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Example 1.19. Consider S2 embedded in R3 as an irregular ellipsoid x2 +2y2 +3z2 = 1. The “height function”

f = r2 is Morse, and invariant under the antipodal map A : (x, y , z) 7→ (−x,−y ,−z). Hence it descends to a

Morse function with three critical points on RP 2, with indices 0, 1, 2. In this case we can see explicitly how the

handle decomposition works; after the 1-handle is attached to the 0-handle, the manifold is non-orientable, so

that it has one boundary component and so is ready for the single 2-handle.

Example 1.20 (Planar equilateral pentagons). A planar equilateral pentagon can be described by 4 unit complex

numbers (z1, z2, z3, z4) = (e iθ1 , e iθ2 , e iθ3 , e iθ4 ) with Im
∑
zi = 0 and Re

∑
zi = 1. We will analyze this space by

viewing it as the -1 level set of the function f = −Re
∑
zi =

∑
cos θi . Note that −1 is a regular value since

df = [sin θi ] only vanishes when θi ∈ πZ, so that cos θi = ±1, so that Re
∑
zi = 0 (mod 2).

The space f < 0 is indeed a smooth 3-dimensional manifold embedded in T 4, and we use f as a Morse

function on it. The minimum value is at−4, where there is a single critical point of index 0. Then there is another

critical value at f = −2, with the following critical points (−1,−1,−1, 1),(−1,−1, 1,−1), (−1, 1,−1,−1) and

(1,−1,−1,−1). These are all of index 1, since “the function can only be decreased in one direction”. There

are no other critical values in (−∞, 1]. Hence we see that the 3-manifold may be constructed by 4 1-handle

attachments on a 3-ball. This means the boundary must be a genus 4 orientable (it is boundary of an orientable

3-manifold) Riemann surface.

1.8 Morse inequalities

In this section we compare the Morse polynomial of a Morse function f on the manifold M

Mt(f ) =
∑

p∈Crit(f )

tλp =
∑
λ

µf (λ)tλ,

with the Poincaré polynomial Pt(M) =
∑
bi t

i , where bi = dimk Hi(M, k) are the Betti numbers of M with

respect to some coefficient field k .

To analyze the difference between these polynomials, let us do so “inductively” on the sublevel sets Ma =

f −1(−∞, a]. Let the Morse polynomial for Ma be Mt(f )a.

If there are no critical points in [a, b], then clearly Mt(f )a =Mt(f )b by definition and Pt(M
a) = Pt(M

b),

by theorem A.

If there is a single critical point of index λ in [a, b], then by definition

Mt(f )b −Mt(f )a = tλ.

What happens to the Poincaré polynomial? We use Theorem B, which states that that Mb is a λ-handle

attached to Ma.

Consider the attaching sphere Sλ−1 ⊂ Ma. This cycle either bounds a chain in Ma or not. This is a global

criterion in Ma.

Completable case: if the attaching sphere bounds a chain in Ma: then this chain, together with the new

λ-handle, forms a new nontrivial cycle of dimension λ. Then ∆Pt = tλ, and therefore

∆(Mt − Pt) = 0.

If the attaching sphere is a nontrivial cycle in Ma: then the new λ-handle kills this cycle and we get

∆Pt = tλ−1, and so

∆(Mt − Pt) = tλ + tλ−1 = tλ−1(1 + t).

By induction, therefore, we have
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Theorem 1.21 (Morse inequalities).

Mt(f )− Pt(M) = (1 + t)Qt(f ),

where Qt(f ) is a polynomial with nonnegative integer coefficients. In particular we have

• µf (λ) ≥ bλ (Weak Morse inequalities),

• χ(M) =
∑

(−1)iµ(i),

• for each k ≥ 0,

bk − bk−1 + · · ·+ (−1)kb0 ≤ µk − µk−1 + · · ·+ (−1)kµ0.

Proof. The weak Morse inequalities are obtained by simply truncating the equation Mt − Pt = (1 + t)Qt .

To give a rigorous proof of the main statement, we will use the exact sequence in relative homology for the

inclusion Ma ⊂ Mb. First we determine Hk(Mb,Ma, k) using excision:

Excision says that if Z ⊂ A ⊂ X with Z ⊂ Aint then the inclusion (X − Z,A − Z) ⊂ (X,A) induces an

isomorphism on homology. For (Mb,Ma), we can take Z to be the complement in Ma of a small tubular

neighbourhood of the attaching sphere. Then Hn(Mb,Ma; k) = Hn(Dλ, Sλ−1; k) = H̃n(Sλ; k), which is k for

n = λ and zero otherwise. By the long exact sequence in relative homology therefore we have

0 // Hλ(Ma) // Hλ(Mb) // K δ // Hλ−1(Ma) // Hλ−1(Mb) // 0

Whether δ is 0 or rank 1 gives the two alternatives: if δ = 0 then ∆P = tλ and we are in the completable

case.

Corollary 1.22. χ(M) = 0 for M an odd-dimensional compact manifold.

Proof. If f is Morse, so that χ(M) =M−1(f ), then −f is Morse also, so χ(M) =M−1(−f ) = −M−1(f ) =

−χ(M).

Definition 10. f is a perfect Morse function for the coefficient field k if Mt(f ) = Pt(M, k).

Example 1.23. Note that RP n has Hk(RP n,R) vanishes except for k = 0 and, when n odd, k = n. Applying the

Morse inequalities we get that there is at least one critical point. However, over K = Z2, we have Hk(RP n) = Z2

for all 0 ≤ k ≤ n. Hence the Morse inequalities yield at least n + 1 critical points. This bound is achieved by

the function (a generalization of the above ellipsoid)

f =

n+1∑
i=1

i |xi |2

Corollary 1.24. Let M be a compact manifold. If the gap condition |λ(p)−λ(q)| 6= 1 holds for all p, q ∈ Crit(f ),

then f is a perfect Morse function (for any field).

Proof. Under the gap assumption we wish to show that the connecting homomorphism δ : Hλ(Mb,Ma) −→
Hλ−1(Ma) is always zero. Assuming that Hλ(Mb,Ma) is not itself zero, this means by the gap that λ − 1 is

not a morse index for the manifold. Assuming inductively that this means Hλ−1(Ma) = 0, this implies that δ

must vanish. But then we obtain the exact sequence

0 // Hk(Ma) // Hk(Mb) // Hk(Mb,Ma) // 0

so that if k is not a morse index, then Hk(Ma) = 0 implies Hk(Mb) = 0 as well, establishing the induction.

Example 1.25. The height function on the sphere has Morse polynomial 1+tn, which satisfies the gap condition

for n > 1, and so gives the Betti numbers of Sn. For |m − n| ≥ 2, the gap condition is satisfied for the sum

of height functions on Sm × Sn, so that 1 + tm + tn + tm+n gives the Betti numbers for Sm × Sn. Finally, the

Morse function defined earlier on CP n had all even indices. Hence it satisfies the gap condition and is perfect.
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