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1 Introduction

1.1 Morse functions

Let M be a smooth manifold. Given f € C*(M,R), its differential df is a section of T*M. The zeros of this
section are called critical points of f, and form the subset Crit(f) C M, the values of f on Crit(f) are called
critical values. All other points and values are called regular. Always remember that if ¢ is a critical value, not
all points in f~%(c) need be critical.

We now define the Hessian of f, which is a symmetric bilinear form on the tangent space of a critical point:

Definition 1. The Hessian Df)f S Sysz;/\/l of a function f at a critical point p € M is defined via
Daf (X, Y) = X(Y ()l = Y(X())lp. (1)

for any vector fields X, Y. Note that [X,Y](f)|p = df([X,Y])|, = 0 since p is a critical point, and also that
D,%f depends only on the values of X, Y at p, by the second and third terms, respectively, in .

Exercise 1. Show that if the first k terms (starting with the zeroth order term) of the coordinate Taylor
expansion of a section of a vector bundle E vanish, then the k% order term will be a well-defined (i.e. coordinate-
independent) tensor in Syka;/\/I ® E,. This is most easily seen through the properties of the so-called jet
bundles JXE.

Exercise 2. The tangent space H to the image of the section df € (M, T*M), at the point (p,0) € T*M
(for p € Crit(f)), is a subspace of the tangent space T(, o) 7*M. Show that there is a natural isomorphism
Ty T"M = T,M @& T;M, and that the subspace H defines a map T,M — T;M which coincides with the
map X — (Y = D3f(X,Y)).

Definition 2. p € Crit(f) is nondegenerate when Df,f is nondegenerate, i.e. the symmetric map Dgf ToM —
T, M is an isomorphism. By Exercise this is equivalent to the requirement that df € (M, T*M) intersect
the zero section transversally at (p,0).

Remark 1. Recall that transversality of subspaces U,V of the vector space W is the condition that U+V = W,
without requiring that the sum be a direct sum.

Definition 3. A Morse function f € C*°(M, R) is a function all of whose critical points are nondegenerate.

In view of the definition of nondegeneracy as a simple transversality, we see that this definition may be
rephrased as saying f is Morse iff df intersects the zero section transversally. Since the transversal inter-
section of embedded submanifolds of codimension k, / yields an embedded submanifold of codimension k + /,
we immediately obtain the following result:

Proposition 1.1. The critical locus Crit(f) of a Morse function is an embedded 0-dimensional submanifold of
M, so that the critical points are isolated. If M is compact, there must be finitely many critical points.

Proof. If f is a Morse function on the n-manifold M, then the images of df and of the zero section are two
embedded codimension n submanifolds of T*M which intersect transversally. Hence they intersect in a zero-
dimensional embedded submanifold. By the definition of embedded submanifolds, each point has a regular
neighbourhood, and is hence isolated. O

Remark 2. If M is compact, then not only must there be finitely many critical points, but there must be at least
one (two if dim M > 0), since the minimum and maximum value must be achieved, and these are automatically
critical.

Nondegenerate symmetric bilinear forms on a n-dimensional vector space V are classified by the signature
(Sylvester's signature theorem), or equivalently we will classify them by the maximal dimension of a subspace
U C V on which the bilinear form is negative-definite. Using this, we obtain a numerical invariant at each critical
point of a Morse function.
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Definition 4. The Morse index X, of a critical point p € Crit(f) is the maximal dimension of subspaces U C T,M
on which Dgf is negative definite. It is an integer between 0 and dim M which indicates the number of directions
in which f is decreasing. In still other words, it is the number of negative entries in the diagonalization of the
bilinear form D2f.

It will be convenient for us to package the data of the Morse indices in a generating function, called the

Morse polynomial:
M(F)= > = uWtY,
peCrit(f) A

where the coefficients ur(X) are simply the number of critical points with index A — these are known as the
Morse numbers of f. This generating function may even be used in cases with infinitely many critical points, as
long as there are only finitely many critical points of a given index.

Example 1.2. Let f = x° be the height function on the sphere S™ = {3 7(x')?> = 1} C R™. Then
Crit(f) = {N, S} consists of the North and South poles. Furthermore Ay = n while A\s = 0, and

M(f)=1+1t".

Example 1.3. Let f and g be Morse functions on M, N respectively. Consider the product M x N, with its
projection maps py, py to M, N respectively. Then py,f + png is a function on M x N, whose derivative
pydf + pydg vanishes on Crit(f) x Crit(g), and given such a critical point (p, q), we have the Morse index
Ap + Aq. Hence we see that

Me(puf + png) = Me(F)Me(9).
In this way we obtain, for example, a Morse function on the n-torus T" from that given on S* above.
Example 1.4. The function f = Y1 \i|zi|?, restricted to S?"*1 C C™1, is invariant under z — €z and so

descends to a smooth function on CP" = S2"+1 /St By the Lagrange multiplier method, finding critical points
of f subject to g = >_|z|? = 1 is the same as finding critical points of F = f — X(g — 1). This gives

dF =Y (A = N)(zdz + Zidz) — (g — 1)dA,

so that critical points occur when z; = 0 for all j # i, and A = \;; that is, the critical points are the coordinate
axes Li=1[0:---:1;:---:0]. Near such a point, we can use coordinates z; and Z;, j # i, and r; = |z for the
sphere S2"t1 and in these coordinates we have

f=> (y=2zz+\
J#i

so that the Hessian has eigenvalues {\j — X\;}jzi, each with multiplicity two, and one zero with multiplicity 1
(corresponding to the S' symmetry direction). If we take \; real, and if we choose \; < Aiy1, then the number
of negative eigenvalues at the ith axis is 2i:

M(F) =142+ + "
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1.2 The Morse lemma

We will be analyzing the level set structure of a Morse function to understand the topology of the underlying
manifold. The reason Morse functions are particularly good for this purpose is twofold: a) they have a local
normal form, which means that they can be completely classified in small open sets, and b) they exist in
abundance. Near points for which f is regular, by the constant rank theorem there exist coordinates x!, ... x"
such that f = x*. Near critical points, however, the following result provides a coordinate system in which the
function is simply quadratic, encoding only the value of the Morse index.

Theorem 1.5. Let f be a Morse function on a neighbourhood U of the origin in a vector spaceﬂ and let the
origin be a critical point. Then there is another neighbourhood V' of the origin and a diffeomorphism

oV —pV)CU

with ¢(0) = 0, and such that
¢*f(x) = D3f(x, x).
If we diagonalize the bilinear form D3f(x, x), then we obtain
P f=—xF— =X X X
where \g is the Morse index of f at Q.

Proof. (Palais 1969) The strategy of this proof is one which appears many times in geometry, and is called
Moser’s trick. The idea is as follows: we need a diffeomorphism ¢ such that ¢*f is the quadratic function
Q:xm— %Dgf(x,x). We will construct a family of diffeomorphisms ¢; going from ¢y = Id to the desired
¢1 = ¢, which has the special property that

¢if = (1—1)f +1Q. (2)

That is, it accomplishes an interpolation from f to @ (in our case, this interpolation is a simple one: it is linear).
We will construct this family of diffeomorphisms by flowing along a time-dependent vector field for time t.
This vector field will remain zero at 0, so that 0 is fixed by the resulting diffeomorphism.
The vector field X; giving rise to a flow ¢; is generally defined by the equation

S (dEF) = Xe(¢3F).
In view of equation (2)), this can be written (using X(f) = df(X))
QR—-Ff=X(1-t)f +tQ) =d((1 —t)f +tQ)(X¢).

This is an improvement because now this is a linear equation for X;: we intend to solve for X; in the above
equation. We will first rewrite it as an equation R(X¢, x) = S(x, x), and solve the vector equation RX; = Sx
via X; = R71Sx. This will then solve the above scalar equation.

In the same way that Q(x) = %Dgf(x,x) comes from a bilinear operator Dgf, we can write f, using Taylor's
theorem, as follows (assume f(0) = 0 for simplicity):

f(x)= /01(1 —5)D2 f(x, x)ds.

This general formula is obtained by integration by parts, along the line from 0 to x. Then we define the family
of bilinear forms

1
S|X:%D§f—/ [(1— s)D2.f]ds,
0

1The proof of this theorem works for any f € Ck+2(U, R) and U a neighbourhood of the origin in a Banach space, yielding a
diffeomorphism of class Ck.
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so that S|x(x,x) = Q — f. By Taylor's theorem again, we can write the derivative of f as an integral of the
second derivative:

1
df|X:/ D2 f(x,-)ds.
0

Using this, we define the time-dependent family of operators
1
Rlx:=(1~— t)/ D2 fds + tD3f,
0

so that R|x:x = d((1 — t)f + tQ). So, the equation we must solve is R(x, X¢) = S(x, x). Instead, we will
solve the vector equation RX; = Sx.

Note that the operator R coincides with DZf at x = 0 for all times t € [0,1]. Since D3f is nondegen-
erate, there exists a neighbourhood W of the origin where R is nondegenerate for all t € [0,1]. So, in this
neighbourhood we write

Xelx = R1Sx.

Clearly Xt]p = 0 for all t, so that O is a fixed point.

We have constructed a vector field on an open set W, so that by the Picard-Lindelof theorem for ODEs,
there is an open set surrounding W x {0} € W x | where the flow ¢ is defined. However, since 0 € W is a
fixed point, we see that there must be a possibly smaller neighbourhood V' C W where the flow is defined for
all t € [0, 1], as required. O

Exercise 3. Consider the standard Morse function f = —x? —- - —x% +x3 . +---+x2 on R* x R™*_ Label
the coordinates (x,y) € R* x R"* for convenience. Show that the —1 level set

—x2+y?=-1

is homotopic to S*1 while the +1 level set is homotopic to S"*~1. Show also that the zero level set is a
cone on S* 1 x S" 21 and is homotopic to a point. Use cosh, sinh to see the explicit homotopies.

As we pass through the zero level, the level sets can be viewed as undergoing a surgery and the sublevel sets
can be seen to undergo a handle attachment. Investigate this process in low dimensions such as 1,2,3,4.

Remark 3. There is a somewhat simpler proof of this result in Milnor's book, using a method which does not
generalize to infinite dimensions. It may be helpful to see that proof as well.



