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§1 INTRODUCTION AND THE STATEMENT OF THE MAIN RESULT

Floer’s work in symplectic geometry [2], and instanton homology [3] are two striking
new examples of the use of the classical techniques of Morse theory in infinite dimensional
settings. The first of these is based on a version of Morse theory on the (free) loop space
LM of a symplectic manifold M. The instanton homology of a homology 3-sphere ¥ is
defined using a similar version of Morse theory on the space of connections on the trivial
principal bundle ¥ x SU(2).

This paper arose from an attempt to identify and understand the underlying algebraic
topological aspects of Floer theory. In studying the homotopy theoretic aspects of this type
of infinite dimensional Morse theory, one is naturally led to re-examine finite dimensional
Morse theory. The purpose of this paper is to describe a method of processing the data
provided by finite dimensional Morse theory in a way that generalises naturally to these
infinite dimensional settings. In a sequel we will describe how this method allows us to
associate to the data provided by Floer theory suitable spaces whose homotopy types yield
invariants which include and generalise the various forms of Floer homology.

The method also gives a particularly clean way of viewing finite dimensional Morse
theory. The idea is to associate to a Morse function f : M — R on a closed Riemannian
manifold M a category C; whose objects are the critical points of f. The morphisms
between two critical points a and b are, in a natural sense, “piecewise flow lines” of the
gradient flow of f which connect a to b. Given a piecewise flow line connecting critical
points @ and b and one connecting critical points b and ¢ there is an obvious way of joining
them to get a piecewise flow line connecting a to ¢. This defines the composition law in
the category Cy.

The goal of this paper is to show how to explicitly recover the topology of M from the
category Cy. More precisely, given a topological category C one can construct its classifying
space BC, see [7]. We will describe the classifying space BCs in detail in §3 but for now
recall that it is a simplicial space whose k-simplices are parameterized by the space of
k-tuples of composable morphisms in Cy.

The main theorem of this paper is the following.

Theorem. Let f: M — R be a Morse function defined on a closed Riemannian manifold
M. Then associated to f is a topological category C; whose objects are the critical points
of f and whose space of morphisms between critical points a and b is the space M(a,b) of
piecewise flow lines, of the gradient flow of f, joining a to b.
(1) If f is a generic Morse function (one whose gradient flow satisfies the Morse-Smale
transversality condition) there is a homeomorphism
BCf ~ 0\ Typeset by ApS-TEX

(2) For any Morse function there is a homotopy equivalence
BCf ~ M.
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Observe that the classifying space of a category is given by an explicit construction and
so the theorem gives a precise, combinatorial method of constructing M as a simplicial
space from the critical points and flow lines of a Morse function. A striking feature of the
construction is that in the generic case it gives M up to homeomorphism not just up to
homotopy type.

We now recall some basic notation and terminology. Let M be a closed Riemannian
manifold and let f : M — R be a Morse function (that is all the critical points of f are
isolated and non-degenerate). Let grad(f) be the gradient vector field of f. The flow-lines
of f are the curves y(t) in M which satisfy the differential equation

dy

(1.1) i — grad(f).

If v is a flow-line then () converges to critical points of f as t — +oo and we define

s(y) = lim (1),  e(y) = lim y(?).
——00 t—oo
For any point « € M, let v, be the unique flow line satisfying the initial condition v,(0) =
x. For a critical point a we denote the stable manifold and unstable manifolds of a by

W*(a) and W"(a), that is

Wea) ={x € M : e()
W*(a) ={x € M : s(v)

aj
a}.
It is a standard fact from Morse theory that the unstable manifold is diffeomorphic to an

open disk of dimension A, and the stable manifold is diffeomorphic to an open disk of
dimension n — A, where n = dim M and A, is the index of a. We use the notation

W(a,b) = W"(a) N W*(b)

for the space of points which lie on flow-lines from a to b.

The gradient flow of f satisfies the Morse-Smale condition if for any two critical
points a and b the manifolds W"(a) and W*(b) intersect transversely and a Morse function
whose gradient flow satisfies the Morse-Smale condition will be called a Morse-Smale
function. Given that f is Morse-Smale it follows that W (a,bd) is a submanifold of M of
dimension A, — Ap.

The space W(a,b) has a free action of R given by the flow of grad(f). Indeed if we
pick any point r between f(a) and f(b) and set W7(a,b) to be the submanifold W(a, b) N
f~Y(r) C M then there is a natural diffeomorphism

W' (a,b) x R — W(a,b), (2,1) = v,(1).
Therefore we may form the quotient space

M(a,b) = W(a,b)/R
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and M(a,b) is diffeomorphic to W7(a,b). We refer to this space M(a,b) is the moduli
space of flow-lines from a to b. If f is Morse-Smale then M(a,b) is a smooth manifold
of dimension A, — A\ — 1.

We now construct the category Cy referred to in the above theorem. Since f is strictly
decreasing along flow lines it defines a diffeomorphism of the flow line v(#) with the open
interval (f(b), f(a)) where s(v) = a and e(v) = b. This reparameterisez the flow-line as a
smooth function

w: (f(b), fla)) = M

such that
flw(t)) =t.

We can extend w to a smooth function defined on [f(b), f(a)] by setting w(f(b)) = b and
w(f(a)) = a. This extended function satisfies the differential equation

do ___grad(f)
(1.2) dt | grad(f)|?

with boundary conditions

(1.3) w(f(b) =b,  w(f(a)) = a.

