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1.7 Examples of handle decompositions

Example 1.19. Consider S? embedded in R? as an irreqular ellipsoid x*> +2y?+3z% = 1. The “height function”
f = r? is Morse, and invariant under the antipodal map A : (x,y, z) — (—x, —y, —z). Hence it descends to a
Morse function with three critical points on RP?, with indices 0,1, 2. In this case we can see explicitly how the
handle decomposition works, after the 1-handle is attached to the 0-handle, the manifold is non-orientable, so
that it has one boundary component and so is ready for the single 2-handle.

Example 1.20 (Planar equilateral pentagons). A planar equilateral pentagon can be described by 4 unit complex
numbers (z1, 72, z3, z4) = (€%, €2, /%, %) with Im>_ z; = 0 and Re Y z; = 1. We will analyze this space by
viewing it as the -1 level set of the function f = —Re Y z; = > cos;. Note that —1 is a regular value since
df = [sin 6] only vanishes when 0; € TZ, so that cos6; = +1, so that Re>_ z, =0 (mod 2).

The space f < 0 is indeed a smooth 3-dimensional manifold embedded in T*, and we use f as a Morse
function on it. The minimum value is at —4, where there is a single critical point of index 0. Then there is another
critical value at f = =2, with the following critical points (-1,-1,-1,1),(-1,-1,1,-1), (-1,1,—-1,-1) and
(1,-1,—-1,-1). These are all of index 1, since "the function can only be decreased in one direction”. There
are no other critical values in (—oo, 1]. Hence we see that the 3-manifold may be constructed by 4 1-handle
attachments on a 3-ball. This means the boundary must be a genus 4 orientable (it is boundary of an orientable
3-manifold) Riemann surface.

1.8 Morse inequalities

In this section we compare the Morse polynomial of a Morse function f on the manifold M

M(f)= > tr=> purNr,
A

peCrit(f)

with the Poincaré polynomial P;(M) = 3" b;t’, where b; = dimy H;(M, k) are the Betti numbers of M with
respect to some coefficient field k.

To analyze the difference between these polynomials, let us do so “inductively” on the sublevel sets M2 =
f~1(—o0, a. Let the Morse polynomial for M? be M (f)?.

If there are no critical points in [a, b], then clearly M.(f)? = M(f)? by definition and P:(M?) = P:(MP),
by theorem A.

If there is a single critical point of index X in [a, b], then by definition

M(F)P — M (F)? =t

What happens to the Poincaré polynomial? We use Theorem B, which states that that M? is a A-handle
attached to M?.

Consider the attaching sphere S*~1 C M?. This cycle either bounds a chain in M? or not. This is a global
criterion in M2,
Completable case: if the attaching sphere bounds a chain in M?: then this chain, together with the new
A-handle, forms a new nontrivial cycle of dimension . Then AP; = t*, and therefore

A(Mt_Pt):O

If the attaching sphere is a nontrivial cycle in M?: then the new A-handle kills this cycle and we get
AP, = t*1, and so
AM; —P) =t + 21 =t21(1 +t).

By induction, therefore, we have
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Theorem 1.21 (Morse inequalities).
M(f) = Pe(M) = (14 £)Q:(f),
where Q(f) is a polynomial with nonnegative integer coefficients. In particular we have

o ur(X) > by (Weak Morse inequalities),
o x(M) = 32(=1)'n(i),

e for each k > 0,
b — b1+ 4 (=1)%bo < pk — prr—1 + -+ + (—1)*po.

Proof. The weak Morse inequalities are obtained by simply truncating the equation M; — P, = (1 + t)Q;.
To give a rigorous proof of the main statement, we will use the exact sequence in relative homology for the
inclusion M2 C MP". First we determine Hk(Mb, M2, k) using excision:

Excision says that if Z C A C X with Z C A" then the inclusion (X — Z,A— Z) C (X, A) induces an
isomorphism on homology. For (M? M?), we can take Z to be the complement in M? of a small tubular
neighbourhood of the attaching sphere. Then H,(M?, M?; k) = H,(D*, S*1; k) = H,(S>; k), which is k for
n = X and zero otherwise. By the long exact sequence in relative homology therefore we have

0 —— HA(M?) —— Hy(MP) —> K —2 Hy_1(M?) — Hy_y(M?) —> 0

Whether § is 0 or rank 1 gives the two alternatives: if § = 0 then AP = t* and we are in the completable
case. .

Corollary 1.22. x(M) =0 for M an odd-dimensional compact manifold.

Proof. If f is Morse, so that x(M) = M_y(f), then —f is Morse also, so x(M) = M_1(—f) = =M _4(f)
—x(M).

Definition 10. f is a perfect Morse function for the coefficient field k if M(f) = P:(M, k).

Example 1.23. Note that RP" has H,(RP",R) vanishes except for k = 0 and, when n odd, k = n. Applying the
Morse inequalities we get that there is at least one critical point. However, over K = Z,, we have Hy(RP") = Z»
for all 0 < k < n. Hence the Morse inequalities yield at least n+ 1 critical points. This bound is achieved by
the function (a generalization of the above ellipsoid)

O

n+1
F=ilxP
i=1
Corollary 1.24. Let M be a compact manifold. If the gap condition |X\(p)—X(q)| # 1 holds for all p, g € Crit(f),
then f is a perfect Morse function (for any field).

Proof. Under the gap assumption we wish to show that the connecting homomorphism § : Hy(M?, M?) —
Hx_1(M?) is always zero. Assuming that Hy(M?, M?) is not itself zero, this means by the gap that A — 1 is
not a morse index for the manifold. Assuming inductively that this means Hx_1(M?) = 0, this implies that ¢
must vanish. But then we obtain the exact sequence

0 —— Hi(M3) —— Hy(MP) —— Hy(M®, M?) — 0
so that if k is not a morse index, then Hx(M?) = 0 implies Hy(M?) = 0 as well, establishing the induction. [

Example 1.25. The height function on the sphere has Morse polynomial 1+ t", which satisfies the gap condition
for n > 1, and so gives the Betti numbers of S". For |m — n| > 2, the gap condition is satisfied for the sum
of height functions on S™ x S", so that 1 + t™ + t" + t™*" gjves the Betti numbers for S™ x S". Finally, the
Morse function defined earlier on CP" had all even indices. Hence it satisfies the gap condition and is perfect.
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