy properties of the various function spaces are all
independent of £ by standard approximation theorems (Palais 1965, th..13.14). This then justifies
our heuristic arguments in §7.

Finally we note the continuity properties of the Yang—Mills functional.

(14.11) The curvature F(A) extends by continuity to a quadratic function &/ —H® = L2, so that the
Yang—Mills functional L gives a smooth function o/*— R.

The proof (given under more general conditions by Uhlenbeck (1982)) is a straightforward
consequence of the multiplicative properties of Sobolev spaces. In fact, writing 4 e&/* in the
form 4 = A,+ B with 4, a fixed C* connection, we see that

F(4) = F(4,) +d,B+4[B, B].

Since Be H' we have dy Be H® and [ B, B] € H® (using the inclusion H'— L§ from (14.1) and the
multiplication (14.4)). }

This result explains why 7! is the most natural Sobolev space for the Yang—Mills functional,
although for our purposes any &/* with £ > 1 would do equally well.

As we have seen in earlier sections the strata should be seen as the Morse strata of the Yang—
Mills functional. A more careful analysis of the gradient flow or some alternative differential-
geometric argument might be able to show this directly and in particular to establish that &/}
is a locally closed submanifold of &7* for all 4. We have not found an argument on these lines,
which is why we have to resort in the next section to algebraic geometry.

15. THE STRATIFICATION IN ALGEBRAIC GEOMETRY

In this section M will denote a complete non-singular algebraic curve defined over a ground
field £ of characteristic zero. As observed by Harder & Narasimhan (1975) the definition of semi-
stability and the canonical filtration of vector bundles over M does notrequire & to be algebraically
closed. In fact the uniqueness of the canonical filtration over £ implies that it is already defined
over k. Moreover if E;, is a vector bundle defined over &, Ex its extension to any larger (finitely-
generated) field K, then

(15.1) E,, is semi-stable<> Ex is semi-stable.
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To see this we may first replace £ by its algebraic closure in K so that X is purely transcendental
over k. Assume now that Ey is not semi-stable so that there exists a sub-vector bundle F with
w(Fx) > p(Ex) where p denotes as usual the normalized Chern class. If K = k(xy,...,%,) the
bundles Ex, Fx can be represented by vector bundles &, % over M x U where U is some Zariski
open set of £%. Moreover & can be taken to be the pull-back of E;, under the projection M x U M.
Now restrict &, to any point of U algebraic over £ and we find a sub-bundle F;, of E, with
w(Fy) > p(Ey) so that E; is not semi-stable. The opposite implication is trivial so that (15.1) is
proved.

Now let £ be algebraically closed, $ an irreducible algebraic variety over k and let & be a
vector bundle over M x S, which we interpret as an algebraic family E, of vector bundles over
M parametrized by s € S. A fairly elementary result proved by Narasimhan & Seshadri (1965) is
that the set of points s for which E, is semi-stable is a constructible sub-set of S. We recall that a
constructible set is a finite disjoint union of locally closed subsets in the Zariski topology, and X
is locally closed if it is open in the closure X. Constructibility is preserved under finite unions,
intersections, complements, direct and inverse images. Since we shall need to refine this result of
Narsimhan & Seshadri we recall the essentials of the proof. First one shows that any inde-
composable bundle F of smaller rank such that

(@) w(F) > p = p(E,),

(i) Hom (F,E,) # 0 forsome seS
must belong to one of a finite number of irreducible families. Let 7" be the parameter space of
one of these families. Then the subset Z < T xS consisting of all points (¢, s) such that

Hom(F, E) # 0

is a closed subset. Its projection onto S is not necessarily closed but it is constructible. This shows
that the set of s €. for which £, is not semi-stable is constructible and so therefore is the comple-
mentary set.

We want to prove the following

LemMA 15.2. Let K = k(S) be the function field of S, Fy the bundle over M defined over K arising from &.
Assume Ey is semi-stable, then there exists an open set U < S such that E, is semi-stable for all s U.

Proof. Assume the conclusion false. Then for at least one of the parameter spaces 7" occurring
above the corresponding sub-set Z = 7" x § must project onto a dense set of § (i.e. containing an
open set). Replace Z by an irreducible component with the same property and it follows that
K’ = k(Z) is an extension of K = k(). The definition of Z, together with the coherence of direct
images, shows that we have a non-zero homomorphism

I — Epe.
Since u(Fy.) > p(Eg.) this means Ey. is not semi-stable. By (15.1) this means E is not semi-stable
and gives the required contradiction.

