
1341HS Morse Theory

1 Introduction

1.1 Morse functions

Let M be a smooth manifold. Given f ∈ C∞(M,R), its differential df is a section of T ∗M. The zeros of this

section are called critical points of f , and form the subset Crit(f ) ⊂ M; the values of f on Crit(f ) are called

critical values. All other points and values are called regular. Always remember that if c is a critical value, not

all points in f −1(c) need be critical.

We now define the Hessian of f , which is a symmetric bilinear form on the tangent space of a critical point:

Definition 1. The Hessian D2
pf ∈ Sym2T ∗pM of a function f at a critical point p ∈ M is defined via

D2
pf (X, Y ) = X(Y (f ))|p = Y (X(f ))|p, (1)

for any vector fields X, Y . Note that [X, Y ](f )|p = df ([X, Y ])|p = 0 since p is a critical point, and also that

D2
pf depends only on the values of X, Y at p, by the second and third terms, respectively, in (1).

Exercise 1. Show that if the first k terms (starting with the zeroth order term) of the coordinate Taylor

expansion of a section of a vector bundle E vanish, then the k th order term will be a well-defined (i.e. coordinate-

independent) tensor in SymkT ∗pM ⊗ Ep. This is most easily seen through the properties of the so-called jet

bundles JkE.

Exercise 2. The tangent space H to the image of the section df ∈ Γ (M,T ∗M), at the point (p, 0) ∈ T ∗M
(for p ∈ Crit(f )), is a subspace of the tangent space T(p,0)T

∗M. Show that there is a natural isomorphism

T(p,0)T
∗M = TpM ⊕ T ∗pM, and that the subspace H defines a map TpM −→ T ∗pM which coincides with the

map X 7→ (Y 7→ D2
pf (X, Y )).

Definition 2. p ∈ Crit(f ) is nondegenerate when D2
pf is nondegenerate, i.e. the symmetric map D2

pf : TpM −→
T ∗pM is an isomorphism. By Exercise 2, this is equivalent to the requirement that df ∈ Γ (M,T ∗M) intersect

the zero section transversally at (p, 0).

Remark 1. Recall that transversality of subspaces U, V of the vector space W is the condition that U+V = W ,

without requiring that the sum be a direct sum.

Definition 3. A Morse function f ∈ C∞(M,R) is a function all of whose critical points are nondegenerate.

In view of the definition of nondegeneracy as a simple transversality, we see that this definition may be

rephrased as saying f is Morse iff df intersects the zero section transversally. Since the transversal inter-

section of embedded submanifolds of codimension k, l yields an embedded submanifold of codimension k + l ,

we immediately obtain the following result:

Proposition 1.1. The critical locus Crit(f ) of a Morse function is an embedded 0-dimensional submanifold of

M, so that the critical points are isolated. If M is compact, there must be finitely many critical points.

Proof. If f is a Morse function on the n-manifold M, then the images of df and of the zero section are two

embedded codimension n submanifolds of T ∗M which intersect transversally. Hence they intersect in a zero-

dimensional embedded submanifold. By the definition of embedded submanifolds, each point has a regular

neighbourhood, and is hence isolated.

Remark 2. If M is compact, then not only must there be finitely many critical points, but there must be at least

one (two if dimM > 0), since the minimum and maximum value must be achieved, and these are automatically

critical.

Nondegenerate symmetric bilinear forms on a n-dimensional vector space V are classified by the signature

(Sylvester’s signature theorem), or equivalently we will classify them by the maximal dimension of a subspace

U ⊂ V on which the bilinear form is negative-definite. Using this, we obtain a numerical invariant at each critical

point of a Morse function.
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Definition 4. The Morse index λp of a critical point p ∈ Crit(f ) is the maximal dimension of subspaces U ⊂ TpM
on which D2

pf is negative definite. It is an integer between 0 and dimM which indicates the number of directions

in which f is decreasing. In still other words, it is the number of negative entries in the diagonalization of the

bilinear form D2
pf .

