1.7 Examples of handle decompositions

Example 1.19. Consider S^2 embedded in \mathbb{R}^3 as an irregular ellipsoid $x^2 + 2y^2 + 3z^2 = 1$. The "height function" $f = r^2$ is Morse, and invariant under the antipodal map $A : (x, y, z) \mapsto (-x, -y, -z)$. Hence it descends to a Morse function with three critical points on $\mathbb{R}P^2$, with indices 0, 1, 2. In this case we can see explicitly how the handle decomposition works; after the 1-handle is attached to the 0-handle, the manifold is non-orientable, so that it has one boundary component and so is ready for the single 2-handle.

Example 1.20 (Planar equilateral pentagons). A planar equilateral pentagon can be described by 4 unit complex numbers $(z_1, z_2, z_3, z_4) = (e^{i\theta_1}, e^{i\theta_2}, e^{i\theta_3}, e^{i\theta_4})$ with $\text{Im} \sum z_i = 0$ and $\text{Re} \sum z_i = 1$. We will analyze this space by viewing it as the -1 level set of the function $f = -\text{Re} \sum z_i = \sum \cos \theta_i$. Note that -1 is a regular value since $df = [\sin \theta_i]$ only vanishes when $\theta_i \in \pi\mathbb{Z}$, so that $\cos \theta_i = \pm 1$, so that $\text{Re} \sum z_i = 0 \pmod{2}$.

The space f < 0 is indeed a smooth 3-dimensional manifold embedded in T^4 , and we use f as a Morse function on it. The minimum value is at -4, where there is a single critical point of index 0. Then there is another critical value at f = -2, with the following critical points (-1, -1, -1, 1), (-1, -1, 1, -1), (-1, 1, -1, -1) and (1, -1, -1, -1). These are all of index 1, since "the function can only be decreased in one direction". There are no other critical values in $(-\infty, 1]$. Hence we see that the 3-manifold may be constructed by 4 1-handle attachments on a 3-ball. This means the boundary must be a genus 4 orientable (it is boundary of an orientable 3-manifold) Riemann surface.

1.8 Morse inequalities

In this section we compare the Morse polynomial of a Morse function f on the manifold M

$$\mathcal{M}_t(f) = \sum_{p \in \operatorname{Crit}(f)} t^{\lambda_p} = \sum_{\lambda} \mu_f(\lambda) t^{\lambda}$$

with the Poincaré polynomial $P_t(M) = \sum b_i t^i$, where $b_i = \dim_k H_i(M, k)$ are the Betti numbers of M with respect to some coefficient field k.

To analyze the difference between these polynomials, let us do so "inductively" on the sublevel sets $M^a = f^{-1}(-\infty, a]$. Let the Morse polynomial for M^a be $\mathcal{M}_t(f)^a$.

If there are no critical points in [a, b], then clearly $\mathcal{M}_t(f)^a = \mathcal{M}_t(f)^b$ by definition and $P_t(M^a) = P_t(M^b)$, by theorem A.

If there is a single critical point of index λ in [a, b], then by definition

$$\mathcal{M}_t(f)^b - \mathcal{M}_t(f)^a = t^{\lambda}.$$

What happens to the Poincaré polynomial? We use Theorem B, which states that that M^b is a λ -handle attached to M^a .

Consider the attaching sphere $S^{\lambda-1} \subset M^a$. This cycle either bounds a chain in M^a or not. This is a global criterion in M^a .

Completable case: if the attaching sphere bounds a chain in M^a : then this chain, together with the new λ -handle, forms a new nontrivial cycle of dimension λ . Then $\Delta P_t = t^{\lambda}$, and therefore

$$\Delta(\mathcal{M}_t - P_t) = 0.$$

If the attaching sphere is a nontrivial cycle in M^a : then the new λ -handle kills this cycle and we get $\Delta P_t = t^{\lambda-1}$, and so

$$\Delta(\mathcal{M}_t - P_t) = t^{\lambda} + t^{\lambda - 1} = t^{\lambda - 1}(1 + t).$$

By induction, therefore, we have

Theorem 1.21 (Morse inequalities).

$$\mathcal{M}_t(f) - P_t(M) = (1+t)Q_t(f),$$

where $Q_t(f)$ is a polynomial with nonnegative integer coefficients. In particular we have