We define M(a,b) to be the space of all continuous curves in M which are smooth on
the complement of the critical points of f and satisfy (1.2) and (1.3). Here, of course,
we understand that w satisfies (1.2) on the complement of the set of critical points of f.
This space M(a,b) is topologized as a subspace of the space Map([f(b), f(a)], M), of all
continuous maps with the compact open topology. Note that if w is any solution of (1.2)
and (1.3) then if we remove the points where w(?) is a critical point of f each component
of w is geometrically a flow-line but it is parameterized so that f(w(t)) =¢. Thus we use
the natural terminology and refer to a curve in M(a, b) as a piecewise flow-line from «a
to b.

It is straightforward to check that M(a,b) is a compact space and it clearly contains
M(a,b). We show in §2 and §6 that if f is Morse-Smale then M(a,b) is open and dense
in M(a,b) and so M(a,b) is a compactification of the moduli space of flow lines M(a, b).

There is an obvious associative composition law

M(a,b) x M(b,c) — M(a,c)

which is denoted by v; 0 v2. We now define the category Cy as follows:
The objects of Cy. The objects of Cy are the critical points of f.

The morphisms of Cy. If a and b are distinct critical points of f then the morphisms
from a to b are defined to be

Cs(a,b) = M(a,b).

The only morphism from a to itself is the identity.
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The composition law. The composition law is defined by
M(a,b) x M(b,c) — M(a,c) (Y1,72) — 71 0 Ya.

In fact Cy is a topological category in the sense that each of the sets Cy(a,b) comes
equipped with a natural topology and the composition law

M(a,b) x M(b,c) — M(a,c)

is continuous. The topological category C; has a classifying space BCy, described in detail
in §3.
Our main results are:

(1) There is a homotopy equivalence M ~ BCjy.
(2) If f is Morse-Smale then there is a homeomorphism M 2 BCy.

The proof of (1) is reasonably direct and is given in §7. The majority of this paper is
taken up in proving (2). The strategy for this proof is to first build a model for M out of
the compactified spaces of flow-lines M(a, b) and then to use a “cut and paste” argument
to show that this model is in fact homeomorphic to BCy. The essential ingredients in the
argument are an analysis of the ends of the moduli space of flow-lines M(a, b) and a gluing
construction for flow-lines.

This construction only uses the compactified moduli spaces M(a,b) rather than the
stable and unstable manifolds. Thus it applies in Floer theory in infinite dimensions
where the the stable and unstable manifolds are typically infinite dimensional and so the
usual method of constructing a CW-complex using the unstable (or stable) manifolds does
not apply. Note that in Floer theory the moduli spaces of flow lines are in fact finite
dimensional.

Observe that the category Cy has a natural filtration defined by the index of the critical
points. This induces a filtration of the classifying space and thus a spectral sequence which,
in view of our main theorem, converges to the homology of M. We show that the F; term
of this spectral sequence is the classical Morse chain complex of f. Thus the F; term
is the homology of M and the spectral sequence collapses. This fact is special to finite
dimensions. In the infinite dimensional setting of Floer theory the index filtration yields
Floer-type homology groups, which are essentially the F5 term of the associated spectral
sequence.

In [8], Smale defines a partial order < on the set of critical points of a Morse-Smale
function as follows: a < b if and only if there is a flow line from a to b. Our category Cy
is related to this partial order in the following way. Let P; be the partially ordered set
consisting of the critical points of f with the partial ordering <. We can regard Py as a
category with objects the critical points of f and a unique morphism from a to bif a = b
or a < b. There is an obvious functor C; — P;. Thus Cy is a refinement of Py which
makes sense even if f does not satisfy the Morse-Smale condition.

In [6], Robbin and Salamon consider the simplicial complex defined by the partially
ordered set Py. In our terms this simplicial complex is the classifying space BPy of the
category Py. They construct a map, which they refer to as a Lyapunov map,

M — BPy.
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Presumably their map is related to our main theorem in the following way. The functor
Cy — Py induces a map of classifying spaces and we can compose this map with the above
homeomorphism

M — BC; — BPy.

It seems natural to expect that this map is the map constructed by Robbin and Salamon.

The organization of this paper is as follows. In §2 we examine the ends of the moduli
space of flows, state the main gluing theorem, and use it to describe a particular com-
binatorial model R of the manifold. In §3 we discuss the classifying space of Cy and
prove the main theorem by showing that BCy is homeomorphic to Ry and therefore to M.
In §4 we study the precise relationship between the simplicial space BCy and the usual
CW-complex, C(f) ~ M, defined by the Morse function f. In §5 we describe the details of
the gluing constructions. The particular approach we take toward this gluing was worked
out by Marty Betz and will appear in his thesis [1]. Finally in §6 we prove that BCy is
homotopy equivalent to M for a general Morse function.

We would like to thank Marty Betz, Tom Mrowka, Paul Norbury, Dietmar Salamon,
Mark Sanders, and Joel Robbin for many helpful conversations about this work.
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§2 THE ENDS OF THE MODULI SPACE OF FLOW LINES

Throughout this section we assume that M is a closed Riemannian manifold and that f :
M — R is a Morse-Smale function. In this section we describe the ends of the moduli space
of flow-lines M(a,b) and relate its compactification to the space of piecewise flow-lines
described in the last section. We then use this analysis of the ends of M(a,b) to construct
a combinatorial model R for the manifold M. We show that Ry is homeomorphic to the
classifying space BCy in the next section.

Using Smale’s partial ordering described in §1, we say that a sequence a = (ag, -+ , aj41)
of critical points is ordered if a; > a;41 for all 2. Given such a sequence we define

s(a) = ap,
e(a) = Al41,
I(a) =1,
M(a) = M(ag,a1) x -+ x M(ar,ar41).

We now describe the ends of the spaces of flow-lines M(a, b) in terms of a gluing construc-
tiomn.