It will be convenient for us to package the data of the Morse indices in a generating function, called the

Morse polynomial:

Mt(f ) =
∑

p∈Crit(f )

tλp =
∑
λ

µf (λ)tλ,

where the coefficients µf (λ) are simply the number of critical points with index λ – these are known as the

Morse numbers of f . This generating function may even be used in cases with infinitely many critical points, as

long as there are only finitely many critical points of a given index.

Example 1.2. Let f = x0 be the height function on the sphere Sn = {
∑n

0(x i)2 = 1} ⊂ Rn+1. Then

Crit(f ) = {N,S} consists of the North and South poles. Furthermore λN = n while λS = 0, and

Mt(f ) = 1 + tn.

Example 1.3. Let f and g be Morse functions on M,N respectively. Consider the product M × N, with its

projection maps pM , pN to M,N respectively. Then p∗M f + p∗Ng is a function on M × N, whose derivative

p∗Mdf + p∗Ndg vanishes on Crit(f ) × Crit(g), and given such a critical point (p, q), we have the Morse index

λp + λq. Hence we see that

Mt(p
∗
M f + p∗Ng) =Mt(f )Mt(g).

In this way we obtain, for example, a Morse function on the n-torus T n from that given on S1 above.

Example 1.4. The function f =
∑n

i=0 λi |zi |2, restricted to S2n+1 ⊂ Cn+1, is invariant under z 7→ e iθz and so

descends to a smooth function on CP n = S2n+1/S1. By the Lagrange multiplier method, finding critical points

of f subject to g =
∑
|zi |2 = 1 is the same as finding critical points of F = f − λ(g − 1). This gives

dF =
∑

(λi − λ)(zidz̄i + z̄idzi)− (g − 1)dλ,

so that critical points occur when zj = 0 for all j 6= i , and λ = λi ; that is, the critical points are the coordinate

axes Li = [0 : · · · : 1i : · · · : 0]. Near such a point, we can use coordinates zj and z̄j , j 6= i , and ri = |zi | for the

sphere S2n+1, and in these coordinates we have

f =
∑
j 6=i

(λj − λi)zj z̄j + λi ,

so that the Hessian has eigenvalues {λj − λi}j 6=i , each with multiplicity two, and one zero with multiplicity 1

(corresponding to the S1 symmetry direction). If we take λi real, and if we choose λi < λi+1, then the number

of negative eigenvalues at the i th axis is 2i :

Mt(f ) = 1 + t2 + · · ·+ t2n.

2



1.2 The Morse lemma 1341HS Morse Theory

1.2 The Morse lemma

We will be analyzing the level set structure of a Morse function to understand the topology of the underlying

manifold. The reason Morse functions are particularly good for this purpose is twofold: a) they have a local

normal form, which means that they can be completely classified in small open sets, and b) they exist in

abundance. Near points for which f is regular, by the constant rank theorem there exist coordinates x1, . . . xn

such that f = x1. Near critical points, however, the following result provides a coordinate system in which the

function is simply quadratic, encoding only the value of the Morse index.

Theorem 1.5. Let f be a Morse function on a neighbourhood U of the origin in a vector space1, and let the

origin be a critical point. Then there is another neighbourhood V of the origin and a diffeomorphism

φ : V −→ φ(V ) ⊂ U

with φ(0) = 0, and such that

φ∗f (x) = D2
0f (x, x).

If we diagonalize the bilinear form D2
0f (x, x), then we obtain

φ∗f = −x2
1 − · · · − x2

λ0
+ x2

λ0+1 + · · ·+ x2
n ,

where λ0 is the Morse index of f at 0.