We return now to consider a general family E, parametrized by S. Passing to the quotient field
K = k(S) we consider the canonical filtration of Eg. This filtration can be represented by a
filtration for the family & restricted to some open set U < S. The associated quotient bundles
being semi-stable over K will, by (15.2), remain semi-stable over suitable open subsets of U.
Hence thereis an open set ¥ < S so that our filtration is canonical at all points of V. In particular
the type of E, is constant for all s V. Removing ¥ from § we get a variety (possibly reducible) of
smaller dimension. Applying induction therefore we have proved the following
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ProrosiTION 15.3. Let E be a family of bundles over M parametrized by S, and stratify S according to
the type of E,. Then each stratum is a constructible set.

Note. This result is proved by Shatz (1977) in a different way. Our proof, using the approach
of Narasimhan & Seshadri (1965), is more in line with the rest of our paper.

When £ = C, the field of complex numbers, we have shown in §8 that, with respect to the
partial ordering studied in §12, the subset U,;,, is closed in &. This implies in particular
that in any algebraic family, as in (15.3), the corresponding set U, ,S, is closed in the usual
complex numbers topology. Since it is also constructible it follows (Narasimhan & Seshadri
1965, lemma 12.2) that it is Zariski closed. Hence each stratum §; must be locally closed in the
Zariski topology (cf. Shatz 1977). This is nearly but not quite enough to show that the 7,
themselves are locally closed. For this we need to examine further the continuity properties of
the canonical filtration.

The proof of 15.3 shows that over a Zariski dense open set V of each stratum S, the canonical
filtration varies algebraically. If we introduce the appropriate flag-bundle F, over §, this means
we have a regular section of F, over V: in particular this section is continuous (for the C-top-
ology). In fact continuity holds everywhere:

ProrosITION 15.4. Let E, be a family of bundles over M parametrized by an irreducible variety S and
assume all E; are of the same type p. Then there is a continuous filtration of the bundle & over M x S that
induces the canonical filtration on each E,.

Proof. As we have observed above there will be a Zariski open set ¥V < § with the required
property. Also we can proceed by induction on the length of the filtration so we can restrict
essentially to filtrations of length two. Such a filtration is determined by a section £ of the
appropriate Grassmann bundle, and it will be sufficient to show that the Zariski closure of £ over
M x V coincides everywhere with the canonical section (because £ S is then proper and bi-
jective, hence a homeomorphism). Since every point in the Zariski closure can be approached
along a curve we can suppose that dim.§ = 1. Moreover there is no essential change in replacing
$ by its desingularization so we may suppose S non-singular. Our section £ over M x Vis then a
surface and its Zariski closure intersects the Grassmann bundle G, over M x {s}, for se S—V, in
some algebraic curve £,. We have to show that £, is just the canonical section £,. Consider the
irreducible curves that make up £,. We claim there is just one of these, say C, giving a section of
G, over M and any others, say D;, must lie entirely in the fibres (over points of A). The reason is
purely homological: since £ is a section generically the intersection number of €, with a fibre over
G,—~ M must be one. Now we shall use the assumption that F is of constant type to deduce that
there are no D;. To do this let F, be the universal vector bundle over G,, i.e. the fibre of F; at a
point y € G, is the vector space represented by y. Hence the bundle £¥ (F,) over M is by definition
the canonical sub-bundle of £, and so has Chern class £, say (independent of 5). On the other
hand it is well known (cf. §8) that on the Grassmannian itself the universal bundle has negative
Chern class. Hence

6y (F5|Dy) < 0
for any component D; of  lying in the fibres. On the other hand the intersection number
6(F) &,
must be independent of s and hence is equal to k,. But since £, = C+ £.D; we have
ky = o (F,) 'C+§j:‘1(Fs) "D; < ¢y(F)-C
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and the inequality is strict unless the D; do not occur. Now C defines a section of G;— M and so

a sub-bundle F of E, with Chern class
a(fy) C>k

if the D; occur. But the assumption about constancy of type of the E;, means that no such F,
can exist. Hence £, = C and the proof is complete.

Remark. The continuous filtration £ in 15.4 defines a continuous section £(z, s) of the flag bundle
over M x S. Now, for each s €S, £ is holomorphic in z and hence its z-derivatives can be estimated
in terms of its sup norm. This shows that £ is actually continuous from S to the space %, (the
smooth filtrations of E over M of type x).

Proposition 15.4 shows that, for an algebraic family of bundles over M, the canonical stratifi-
cation is continuous. To prove the continuity of the map (14.10) it remains now to show that we
can always construct ‘sufficiently large’ algebraic families. More precisely we need to show that
for any 4 €& we can find a smooth transversal N to the %c-orbit through 4 that represents
(locally) an algebraic family. This means we have to prove the following lemma.

LemMA 15.5. Let E be an algebraic vector bundle over the algebraic curve M. Then there exists an algebraic
Jamily of bundles E; parametrized by a non-singular variety S such that
(i) Ey >~ E,, forsome sy€S,
(ii) the infinitesimal deformation map
¢: T, (X) > HY (M, End E;)
is an isomorphism.