Theorem 2.1. There exists an ¢ > 0 and maps
s (0,2] x Ma,ar) x Mlar, b) — M(a,b),

which we write as
(t771772) — 71 9t Y2,

such that:
(1) The map p satisfies the following associativity law

(’71 Os 72) Ot Y3 = 71 Os (72 O¢ 73)

for all s, t < e.
(2) Let a be an ordered sequence with s(a) = a, e(a) = b, and l(a) = [. Then the map

1 (0,¢]' x M(a) — M(a,b)
defined by

(817"'731;707"'771)H70 Os1 Y1 Osy " Og; VI

is a diffeomorphism onto its image.

(3) Define K(a,b) C M(a,b) to be

K(a,b) = M(a,b) = | ((0.2)' x M(a))
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where the union is taken over all ordered sequences a with s(a) = a, e(a) = b, and
I(a) > 1. Then K(a,b) is compact.
(4) There are homeomorphisms

M(a,b) = M(a,b) U, | 0.2]' x M(a)
M(a,b) = K(a,b).

We discuss this result in §6.

Theorem (2.1) shows that the ends of the moduli space M(a,b) consist of unions of
half-open cubes parameterized by composable sequences of flow lines. The compact space
K(a,b) is formed by removing the associated open cubes. The compactification M(a,b)
is formed by formally closing the cubes or, equivalently, by formally adjoining the piece-
wise flows as described in the previous section. It follows that K(a,b) and M(a,b) are
homeomorphic.

It also follows from Theorem (2.1) that

}i_f%’h Ot Y2 = Y1 072

where o is the composition of piecewise flow-lines described in §1. In view of this fact we
will often use the notation oq for o.

The homeomorphism between K(a,b) and M(a,b) allows us to define the category Cy
in two equivalent (isomorphic) ways. The first way, described in the previous section, is
to define the space of morphisms between critical points @ and b to be M(a,b), and the
composition law is given by

M(a,b) x M(b,c) — M(a,c), (71,72) = 71 90 72-

The second is to define the space of morphisms between critical points a and b to be K(a, b),
and this time the composition law is given by

K(a7b) XIC(Z),C)—>IC(CL,C), ('717'72)_>'71 Oc V2.

We now use Theorem (2.1) to produce a combinatorial model Ry of the manifold M.
We begin by describing a filtration of the spaces M(a,b). By scaling if necessary, we can
assume that the constant ¢ in the statement of Theorem 2.1 is 1. If v; € M(a,a;) and
v2 € M(ay,b), then the parameter ¢ € (0,1] in the flow 1 04 72 € M(a,b) can be viewed
as a measure of how close this flow comes to the critical point a;. This interpretation will
become clearer in the proof. Thus the fact that the pairing p is a diffeomorphism onto its
image allows us to view the space K(a,b) as the space of flows that stay at least 1 away
from all critical points other than ¢ and b (in this undefined measure).

Next we look at the curves in M(a,b) which get within distance 1 of at most one

intermediate critical point. More generally we can filter the space M(a, b) by saying that
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a curve in M(a,b) has filtration k if it gets within distance less than 1 of at most &
intermediate critical points. We now make this description precise.
For any ordered sequence a = (ag, ..., a;+1) of critical points define

K(a) = K(ag,a1) x -~ % K(a, ar1).
Now define
K9a,b) = K(a,b)
K® (a,b) = | u <[0, 1]/@ /C(a)> .

s(a)=a,e(a)=b,l(a)<k

In the definition of KX(¥)(a,b) we interpret p ([0, 1]1®) IC(a)) in the case where [(a) = 0,
that is a is the ordered sequence (a,b), to be K(a,b). Thus

K*=Y(a,b) ¢ K®(a,b),
and v is in IC(k)(a, b) if and only if 4 can be decomposed as

Y =70 0s; " O5; VI

where v; € K(ai,a;41), 0 < s; <1, and [ < k.
Notice that

(1)
JKM(a,b) = M(a,b).

(2)
K% (a,b) — K*EV(q,b) = | | [0,1)% x K(a),

s(a)=a,e(a)=b,l(a)=k
and from (1) it follows that the map
|| [0.0"® x K(a) — M(a,b)
s(a)=a,e(a)=>b

defined by
(317“‘ 78[;’)/07“‘ 7/')/1) _),.)/0 081 ...Osl f)/l

is onto. Therefore M(a,b) can be recovered by imposing an equivalence relation on the
above disjoint union. From (2) it follows that this equivalence relation is generated by

(815 ey Simty Ly Sigtyee s SV ey V)

(815 ey Sim Ty Sidly e vy S VLy ey Viel O1 Yiye - sY1)-

Note that the relations only involve the faces of the cubes [0,1]4®) which do not contain
the point (0,...,0). From this argument we draw the following conclusion.
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Theorem 2.2.

M(a,b) =] ][0,1)" x K(a)/ ~

a

The next step is to go from this description of the spaces M(a,b) to one of the manifold
M. Recall that, by definition, M(a,b) consists of continuous curves

v [f(D), fla)] = M
which satisfy (1.2) and (1.3). Thus we get a map
 [f(b), fla)] x M(a,b) — M

whose image is the closure of the space W(a,b) C M.
Let us simplify the notation slightly by writing

To=[fle(a)) fls(a))), I = [0,1)/.

Then the previous observation shows that the map

| |7a < I* x K(a) = M

defined by
(t;slv"' y S1,%0, " 771) I (70 Osy """ Os ’Vl)(t)

is onto. Once more it is not difficult to extract the appropriate equivalence relation on the
disjoint union.