Proof. (Palais 1969) The strategy of this proof is one which appears many times in geometry, and is called

Moser’s trick. The idea is as follows: we need a diffeomorphism φ such that φ∗f is the quadratic function

Q : x 7→ 1
2D

2
0f (x, x). We will construct a family of diffeomorphisms φt going from φ0 = Id to the desired

φ1 = φ, which has the special property that

φ∗t f = (1− t)f + tQ. (2)

That is, it accomplishes an interpolation from f to Q (in our case, this interpolation is a simple one: it is linear).

We will construct this family of diffeomorphisms by flowing along a time-dependent vector field for time t.

This vector field will remain zero at 0, so that 0 is fixed by the resulting diffeomorphism.

The vector field Xt giving rise to a flow φt is generally defined by the equation

d
dt (φ∗t f ) = Xt(φ

∗
t f ).

In view of equation (2), this can be written (using X(f) = df(X))

Q− f = Xt((1− t)f + tQ) = d((1− t)f + tQ)(Xt).

This is an improvement because now this is a linear equation for Xt : we intend to solve for Xt in the above

equation. We will first rewrite it as an equation R(Xt , x) = S(x, x), and solve the vector equation RXt = Sx

via Xt = R−1Sx . This will then solve the above scalar equation.

In the same way that Q(x) = 1
2D

2
0f (x, x) comes from a bilinear operator D2

0f , we can write f , using Taylor’s

theorem, as follows (assume f (0) = 0 for simplicity):

f (x) =

∫ 1

0

(1− s)D2
sx f (x, x)ds.

This general formula is obtained by integration by parts, along the line from 0 to x . Then we define the family

of bilinear forms

S|x = 1
2D

2
0f −

∫ 1

0

[(1− s)D2
sx f ]ds,

1The proof of this theorem works for any f ∈ Ck+2(U,R) and U a neighbourhood of the origin in a Banach space, yielding a

diffeomorphism of class Ck .

3



1.2 The Morse lemma 1341HS Morse Theory

so that S|x(x, x) = Q − f . By Taylor’s theorem again, we can write the derivative of f as an integral of the

second derivative:

df |x =

∫ 1

0

D2
sx f (x, ·)ds.

Using this, we define the time-dependent family of operators

R|x,t = (1− t)
∫ 1

0

D2
sx f ds + tD2

0f ,

so that R|x,tx = d((1 − t)f + tQ). So, the equation we must solve is R(x,Xt) = S(x, x). Instead, we will

solve the vector equation RXt = Sx .

Note that the operator R coincides with D2
0f at x = 0 for all times t ∈ [0, 1]. Since D2

0f is nondegen-

erate, there exists a neighbourhood W of the origin where R is nondegenerate for all t ∈ [0, 1]. So, in this

neighbourhood we write

Xt |x = R−1Sx.

Clearly Xt |0 = 0 for all t, so that 0 is a fixed point.

We have constructed a vector field on an open set W , so that by the Picard-Lindelöf theorem for ODEs,

there is an open set surrounding W × {0} ⊂ W × I where the flow ϕt is defined. However, since 0 ∈ W is a

fixed point, we see that there must be a possibly smaller neighbourhood V ⊂ W where the flow is defined for

all t ∈ [0, 1], as required.

Exercise 3. Consider the standard Morse function f = −x2
1 − · · · − x2

λ0
+ x2

λ0+1 + · · ·+ x2
n on Rλ×Rn−λ. Label

the coordinates (x, y) ∈ Rλ × Rn−λ for convenience. Show that the −1 level set

−x2 + y2 = −1

is homotopic to Sλ−1 while the +1 level set is homotopic to Sn−λ−1. Show also that the zero level set is a

cone on Sλ−1 × Sn−λ−1 and is homotopic to a point. Use cosh, sinh to see the explicit homotopies.

As we pass through the zero level, the level sets can be viewed as undergoing a surgery and the sublevel sets

can be seen to undergo a handle attachment. Investigate this process in low dimensions such as 1,2,3,4.

Remark 3. There is a somewhat simpler proof of this result in Milnor’s book, using a method which does not

generalize to infinite dimensions. It may be helpful to see that proof as well.
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