Before giving the proof we make a few comments on (ii). Here 7, (S) denotes the tangent
space to S at s,. The map ¢ is defined quite generally in such circumstances as follows. Consider
the sheaf O1(M) = O(M x §) /m? where m is the ideal sheaf of M x s, in M x §. We then have an
exact sequence of sheaves

0>0(M)® T* >0\ (M)—>0O(M)—0,
where T = T, (). For the bundle & on M x S representing the family £, we have correspondingly
an exact sequence
0> (EndE) ® T* >0 (M) ® (End &) - End E, 0.
From the cohomology of this sequence we obtain the coboundary
0:H'(M,End E)) >H'(M,End E) ® T*.
The image of the identity endomorphism gives therefore an element of
Hom (T, H (M, End E))

and this is the infinitesimal deformation map ¢.

From the Riemann surface point of view this map can also be defined as follows. First we
restrict to a small neighbourhood U of s, in § over which the family E; is a product family, so
that we can identify all E, with E; = E, differentiably. Next fix a hermitian metric on E, so that
we get a family of unitary connections on F, parametrized by U. This gives a map

Y: U

with ¥ (s,) = 4 representing the bundle E,. The differential of { at s, is then a map of T into the
tangent space to &/ at 4. Projecting onto the normal to the %°-orbit then gives the infinitesimal
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map. Thus the condition (ii) precisely guarantees that N = y(U) will be a smooth transversal to
the %c-orbit of A. As we observed in § 14 continuity of the map (14.10) is equivalent to continuity
of the canonical filtration along the corresponding stratum in N. But N is (locally) diffeomorphic
to U and so the continuity follows from proposition 15.4 (and the subsequent remark).

We return now to give the proof of lemma 15.5. Observe first that it is sufficient to find an §
with ¢ surjective, because we can then always pick a submanifold of § transversal to the kernel of
¢ to get an isomorphism. We now proceed by induction on the rank z of E,. Let ¢;(E,) = ¢. Then
we can always represent £, as an extension of the form

01, ,(—m)—>E,~L,—~0,

where I,,_, is a trivial bundle of rank n— 1 and m is a suitably large integer (depending on £).
For the proof see Atiyah (1957) where a stronger result is proved, namely that for indecomposable
E, the integer m depends only on z, ¢ and the genus of M. Moreover we can assume m chosen so

that
g+mn > 2g—2,
which will imply that

(15.6) {HO(M’L* ® Lya(—m)) =0,

H(M,L®I,  (m)) =0.

Now consider bundles £ given by extensions of the form

(15.7) 0—>F(—m)>E—~>L—0,

where F'is a bundle of rank n— 1 and ¢,(F) = 0 while L is a line-bundle with
(L) = ¢1(Ly) = g+m(n—1).

Applying our inductive hypothesis to the trivial bundle 7,,_, we obtain a family F, parametrized
by re R having properties (i) and (ii). We then take for our family E, all extensions of the form
(15.7) with F = F, parametrized by R, and L parametrized by the Jacobian J of M. Now ex-
tensions of this type are classified by elements of

(15.8) H\(M, L* ® F(—m)).

By (15.6) the corresponding H° vanishes when F = I, _;, and hence for all F, with reR;, some
Zariski neighbourhood of 7, in R. Then H* will have constant dimension and so our parameter
space S is fibred over R, x J with fibre the vector space (15.8).

We must now investigate H'(M, End E) for any £ in our family. Denote by End’ £ the sub-
space of endomorphisms preserving the exact sequence (15.7), and by End” E the quotient:

(15.9) 0—>End’ £—~ End £~ End” E—0.

Clearly End” E = Hom (F(—m), L). By (15.6) H* of this vanishes when F = I, _; and so it will
vanish for all F, with re R, = R, some new Zariski neighbourhood of 7, in R,. This then implies,
from (15.9), that

(15.10) H\(M, End’ E) > H\(M, End E)

is surjective.
On the other hand we have the exact sequence

0>L*QF(—m)—>End’' E-~>End F® 00,
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which gives the exact cohomology sequence
>H M,L* @ F(—m))—>H'(M,End' E) >H'(M,End F) @ H'(M, 0) 0.

If we now compute the infinitesimal deformation map for our family § at the point sy, and recall
that S is fibred over R, x J with fibre H'(M,L* ® F(—m)) we see that the surjectivity for §
follows from that of R, and J. For R, this is our induction assumption and for J it is of course
classical. Together with the surjectivity of (15.10) this completes the proof of lemma 15.5.

We have had the benefit of discussions with many colleagues on the topics in this paper
and we are in particular grateful to N.Ekedahl, G.Harder, N.J.Hitchin, D. Mumford,
M. S.Narasimhan, T.R.Ramadas and J.-P. Serre for helpful observations.
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