Define
(2.3) Rp=||JaxTI*xK(a)/ ~
a
where the relations ~ are given by
(24) (t;slv"' 78i—17173i+17"' y SUy Y0, 771) ~
(t;slv"' 3 Si—15Si4+15" " 5 SL;Y0y " 5 7Y05 0 5 Vi—1 O1 Viy - 771)
and
(25) (t;slv"' 78i—17073i+17"' y SUy Y0, 771) ~
{ (tis1, 0y Sic1370, 7 Yim1)y ift € [f(a;), f(ao)]
(t;Sig1, - 58t Yigt, o), it € [flagr), flaq)]
The map ¢ respects the equivalence relation ~ so gives a well defined map
Ry — M.

An elementary analysis now shows that all the identifications which can take place are
consequences of (2.4) and (2.5). This leads to the following theorem.

Theorem 2.6. The map
¢: Ry — M

is a homeomorphism.
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§3 THE CLASSIFYING SPACE OF A MORSE FUNCTION

In this section we continue to assume that f : M — R is a Morse-Smale function. The
goal of this section is to prove the following theorem.

Theorem 3.1. There is a natural homeomorphism
Y : Ry — BCy.

where Ry is as in (2.3).

In view of Theorem (2.6) this shows that BCy is homeomorphic to M.
Recall from [7] that the classifying space of Cy is given by

BC; =A™ x M(a)/ ~

where A" is the standard n-simplex. The identifications ~ are given by the following rules.

If t € Al® and « € M(a), then

(t, di(2)) ~ (6:(2), )

and if + € Al@+2 4nd 7 € M(a) then

(t,5(2)) ~ (aj(t), ).

Here
i — is the inclusion of the i-th face;
1) &; : A" — A"T! s the inclusion of the i-th face;
(2) oj: A" — A" is the j-th degeneracy, given by projecting linearly onto the j-th
face;
(3) di : M(ag,...,a141) — M(ag,...,ai—1,0i41,...,a;41) is given by
) =

(Y1 V) for e =0
di(Yo, -y 71 (Yo, »7i OYig1, - yn) for 1< <1
(Yo, Y1) for 1 = 1.
(4) sj: M(ag,...,ai41) — M(ag,...,aj,a;j,...,a;41) is given by
3]‘(707"' 771):(707"'7j7177j+17"' 771)

Recall that R is the union of spaces of the form
Ja x I* x K(a)

where a = (ag, -+ ,a;41) is an ordered sequence of critical points. Recall also that the
spaces K(a;_1, a;) are homeomorphic to the compactified spaces M(a;_1, a;) in such a way
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that the composition in the category corresponds to oy. Thus the construction of Ry is
very similar to that of BCy, the main difference is that Ry is constructed from the cubes
Ja x I* whereas BCy is constructed from simplices. The main point in the argument to
prove Theorem (3.1) is to show that the equivalence relations used to define Ry can be
imposed in two steps; the first step turns the cubes into simplices and the second step
imposes the identifications among the simplices that make up BCy.

Proof of 3.1. First we look at the image of a single cube
Ja X It = Ja X I* X (70, , Y1),

where a is the ordered sequence (ag, ..., a;41), in the quotient space Ry¢. For each ¢ with
0 <2< I1+1 define

a; = (ag, - Gi—1,Qix1," - A141)
and a map

Qi+ Ja, x I™1 — Jo x I
by the formula

(150,81, ,81-1), ifi =0
ai(t;slv"'vsl—l): (t;slv'”78i—17178i7"'731—1)7 fOI']_SZSZ
(t;81,-++,81-1,0), ifi =1+ 1.
Now consider the spaces
Jax I ~

where we make the following list of identifications: If 1 < <[, so that J, = J,,, then

(3.2) (t381,- - 8i-1,0, 841, , 1)
(tis1, oy sic1, 0554, -s7)  iff € [f(ai), flag)]
N { (t8h, e85 0. 0osigns - ys1), it € [flargq, flai)];
if2=0,141 then

(t;07327"' 781) ~ (t7073l273?) ift € [f(a1)7f(a0)]

(3.3) , , ‘

(t;slv e 731—170) ~ (t;slv e 781—170) ift € [f(al-l-lval)];
finally
(3.4) (flaig1);s1, o 81) ~ (flaig1); sy, 587

(f(ao;Sl,"' 781) ~ (f(ao);sllv"' 732)‘

It is straightforward to check that if two points in J, x I® are identified then they have
the same image in Ry¢. So we can construct Ry from the spaces Jo x I*/ ~. However
the space Jo x I'/ ~ is naturally homeomorphic to an (I 4 1)-simplex, and using these
homeomorphisms the map 9; corresponds to the map ¢;, that is the inclusion of the ¢-
th face. More precisely, we have the following combinatorial result, whose verification is
straightforward.
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Lemma 3.5. There are homeomorphisms
ha:Ja X I®) ~ — A1
which make the following diagrams commute

Jax 8]~ 12y Al

a,w Tai

Ja, X %) o ——— Al
ha.

?

At this stage we have used up the first relations (2.5) in the definition (2.4) of Ry.

Now we impose the relations (2.4) to get the following result. Once more the proof is
straightforward.

Lemma 3.6. There is a homeomorphism

Ry | |A@H < K(a)/ ~

a

where, in the coordinates for A™ given by

An:{(31,...,8n)€R":0§3i§1, and Z‘Sigl}v

=1

(307... 285150, 8541, 3 S Y0, 7’71) ~
(51, si71, M) ifi=0
(307... Sl Sid1s 5 SIV0, 5 Vie1 O1 %7...71) if1 §i§1—1
(S0, 5 SI=1:%0, "+ »Yi—1) ifie=1

We can now complete the proof of Theorem (3.1). First we must regard the category Cy
as the category with spaces of morphisms K(a,b) and composition law defined by o;. Now
recall that we are assuming that the sequence a is strictly ordered, that is a = (ag, ..., a;41)
with a; > a;41 using Smale’s partial ordering. If we now compare the model for Ry given
by Lemma (3.6) with the definition of BCs we see that the difference is that in Lemma
(3.6) we have used the space of non-degenerate simplices rather than the space of all
simplices. Thus using Lemma (3.6) we have constructed a map