- $\mu_f(\lambda) \ge b_\lambda$ (Weak Morse inequalities),
- $\chi(M) = \sum (-1)^i \mu(i)$,
- for each $k \ge 0$,

$$b_k - b_{k-1} + \dots + (-1)^{\kappa} b_0 \le \mu_k - \mu_{k-1} + \dots + (-1)^{\kappa} \mu_0.$$

Proof. The weak Morse inequalities are obtained by simply truncating the equation $\mathcal{M}_t - P_t = (1 + t)Q_t$. To give a rigorous proof of the main statement, we will use the exact sequence in relative homology for the inclusion $\mathcal{M}^a \subset \mathcal{M}^b$. First we determine $H_k(\mathcal{M}^b, \mathcal{M}^a, k)$ using excision:

Excision says that if $Z \subset A \subset X$ with $\overline{Z} \subset A^{int}$ then the inclusion $(X - Z, A - Z) \subset (X, A)$ induces an isomorphism on homology. For (M^b, M^a) , we can take Z to be the complement in M^a of a small tubular neighbourhood of the attaching sphere. Then $H_n(M^b, M^a; k) = H_n(D^\lambda, S^{\lambda-1}; k) = \tilde{H}_n(S^\lambda; k)$, which is k for $n = \lambda$ and zero otherwise. By the long exact sequence in relative homology therefore we have

$$0 \longrightarrow H_{\lambda}(M^{a}) \longrightarrow H_{\lambda}(M^{b}) \longrightarrow \mathbb{K} \longrightarrow H_{\lambda-1}(M^{a}) \longrightarrow H_{\lambda-1}(M^{b}) \longrightarrow 0$$

Whether δ is 0 or rank 1 gives the two alternatives: if $\delta = 0$ then $\Delta P = t^{\lambda}$ and we are in the completable case.

Corollary 1.22. $\chi(M) = 0$ for M an odd-dimensional compact manifold.

Proof. If f is Morse, so that $\chi(M) = \mathcal{M}_{-1}(f)$, then -f is Morse also, so $\chi(M) = \mathcal{M}_{-1}(-f) = -\mathcal{M}_{-1}(f) = -\chi(M)$.

Definition 10. f is a perfect Morse function for the coefficient field k if $\mathcal{M}_t(f) = P_t(\mathcal{M}, k)$.

Example 1.23. Note that $\mathbb{R}P^n$ has $H_k(\mathbb{R}P^n, \mathbb{R})$ vanishes except for k = 0 and, when n odd, k = n. Applying the Morse inequalities we get that there is at least one critical point. However, over $\mathbb{K} = \mathbb{Z}_2$, we have $H_k(\mathbb{R}P^n) = \mathbb{Z}_2$ for all $0 \le k \le n$. Hence the Morse inequalities yield at least n + 1 critical points. This bound is achieved by the function (a generalization of the above ellipsoid)

$$f = \sum_{i=1}^{n+1} i |x_i|^2$$

Corollary 1.24. Let *M* be a compact manifold. If the gap condition $|\lambda(p) - \lambda(q)| \neq 1$ holds for all $p, q \in Crit(f)$, then *f* is a perfect Morse function (for any field).

Proof. Under the gap assumption we wish to show that the connecting homomorphism $\delta : H_{\lambda}(M^b, M^a) \longrightarrow H_{\lambda-1}(M^a)$ is always zero. Assuming that $H_{\lambda}(M^b, M^a)$ is not itself zero, this means by the gap that $\lambda - 1$ is not a morse index for the manifold. Assuming inductively that this means $H_{\lambda-1}(M^a) = 0$, this implies that δ must vanish. But then we obtain the exact sequence

$$0 \longrightarrow H_k(M^a) \longrightarrow H_k(M^b) \longrightarrow H_k(M^b, M^a) \longrightarrow 0$$

so that if k is not a morse index, then $H_k(M^a) = 0$ implies $H_k(M^b) = 0$ as well, establishing the induction.

Example 1.25. The height function on the sphere has Morse polynomial $1+t^n$, which satisfies the gap condition for n > 1, and so gives the Betti numbers of S^n . For $|m - n| \ge 2$, the gap condition is satisfied for the sum of height functions on $S^m \times S^n$, so that $1 + t^m + t^n + t^{m+n}$ gives the Betti numbers for $S^m \times S^n$. Finally, the Morse function defined earlier on \mathbb{CP}^n had all even indices. Hence it satisfies the gap condition and is perfect.