Ry — BCf.
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Now using the following two properties of Cy

(1) the only morphism in Cy from the object a to itself is the identity,
(2) if a1,y :a — b, az, P2 : b — ¢ are morphisms in Cy such that

0420041:52051

then it follows that

ay = B, ay = [,

one simply verifies that the map

Ry — BCf.

is a bijection with an obviously continuous inverse. [

We end this section with an illustrative example. Let M be the torus M = S x S!. Let
f M — R be the height function of the torus which is tilted slightly off its vertical axis.
That is, think of the torus standing on the floor at an angle slightly less than 7 /2 with
the floor. (We cannot use the usual height function on the vertical torus since it does not
satisfy the Morse-Smale transversality condition.) See Diagram (3.7) for the flow defined
by the height function on the tilted torus.

DIAGRAM (3.7)

There are four critical points: a (index 2), b, ¢ (index 1), and d (index 0). As the
figure shows, the moduli spaces M(a,b), M(a,c), M(b,d), and M(c,d) each consist of
two distinct points. We denote these flows by «;, 3;, v;, and 6; respectively. A point on
the torus not lying on any of these flows is on a flow in M(a,d). The space M(a,d) is
1-dimensional; it is the disjoint union of four open intervals. Thus K(a,d) & M(a,b) is the
disjoint union of four closed intervals. If the torus is viewed in the usual way as a square

with opposite sides identified, then the flow can be drawn as in Diagram (3.8).
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DIAGRAM (3.8)

Now consider the simplicial description of the classifying space BCy. The vertices cor-
respond to the objects of the category Cy, that is the critical points, and so there are four
vertices. There is one 1-simplex (interval) for each morphism (flow line), glued to the ver-
tices corresponding to the start and end of the flow. The points in K(a,d) = M(a,d) index
a l-parameter family of 1-simplices attached to the vertices labelled a and d. There is a
2-simplex for every pair of composable flows. There are eight such pairs (coming from the
four points in each of the product moduli spaces M(a, b) x M(b,d) and M(a,c)x M(c,d).)
A 2-simplex labelled by a pair of flows, say («, ) will have its three faces identified with the
1-simplices labelled by «, 3, and «oq 3 respectively. Diagram (3.9) illustrates the resulting
decomposition of the classifying space and gives an explicit example of the homeomorphism
between the classifying space of C; and the underlying manifold M.

DIAGRAM (3.9)
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§4 RELATIONSHIP WITH THE MORSE COMPLEX

One of the classical results of Morse theory is that if M is a closed manifold and
f: M — Ris a Morse function, then M is homotopy equivalent to a CW-complex C(f)
with one cell of dimension r for each critical point of index r. The associated cellular chain
complex is the Morse complex

B o) S G () S

where C,(f) is the free abelian group generated by the critical points of index r. The
homology of the Morse complex is H,(M). In this section we show how to obtain the
Morse complex from the classifying space BCy. We assume that we have chosen a metric
in M such that the gradient flow of f satisfies the Morse-Smale transersality condition.

For each integer k& > 0 let C’; be the full subcategory of Cy whose objects are the critical
points a of f with A\, < k. Here, as in §1, A, is the index of the critical point a. The term
full means that the space of morphisms between any two objects a and b in the subcategory
C% is the same as the space of morphisms in Cy. On the level of classifying spaces we get
a filtration

BCy C BC; C--- C BC§ C BCj*' -+ C BCy = M.

We refer to this filtration as the index filtration. The index filtration gives a spectral
sequence converging to H,(M), which we refer to as the index spectral sequence.

We use the notation Crit, for the set of critical points of f with index r.

Theorem 4.1.

(1) There is a homotopy equivalence
k k=1 . k
BCy/BCy ™ ~ \/ Sk
a€Crity

(2) In the index spectral sequence

Derir, Z s =0

s __ r r—1y _
By = Hres(BC; BC) = { 0 if s> 0.

d Er d Er— d
’ - 1’ - 1 ’ -

is the Morse complex

B ) B Coma(f)
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It follows from Theorem (4.1) that

- {HT(M) ifs=0
E)° = )
0 ifs>0

and the spectral sequence collapses at E5.

To prove Theorem (4.1) we recall some standard material from Morse theory on how
the function f gives rise to a CW-decomposition of M | see [4].
Let f: M — R be a Morse function and, for t € R, let

M' = fY(—o0,t] C M.

Let ¢ € R be a critical value and let ay,--- ,ar be the critical points with f(a;) = ¢. Let
A; be the index of a;. Choose £ > 0 be such that ¢ is the only critical value in the open
interval (¢ —e,c+¢). Asin §1, let W*(q;) = R"~ and W*(a;) = R* be the stable and

unstable manifolds of a;.

Theorem 4.2. The inclusion of the subspace
M UW"(a)U---UW"(ag) — Mte

is a strong deformation retract.

This theorem allows one to define, in the obvious way, a CW-complex C(f) homotopy
equivalent to the manifold M whose cells correspond to the unstable manifolds of the
critical points of f. See [4] for details.

We now proceed with the proof of Theorem (4.1). Recall that the homeomorphism
BCy = M 1is defined via two homeomorphisms:

Ry — M, Ry — BCy
where, see (2.4), (2.5) and (2.6),

Rp=||JaxI*xK(a)/ ~.

Define the index filtration of R by letting R’)‘é be as above except that the union is taken
over sequences a such that

Ay < &

where ag is the starting point s(a) of the sequence a. The proof of Lemma (3.1) shows
that
k ~ k

Thus it is enough to prove Theorem (4.1) with BC’; replaced by R’)‘é. We choose to do this
is because the homeomorphism

¢: Ry — M
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is explicitly given. In particular, the restriction of ¢ to Jo x I* x K(a) is given by

@ty sty 5 s53%0 ) = (0 01 - 05 Y)(1).

Here recall that given the ordered sequence of critical points a = (ag,- - ,a;41) then
Ja = [f(ait1, flao)].

To make things clearer, assume that f has exactly one critical point ay of index k. Then
the space R’}/le‘é—l is a quotient of

|_| Ja x I'® x K(a)

s(a)=aq

where the disjoint union is taken over all ordered sequences of critical points a with starting
point s(a) equal to the critical point ag. In general the disjoint union would be taken over
all sequences that start at any critical point of index k.

The image of this disjoint union, under ¢, is precisely the set of all points in M that lie
on a piecewise flow-line which starts at the critical point ag. This is the closure W*(ag)
of the unstable manifold of ag. On the other hand, the (point-set) boundary of W*(aq) is
given by

OW ™" (ag) = W"(ao) — W"(ao) = | JW*"(b)

where the union is taken over critical points b with M(ag,b) # 0. But each such critical
point b must satisfy Ay < k — land so it follows that W*(ag) — W"(ag) is in the image of
R’;_l under ¢. Thus we obtain homeomorphisms

Ry —RET =W (ay) ~ R*
RE/RG = W(ap)/OW"(ag) = S*.

This proves the first statement of Theorem (4.1).
The dy differential in the index spectral sequence is computed by studying the homotopy
class of the attaching map

k—1 k—1 k=1 /pk—2 k—1
SR SRR~ ) SR

Critgp_1

The above identification of the strata Rgc —Rgc_l of the index filtration of Ry with the union
of the unstable manifolds of the critical points of index ¢, together with the procedure for
constructing the CW-complex C(f) from the deformations in Theorem (4.2), see [4], shows
that this attaching map is the relative attaching map in the CW-complex C'(f) associated
to the Morse function f. The rest of Theorem (4.1) now follows.

The index spectral sequence arises from a topological filtration of M = BCy, so we get
corresponding spectral sequences for any (generalized) homology theory. However in the
general setting one would not expect the spectral sequence to collapse.
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65 THE GLUING THEOREM

In this section we discuss the proof of Theorem (2.1). So as in the statement of that
theorem we will assume throughout this section that f : M — R is a Morse-Smale function
on a closed Riemannian manifold M.

As discussed in §2, this theorem describes the ends of the moduli space M(a, b) in terms
of piecewise flow lines. Of course this description is classical and essentially follows from
the transitivity property proved by Smale in [8]. This property says that if a, b, and ¢ are
critical points with @ > b and b > ¢, then a > ¢. That is, if there is a flow from «a to b, and
one from b to ¢, then there is a flow from « to ¢. Indeed it was shown in [8] that there is
a flow from a to ¢ which comes arbitrarily close to the piecewise flow determined by the
flows from a to b and from b to ¢. More precisely it was shown in [8] that the closure of
the space W (a,b) of points lying on flows between a and b is given by

W(ab)= |J W(a5)

a>a>03>b

This result can certainly be used to describe the ends of the moduli space M(a,b).
However for our purposes, we need something stronger, the existence of a pairing

2 (0,e] x M(a,ar) x M(ap,b) — M(a,b), (t,91,72) — 71 0t 72

that satisfies properties (1)-(4) of Theorem (2.1). A particularly important property is the
associative property (1),

(’71 Os 72) Ot Y3 = 71 Os (72 O¢ 73)-

We outline a proof of this theorem; full details are to be found in [1]. There are two main
steps, the first is to establish the existence of local diffeomorphisms p and the second that
they can be chosen to satisfy the associativity condition. The existence of the diffeomor-
phisms @ (0,e] x M(a,b) x M(b,¢) — M(a,c) follows from an analysis of the space of
flow lines M(a, ¢) that pass near the intermediate critical point b. This is established using
the following two lemmas both of which are proved by arguments similar to those in [8]
involving the Morse Lemma, the Unstable Manifold Theorem, and standard transversality
arguments.

Let p be a critical point of f having index A, and let a and b be critical points with
a>p>b. Let ¢ = f(p) be the corresponding critical value. The first lemma describes the
structure of W"(a) and W*(b) in a neighbourhood of p and the second lemma refines this
to describe the local structure of the moduli space.

Lemma 5.1. There exists a neighborhood V(p) of p in M, a real number 6 > 0 and
natural diffeomorphisms

(W*(a) N V(p) N F~' (e = §) = M(a,p) x RN
(WD) NV (p) N f e+ 8) = R"P) x M(p,b).
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Let V(p) and ¢ > 0 be as in the Lemma (5.1). Let V;(p) be the complement of the axes
(i.e the stable and unstable manifolds of p) in V(p),

Vo(p) = V(p) = (W"(p) UW*(p)) = V(p) = (DXP)(8) x {0} U {0} x D" A0)(8)).

Now for —§ <t <6, let Vi(p) = Vo(p) N f~1(¢). Similarly let M*(a,b) = W(a,b)N f~1(¢).
The next result describes M*(a,b) N V(p). This is the part of the moduli space M(a,b)
that comes close to the critical point p. Notice that this intersection equals M*(a,b) N
Vo(p) = W(a,b) N V{(p). In this lemma we view the moduli spaces M(a,p) and M(p,b)
as submanifolds of the spheres S*»~1 and S"~*~1 respectively, and let cl(M(a,p)) and
cl(M(p,b)) be their closures.

Lemma 5.2. There is a natural embedding
MP(a,b) NV (p) — ST % ST 5 [0,1/6)

whose point-set boundary is given by cl(M(a,p)) x cl(M(p,b)) x 0. Moreover there is a
subneighborhood N(p) C V(p) of p in M, an € > 0, and a diffeomorphism

cl(M(a,p)) x el(M(p,b)) x [0,] = cl(M®(a,b) N N(p))
that extends the inclusion of the boundary cl(M(a,p)) x cl(M(p,b)) x 0.

We now discuss how this lemma is used to prove Theorem (2.1). Lemma (5.2) allows
us to find an ¢ > 0 and embeddings

o M(ayar) X - X M(apm,b) x (0,e] = M(a,b).

This can be done for any sequence of critical points @ > a3 > -+ > a,, > b. We will show
that these embeddings can be chosen to satisfy the associativity property (1) in Theorem
(2.1) below. In any case the existence of these embeddings (however they are chosen)
allows us to verify the remainder of Theorem (2.1) as follows.

The fact that M(a,b) U, [J[0,<]' x M(a) is homeomorphic to the space M(a,b) of
piecewise flow lines follows immediately from Lemma (5.2).

Define K(a,b) as in statement (3) of Theorem (2.1). The fact that M(a,b) and K(a, b)
are homeomorphic also follows from Lemma (5.2). To obtain K(«a, b) we must remove spaces
of the form M(a,b) N N(p) from M(a,b), where p is an intermediate point, a > p > b.
Now assume the neighborhood N(p) is a ball of radius ¢ > 0 about p, and let B(p) be a
concentric ball of of radius e; < ¢ with closure B(p). By Lemma (5.2)

M(a,b) N (N(p) — B(p)) = M(a,p) x M(p,b) x [e1,¢)

and so
M(a,b) — N(p) = M(a,b) — B(p)
= (M(a,b) = N(p)) U(M(a,b) N (N(p) — B(p)))
= (M(a,b) — B(p)) U M(a,p) x M(p,b) x [e1,¢)
= M(a,b) U, M(a,p) x M(p,b) x[0,¢).
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These homeomorphisms give the homeomorphism between K (a,b) and M(a, b).
The fact that K(a,b) is compact follows from the the fact it can be identified with

M(a,b), the space of piecewise flow lines from a to b, which is a compact subspace of

Map([f(b), f(a)], M).

We are done with the proof of Theorem (2.1) except for associativity. We need to choose
the embeddings

p:(0,e] x M(a,p) x M(p,b) — M(a,b)
(t771772) — 71 Ot Y2

so that they satisfy the required associativity law

(’71 Os %) Ot Y3 = 71 Os (’Vt O¢ 73)-

To prove that such embeddings exist we use induction on the relative index A(a,b) =
Aa — Ap, or equivalently the dimension of the moduli space M(a,b). So assume that
the appropriate associative embeddings have been constructed for all moduli spaces of
dimension < m = dim(M(a,b)). For a set of critical points ay,--- ,ar witha > a3 > -+ >
ar > blet M(a,b)q, ... a, C M(a,b)be those flows that pass through all the neighborhoods
N(ay), -+ ,N(ay) occuring in Lemma (5.2). Notice that M(a,b), = M(a,b) N N(p) and
so Lemma (5.2)

M(a,b)q, . .ap ZM(a,a1) x - x M(ag,b) x (0,e)",
For a critical point p with a > p > b we will construct homeomorphisms
p=pp : Ma,p) x M(p,b) x (0,¢) — M(a,b),

so that the appropriate associativity rules hold. Actually we will construct them on the
level of compactifications

tp : M(a,p) x M(p,b) x [0,e] — M(a,b),.
Assume that for critical points ¢ with p > ¢ > b the homeomorphisms
pq = M(a,q) x M(g.b) > [0.€] = M(a.b),
have been defined so that
/~Lq($7 Mr(yv z, 8)7 t) = MT(Mq(xv Y, t)? <, S) € M(CL, b)q,r

whenever ¢ > r > b. This inductive assumption forces the definition of y, when restricted
to

(Ma.p) % U(AM(p,b) x [0.2]) U (M(a,p) x M(p.b) x 0)
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where v(d(M(p,b))) is a collar of the (point-set) boundary dM(p,b) = M(p,b) — M(p,b).

By the inductive assumptions, we have already chosen a homeomorphism

e JMa) x [0, = v(d(M(p, b))

where the union is taken over all ordered sequences of critical points a of length [ > 1
having s(a) = p and e(a) = b.

On this subspace y, is defined as follows. On the space M(a,p)x M(p,b)x{0}, p1,, is the
inclusion of the boundary of the embedding M(a,b) N N(p) — S*» ! x S"=*~1 % [0,1/)

given in Lemma (5.2). On an element

(x,y,1) € M(a,p) x v(d(M(p,b)) x [0,¢]
pp(x,y,t) is defined as follows. Since y € v(9(M(p,b)), y can be expressed in the form y =
ttq(u, v, s) for some critical point ¢ with p > ¢ > b and (u,v,s) € M(p,q) x M(q,b) x [0,¢].
We then define

(5.3) pp(,y,t) = pg(pp(z,u,t), v, s).

This makes sense because the right hand side has already been defined by the inductive
assumptions. Moreover by the associativity properties in the inductive assumptions this
definition is independent of how y € v(9(M (p, b)) is represented in the image of a u map.
Notice that the definition in (5.3) is forced upon us in order to satisfy the associativity
property.

We therefore have a well defined embedding

(54) iy (Mla,p) % v(d(M(p,B) x [0,2]) U (M(a.p) x M(p.B) x {0}) < M(a,b),.

Let
Mp : M(G,p) X M(pv b) X [076] i) M(CL, b)P

be any homeomorphism that extends the embedding (5.4). (Recall that as observed before
lemma 6.4 implies that M(a,b), is diffeomorphic to M(a,p) x M(p,b) x [0,e]). The
existence of such a homeomorphism is equivalent to the existence of a self-homeomorphism
of M(a,p) x M(p,b) x [0,¢] that extends the identity on M(a,p) x M(p,b) x {0} and a
particular given level preserving homeomorphism on M(a,p) x v(d(M(p,b)) x [0,¢]. By
using a standard collaring argument it is easy to see that such a self homeomorphism
exists.

Notice that by (5.3) the definition of p, satisfies the inductive assumptions and so the

proof of Theorem (2.1)is complete.
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§6 THE CLASSIFYING SPACE OF A MORSE FUNCTION
The goal of this section is to prove the second part of the main theorem which is restated

as follows.

Theorem 6.1. Let M be a closed Riemannian manifold and f : M — R a Morse function.
Then there is a homotopy equivalence BCy ~ M.

Note that in this theorem we are not assuming that f satisfies the Morse-Smale transver-
sality condition. The proof uses only general constructions with categories and classifying
spaces. Thus it is independent of the previous sections, in particular of the glueing theorem
in §5.

Let C be a small category. Following [5] define a subdivision of C, sd(C) as follows:
Objects. The objects of sd(C) are the morphisms in C.

Morphisms. Let v; : a3 — by and v2 : ag — by be objects in sd(C). A morphism from
41 — 79 consists of a pair of morphisms in C

o ay — ag, B by — by
such that the following diagram commutes

T
ay ————— bl

I

ayg — bz.
V2

The composition law is the natural one.
Thus in the case of Cy there is a nontrivial morphism between two piecewise flow lines,
~v1 and 79, if 41 can be written in the form

Y1 =070 f.

If such a decomposition exists it is unique and so if there is a morphism in sd(Cy) from 4
to 72 then it is unique.
The following lemma is proved in [5].

Lemma 6.2. There is a natural homotopy equivalence
BC ~ Bsd(C).

For technical reasons we need to enlarge the category sd(Cy). Define s~d(Cf) as follows:

Objects. The objects of s~d(Cf) are pairs (v, 2) where v is a piecewise flow line and x is
a point on ~.
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Morphisms. There are no morphisms from (71,21 ) to (72, 22) unless x1 = x5, If 1 = 24
then the morphisms from (y1, 1) to (y2,22) are the same as the morphisms from v; to 72
in the category sd(Cy).

There is an obvious functor

U :sd(Cp) — sd(Cy)
given by forgeting the preferred point. This functor induces a map of classifying spaces
B : Bsd(Cs) — Bsd(Cy).

Lemma 6.3. The map BV : Bs~d(Cf) — Bsd(Cy) is a homotopy equivalence.

Proof. The map induced by the forgetful functor ¥ on the space of chains of composable
morphisms of length n is a fibration with contractible fibres and therefore a homotopy
equivalence. Standard machinery from the theory of simplicial spaces now shows that BW¥
is a homotopy equivalence. O

JFrom the manifold M construct a category M whose objects are the points of M and
whose morphisms consist only of the identity maps. Thus there are no morphisms in M
from z to y if ¥ # y. It is clear from the construction of the classifying space that

BM = M.

There is a functor © : sd(Cy) — M defined by sending (v, ) to z and this induces a map
of classifying spaces

BO : Bsd(Cy) — BM = M.

In view of Lemma (6.3), to prove Theorem (6.1) it suffices to show that this map is a
homotopy equivalence. To do this we will construct an explicit homotopy inverse. As in
§1, given x € M let v, to be the flow line through . Then the assignment

r = (72, 7)

defines a functor

r - M— s~d(Cf).

Theorem 6.4. The induced maps
BO : Bsd(Cj) — BM =M, BT :M = BM — Bsd(Cy)

are inverse homotopy equivalences.

Proof. Tt is obvious that © o I' is the identity functor of M. To prove that the composite
BT o BO is homotopic to the identity map of Bsd(Cy) it is sufficient, by [7], we construct
a natural transformation from the identity functor to the composite I" 0 ©.
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The composite I" 0 © sends the object (w,x) to (v,,2) and it sends every morphism to
the identity morphism. Since x is a point on w it follows that the flow line ~, is a segment
of the piecewise flow line w. Therefore there is a unique decomposition of w as

w=a«aovy, 003

where « and [ are piecewise flow lines. Note that if = is a crtitical point of f then x is
a fixed point of the flow and the above equation simply means that e(«) = s(3) = « and
w = a o 3. The pair («, 7) give a morphism

(o, B)  (w,2) = (Yo, @)
in the category s~d(Cf) and we define

N(w,z) = (a,3) : (w,2) = (72, ).

We now check that A gives a natural transformation of the identity functor to the functor
I' 0 ©. To do this suppose that (6,¢) : (wy,21) — (w2, x2) is a morphism in sd(Cs). Then
it must follow that

wy =060ws0¢, Tl = To.
Let us write z for the point 1 = 5. Then as above we get unique decompositions
w1 = a1 09y 0 B, w2 = a2 0795 0 Ba.
Therefore it follows that
Wi =1 07,03 =00q07,0[0¢.

By uniqueness it follows that «y = 6 0 s, 1 = 2 0 ¢ and therefore

N(wlvxl) = (051761)
= (6o, fPr0¢)
= (6,2) o N(wa, x2).

Since the functor I' 0 © sends every morphism to the identitiy morphism the following
diagram commutes

(6,¢)

(wi,21) —— (w2, 22)
N(“’hﬁ)l lN(“’%x?)
[(O(wi,71)) ———— T(O(wq, 72)).
I'(©(é,¢))

Thus N is indeed a natural transformation from the identity functor to I' o ©® and so the
composite BI' o BO is homotopic to the identity.
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